
06 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Playing with ghosts in a Dynkin game

Published version:

DOI:10.1016/j.spa.2020.05.005

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1761910 since 2020-12-28T20:18:02Z



PLAYING WITH GHOSTS IN A DYNKIN GAME

TIZIANO DE ANGELIS AND ERIK EKSTRÖM

Abstract. We study a class of two-player optimal stopping games (Dynkin games) of
preemption type, with uncertainty about the existence of competitors. The set-up is
well-suited to model, for example, real options in the context of investors who do not
want to publicly reveal their interest in a certain business opportunity. We show that
if the underlying process is a Rd-valued, continuous, strong Markov process, and the
stopping payoff is a continuous function (with mild integrability properties) there exists
a Nash equilibrium in randomized stopping times for the game. Moreover, the equilibrium
strategies and the expected payoffs of the two players are computed explicitly in terms of
the corresponding one-player game. To the best of our knowledge this is the first paper
to address this version of Dynkin games.

1. Introduction

Background. Stopping games have received huge attention in the stochastic control liter-
ature since their inception, dating back to work by Dynkin in [10]. In the standard modern
formulation of the two-player game (due to Neveau [22]) the players have gains/losses de-
pending on a stochastic process X, which they both observe. Their aim is to maximise
gains (or minimise losses) by finding stopping rules that allow for a Nash equilibrium in
the game. Both players know the structure of the game and have full information on the
specifications of the process X.

Many real-world applications call for incomplete and/or asymmetric information about
the game structure and/or the underlying stochastic process. In particular, in this paper
we are interested in determining equilibria for two-player Dynkin games in which each
player is uncertain about the existence of a competitor. Before describing our contribution
in further detail we spend a few words on the existing literature in order to contextualise
the problem.

It is difficult to provide a detailed literature review that would do justice to the numer-
ous contributions on Dynkin games in the standard framework (i.e., full and symmetric
information) and it falls outside the scope of our introduction. For the case of zero-sum
games one may for example refer to [20] and [12] for general treatments of the martingale
and the Markovian set-ups, respectively, and to [17] for a reduction of a financial game
option into a stopping game. Other seminal contributions to this literature can be found
in [2], [25] and [27] among others. For the case of nonzero-sum games one may refer to
[3] for connections between such games and variational inequalities, to [13] for martingale
methods for existence of a saddle-point in a general set-up, and to [1] and [8] for suffi-
cient conditions for the existence (and uniqueness) of Nash equilibria in hitting times to
thresholds for one dimensional diffusions.

In our paper we will be dealing with a class of problems that share similarities with
nonzero-sum Dynkin games. However we depart from the standard set-up by including the
key feature of uncertainty about competition. In this respect we draw from the literature
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on games with incomplete/asymmetric information, whose main common denominator is
the need of the players to hide their information from the competitors. Mathematically
this translates into the use of randomised stopping times; the latter can be informally
understood as stopping rules which prescribe to stop according to some ‘intensity’; for
example, in a discrete-time setting, it means that stopping may occur at each time with
some probability. The other key feature of this type of games is the need to account for
the dynamic evolution of the players’ beliefs concerning those parameters that they cannot
fully observe (in other words, the players update their private views on the ‘state of the
world’ by observing what happens during the game, and one needs to keep track of such
updates). We incorporate beliefs in our game by adding a state variable, denoted by Π,
whose dynamic is constructed starting from the randomised stopping strategies of the two
players (see Section 4 below).

The literature on Dynkin games with asymmetric/incomplete information has started
to gain traction in recent years. The first contribution that we are aware of is by Grün [15].
In [15], a zero-sum stopping game with asymmetric information about the payoff functions
is considered. In a setting where one of the players has the informational advantage of
knowing the payoff functions and the other player only knows the distribution of possible
payoff functions, a value of the game is obtained (with randomised stopping times) and
characterised as a viscosity solution of a nonlinear variational problem. Later on, in [14],
authors use methods inspired by dynamic programming to study a zero-sum stopping
game in which the players have access to different filtrations generated by the dynamics
of two different processes. Explicitly solvable examples in this literature are still rare and
the first one is given in [6] (we provide another one in Section 6 for our game). Authors in
[6] study a zero-sum stopping game with asymmetric information about a drift parameter
of the underlying diffusion process. An explicit Nash equilibrium is obtained in which the
uninformed player uses a normal stopping time (pure strategy) and the informed one uses
a randomised stopping time (mixed strategy).

For completeness, but without elaborating further, we also mention that there exists
a vast literature on stochastic differential games with asymmetric information and the
interested reader may look into [4] and [5] and references therein.

In a strategic context of agents playing hide and seek, it seems natural to ask what
happens if players cannot be certain about the existence of competition. Several real-
world situations fall under this category as, for example, (a) investors who do not want to
reveal their interest for specific business opportunities (so-called real options), (b) potential
house buyers who are not aware of how many other offers will be put forward (and how
quickly), (c) buyers of depletable assets/goods (e.g., cheap flight tickets), etc. The feature
of uncertain competition has indeed been addressed in a static setting of auction theory,
see, e.g. [16] and [21], and more recently [11]. However, to the best of our knowledge there
are no studies featuring uncertain competition in a dynamic setting and in particular there
seem to be no contributions to the theory of Dynkin games. With this paper we aim at
filling that gap and encourage further research in that direction.

Our contribution. Here, we study a combined stopping/preemption game between two
players who are interested in the same asset. The player who stops first receives the full
payoff, defined in terms of an underlying Markov process X representing the asset. The
process X is required to be strong Markov, continuous and taking values in Rd. The game
is a nonzero-sum Dynkin game but, in contrast with the classical set-up, in our model the
players face uncertain competition, i.e. each player is uncertain as to whether the other
player exists or not.

At the start of the game each player estimates the probability of competition. That is,
Player 1 believes she has competition with probability p1 and Player 2 believes she has
competition with probability p2. As the game evolves, both players adjust their beliefs
according to the dynamic of their own belief process Πi, with i = 1, 2. Such adjustment is
based on a combination of two key elements: (i) the observation of the underlying asset
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X and (ii) the lack of action from the other player. Intuitively, if the payoff associated
with the current asset value becomes large, this is appealing for both players; therefore,
from the point of view of Player 1, the fact that Player 2 has not stopped yet, suggests
that Player 2 may not exist at all. (This simple heuristics also motivates the title of our
paper.)

Within this context the use of randomised stopping times stems from two observations.
On the one hand, it allows the players to hide their participation in the game in order to
‘fool’ their opponent. On the other hand, it is intuitively clear that, due to the preemption
feature of the game, it would be impossible to reach a non-trivial equilibrium using pure
stopping times (with respect to the filtration generated by the asset). Indeed, if Player 1
picks a stopping time τ , then Player 2 would possibly stop just before τ so as to receive
the full payoff.

In this paper, with no loss of generality we consider p1 ≤ p2. Then we prove that there
exists a Nash equilibrium in terms of strategies whose character completely depends on the
initial belief of Player 1. Here we only describe the main ideas around the structure of the
equilibrium but we emphasise that, at a deeper level, we find several remarkable properties
of the players’ optimal strategies which will be described in fuller detail in Section 5.3 (as
they need a more extensive mathematical discussion).

It turns out that the state space of the (d+1)-dimensional process (Π1, X) divides into
three disjoint regions: the no-action region (C), the action region (C′) and the stopping
region (S). If (Π1, X) starts in the no-action region (note that Π1

0 = p1), then the equi-
librium consists of no action (from either player) until the boundary ∂C of the region is
reached (notice that no action results in Πi being constant for i = 1, 2); then Player 2
employs a randomised strategy in such a way that the process (Π1, X) reflects along the
boundary ∂C towards the interior of C (as an effect of decreasing Π1); at the same time
Player 1 will follow a (equilibrium) strategy consisting of stopping with a fraction p1/p2

of the ‘stopping intensity’ of Player 2. If, instead, the initial beliefs are such that (Π1, X)
starts in C′, then Player 2 employs a strategy consisting of stopping immediately with
a certain probability. That makes the process (Π1, X) jump strictly into the interior of
the no-action region C. After this initial jump the reflection strategy described above is
employed. Also in this case Player 1 will follow the (equilibrium) strategy of stopping
with a fraction p1/p2 of the ‘stopping intensity’ of Player 2. Finally, if (Π1, X) starts in
the stopping region S, then the equilibrium strategy consists of immediate stopping for
both players. In this case the players split the payoff evenly.

Remarkably, the boundaries of the no-action region and of the action-region can be
specified explicitly in terms of the corresponding one-player game with no competition.
This allows to construct explicitly randomised stopping times, at equilibrium, in all those
games whose one-player counterpart is explicitly solvable. (For instance the literature on
optimal stopping of one-dimensional diffusions is rich with such examples, see e.g. [23].)
In particular, in Section 6 we provide the explicit solution of a real option game with
uncertain competition as an illustration of our results.

As explained above, our work is the first one to address uncertain competition in a
dynamic setting. We find a surprisingly explicit yet rich structure of the equilibrium
strategies, which allows for a collection of interesting considerations (see details in Sec-
tion 5.3). In short, we observe that the most active player is the one who has the largest
initial belief about the existence of the opponent, and that she is the one who benefits the
most from randomisation; we call this feature the ‘benefit of wariness’. Also, the strategy
adopted by Player 2 when the game starts with (Π1

0, X0) ∈ C′ is somewhat surprising: in
the stopping literature there is no analogue for the region C′ and in the singular control
literature (which is also related to the present work) one should not expect jumps strictly
in the interior of the no-action region C (at least in absence of fixed costs of control).
Finally, it is possible to draw a parallel between the strategies that we construct and a
concept of entry time to ‘randomised’ sets. This is also rather surprising because, from
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the beginning, we look for Nash equilibria without any restrictions on the randomised
stopping times.

The rest of the paper is organised as follows. The game is set in Section 2, where we
also define randomised stopping times and recall the concept of Nash equilibrium in our
context. In Section 3 we derive a number of properties of the two players’ expected payoffs,
which are needed for the subsequent analysis. Section 4 is devoted to the construction of
the belief processes, the specification of the sets C (which corresponds to C plus a portion
of its boundary), C′ and S, and the construction of a suitably reflected belief process.
The existence and the main additional facts around the Nash equilibrium are derived in
Section 5. We conclude the paper with a fully solved example in Section 6.

2. Set-up

Let (Ω,P,F) be a probability space hosting the following:

(a) a continuous, Rd-valued, strong Markov process X which is regular (it can reach
any open set in finite time with positive probability, for any value of the initial
point X0 = x);

(b) two Bernoulli distributed random variables θi, i = 1, 2;
(c) two Uniform(0, 1)-distributed random variables Ui, i = 1, 2.

Furthermore, we assume that these processes and random variables are mutually indepen-
dent, and that P(θi = 1) = 1− P(θi = 0) = pi ∈ (0, 1].

We denote by FX = {FXt }0≤t<∞ the right-continuous augmentation of the filtration
generated by X, and we let T be the set of FX -stopping times. In what follows we will
use the notations Px( · ) := P( · |X0 = x) and Ex[ · ] := E[ · |X0 = x] for x ∈ Rd to indicate
the dependence on the initial state of the process X.

Below we consider an optimal stopping game between two players (Player 1 and Player 2),
each of which does not know whether the other player is active or passive. By an ‘active
player’ we mean a player who actively participates in the stopping game by choosing
a (randomised) stopping time; a ‘passive player’ is not participating in the game, and
will never stop. Mathematically, Player i uses the random variable θi, i = 1, 2 to model
whether the other player, Player (3 − i), is active or passive. Specifically, Player 1 has
active competition if θ1 = 1 and no competition if θ1 = 0; Player 2 has active competition
if θ2 = 1 and no competition if θ2 = 0.

To describe the strategies in this type of game, we first introduce the notion of a
randomised stopping time (see [19], [26] and [6]).

Definition 2.1. (Randomised stopping times.) Let A be the set of right-continuous
non-decreasing FX-adapted processes Γ = {Γt; 0− ≤ t < ∞} satisfying Γ0− = 0 and
Γt ≤ 1 for all t ≥ 0. Let U be a random variable, which is independent of X, with
U ∼ Uniform(0, 1). A U -randomised stopping time γ is a random variable of the form

γ = inf{t ≥ 0 : Γt > U}(1)

for some Γ ∈ A. Furthermore, we say that γ in (1) is generated by Γ.

The collection of Ui-randomised stopping times is denoted T Ri for i = 1, 2 and Ui
introduced in (c) above. Moreover, for future reference we also introduce stopping times

γu := inf{t ≥ 0 : Γt > u}, u ∈ [0, 1],(2)

with Γ ∈ A. Finally, we note that ∆Γt := Γt − Γt− for t ≥ 0 and Γ ∈ A.
Let g : Rd → [0,∞) be a continuous function such that

sup
x∈Rd

g(x) > 0.(3)

Our game is now specified as follows. Each player chooses a randomised stopping strategy:
Player 1 chooses τ ∈ T R1 and Player 2 chooses γ ∈ T R2 . The payoff for Player 1 at time τ
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is

R1(τ, γ) :=

(
g(Xτ )1{τ<γ̂} +

1

2
g(Xτ )1{τ=γ̂}

)
1{τ<∞},(4)

where

(5) γ̂ := γ1{θ1=1} +∞1{θ1=0}.

Similarly, at time γ, Player 2 receives the amount

R2(τ, γ) :=

(
g(Xγ)1{γ<τ̂} +

1

2
g(Xγ)1{γ=τ̂}

)
1{γ<∞},(6)

where
τ̂ := τ1{θ2=1} +∞1{θ2=0}.

Here the half in the second term indicates that, in the case when both players stop simul-
taneously, the payoff is split evenly between them. Alternative specifications of the payoff
in case of simultaneous stopping are clearly possible and the methods that we develop
in this paper may be extended to cover various situations. However, in the interest of a
simple notation, we refrain from addressing those extensions here.

The aim of Player 1 (2) is to choose the randomised stopping time τ (γ) to maximize
her/his expected discounted payoff, defined by

J1(τ, γ; p1, x) := Ex[e−rτR1(τ, γ)]

(J2(τ, γ; p2, x) := Ex[e−rτR2(τ, γ)]),

where the discount rate r ≥ 0 is a given constant and x ∈ Rd. By independence of θi from
FX we can rewrite Player 1’s expected payoffs as

J1(τ, γ; p1, x)=(1− p1)Ex[e−rτg(Xτ )1{τ<∞}](7)

+p1Ex[e−rτg(Xτ )1{τ<γ}] +
p1

2
Ex[e−rτg(Xτ )1{τ=γ<∞}].

A similar expression holds for Player 2’s expected payoff J2, upon replacing p1 with p2

and swapping τ and γ in the obvious way.

Definition 2.2. (Nash equilibrium.) Given x ∈ Rd and pi ∈ (0, 1], i = 1, 2, a pair
(τ∗, γ∗) ∈ T R1 × T R2 is a Nash equilibrium if

J1(τ, γ∗; p1, x) ≤ J1(τ∗, γ∗; p1, x)

and
J2(τ∗, γ; p2, x) ≤ J2(τ∗, γ∗; p2, x)

for all pairs (τ, γ) ∈ T R1 × T R2 . Given an equilibrium pair (τ∗, γ∗) ∈ T R1 × T R2 we define
the equilibrium payoffs as

vi(pi, x) := Ji(τ∗, γ∗; pi, x), for i = 1, 2.(8)

Remark 2.1. In the formulation above, each player is an active player, but is uncertain
whether the other player is active or passive. An alternative formulation would be to
stipulate that Player i receives her/his payoff only if the Bernoulli random variable θ3−i
takes the value 1 (i.e. if Player i is indeed active). More precisely, the payoff to Player 1
becomes

R̂1(τ, γ) :=
(
g(Xτ )1{τ<γ̂} +

1

2
g(Xτ )1{τ=γ̂}

)
1{τ̂<∞}

= 1{θ2=1}R1(τ, γ)

(and a similar expression for Player 2). Then, by independence, the corresponding expected
discounted payoffs

Ĵi(τ, γ; pi, x) := Ex[e−rτ R̂i(τ, γ)], i = 1, 2,

satisfy Ĵi(τ, γ; pi, x) = p3−iJi(τ, γ; pi, x). In particular, a pair of strategies (τ, γ) ∈ T R1 ×
T R2 is a Nash equilibrium for the game with expected payoffs Ĵi if and only if it is a Nash
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equilibrium for the game with expected payoffs Ji, so the two formulations are equivalent
from a game-theoretic perspective.

Remark 2.2. Our set-up and the results in this paper could be extended to consider a
continuous strong Markov process on a domain I, provided that the boundary behaviour of
X at ∂I is carefully accounted for. Such extension is straightforward when X is a regular
1-dimensional diffusion on an open interval I ⊆ R with natural boundaries.

3. Some useful observations on the game’s payoffs

In this section we make a few general observations that provide some intuition for the
structure of the equilibrium payoffs of the two players.

3.1. Bounds in terms of the single-player game. Denote by

(9) V (x) := sup
τ∈T

Ex[e−rτg(Xτ )1{τ<∞}]

the value function of the corresponding single-player stopping game. (For a single-player
game there is no need for randomisation, and we remark that, accordingly, the supremum
in (9) is taken over stopping times.) For future reference we denote

(10) τ∗V := inf{t ≥ 0 : V (Xt) = g(Xt)}.
From now on, we make the following standing assumption.

Assumption 3.1. The integrability condition

(11) Ex
[
sup
t≥0

e−rtg(Xt)

]
<∞, x ∈ Rd,

holds, and the function V : Rd → [0,∞) is continuous. Furthermore,

(12) lim sup
t→∞

e−rtV (Xt)1{τ∗V =+∞} = 0.

Remark 3.1. Continuity of V is known to hold in virtually all examples addressed in
the literature on optimal stopping. The integrability condition (11) and condition (12)
guarantee that the stopping time τ∗V is an optimal stopping time in (9), see for example
[23]. Furthermore, the process

Yt := e−rtV (Xt), t ∈ [0,+∞]

with Y∞ := 0 is a supermartingale, and

Mt := e−r(t∧τ
∗
V )V (Xt∧τ∗V ), t ∈ [0,+∞)

is a uniformly integrable martingale.
While (12) is not necessary for the methods that we develop in the rest of the paper,

it is a convenient assumption that helps us keep the exposition simple and avoid lengthy
localisation arguments in the proof of Theorem 5.1.

It is clear from (7) that J1(τ, γ; p1, x) ≤ Ex[e−rτg(Xτ )1{τ<∞}] for any (τ, γ) ∈ T R1 ×T R2 .

Moreover, for τ ∈ T R1 we have

Ex[e−rτg(Xτ )1{τ<∞}] =

∫ 1

0
Ex[e−rτg(Xτ )1{τ<∞}|U1 = u] du(13)

=

∫ 1

0
Ex[e−rτug(Xτu)1{τu<∞}] du

≤ V (x),

where τu ∈ T is defined as in (2). Thus, allowing for randomisation in the single-player
game does not increase the value and we have the following upper bound

sup
τ∈T R1

J1(τ, γ; p1, x) ≤ sup
τ∈T R1

Ex[e−rτg(Xτ )1{τ<∞}] = V (x)(14)
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for any γ ∈ T R2 . The same bound obviously holds for Player 2’s expected payoff.
Next we obtain useful lower bounds. First, for any given γ ∈ T R2 Player 1 could choose

τ = τ∗V defined in (10). Therefore, using (7) we get

sup
τ∈T R1

inf
γ∈T R2

J1(τ, γ; p1, x) ≥ (1− p1)Ex
[
e−rτ

∗
V g(Xτ∗V

)1{τ∗V <∞}

]
(15)

= (1− p1)V (x).

Second, using that τ = 0, P-a.s., is an admissible stopping rule gives

sup
τ∈T R1

inf
γ∈T R2

J1(τ, γ; p1, x)(16)

≥ inf
γ∈T R2

{
(1− p1)g(x) + p1g(x)P(γ > 0) +

p1

2
g(x)P(γ = 0)

}
=

(
1− p1

2

)
g(x)

for any x ∈ Rd. Summarising (14)-(16), we have

(17) max {(1− p1)V (x), (1− p1/2)g(x)} ≤ sup
τ∈T R1

inf
γ∈T R2

J1(τ, γ; p1, x) ≤ V (x),

and similar arguments also lead to

max {(1− p2)V (x), (1− p2/2)g(x)} ≤ sup
γ∈T R2

inf
τ∈T R1

J2(τ, γ; p2, x) ≤ V (x).(18)

It follows from (17)-(18) that

(19) V0(pi, x) := max{(1− pi)V (x), (1− pi/2)g(x)}

is a ‘safety level’ for Player i. More precisely, the equilibrium payoffs (see (8)) of any Nash
equilibrium (τ∗, γ∗) ∈ T R1 × T R2 have to satisfy vi(pi, x) ≥ V0(pi, x).

3.2. A more explicit form of the expected payoffs. We next present a convenient way
to rewrite the problem, which will inform our construction of an equilibrium in Section 4.
As anticipated, we expect that equilibria be found in randomised strategies associated
to increasing processes. Forgetting for a moment equilibrium considerations, however, if
Player i plays a randomised stopping time, then by an argument as in (13) above, Player
3− i’s optimal response can be found in the class of normal stopping times. In particular,
letting τ ∈ T R1 and γ ∈ T R2 be arbitrary one has

sup
ζ∈T R1

J1(ζ, γ; p1, x) = sup
ζ∈T
J1(ζ, γ; p1, x),(20)

sup
ζ∈T R2

J2(τ, ζ; p2, x) = sup
ζ∈T
J2(τ, ζ; p2, x).(21)

Although this argument does not in general lead to an equilibrium, it suggests that,
given a randomised strategy of Player i’s, we can restrict our attention to the expected
payoff of Player 3− i evaluated at normal stopping times. In the next proposition we give
explicit formulae for such payoffs.

Proposition 3.1. For i = 1, 2 let Γi ∈ A, and let τ ∈ T R1 and γ ∈ T R2 be generated by Γ1

and Γ2, respectively.
For any ζ ∈ T and x ∈ Rd we have

J1(ζ, γ; p1, x) = (1− p1)Ex
[
e−rζg(Xζ)1{ζ<+∞}

]
(22)

+p1Ex
[
e−rζg(Xζ)(1− Γ2

ζ)1{ζ<+∞}

]
+
p1

2
Ex
[
e−rζg(Xζ)∆Γ2

ζ1{ζ<+∞}

]
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and

J2(τ, ζ; p2, x) = (1− p2)Ex
[
e−rζg(Xζ)1{ζ<+∞}

]
(23)

+p2Ex
[
e−rζg(Xζ)(1− Γ1

ζ)1{ζ<+∞}

]
+
p2

2
Ex
[
e−rζg(Xζ)∆Γ1

ζ1{ζ<+∞}

]
.

Proof. By symmetry, it is sufficient to consider the case i = 2. Thus we let γ ∈ T R2 be
generated by Γ2 ∈ A, and we want to show that (22) holds.

Recall from (7) that

J1(ζ, γ; p1, x) =(1− p1)Ex[e−rζg(Xζ)1{ζ<∞}] + p1Ex[e−rζg(Xζ)1{ζ<γ}](24)

+
p1

2
Ex[e−rζg(Xζ)1{ζ=γ<∞}],

and the first term on the right-hand side of (24) is identical to the first term of (22). For
the second term, by Definition 2.1 we have

Ex[e−rζg(Xζ)1{ζ<γ}] = Ex
[
e−rζg(Xζ)Px

(
ζ < γ

∣∣FXζ )1{ζ<∞}]
= Ex

[
e−rζg(Xζ)(1− Γ2

ζ)1{ζ<∞}

]
,

where for the final expression we used that for any t ≥ 0 it holds

{Γ2
t < U2} ⊂ {γ > t} ⊆ {Γ2

t ≤ U2}.(25)

The final term in (24) gives

Ex[e−rζg(Xζ)1{ζ=γ<+∞}] = Ex
[
e−rζg(Xζ)Px

(
ζ = γ

∣∣FXζ )1{ζ<+∞}

]
.(26)

Now we notice that (using (25) for the final equality below)

Px
(
ζ = γ

∣∣FXζ ) = Px
(
γ ≥ ζ

∣∣FXζ )− Px
(
γ > ζ

∣∣FXζ )
= lim

δ→0
Px
(
γ > ζ − δ

∣∣FXζ )− (1− Γ2
ζ)

= lim
δ→0

(1− Γ2
ζ−δ)− (1− Γ2

ζ) = ∆Γ2
ζ

which, combined with (26), concludes our proof. �

4. Construction of a candidate strategy

4.1. Adjusted beliefs. In order to find an equilibrium for the game we study the evolu-
tion (during the game) of the players’ beliefs regarding the existence of their opponent. In
other words, if γ ∈ T R2 is generated by Γ2 ∈ A, then Player 1 dynamically evaluates the
conditional probability of Player 2 being active as

Π1
t := P(θ1 = 1|FXt , γ̂ > t) =

P(θ1 = 1|FXt )P(γ̂ > t|FXt , θ1 = 1)

P(γ̂ > t|FXt )
(27)

=
p1P(γ > t|FXt )

1− p1 + p1P(γ > t|FXt )
=
p1(1− Γ2

t )

1− p1Γ2
t

provided p1 ∈ (0, 1), where we recall that γ̂ = γ1{θ1=1} +∞1{θ1=0} as in (5). Here we
used independence of γ and θ1 in the third equality, and in the final equality we used that
P(γ > t|FXt ) = 1− Γ2

t because of (25).
Likewise, if τ ∈ T R1 is generated by Γ1 ∈ A, then Player 2 evaluates the conditional

probability of Player 1 being active as

Π2
t :=P(θ2 = 1|FXt , τ̂ > t) =

p2(1− Γ1
t )

1− p2Γ1
t

(28)

provided p2 ∈ (0, 1).
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Note that there is a one-to-one correspondence between Γ3−i and Πi, for i = 1, 2. In
fact,

(29) Γ3−i
t =

pi −Πi
t

pi(1−Πi
t)
, i = 1, 2.

Furthermore, the equality

(30) (1− pi) = (1− piΓ3−i
t )(1−Πi

t), i = 1, 2,

holds. We will see below how these formulae become a key ingredient in the analysis of
our game.

4.2. A reflected adjusted belief process. We now give a construction of a right-
continuous process (Z,X) that is bound to evolve in a particular subset of [0, 1) × Rd
(denoted C below). The process Z will play the role of an adjusted belief process Π corre-
sponding to a suitably constructed increasing process Γ (obtained from Z by the relation
(29)), see Lemma 4.2 below.

We first introduce the disjoint sets

C := {(p, x) ∈ (0, 1)× Rd : (1− p)V (x) ≥ g(x)}(31)

C′ := {(p, x) ∈ (0, 1)× Rd : (1− p/2)g(x) < (1− p)V (x) < g(x)}(32)

S := {(p, x) ∈ (0, 1)× Rd : (1− p)V (x) ≤ (1− p/2)g(x)}(33)

and note that C ∪ C′ ∪ S = (0, 1)× Rd. Since p 7→ (1− p)V (x) is non-increasing, we have
that if (p, x) ∈ C, then (0, p)× {x} ⊆ C. Define

b(x) := inf{p ∈ [0, 1] : (1− p)V (x) ≤ g(x)} ∈ [0, 1].

Likewise, p 7→ (1−p)V (x)−(1−p/2)g(x) is non-increasing, so if (p, x) ∈ C′ then (b(x), p)×
{x} ⊆ C′, and we define

c(x) := inf{p ∈ [0, 1] : (1− p)V (x) ≤ (1− p/2)g(x)} ∈ [0, 1].

Then b(x) ≤ c(x) for x ∈ Rd and we have

C = {(p, x) ∈ (0, 1)× Rd : p ≤ b(x)},(34)

C′ = {(p, x) ∈ (0, 1)× Rd : b(x) < p < c(x)}(35)

and

S = {(p, x) ∈ (0, 1)× Rd : c(x) ≤ p}.

Lemma 4.1. The functions b, c : Rd → [0, 1] are continuous. Moreover,

(i) b(x) = c(x) = 0 ⇐⇒ V (x) = g(x);
(ii) b(x) = c(x) = 1 ⇐⇒ g(x) = 0.

Proof. We first note that V > 0 on Rd since X is regular and (3) holds. Moreover, V > g/2
on Rd (since if g(x) = 0 then V (x) > 0 = g(x)/2 and if g(x) > 0 then V (x) ≥ g(x) >
g(x)/2). Then strict monotonicity and continuity of p 7→ (1 − p)V (x) imply that for any
x ∈ Rd the value of b(x) is uniquely determined by

(1− b(x))V (x) = g(x),(36)

and strict monotonicity and continuity of p 7→ (1− p)V (x)− (1− p/2)g(x) (since V > g/2
on Rd) imply that c(x) is uniquely determined by

(1− c(x))V (x) = (1− p/2)g(x).(37)

Consequently,

b(x) = 1− g(x)

V (x)
(38)
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and

c(x) =
V (x)− g(x)

V (x)− g(x)/2
.(39)

Continuity of b and c thus follow from Assumption 3.1. Finally, (i) and (ii) follow from
the fact that V > 0 and V ≥ g. �

Proposition 4.1. Let (p, x) ∈ C be given and fixed and define Px-a.s. the process

Zt := p ∧ inf
0≤s≤t

b(Xs).(40)

Then Px-a.s.

(i) Z is non-increasing and continuous;
(ii) (Zt, Xt) ∈ C for all t ≥ 0;
(iii) we have

dZt = 1{(1−Zt)V (Xt)=g(Xt)}dZt(41)

as (random) measures.

Proof. Since x 7→ b(x) and t 7→ Xt are continuous, it is immediate to verify that (i) holds.
Moreover, by definition Zt ≤ b(Xt) for all t ≥ 0, hence implying (ii).

In order to check that (iii) holds we fix ω ∈ Ω (outside of a null set) and take an
arbitrary t ≥ 0 such that

(1− Zt(ω))V (Xt(ω)) > g(Xt(ω)).

By definition of b, the strict inequality above implies Zt(ω) < b(Xt(ω)). Then by continuity
of t 7→ b(Xt) there exists δt,ω > 0 such that Zt(ω) < b(Xt+s(ω)) for all s ∈ (0, δt,ω). Hence

Zt+s(ω) = Zt(ω) ∧ inf
0<u≤s

b(Xt+u(ω)) = Zt(ω), for all s ∈ (0, δt,ω).

The latter equation implies dZt(ω) = 0 as needed in (41). �

We point out that Zt = Zp,xt depends on the initial point (p, x). Associated to Z above
we now construct a process Γ ∈ A, which will be used to generate the randomised stopping
times for the Nash equilibrium in the game. In particular, in the next lemma we will recall
the belief process introduced in (27) and (28).

Lemma 4.2. For (p, x) ∈ C, define the process

Γt := Γp,xt :=
p− Zp,xt
p(1− Zp,xt )

, t ≥ 0,(42)

with Zp,x = Z as in (40). Then Γ = Γp,x is continuous, Γ ∈ A and the adjusted belief
process generated by Γ, i.e. the process

ΠΓ
t :=

p(1− Γt)

1− pΓt
,(43)

satisfies ΠΓ = Z, Px-a.s. Hence (ΠΓ
t , Xt) ∈ C for all t ≥ 0, Px-a.s. Furthermore, if τ ∈ T R1

is generated by Γ, then τ ≤ τ∗V .

Proof. For the first claim, by comparing (42) and (43) it is immediate to check that
indeed ΠΓ = Z. It remains to verify that Γ ∈ A. This follows since Γ is continuous, by
continuity of Z, and it is non-decreasing because both the process Z and the mapping
z 7→ (p− z)/[p(1− z)] are non-increasing.

For the second claim we have by Lemma 4.1 and (40) that

τ∗V = inf{t ≥ 0 : V (Xt) = g(Xt)}(44)

= inf{t ≥ 0 : b(Xt) = 0}
= inf{t ≥ 0 : Zt = 0} = inf{t ≥ 0 : Γt = 1},

from which it follows that τu = inf{t ≥ 0 : Γt > u} ≤ τ∗V for u ∈ [0, 1). Consequently,
τ ≤ τ∗V , Px-a.s. �
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5. Construction of Nash equilibria

With no loss of generality, we assume that p2 dominates p1, i.e. 0 ≤ p1 ≤ p2 ≤ 1. We
first comment on the two extreme cases p1 = 0 and p1 = 1.

If p1 = 1, then also p2 = 1 (since p1 ≤ p2), so both players are certain that the other
player is active. In this case it is clear that immediate stopping, i.e. (τ∗, γ∗) := (0, 0),
provides a Nash equilibrium, and the corresponding equilibrium payoff for each player is
g(x)/2.

If p1 = 0, then Player 1 is certain that Player 2 is not active, and will consequently
play the optimal strategy τ∗ = τ∗V from the single-player game. If also p2 = 0, then the
optimal response for Player 2 is also to use γ∗ = τ∗V , and the corresponding equilbrium
value is given by V (x) for each player. If instead p2 > 0, then the situation is slightly more
involved: the optimal response for Player 2 would be to preempt Player 1 by stopping just
before τ∗V (at τ∗V−); however, this is not a randomised stopping time, and there is no
equilibrium in this setting.

Throughout the rest of this section we impose the condition

0 < p1 ≤ p2 ≤ 1 and p1 < 1,

thus excluding the two cases discussed above. Then we construct Nash equilibria for our
game using results from the previous two sections.

One interesting feature is that our construction naturally splits into three scenarios.
Namely, the qualitative properties of the equilibrium that we obtain depend on which of
the three regions C, C′ and S that (p1, x) belongs to. Equally remarkable seems to be the
fact that the initial value of p2 ∈ [p1, 1] does not matter for the qualitative aspects of our
construction. We will comment more extensively on this feature in Section 5.3 below. In
the same section we will also discuss the heuristics that led us to the construction of the
equilibria detailed in Theorems 5.1 and 5.2 below.

5.1. Equilibrium for (p1, x) ∈ C∪C′. Throughout this section we consider (p1, x) ∈ C∪C′.
We first define

Γ∗0 :=
2

p1

(
1− (1− p1)V (x)

g(x)

)+

and q1 :=
p1(1− Γ∗0)

1− p1Γ∗0
(45)

and note that

(46) (1− p1Γ∗0)(1− q1) = 1− p1.

Lemma 5.1. For (p1, x) ∈ C ∪ C′ we have

(i) 0 ≤ Γ∗0 < 1,
(ii) 0 < q1 ≤ b(x).

Moreover 0 < q1 < b(x) for (p1, x) ∈ C′.

Proof. If p1 ≤ b(x) then Γ∗0 = 0 and q1 = p1 ∈ (0, b(x)], so (i)-(ii) hold.
If p1 ∈ (b(x), c(x)) then

Γ∗0 =
2

p1

(
1− (1− p1)V (x)

g(x)

)
∈ (0, 1)

so (i) holds and q1 > 0. Furthermore, the first equation in (45) reads

(1− p1)V (x) = g(x)
(

1− p1

2
Γ∗0

)
.(47)

Combining the latter and (46) we get

(1− q1)V (x) =
1− p1

2 Γ∗0
1− p1Γ∗0

g(x) > g(x)(48)

since it must be g(x) > 0 by (ii) in Lemma 4.1 (otherwise p1 ≤ b(x) = 1). Consequently,
(q1, x) lies in the interior of the set C, so q1 < b(x), which implies (ii). �
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Recall the processes Z and Γ introduced in Proposition 4.1 and Lemma 4.2 along with
the adjusted belief process ΠΓ. Define Γ2,∗ as

Γ2,∗
t := Γ∗0 + (1− Γ∗0)Γq1,xt , t ≥ 0,(49)

with Γ∗0 as in (45) and Γq1,x as in Lemma 4.2 but with p = q1, let

Γ1,∗
t := p1

p2
Γ2,∗
t 1{t<τ∗V } + 1{t≥τ∗V },(50)

and let

Π1,∗
t :=

p1(1− Γ2,∗
t )

1− p1Γ2,∗
t

be the adjusted belief of Player 1 corresponding to Γ2,∗ (recall (27)).

Proposition 5.1. For (p1, x) ∈ C ∪ C′ the following properties hold:

(i) (Γ1,∗,Γ2,∗) ∈ A2;
(ii) we have Px-a.s.

∆Γ2,∗
t =

{
Γ∗0, t = 0,
0, t > 0;

(iii) we have Px-a.s.

∆Γ1,∗
t =


p1
p2

Γ∗0, t = 0,

1− p1/p2, t = τ∗V <∞,
0, otherwise;

(iv) (Π1,∗
t , Xt) ∈ C for t ≥ 0.

Proof. Recalling the expression in (42) for Γq1,x and that of Zq1,x in (40) it is immediate to
verify that Γq1,x ∈ [0, 1] and it is continuous. Hence, Γ2,∗ ∈ [0, 1] and it is right-continuous
with its only possible jump at time zero. Thus (Γ1,∗,Γ2,∗) ∈ A2 so (i) holds.

The expressions in (ii) and (iii) for ∆Γ2,∗
0 and ∆Γ1,∗

0 are immediate consequence of (49)
and (50). Furthermore, on {τ∗V <∞} we have Γq1,xt = 1 for t > τ∗V by (44), so continuity
of Γq1,x implies that Γq1,xτ∗V −

= 1. Therefore

∆Γ1,∗
τ∗V

= 1− p1

p2
Γ2,∗
τ∗V −

= 1− p1

p2
,

which completes the proof of (iii).
For (iv), recalling the expression (27) for the adjusted belief Π1,∗ of Player 1, simple

algebra yields

Π1,∗
t =

p1(1− Γ2,∗
t )

1− p1Γ2,∗
t

=
p1(1− Γ∗0)(1− Γq1,xt )

1− p1Γ∗0 − p1(1− Γ∗0)Γq1,xt

(51)

=
q1(1− Γq1,xt )

1− q1Γq1,xt

= Πq1,x
t .

Now (51) implies (Π1,∗
t , Xt) ∈ C for t ≥ 0, Px-a.s. by virtue of Lemma 4.2, so (iv) holds. �

We are now ready to formulate our main result.

Theorem 5.1. Let (p1, x) ∈ C ∪C′ be given and fixed (equivalently, p1 < c(x)), and define
(Γ1,∗,Γ2,∗) ∈ A2 as in (50) and (49) above. Then the strategy pair (τ∗, γ∗) generated
by (Γ1,∗,Γ2,∗) is a Nash equilibrium. Moreover, the equilibrium payoff for both players is
(1− p1)V (x).

Proof. Consider the process {Nt, t ≥ 0} defined as follows: for fixed (p1, x) ∈ C ∪ C′ let

Nt :=
(

1− p1

2
Γ∗0

)
g(x)1{t=0} + Ñt1{t>0}(52)

where
Ñt := (1{θ1=0} + 1{θ1=1,U2≥Γ∗

0})(1− q1)e−rtV (Xt),
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and note that (45), (47) and (52) imply

(53) N0 = g(x) ∧ ((1− p1)V (x)) .

With the notation Yt := e−rtV (Xt) introduced in Remark 3.1, recall that {Yt, 0 ≤ t ≤ ∞}
with Y∞ := 0 is a supermartingale. Thus, by (46) and the optional sampling theorem, for
any τ ∈ T , we have

Ex [Nτ ] = N01{τ=0} + 1{τ>0}(1−p1Γ∗0)(1−q1)Ex
[
e−rτV (Xτ )1{τ<∞}

]
= N01{τ=0} + 1{τ>0}(1−p1)Ex

[
e−rτV (Xτ )1{τ<∞}

]
≤ N01{τ=0} + 1{τ>0}(1−p1)V (x),

where we have used that Px(τ = 0) = 1{τ=0} and Px(τ > 0) = 1{τ>0} by the 0 − 1-Law.
Finally, recalling (53) we get

Ex [Nτ ] ≤ (1− p1)V (x), for all τ ∈ T .(54)

Repeating the same steps as above and using that Mt = Yt∧τ∗V is a uniformly integrable

martingale (Remark 3.1), we also obtain

Ex
[
Nτ∧τ∗V

]
= (1− p1)V (x), for all τ ∈ T with τ > 0 and

for τ = 0 if Γ∗0 > 0.
(55)

Now we proceed in two steps.

Step 1. (Optimality of τ∗.) First we show that

sup
τ∈T
J1(τ, γ∗; p1, x) ≤ sup

τ∈T
Ex[Nτ ].(56)

Recalling Proposition 3.1 and that the only possible jump of Γ2,∗ occurs at t = 0 (Propo-
sition 5.1) we obtain, for any τ ∈ T ,

J1(τ, γ∗; p1, x) =Ex
[
e−rτg(Xτ )(1− p1Γ2,∗

τ )1{τ<∞}
]

+
p1

2
g(x)Γ∗01{τ=0}(57)

=1{τ>0}Ex
[
e−rτg(Xτ )(1− p1Γ2,∗

τ )1{τ<∞}
]

+ 1{τ=0}g(x)
(

1− p1Γ∗0 +
p1

2
Γ∗0

)
=1{τ=0}N0 + 1{τ>0}Ex

[
e−rτg(Xτ )(1− p1Γ2,∗

τ )1{τ<∞}
]
.

By definition (see (49)) we have

1− p1Γ2,∗
τ = 1− p1Γ∗0 − p1(1− Γ∗0)Γq1,xτ

= (1− p1Γ∗0)(1− q1Γq1,xτ ),

where the second equality follows from (45). Substituting the last expression in (57) and

using that g(Xτ ) ≤ (1−Π1,∗
τ )V (Xτ ) (see (iv) in Proposition 5.1) we arrive at

J1(τ, γ∗; p1, x) ≤1{τ=0}N0(58)

+ 1{τ>0}(1− p1Γ∗0)Ex
[
e−rτ (1− q1Γq1,xτ )(1−Π1,∗

τ )V (Xτ )
]

=1{τ=0}N0 + 1{τ>0}(1− p1Γ∗0)(1− q1)Ex
[
e−rτV (Xτ )

]
=Ex [Nτ ] ,

where in the first equality we used (1− q1Γq1,xτ )(1−Π1,∗
τ ) = (1− q1), due to (51), and the

second one follows from (52). Thus we have proved (56). Combining the latter with (54)
and (20) gives

sup
τ∈T R1

J1(τ, γ∗; p1, x) ≤ (1− p1)V (x).(59)

Now, take τ∗u as in (2) but with Γ1,∗ instead of Γ. Then, since Γ1,∗
t = 1 for t ≥ τ∗V (by

(44)), we have τ∗u ≤ τ∗V for all u ∈ [0, 1). Furthermore, we claim that

(60) (1−Π1,∗
τ∗u

)V (Xτ∗u )1{τ∗u<∞} = g(Xτ∗u )1{τ∗u<∞} .
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Indeed, to see that (60) holds, first assume that u ∈ [0, p1/p2). Then, recalling that Γ2,∗

is continuous for t > 0 and Γ2,∗ < 1 for t < τ∗V , we have

τ∗u = inf{t ≥ 0 : Γ1,∗
t > u} = inf{t ≥ 0 : Γ2,∗

t > (p2/p1)u} = γ∗(p2/p1)u.

Hence (60) holds because τ∗u is a time of increase of Γ2,∗ and t 7→ dΓ2,∗
t is supported on

{t ≥ 0 : (1−Π1,∗
t )V (Xt) = g(Xt)}

(see Proposition 4.1 and Lemma 4.2). On the other hand, if u ∈ [p1/p2, 1), then τ∗u = τ∗V ,
and

(1−Π1,∗
τ∗u

)V (Xτ∗u ) = (1−Π1,∗
τ∗V

)V (Xτ∗V
) = V (Xτ∗V

) = g(Xτ∗V
)

on {τ∗V <∞} since Π1,∗
τ∗V

= Zp1,xτ∗V
= 0 due to (44) in the proof of Lemma 4.2.

Then, putting τ = τ∗u in (57), the inequality in (58) becomes an equality and we find

J1(τ∗u , γ
∗; p1, x) = Ex[Nτ∗u ] = (1− p1)V (x),(61)

where the final equality follows from (55).
Integrating for u ∈ [0, 1) and recalling that τ∗ = inf{t ≥ 0 : Γ1,∗ > U1} (see Definition

2.1) we finally obtain

J1(τ∗, γ∗; p1, x) = (1− p1)V (x) ≥ sup
τ∈T R1

J1(τ, γ∗; p1, x).

Hence, τ∗ is an optimal response to γ∗.

Step 2. (Optimality of γ∗.) It remains to check that γ∗ is an optimal response for Player
2 to Player 1’s use of τ∗. From (23), for any ζ ∈ T we obtain

J2(τ∗, ζ; p2, x) = Ex
[
e−rζ(1− p2Γ1,∗

ζ )g(Xζ)1{ζ<∞}

]
(62)

+
p2

2
Ex
[
e−rζg(Xζ)∆Γ1,∗

ζ 1{ζ<∞}

]
= Ex

[
1{ζ<τ∗V }e

−rζ(1− p2Γ1,∗
ζ )g(Xζ)1{ζ<∞}

]
+Ex

[
1{ζ≥τ∗V }e

−rζ(1− p2)g(Xζ)1{ζ<∞}

]
+
p2

2
Ex
[
e−rζg(Xζ)∆Γ1,∗

ζ 1{ζ<∞}

]
= Ex

[
1{ζ<τ∗V }e

−rζ(1− p1Γ2,∗
ζ )g(Xζ)1{ζ<∞}

]
+Ex

[
1{ζ≥τ∗V }e

−rζ(1− p1)g(Xζ)1{ζ<∞}

]
+Ex

[
1{ζ≥τ∗V }e

−rζ(p1 − p2)g(Xζ)1{ζ<∞}

]
+
p2

2
Ex
[
e−rζg(Xζ)∆Γ1,∗

ζ 1{ζ<∞}

]
,

where for the third equality we used p2Γ1,∗
ζ = p1Γ2,∗

ζ on the event {ζ < τ∗V }. Recalling

that p1 ≤ p2, we have

Ex
[
1{ζ≥τ∗V }e

−rζ(p1 − p2)g(Xζ)1{ζ<∞}

]
(63)

= −p2Ex
[
1{ζ≥τ∗V }e

−rζ(1− p1/p2)g(Xζ)1{ζ<∞}

]
≤ −p2Ex

[
1{ζ≥τ∗V }e

−rζ∆Γ1,∗
ζ g(Xζ)1{ζ<∞}

]
,

where the inequality uses that

∆Γ1,∗
ζ 1{ζ≥τ∗V } = ∆Γ1,∗

ζ 1{ζ=τ∗V } = (1− p1/p2)1{ζ=τ∗V } ≤ (1− p1/p2)1{ζ≥τ∗V }

on {ζ <∞} by (iii) in Proposition 5.1.
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Combining (63) with (62) gives

J2(τ∗, ζ; p2, x) ≤ Ex
[
e−rζ(1− p1Γ2,∗

ζ )g(Xζ)1{ζ<∞}

]
+
p2

2
Γ1,∗

0 g(x)1{ζ=0} −
p2

2
Ex
[
e−rζg(Xζ)∆Γ1,∗

ζ 1{ζ=τ∗V <∞}

]
upon recalling that Γ1,∗ only jumps at time zero and at τ∗V . Next, recalling (ii) from

Proposition 5.1 and using (22) and p2Γ1,∗
0 = p1Γ∗0 we obtain

J2(τ∗, ζ; p2, x) ≤ J1(ζ, γ∗; p1, x)− p2

2
Ex
[
e−rζg(Xζ)∆Γ1,∗

ζ 1{ζ=τ∗V <∞}

]
≤ J1(ζ, γ∗; p1, x).

It then follows, as in (59) (recall also (21)), that

sup
ζ∈T R2

J2(τ∗, ζ; p2, x) ≤ (1− p1)V (x).(64)

In order to prove that equality holds we choose ζ = γ∗u, with γ∗u as in (2) but with Γ2,∗

in place of Γ. We first notice that

J2(τ∗, γ∗u; p2, x)(65)

= Ex
[
e−rγ

∗
u(1− p1Γ2,∗

γ∗u
)g(Xγ∗u)1{γ∗u<∞}

]
+
p1

2
g(x)Γ2,∗

0 1{γ∗u=0}

= J1(γ∗u, γ
∗; p1, x)

where we used that p2Γ1,∗
γ∗u

= p1Γ2,∗
γ∗u

, since γ∗u < τ∗V on {τ∗V < ∞}, Px-a.s. for u ∈ [0, 1).

Next, it is clear that (60) holds with γ∗u in place of τ∗u because γ∗u = τ∗p1
p2
u
. Finally, letting

τ = γ∗u in (57), the same argument that led to (61), combined with (65), gives

J2(τ∗, γ∗u; p2, x) = (1− p1)V (x).

Integrating over u ∈ [0, 1) and recalling that γ∗ = inf{t ≥ 0 : Γ2,∗
t > U2} we finally

conclude that

sup
γ∈T R2

J2(τ∗, γ; p2, x) = J2(τ∗, γ∗; p2, x) = (1− p1)V (x).

Hence, γ∗ is an optimal response to τ∗, which completes the proof. �

5.2. Equilibrium for (p1, x) ∈ S. It only remains to consider an equilibrium for the
game starting with (p1, x) ∈ S.

Theorem 5.2. Let (p1, x) ∈ S be given and fixed. Then the strategy pair (τ∗, γ∗) =
(0, 0), Px-a.s. is a Nash equilibrium. Moreover, the equilibrium payoff of the i-th Player
is (1− pi/2)g(x), for i = 1, 2.

Proof. Fix (p1, x) ∈ S and assume γ∗ = 0. Then for any τ ∈ T we have

J1(τ, 0; p1, x) = (1− p1)Ex
[
e−rτg(Xτ )1{τ<∞}

]
+
p1

2
g(x)1{τ=0}(66)

= (1− p1)1{τ>0}Ex
[
e−rτg(Xτ )1{τ<∞}

]
+
(

1− p1

2

)
g(x)1{τ=0}

≤ (1− p1)1{τ>0}V (x) +
(

1− p1

2

)
g(x)1{τ=0}

≤
(

1− p1

2

)
g(x),

where the final inequality follows from (1− p1)V (x) ≤ (1− p1/2)g(x).
Thanks to (66) and (20) we have

sup
τ∈T R1

J1(τ, 0; p1, x) ≤
(

1− p1

2

)
g(x).
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It is now straightforward to verify that equality holds if we choose τ = 0, Px-a.s., so τ∗ = 0
is an optimal response to γ∗ = 0.

A similar argument allows to prove that γ∗ = 0 is also an optimal response to τ∗ = 0.
Indeed, as in (66) we have for γ ∈ T that

J2(0, γ; p2, x) = (1− p2)1{γ>0}Ex
[
e−rγg(Xγ)1{γ<∞}

]
+
(

1− p2

2

)
g(x)1{γ=0}

≤ (1− p2)1{γ>0}V (x) +
(

1− p2

2

)
g(x)1{γ=0}

≤
(

1− p2

2

)
g(x)

since (1−p1)V (x) ≤ (1−p1/2)g(x) and p2 ≥ p1 imply that (1−p2)V (x) ≤ (1−p2/2)g(x).
Moreover, equality holds for γ = 0, and thus (τ∗, γ∗) = (0, 0) is a Nash equilibrium as
claimed. �

Remark 5.1. Notice that the equilibrium payoff for Player 2 is not continuous in p1 at
c(x). In fact, for p1 < c(x) < 1, the equilibrium payoff for Player 2 is (1 − p1)V (x)
(see Theorem 5.1), whereas the equilibrium payoff for p1 = c(x) in Theorem 5.2 is (1 −
p2/2)g(x) ≤ (1− p1/2)g(x) = (1− p1)V (x), where the inequality is strict if p2 > p1.

In connection with the discontinuity mentioned above, we note that the question of
uniqueness of Nash equilibria for the ghost game remains open. The discontinuity could
thus be a product of possible non-uniqueness of the equilibrium.

5.3. Comments on our results and heuristics.

Benefits of wariness. In the case of known competition, i.e. p1 = p2 = 1, both players
stopping immediately provides a Nash equilibrium, and in the case of no competition, one
should use the single-player stopping strategy τ∗V . In view of this, it is intuitively clear
that Player 2, who is more ‘wary’ (or aware) of competition than Player 1, should be the
player who is more eager to stop early. This intuition is confirmed by Theorem 5.1; in fact,
the more active role of Player 2 is quantified by the fact that she stops with ‘generalised
intensity’ which is (p2/p1)-times bigger than that of Player 1.

Player 2’s equilibrium strategy is surprisingly rewarding because it yields an average
payoff (1− p1)V (x), which is strictly larger than her ‘safety’ level (1− p2)V (x), if p1 < p2

(see (19)). In contrast, the equilibrium strategy of Player 1 yields just the ‘safety’ level
(1−p1)V (x). Interestingly, this implies that Player 1 is not worse off by publicly revealing
her presence in the game. In fact, consider two games with parameters (p1, p2) and (p1, 1),
respectively (and assume that p1 < c(x) so that we are in the setting of Theorem 5.1).
Then both Players’ equilibrium payoffs would, in both cases, be (1− p1)V (x).

Although perhaps surprising, we note that the benefits of wariness also appear in the
much easier, non-dynamic, setting of auctions, see [11]. In some sense, we may say that
an ‘aggressive’ strategy by Player 2 allows her to catch up with the (higher) safety level
of her opponent. By contrast, Player 1 has her reward eroded to just the safety level, due
to a less aggressive strategy.

Jumps in equilibrium strategies. A truly remarkable feature from the mathematical point
of view is the size of the initial jump in the equilibrium process Γ2,∗ for an initial belief
p1 ∈ (b(x), c(x)). Indeed, we have seen in Theorem 5.1 that such jump pushes (Π1,∗, X)
strictly in the interior of the set C (see Lemma 5.1). This is somewhat unexpected if we
consider that our set-up shares similarities with the framework of nonzero-sum games of
singular control with proportional cost of control (see, e.g., [7]). In those problems the
initial jump of the optimal control drives the optimally controlled process to the boundary
of the action set. Hence, in our setting we might have expected a jump to the boundary
of the set C.

We note that the observed structure of our optimal controls at equilibrium might stem
from the fact that players split the payoff if stopping simultaneously.
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Heuristics Theorem 5.1. For simplicity (and following the actual route that led us to our
conclusions) we consider the case of players with symmetric initial beliefs, i.e. p1 = p2 =: p.
In this case the players should use the same strategy Γ1,∗ = Γ2,∗ = Γ∗. Moreover, if
Player 2 uses a randomised time γ∗ generated by Γ∗, then, for optimality, Player 1 should
be indifferent between strategies τ∗u = inf{t ≥ 0 : Γ∗t > u} as in (2) with u ∈ [0, 1) (see
Proposition 3.1). In particular, one would expect that J1(τ∗u , γ

∗; p, x) is independent of
u ∈ [0, 1), so the equilibrium payoff should be given by

J1(τ∗u , γ
∗; p, x) = lim

u↑1
J1(τ∗u , γ

∗; p, x) = J1(τ∗V , γ
∗; p, x) = (1− p)V (x)

(where the second and third equalities are to be understood intuitively). With this can-
didate equilibrium payoff in mind, the construction in Theorem 5.1 follows naturally.

We next comment on the specification of Γ∗0 in the case b(x) < p < c(x). Again we
consider players with symmetric initial beliefs, i.e. p1 = p2 =: p so that, at equilibrium,
they should use the same strategy.

Assume Player 2 chooses to stop immediately with probability Γ2
0. For this to be an

equilibrium strategy, Player 1 must be indifferent between stopping and continuing (so that
any linear combination of such strategies gives a best reply). The indifference condition
reads

(1− p)g(x) + p(1− Γ2
0)g(x) +

p

2
Γ2

0g(x) = (1− p+ p(1− Γ2
0))(1− q)V (x)(67)

where, on the left-hand side of the equation we have Player 1’s payoff in case of immediate
stopping and, on the right-hand side, her payoff if continuing. Notice in particular that

q =
p(1− Γ2

0)

1− pΓ2
0

(defined as in (45)) is the adjusted belief of Player 1 if Player 2 does not end the game
immediately (see (27)). On the right-hand side of (67) we have (1 − q)V (x) because
we expect that, if the game does not end immediately, the belief should be updated to
(q, x) ∈ C.

Solving the indifference equation for Γ2
0 gives us the first equation in (45).

Evolution of adjusted beliefs. Defining Π2,∗
t :=

p2(1−Γ1,∗
t )

1−p2Γ1,∗
t

, it is straightforward to check

that

Π2,∗
t =

(1− p2)Π1,∗
t + p2 − p1

1− p1
.

Consequently,

0 ≤ Π2,∗
t −Π1,∗

t =
p2 − p1

1− p1
(1−Π1,∗

t ).

Thus, in equilibrium, both adjusted beliefs are nonincreasing, but the difference between
them is (rather surprisingly) nondecreasing.

Connection with barrier strategies. As is shown in Theorem 5.1, if (p1, x) ∈ C, the process
X is stopped (in equilibrium) only when t 7→ b(Xt) reaches a new minimum. That is,
X is stopped (with some generalised intensity) upon reaching for the first time a new
region in Rd. This is a remarkable feature which shows that if the game was specified
so that the set of strategies consisted only of entry times to (randomised) sets then the
same equilibrium would be obtained. The conclusion is more easily visualised in a one
dimensional state space (as in the example in the next section). If X ∈ R we would
have Nash equilibria produced by threshold strategies (possibly two-sided), with random
thresholds. Note, however, that our methodology shows that (τ∗, γ∗) in fact is a Nash
equilibrium in the much larger class of strategies that consists of all randomised times.
This fact is far from being trivial because, if we think of equilibria in the game as a fixed
point for each player’s best response to the opponent’s strategy, there is no reason to
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expect that equilibrium threshold strategies should emerge from the much broader class
that we consider.

Possible extensions. In the current set-up we consider a symmetric game structure (but
with asymmetric beliefs) where the first player to stop receives a payoff specified in terms
of the function g. A more general set-up would allow also for asymmetric game structures,
where the payoff of Player i is specified using gi upon being the first stopper, and possibly
including a ‘consolation prize’ fi if being preempted by the other player. In a real option
set-up, different functions gi would account for the possibility of different funding costs; the
inclusion of a non-zero consolation prize fi would allow studies of first-mover advantage in
a monopoly-duopoly game. The full study of such games (as well as the characterization
of precisely which asymmetric games can be solved with the current methodology) awaits
further research.

6. Real options with unknown competition

In this section we consider an example of a real option with uncertain competition (for
the classical case of real options with no competition, see e.g. [9], and for a related problem
of real option pricing under incomplete information about the competition, see [18]). For
this, let g(x) = (x−K)+, p1 = p2 =: p ∈ (0, 1) and

dXt = µXt dt+ σXt dWt

for some constants K > 0, µ < r and σ > 0. Here X represents the present value of future
revenues from entering a certain business opportunity, K is the sunk cost for entering, and
r is a discount rate. The business opportunity, however, is subject to competition, and
we assume that each active agent estimates the probability of an active competitor to be
p (hence the probability of no competition is 1− p). This symmetric setting is reasonable
in applications where players are ‘similar’ (e.g., firms of a similar size producing the same
good).

It is well-known (e.g. [9]) that the value

V (x) := sup
τ

Ex[e−rτg(Xτ )1{τ<∞}]

in the corresponding one-player game is given by

V (x) =

{
(B −K)(x/B)η, for x ∈ (0, B),
g(x), for x ∈ [B,∞),

where

η =
σ2 − 2µ

2σ2
+

√(
σ2 − 2µ

2σ2

)2

+
2r

σ2
∈ (1,∞)

and B := ηK/(η − 1). Since V and B are explicit, recalling (38) and (39) one can obtain
explicit formulae for the boundaries x 7→ b(x) and x 7→ c(x) of the sets C and C′ in (34)
and (35). In fact,

b(x) = 1− g(x)

V (x)
=


1 x ∈ (0,K]

1− (x−K)(B/x)η

B−K x ∈ (K,B)

0 x ∈ [B,∞)

and

c(x) =
V (x)− g(x)

V (x)− g(x)/2
=


1 x ∈ (0,K]

1− (x−K)
2(B−K)(x/B)η−x+K x ∈ (K,B)

0 x ∈ [B,∞).

For a graphical illustration of these functions, see Figure 1.
In line with Lemma 4.1 we note that

lim
x→B

b(x) = lim
x→B

c(x) = 0 and lim
x→K

b(x) = lim
x→K

c(x) = 1.
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Moreover, it is straightforward to check that b and c are non-increasing, and they are
strictly decreasing on (K,B). Hence, for any (p, x) ∈ C we also have

Zp,xt = inf
0≤s≤t

b(Xx
s ) = b

(
sup

0≤s≤t
Xx
s

)
, t ≥ 0,(68)

by (40). Thanks to these formulae we can now write the Nash equilibrium in a very explicit
form. We give some details when the game starts in C and the other cases can be handled
analogously.

C′

S

C

Figure 1. The figure displays the curves p = b(x) (lower one) and p = c(x)
(top one). The parameter values are K = 1 and η = 2 so that B = 2.

Given an initial point (p, x) ∈ C (i.e. p ≤ b(x)), Theorem 5.1 applies with Γ∗0 = 0.
Moreover, we notice that Γ1,∗ = Γ2,∗ =: Γ∗, due to symmetric beliefs of the players.
Thanks to (68) and (42), and recalling that τ∗ and γ∗ are generated by Γ∗, we have

τ∗ = inf{t ≥ 0 : Γ∗t > U1}
= inf{t ≥ 0 : Zt < p(1− U1)/(1− pU1)}
= inf{t ≥ 0 : Xt ≥ B∗1},

and γ∗ = inf{t ≥ 0 : Xt ≥ B∗2}, with the random variables

(69) B∗i := b−1

(
p(1− Ui)
1− pUi

)
, i = 1, 2,

where b−1 is the inverse function of b.
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