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in finite-horizon optimal stopping problems

for one-dimensional diffusions∗
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Abstract

We provide sufficient conditions for the continuity of the free-boundary in a gene-
ral class of finite-horizon optimal stopping problems arising for instance in finance
and economics. The underlying process is a strong solution of one-dimensional,
time-homogeneous stochastic differential equation (SDE). The proof relies on both
analytic and probabilistic arguments and it is based on a contradiction scheme
inspired by the maximum principle in partial differential equations (PDE) theory.
Mild, local regularity of the coefficients of the SDE and smoothness of the gain
function locally at the boundary are required.
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1 Introduction

In this work we provide some sufficient conditions for the continuity of optimal stopping
boundaries in a class of optimal stopping problems of the form

sup
0≤τ≤T−t

Ex
[
G
(
t+ τ,Xτ

)]
, (1.1)

where 0 < T < +∞ and the supremum is taken over stopping times of a Markov process
X. The gain function G is real valued and X is the unique strong solution of a time-
homogeneous, one-dimensional stochastic differential equation (SDE). We require mild
regularity on the coefficients of the SDE and some regularity properties of G. Although
in most cases the optimal boundary cannot be found explicitly, we will observe in Section
2 that in many interesting problems of the form of (1.1) one can find bounds for the
stopping region that guarantee that the optimal boundary lies in specific portions of the
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(t, x)-plane. In these cases it is possible to require regularity of G only locally at the
optimal boundary. In principle G may even be discontinuous at points not on the optimal
boundary without altering validity of our results.

It is well known that a link exists between optimal stopping problems in probability
theory and free-boundary problems in partial differential equations (PDE) theory. For
a general exposition of analytical and probabilistic results related to this topic one may
refer, to [2] and [14], among others. Also, a probabilistic approach to optimal stopping
and free-boundary problems may be found, for instance, in [34] (mainly Markovian setting
and infinite time-horizon) and [31] (both Markovian setting and martingale methods with
finite/infinite time-horizon) and references therein.

A particular class of problems that has been attracting intense studies for more than 40
years is the one in which X is real valued and the free-boundary is a curve {b(t), t ∈ [0, T ]}
depending only on time. In these cases it is possible and often interesting to analyse the
regularity of the map t 7→ b(t).

Properties of the free-boundary have been studied thoroughly by means of PDE me-
thods in a large number of cases related to the Stefan problem. There exists a huge
literature in this area and listing a complete set of references is a demanding task that
falls outside the scopes of this work (some insights may be found for instance in [4], [33]
and references therein). On the other hand, several works on stochastic control problems
are partially devoted to the analysis of continuity and differentiability of the free-boundary
by means of variational methods (cf. [1] and [15], among others); in [15] for instance the
author proves free-boundary’s differentiability for a particular class of problems and shows
its continuity in wide generality (cf. Section 6 of that work).

Methods involving both analytical and probabilistic tools where originally developed
in [21], [25] and [35], among others, where differentiability of the free-boundary b in
the open interval (0, T ) was proven under suitable assumptions on X and G. In [25] it
was also shown that b solves a countable system of non-linear integral equations but the
problem of uniqueness of such solution was left open. Another integral equation for b
and its first derivative b′ was obtained in [35]; however, a full proof of existence and local
uniqueness of a solution pair (b , b′) was only given in the case of b′ bounded on [0, T ]. This
condition is somewhat restrictive in general and does not hold for instance in the famous
example of the American put option. The latter has received significant attention due
to its strongly applicative nature and the regularity of the associated free-boundary was
analysed carefully (cf. for instance [3], [6], [7] and [13], for an overview of known results
in that setting; cf. also [23] for the challenging problem of American options on several
assets). At the beginning of the 1990s an integral equation for the optimal boundary (with
no derivatives) was derived independently by [5], [18] and [20] but, as it was pointed out
in [26], the question of uniqueness was left open at that time. More than ten years later it
was proven in [28] that the free-boundary is the unique solution in the class of continuous
functions to this integral equation.

It seems then natural from the standpoint of optimal stopping to investigate continuity
properties of the free-boundary. In fact, in a very large class of examples, if continuity is
established a priori, one may rely upon on an extension of Itô’s formula (cf. [29] or [30]
for a detailed exposition) to find an integral equation for b; uniqueness of its solution in
the class of continuous functions may be then proven by developing arguments as in [28]
(see [31] and the references therein). This characterises the free-boundary unambiguously
and the value V of (1.1) may be expressed as a functional of b itself.
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A proof of continuity generally requires techniques based on ad hoc arguments that
have to be found on a case by case basis. In fact, in optimal stopping literature this is
usually obtained by an application of Newton-Leibnitz formula, combined with the so-
called smooth-fit property (i.e. the fact that V (t, · ) is C1 across the optimal boundary)
and estimates on V obtained ex ante (see [31] for a list of examples).

Although Newton-Leibnitz formula turns out to be a suitable tool to deal with most
of the examples that we could find in literature, we observed that some cases seem quite
hard to tackle this way (cf. for instance [9], [11], [36] or [8]; in particular in [11] one
may find applications of results of this work to zero-sum optimal stopping games). In
fact, some difficulties may arise when one or more of the following facts occur: i) V is not
convex/concave with respect to the space variable, ii) the explicit expression of the process
X is unknown or the coefficients of its infinitesimal generator are non-trivial and make
some estimates rather difficult, iii) the gain function underlying the optimal stopping
problem is non-differentiable or it is explicitly time-dependent, iv) the free-boundary is
non-monotone.

The purpose of this work is to provide an alternative proof of the free-boundary’s
continuity partly based on local regularity of G at the boundary and partly based on
properties of V which are generally obtainable via probabilistic arguments. To the best of
our knowledge all examples where continuity has already been established meet require-
ments of our setting. It might be worth noticing that smooth-fit condition is not needed
in our proofs.

The rest of the paper is organised as follows. In Section 2 we introduce the optimal
stopping problem, some standard assumptions and a list of conditions that will be used
only when needed in different proofs of free-boundary’s continuity. We take X as the
unique strong solution of a time-homogeneous SDE in R with locally Lipschitz coefficients,
we assume that a free-boundary exists and we make some mild regularity assumptions on
the gain function G locally at the boundary. These assumptions are mainly in the spirit
of a probabilistic approach to optimal stopping, rather than a PDE one. In Section 3 we
prove that the free-boundary of an optimal stopping problem of this kind is continuous
in all intervals where it is either increasing or decreasing (increasing here means b(t1) ≤
b(t2), for t1 ≤ t2). Proofs are provided for two different settings: firstly, we assume
that V has a local modulus of continuity; secondly, we replace that assumption by a
suitable integrability condition on G and extend continuity of b to a setting in which
V is only continuous. A contradiction scheme and arguments inspired by the maximum
principle are combined with probabilistic estimates to obtain the results. The section is
completed by an alternative proof of the free-boundary’s continuity in the special case of
time independent gain functions. In Section 4 we test our method against two specific
examples already studied in the literature and in particular we solve a problem left open
in [9] showing that Assumption-[Cfb] therein is in fact always true.

2 Setting and Assumptions

Consider a complete probability space (Ω,F ,P) equipped with the natural filtration F :=
(Ft)t≥0 generated by a one-dimensional, standard Brownian motion B := (Bt)t≥0. Assume
that the filtration is completed with P-null sets and it is therefore continuous. Without
loss of generality we may consider Ω = C([0,∞)), i.e. the canonical space of continuous
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trajectories and P the Wiener measure; then Bt = ω(t) coincides with the coordinate
mapping.

In this work we will only consider a diffusion X with state space O = R to simplify the
exposition. However, it is important to remark that our results hold for diffusions with
state space in an arbitrary open subset O of R if the boundary ∂O is non-attainable by the
process. In fact one may replace R by O in all conditions listed below in this section and
apply the theorems of Section 3 accordingly (a simple example is the Geometric Brownian
motion starting from x > 0 and with state space O := (0,+∞)). It should also be noticed
that all proofs of Section 3 are based on the local behaviour of the diffusion X around
its initial position. Therefore they may easily be repeated in case of X taking values in
O provided that the free-boundary does not intersect ∂O. Alternatively, if a portion of
the free-boundary coincides with a portion of ∂O, the analysis becomes more delicate,
arguments of our work may break down and one may have to take into account for the
behaviour of the diffusion at ∂O.

Now take O = R and let functions µ : R→ R and σ : R→ R+ be such that

(A.1) µ and σ are locally Lipschitz, µ is piecewise-C2, σ > 0 and it is piecewise-C3.

Denote by X := (Xt)t≥0 the time-homogeneous real process that uniquely solves

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x (2.1)

in the strong sense. We denote by Px the probability measure induced by X started at
time zero from x.

Fix T > 0 and take G : [0, T ]× R→ R such that

(A.2) G is upper semi-continuous.

We can now define a general optimal stopping problem with value function given by

V (t, x) := sup
0≤τ≤T−t

Ex
[
G(t+ τ,Xτ )

]
, (2.2)

where the supremum is taken over all F-stopping times in [0, T − t].
In many cases of interest one may verify that

(A.3) V is continuous on (0, T )× R

and the stopping time

τ∗(t, x) := inf
{
s ≥ 0 : V (t+ s,Xs) = G(t+ s,Xs)

}
∧ (T − t) under Px (2.3)

is optimal for (2.2). The state space is then naturally split into a continuation set C :={
V > G

}
and a stopping set D :=

{
V = G

}
which are an open and a closed subset of

[0, T ]× R, respectively.
Define the infinitesimal generator LX of X by

LXf(x) :=
σ2(x)

2
f ′′(x) + µ(x)f ′(x) for f ∈ C2

b (R). (2.4)
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From standard Markovian arguments and with no further assumptions one obtains that
V ∈ C1,2 inside C and it solves the free-boundary problem

Vt + LXV = 0 in C
Vt + LXV ≤ 0 in [0, T ]× R

V ≥ G in [0, T ]× R
V = G in D ∪ {T} × R.

(2.5)

We now introduce a set of conditions (cf. (A.4), (C.1), (C.2) and Assumption 2.1,
below) which are mostly in the spirit of a probabilistic approach to optimal stopping
problems rather than a PDE one. A basic existence assumption for the free-boundary is
given by

Assumption 2.1. There exists a free-boundary {b(t), 0 ≤ t ≤ T} such that

C :=
{
x ∈ R : x > b(t), t ∈ [0, T )

}
& D :=

{
x ∈ R : x ≤ b(t), t ∈ [0, T )

}
∪ {T} × R.

(2.6)

A natural sufficient condition for Assumption 2.1 to hold is that V (t, x2) − V (t, x1) ≥
G(t, x2) − G(t, x1) with t ∈ (0, T ) and x1 < x2. In practical examples this may often be
proved by a direct probabilistic comparison of the value function V evaluated at points
(t, x1) and (t, x2) (cf. for instance Proposition 2.1 of [18] or Section 26 of [31], eq. (26.2.30)).
Other methods of proof based on stochastic calculus are also described in [19], Theorem 4.3
and purely analytical arguments based on the maximum principle for variational problems
may be employed sometimes if suitable regularity of V holds.

In general G is only USC on [0, T ]×R but one may often verify that a stronger local
regularity holds at points of the boundary (cf. [31] for an overview). In fact, although in
most cases an explicit expression for the free-boundary is not available, it is often possible
to show that it must lie in specific portions of the (t, x)-plane. A key example is again
the American put option, where the gain function is G(x) := (K − x)+ for some K > 0
but it is well known that the boundary lies strictly below K for t ∈ [0, T ) (cf. [18]).
Another example of this kind is provided in [32] where the Asian call option with floating
strike is analysed (cf. also Section 4 below). The problem may be formulated as in (2.2)
with G(t, x) := (1− x/t)+ and therefore derivatives of G do not exist along the diagonal
α(t) := t for t ∈ [0, T ]. In [32] it is proved that the free-boundary lies strictly below α(t)
for t ∈ [0, T ].

Motivated by these considerations we may take G fulfilling (A.2) and such that

(A.4) For any t ∈ [0, T ), there exists ε > 0 and a ball B := Bεt,b(t) centered in (t, b(t)), with

radius ε, such that G ∈ C1,2(B ∩ C).

Now we list conditions that will be used in Section 3 below to prove continuity of the
free-boundary in different settings. It is important to stress that we will not employ all
of them at the same time and that they will be recalled only when needed. The next
two conditions are useful to show continuity of the free-boundary when it is increasing or
decreasing, respectively.
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(C.1) There exist ε > 0 and B as in (A.4) such that

H := Gt + LXG ≤ −`ε in B ∩ C (2.7)

with `ε > 0 a suitable constant.

(C.2) There exist ε > 0 and B as in (A.4) such that Gtx and Gxxx exist and are continuous
in B ∩ C. Moreover, there exists a constant `′ε > 0 such that

Hx :=
∂

∂x

(
Gt + LXG

)
≥ `′ε in B ∩ C (2.8)

and

Vx ≥ Gx in B ∩ C. (2.9)

Remark 2.2. Assumption 2.1 is not binding. In fact, results of this work extend to the
case of a free-boundary {c(t), 0 ≤ t ≤ T} such that

C :=
{
x ∈ R : x < c(t), t ∈ [0, T )

}
& D :=

{
x ∈ R : x ≥ c(t), t ∈ [0, T )

}
∪ {T} × R.

(2.10)

Conditions (C.1) and (C.2) (with `′ε < 0 and reverse inequalities in (2.8) and (2.9) if
(2.10) holds) are instead crucial, as it will be shown in a counterexample below. Suitable
extension to the case of multiple free-boundaries as for instance in [11], [12] and [36] may
be obtained with minor modifications.

The inequality (2.7) means, roughly speaking, that the free-boundary lies in a portion
of the (t, x)-plane where it is locally not convenient to wait. Note that (2.7) is stronger
than the usual condition

D ⊂
{

(t, x) : Gt + LXG ≤ 0
}

for G ∈ C1,2 (2.11)

since it requires strict inequality. Conditions (A.4) and (C.2) are also closely related. In
fact regularity of V in C, (A.4) and Assumption 2.1 imply (2.9). On the other hand, if
G ∈ C1,2 and (2.8) holds in [0, T ]×R one may show that Assumption 2.1 and (2.9) hold
as well (cf. for instance [19], Theorem 4.3).

As already mentioned conditions (2.7) and (2.8) are crucial in our proofs. In fact,
continuity of the boundary may break down if we omit one of them. There is for instance
an interesting counterexample in which at some points on the boundary `ε = `′ε ≡ 0 for
all ε > 0. In Remark 15, at the end of [10], authors analyse a particular optimal stopping
problem for Brownian motion which is relevant to the study of Skorokhod embedding
(cf. eq. (5.23) therein). The continuation set and the stopping set are separated by
discontinuous optimal boundaries (this was also shown in [24] with a different approach).
The gain function has the particular form G(x) := |x|−2

∫ x
0
F (y)dy, where F , in principle,

is not even C1 (for simplicity we will consider F ∈ C1). It was shown in [10], Proposition 7,
that discontinuities for a right-continuous, increasing boundary only happen at particular
points t0 such that F ′(x) ≡ 0 for x ∈ (b(t0), b(t0+)). Equivalently, discontinuities for a
right-continuous, decreasing boundary only happen for t′0 such that F ′(x) ≡ 0 for x ∈
(c(t′0+), c(t′0)). However, for t0 and t′0 as above one has LXG(x) = 1

2
Gxx(x) = −F ′(x) ≡ 0

on (b(t0), b(t0+)) \ {0} and (c(t′0+), c(t′0)) \ {0} implying that both `ε and `′ε in (2.7) and
(2.8) cannot be larger than zero.
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Remark 2.3. Once the existence of a free-boundary is proven one would like to add to
(2.5) the so-called smooth-fit condition, i.e. Vx(t, b(t)+) = Gx(t, b(t)−), t ∈ [0, T ). This
can hardly be done by probabilistic methods when an explicit solution of (2.1) is not known.
However, under some additional assumptions on µ and σ one could rely on results about
variational inequalities and Sobolev embedding theorems (cf. for instance [14] and [15])
to retrieve this further condition. For the purpose of this exposition the smooth-fit is not
necessary, hence we will not discuss it here.

We now introduce two conditions, each of which is sufficient, together with (C.1),
to prove continuity of increasing free-boundaries. The first one is on the regularity of
the value function (2.2) and it is stronger than (A.3) but it may be verified in several
examples of interest (cf. for instance [12] and [18]).

(C.3) The value function fulfils (A.3) with a local modulus of continuity. In particular
there exists α > 0 and continuous functions θi : R+ → R+ for i = 1, 2 such that∣∣V (t+ h, x+ h′)− V (t, x)

∣∣ ≤ θ1(|x|)|h|α/2 + θ2(|t|)|h′|α (2.12)

for (t, x) ∈ [0, T − h]× R and h, h′ > 0.

Sufficient conditions for (C.3) to hold with θ1 = θ2 ≡ const. are that µ, σ in (2.1) are
Lipschitz and |G(t1, x1) − G(t2, x2)| ≤ C(|t2 − t1|α/2 + |x2 − x1|α) for a fixed constant
C > 0.

The second condition is very similar to a usual sufficient condition for the well-
posedness of the optimal stopping problem (cf. for instance [31], Section 2.2).

(C.4) There exists δ > 1 such that the map (t, x) 7→ κ(t, x) defined by

κ(t, x) := Ex
[

sup
0≤s≤T−t

∣∣G(t+ s,Xs)
∣∣δ] (2.13)

satisfies

sup
0≤t≤T

∫ R

−R

∣∣κ(t, x)
∣∣ 1δ dx <∞ for any fixed R > 0. (2.14)

The usual assumption only requires that the expression in (2.13) is finite with δ = 1;
however, one may often show that the map (t, x) 7→ κ(t, x) is in fact bounded on any
compact set [0, T ]× [−R,R].

It is worth noticing that conditions (A.1), (A.2) and (A.4) have a local character and
G could exhibit jumps somewhere without invalidating results of this paper. Although
somewhat technical most of the assumptions and conditions listed above can be verified in
a wide class of optimal stopping problems like (2.2). In Section 4 below we will discuss two
examples from the existing literature where those requirements were verified by standard
probabilistic methods. In one of them continuity of the free-boundary was only assumed
but not proved; in this paper we will show that such assumption is in fact always true.
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3 Continuity of the free-boundary

In what follows we will prove continuity of the free-boundary in different settings. For
increasing free-boundary we obtain a first proof under condition (C.3) and a second one
under condition (C.4); for decreasing free-boundary we only require condition (C.2).

Theorem 3.1. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be a time
interval where the free-boundary is increasing. Then, under conditions (C.1) and (C.3),
the free-boundary t 7→ b(t) is continuous on [t1, t2].

Proof. Since D is closed and b is increasing, we can rely on a standard argument to
show that b is right-continuous (see, e.g. [18]). First we notice that b has right and left
limits at all points t ∈ (t1, t2) by its monotonicity. For fixed t ∈ (t1, t2) we consider a
decreasing sequence (tn)n∈N ⊂ (t, t2) such that tn ↓ t; then (tn, b(tn)) ∈ D for all n ∈ N
and (tn, b(tn)) → (t, b(t+)) with b(t+) denoting the right-limit of b at time t. The limit
of a sequence of elements in D must be an element of D since the set is closed. Hence
(t, b(t+)) ∈ D and b(t+) ≤ b(t) by Assumption 2.1. Monotonicity of b in [t1, t2] implies
b(t+) ≥ b(t), hence right-continuity follows.

To prove continuity we argue by contradiction and assume that there exists t0 ∈ (t1, t2]
such that a discontinuity of b occurs. That is, at t0 one has b(t0−) < b(t0), where b(t0−)
denotes the left limit of the boundary at t0. Take x1 and x2 such that b(t0−) < x1 < x2 <
b(t0); then, for arbitrary but fixed t′ ∈ (t1, t0) define an open bounded domain R ⊂ C
with R := (t′, t0)× (x1, x2). Its parabolic boundary ∂PR is formed by the horizontal lines
[t′, t0)× {xi}, i = 1, 2, and by the vertical line {t0} × [x1, x2] (note that in this setting C
lies on the left of the vertical segment [b(t0−), b(t0)]).

From (2.5) we know that V (uniquely) solves the Cauchy-Dirichlet problem

ut + LXu = 0 in R
u = V on ∂PR

(3.1)

and it is C1,2 in the interior ofR. Denote by C∞c ([x1, x2]) the set of functions with infinitely
many continuous derivatives and compact support in [x1, x2]. Take ψ ≥ 0 arbitrary in
C∞c ([x1, x2]) and such that

∫ x2
x1
ψ(y)dy = 1. Multiply the first equation in (3.1) (with V

instead of u) by ψ and integrate1 over (t, t0)× (x1, x2) for some t ∈ (t′, t0). It gives∫ t0

t

∫ x2

x1

(
Vt(s, y) + LXV (s, y)

)
ψ(y)dy ds = 0. (3.2)

We want to estimate the left-hand side of (3.2) and provide an upper bound. In order to
do so we will study separately the two terms of the integrand.

Integrating Vt over (t, t0) and using V (t0, y) = G(t0, y) and V (t, y) ≥ G(t, y) it follows∫ t0

t

∫ x2

x1

Vt(s, y)ψ(y)dy ds ≤
∫ x2

x1

(
G(t0, y)−G(t, y)

)
ψ(y)dy =

∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds.

(3.3)

1Note that V is C1,2 on RP and not necessarily on RP . The integration with respect to y may be
interpreted in the sense of distributions by taking derivatives of ψ. The integral with respect to s is well
defined since

∫ t0
t

∫ x2

x1
Vt(s, y)ψ(y)dy ds =

∫ x2

x1

(
V (t0, y)− V (t, y)

)
ψ(y)dy.



A note on the continuity of free-boundaries 9

Now, we integrate by parts in dy the term in (3.2) involving the infinitesimal generator
of X and we use the fact that ψ has compact support in [x1, x2]. It gives∫ t0

t

∫ x2

x1

LXV (s, y)ψ(y)dy ds =

∫ t0

t

∫ x2

x1

V (s, y)LX∗ψ(y)dy ds, (3.4)

where LX∗ denotes the formal adjoint of LX defined by

LX∗φ(x) :=
1

2

∂2

∂x2
(
σ2(x)φ(x)

)
− ∂

∂x

(
µ(x)φ(x)

)
, φ ∈ C2(R). (3.5)

Note that with no loss of generality we can take R so that (3.5) is well defined and
continuous on R by (A.1).

Since G ∈ C1,2(R) there exists a continuous function θG(| · |) such that∣∣V (s, y)−G(s, y)
∣∣ ≤ ∣∣V (s, y)− V (t0, y)

∣∣+
∣∣G(t0, y)−G(s, y)

∣∣
≤ θ1(|y|)(t0 − s)α/2 + θG(|y|)(t0 − s) for all (s, y) ∈ R (3.6)

by (2.12). We may consider |t0 − t| < 1 and hence (3.6) holds with the right-hand side
replaced by

(
θ1(|y|) + θG(|y|)

)
(t0− s)α/2. We set ϑ(y) := θ1(|y|) + θG(|y|) and use V ≥ G

and (3.6) to obtain

G(s, y) ≤ V (s, y) ≤ G(s, y) + ϑ(y)(t0 − s)α/2 in R. (3.7)

For any s ∈ (t, t0) we deduce from (3.7) that∫ x2

x1

V (s, y)LX∗ψ(y)dy

=

∫ x2

x1

I{LX∗ψ≥0}(y)V (s, y)LX∗ψ(y)dy +

∫ x2

x1

I{LX∗ψ<0}(y)V (s, y)LX∗ψ(y)dy

≤
∫ x2

x1

I{LX∗ψ≥0}(y)G(s, y)LX∗ψ(y)dy +

∫ x2

x1

I{LX∗ψ<0}(y)G(s, y)LX∗ψ(y)dy

+ (t0 − s)α/2
∫ x2

x1

I{LX∗ψ≥0}(y)ϑ(y)LX∗ψ(y)dy

=

∫ x2

x1

G(s, y)LX∗ψ(y)dy + (t0 − s)α/2
∫ x2

x1

I{LX∗ψ≥0}(y)ϑ(y)LX∗ψ(y)dy

=

∫ x2

x1

LXG(s, y)ψ(y)dy + (t0 − s)α/2
∫ x2

x1

I{LX∗ψ≥0}(y)ϑ(y)LX∗ψ(y)dy (3.8)

by integration by parts. Note that the last term is strictly positive by arbitrariness of ψ.
We define γ ≡ γ(ψ;x1, x2) > 0 by

γ :=

∫ x2

x1

I{LX∗ψ≥0}(y)ϑ(y)LX∗ψ(y)dy. (3.9)

Now, from (3.2), (3.3), (3.4) and (3.8) we obtain

0 ≤
∫ t0

t

∫ x2

x1

(
Gt(s, y) + LXG(s, y)

)
ψ(y)dy ds+ γ(t0 − t)1+α/2. (3.10)
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One may observe from (C.1) that the first integral in (3.10) must be strictly negative. In
fact, recalling that

∫ x2
x1
ψ(y)dy = 1, there exists ` > 0 depending on x1, x2, such that

0 ≤ −`(t0 − t) + γ(t0 − t)1+α/2 (3.11)

by (2.7) and (3.10). In the limit as t ↑ t0 we inevitably reach a contradiction as the
positive term vanishes more rapidly than the negative one and hence the jump may not
occur.

The proof above did not require any probabilistic arguments and it follows from simple
PDE results and the regularity assumptions on V and G. It is sometimes useful to relax
condition (C.3) and replace it by (C.4). The latter is in fact easier to verify than (C.3)
and holds for a wide class of gain functions G. Although the proof of continuity becomes
slightly more involved, bounds similar to (3.7) may be retrieved by means of purely
probabilistic arguments.

Theorem 3.2. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be a time
interval where the free-boundary is increasing. Then, under conditions (C.1) and (C.4)
the free-boundary t 7→ b(t) is continuous on [t1, t2].

Proof. We recall once more that since D is closed and b is increasing then b is right-
continuous (cf. proof of Theorem 3.1). To prove continuity we argue again by contradiction
and assume that there exists t0 ∈ (t1, t2] where a discontinuity of b occurs and b(t0−) <
b(t0). We define an open bounded domain U ⊂ C, U := (t̄, t0) × (x01, x

0
2) with x01 and x02

such that b(t0−) < x01 < x02 < b(t0) and arbitrary t̄ ∈ (t1, t0). Its parabolic boundary
∂PU is formed by the horizontal lines [t̄, t0) × {x0i }, i = 1, 2 and by the vertical line
{t0}× [x01, x

0
2]. Hence, the value function V is (unique) classical solution of the boundary

value problem

ut + LXu = 0 in U
u = V on ∂PU

(3.12)

by (2.5).
Fix η0 > 0 such that 2η0 < min{|x02 − x01|, 2}, take x1 and x2 such that (x1, x2) ⊂

(x01 + η0, x
0
2 − η0) and take an arbitrary t ∈ (t̄, t0). Now define another open bounded

domain R ⊂ U by R := (t, t0) × (x1, x2) with parabolic boundary ∂PR formed by the
horizontal lines (t, t0)×{xi}, i = 1, 2 and by the vertical line {t0}× [x1, x2] and such that
(2.7) holds.

Take ψ ≥ 0 arbitrary in C∞c ([x1, x2]) and such that
∫ x2
x1
ψ(y)dy = 1, multiply the first

equation in (3.12) (with V instead of u) by ψ and integrate over (t, t0)×(x1, x2). It follows∫ t0

t

∫ x2

x1

(
Vt(s, y) + LXV (s, y)

)
ψ(y)dy ds = 0. (3.13)

Of course we would like to reproduce here arguments similar to those adopted in (3.2)–
(3.10) to find a contradiction in (3.13). However, in order to do so we need a bound
similar to (3.7).
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Let τU denote the first exit time of (s + r,Xr)r≥0 from U for s ∈ [t, t0) and X0 = y ∈
(x1, x2), that is,

τU(s, y) := inf
{
s ≥ 0 : (s+ r,Xr) /∈ U

}
under Py, y ∈ (x1, x2). (3.14)

Set τU ≡ τU(s, y) for simplicity. Clearly τU ≤ t0− s ≤ t0− t, Py-a.s. for y ∈ (x1, x2). Also,
the stopping time

τ∗(s, y) := inf
{
r ≥ 0 : Xr ≤ b(s+ r)

}
∧ (T − s) (3.15)

is an optimal stopping time for V (s, y) and τU ≤ τ∗, Py-a.s. for y ∈ (x1, x2), from mono-
tonicity of b.

Since U is arbitrary, G ∈ C1,2 in U by (A.4) and we may use Itô’s calculus to obtain

G(s, y) = Ey
[
G(s+ ρ,Xρ)−

∫ ρ

0

(
Gt + LXG

)
(s+ r,Xr)dr

]
(3.16)

for all stopping times ρ ≤ τU , Py-a.s., y ∈ (x1, x2). Set for simplicity τ∗ ≡ τ∗(s, y) and
take ρ = τU ∧ τ∗ in (3.16). It follows

0 ≤V (s, y)−G(s, y)

=Ey
[
G(s+ τ∗, Xτ∗)−G(s+ τU ∧ τ∗, XτU∧τ∗) +

∫ τU∧τ∗

0

(
Gt + LXG

)
(s+ r,Xr)dr

]
≤Ey

[
G(s+ τ∗, Xτ∗)−G(s+ τU ∧ τ∗, XτU∧τ∗)

]
, (3.17)

where in the last inequality we used (2.7). The only non-zero contribution in the last
expression of (3.17) comes from the set

{
τ∗ > τU

}
and we have

0 ≤V (s, y)−G(s, y)

≤Ey
[(
G(s+ τ∗, Xτ∗)−G(s+ τU , XτU )

)
I{τ∗>τU}

]
≤Ey

[∣∣∣G(s+ τ∗, Xτ∗)−G(s+ τU , XτU )
∣∣∣δ] 1

δ
Py
(
τ∗ > τU

)1− 1
δ (3.18)

where we have used Hölder’s inequality E|XY | ≤
(
E|X|p

)1/p(
E|Y |q

)1/q
with p = δ and

q = δ
δ−1 . Note that condition (C.4) guarantees that the last term in (3.18) is well defined.

We observe that if τ∗ > τU then the process exits U from the upper/lower horizontal
boundary strictly before hitting the free-boundary b. This also means that τU < t0− s as
otherwise τU = τ∗. Now, recalling that y ∈ (x1, x2) ⊂ (x01 + η0, x

0
2 − η0, ) we find{

τ∗ > τU

}
⊂
{
XτU ≤ x1 − η0 or XτU ≥ x2 + η0

}
⊂
{

sup
0≤r≤t0−s

∣∣Xr − y
∣∣ > η0

}
. (3.19)

From (3.19), Markov inequality and standard estimates for strong solutions of SDEs (cf.
for instance [22] Chapter 2, Section 5, Corollary 12 or [16], Chapter 5, Theorem 2.3 for
the case of locally Lipschitz coefficients µ and σ) it follows

Py
(
τ∗ > τU

)
≤Py

(
sup

0≤r≤t0−s

∣∣Xr − y
∣∣ > η0

)
≤ 1

ηβ0
Ey
[

sup
0≤r≤t0−t

∣∣Xr − y
∣∣β]

≤ 1

ηβ0
CT,β

(
1 + |y|β

)(
t0 − t

)β/2
(3.20)
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for a suitable constant CT,β > 0 only depending on T and arbitrary β > 0.
Set ζ := 1− 1/δ. Using (3.18), (3.20) and (2.13) we finally obtain

0 ≤ V (s, y)−G(s, y) ≤ 2κ(s, y)1/δ
( 1

ηβ0
CT,β

(
1 + |y|β

))ζ(
t0 − t

)ζβ/2
(3.21)

for y ∈ (x1, x2). The inequality (3.21) provides the analogue of (3.7) in the present setting.
We repeat the same arguments as in (3.1)–(3.4) to obtain

0 ≤
∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds+

∫ t0

t

∫ x2

x1

V (s, y)LX∗ψ(y)dy ds (3.22)

from (3.13) and use (3.21), (3.22), condition (C.4) and calculations as in (3.8) to find

0 ≤
∫ t0

t

∫ x2

x1

Gt(s, y)ψ(y)dy ds+

∫ t0

t

∫ x2

x1

LXG(s, y)ψ(y)dy ds+
c

ηβ0
(t0 − t)1+ζβ/2 (3.23)

with

c ≡ c(T, δ, η0, β, x
0
1, x

0
2, ψ) := 2c∞ψ

[
CT,β

(
1 + max{|x01|, |x02|}β

)]ζ
sup

0≤s≤T

∫ x02

x01

κ1/δ(s, y)dy

(3.24)

and c∞ψ ≡ c∞ψ (x01, x
0
2) := supy∈[x01,x02]

∣∣L∗Xψ(y)
∣∣. Note that c∞ψ < +∞ as µ, σ and ψ are C2

in [x01, x
0
2]. As usual Gt + LXG < −` in U for some constant ` > 0 by (C.1) and hence

0 ≤ −`(t0 − t) +
c

ηβ0
(t0 − t)1+ζβ/2 (3.25)

by (3.23). For fixed δ, η0, β, U and ψ, (3.25) leads to a contradiction in the limit as
t ↑ t0.

When Assumption 2.1 holds and the free-boundary is decreasing, arguments above
seem to break down. This is mainly due to the fact that if a jump occurs at t0 and
the diffusion (t,X) starts either from a point (t0 + ε, x) with ε > 0 or from (t0 − ε, x)
with x > b(t0−) then, as time elapses it will move away from the discontinuity. On the
contrary, in theorems above and in particular in Theorem 3.2 we crucially relied on the
fact that (t,X) moves towards the jump. Intuitively it might happen that the diffusion
does not “see” discontinuities of a decreasing boundary and hence the rationale above
may not be adopted. Our first natural attempt to overcome this difficulty was to study
the time reversed process (t − s,Xs)s≥0 but we realised that this introduces seemingly
harder complications to deal with. An approach based on PDE results and condition
(C.2) allows instead to find continuity of b again.

Theorem 3.3. Let (A.1)–(A.4) and Assumption 2.1 hold. Let [t1, t2] ⊂ [0, T ] be a
time interval where the free-boundary is decreasing. Then, under condition (C.2) the
free-boundary t 7→ b(t) is continuous on [t1, t2].



A note on the continuity of free-boundaries 13

Proof. In this case by arguments similar to those used in the proof of Theorem 3.1 one
finds that b is left-continuous as D is closed and b is decreasing. Assume that there exists
t0 ∈ [t1, t2) such that a discontinuity of b occurs. That is, b(t0+) < b(t0), where b(t0+)
denotes the right limit of the boundary at t0. Take x1 and x2 such that b(t0+) < x1 <
x2 < b(t0) and t′ ∈ (t0, t2); then, define once more an open bounded domain R ⊂ C with
R := (t0, t

′) × (x1, x2). Its parabolic boundary ∂PR is formed by the horizontal lines
(t0, t

′)× {xi}, i = 1, 2, and by the vertical line {t′} × [x1, x2] (note that in this setting C
lies on the right of the vertical segment [b(t0+), b(t0)]).

Set u := V −G and recall the definition of H from (2.7). Hence, u is (unique) classical
solution of the boundary value problem

ut + LXu = −H in R
u = V −G on ∂PR

(3.26)

by (2.5) and (A.4). Define a differential operator A by

Af(x) :=
1

2
σ2(x)f ′′(x) +

(
σ σ′ (x) + µ(x)

)
f ′(x) + µ′(x)f(x), x ∈ R, f ∈ C2(R).

(3.27)

Now, conditions (A.1), (A.4) and (C.2) imply that utx and uxxx exist and are continuous
in R (cf. [17], Chapter 3, Theorem 10). We differentiate the first equation in (3.12) with
respect to x and set ū := ux to obtain

ūt +Aū = −Hx in R, (3.28)

with A as in (3.27). Take ψ ≥ 0 arbitrary in C∞c ([x1, x2]) and such that
∫ x2
x1
ψ(y)dy = 1.

We define a function Fψ : (t0, t
′)→ R by

Fψ(t) :=

∫ x2

x1

ūt(t, x)ψ(x)dx (3.29)

and (3.28) gives

Fψ(t) =−
∫ x2

x1

(
Hx(t, x) +Aū(t, x)

)
ψ(x)dx

=−
∫ x2

x1

Hx(t, x)ψ(x)dx−
∫ x2

x1

ū(t, x)A∗ψ(x)dx (3.30)

=−
∫ x2

x1

Hx(t, x)ψ(x)dx+

∫ x2

x1

u(t, x)
∂

∂x

(
A∗ψ

)
(x)dx,

where A∗ is the formal adjoint of A and ∂
∂x

(
A∗ψ

)
∈ Cc([x1, x2]) by (A.1) and arbitrariness

of [x1, x2]. It follows from (3.30) that Fψ is continuous on (t0, t
′) and the right-limit of Fψ

at t0 exists and it is

Fψ(t0+) := lim
t↓t0

Fψ(t) = −
∫ x2

x1

Hx(t0, x)ψ(x)dx (3.31)

by using that u ∈ C(R) and u(t0, x) ≡ 0 for x ∈ [x1, x2]. Therefore, from (2.8) we obtain
Fψ(t0+) ≤ −` for suitable ` > 0 and continuity of Fψ implies that there exists ε > 0 such
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that Fψ(t) < −`/2 for all t ∈ (t0, t0 + ε). Set 0 < δ < ε, then (3.29), Fubini’s Theorem
and an integration by parts give

− `
2

(ε− δ) >
∫ ε

δ

Fψ(t0 + s)ds =

∫ x2

x1

[
ū(t0 + ε, x)− ū(t0 + δ, x)

]
ψ(x)dx

=

∫ x2

x1

ū(t0 + ε, x)ψ(x)dx+

∫ x2

x1

u(t0 + δ, x)ψ′(x)dx. (3.32)

Now, taking limits as δ → 0, using dominated convergence and recalling that ū = ux,
u ∈ C(R), u(t0, x) ≡ 0 for x ∈ [x1, x2] we obtain

− `
2
ε ≥

∫ x2

x1

ū(t0 + ε, x)ψ(x)dx =

∫ x2

x1

[
Vx −Gx

]
(t0 + ε, x)ψ(x)dx. (3.33)

Since ψ ≥ 0, then (2.9) and (3.33) lead to a contradiction; hence b must be continuous.

It easy to see that from Theorems 3.1–3.3 it follows

Corollary 3.4. Let (A.1)–(A.4), Assumption 2.1 and conditions (C.1), (C.2) hold.
Assume that the free-boundary is piecewise monotone on [0, T ] and that either (C.3) or
(C.4) holds. Then b is continuous on [0, T ].

The special case of a time-independent gain function may be treated separately. In
fact, in that case conditions (C.2), (C.3) and (C.4) may be dropped and continuity
is obtained in a very general setting. We prove this claim in the next Proposition, for
completeness.

Proposition 3.5. Assume (A.1) and that G : R → R is time independent and it meets
(A.2). Assume also that the value function

V (t, x) := sup
0≤τ≤T−t

Ex
[
G(Xτ )

]
(3.34)

fulfils (A.3) and that there exists a free-boundary
{
b(t), 0 ≤ t ≤ T

}
such that Assumption

2.1, (A.4) and (C.1) hold. Then t 7→ b(t) is increasing and continuous on [0, T ].

Proof. To show that t 7→ b(t) is monotone increasing we use standard arguments (cf. [18],
for instance). Since G does not depend on time, the mapping t 7→ V (t, x) is decreasing
for any x ∈ R. Take (t0, x0) ∈ D and t > t0, then V (t, x0) ≤ V (t0, x0) = G(x0) and hence
(t, x0) ∈ D for all t > t0. Closedness of D implies that b(t) is also right-continuous.

To prove continuity, assume that there exists t0 ∈ (0, T ] such that b(t0−) < b(t0); con-
struct a rectangular domain R with parabolic boundary ∂PR as in the proof of Theorem
3.1, then V is the (unique) classical solution of the Cauchy-Dirichlet problem

ut + LXu = 0 in R
u = V on ∂PR.

(3.35)

Take ψ ≥ 0 arbitrary in C∞c ([x1, x2]) with
∫ x2
x1
ψ(y)dy = 1, multiply the first equation

in (3.35) (with V instead of u) by ψ and integrate over [x1, x2]. Then∫ x2

x1

Vt(s, y)ψ(y)dy = −
∫ x2

x1

LXV (s, y)ψ(y)dy for all s ∈ (t′, t0) (3.36)
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and, integrating by parts the term on the right-hand side of (3.36), we obtain∫ x2

x1

Vt(s, y)ψ(y)dy = −
∫ x2

x1

V (s, y)LX∗ψ(y)dy for all s ∈ (t′, t0). (3.37)

The left-hand side of (3.37) is negative since V is decreasing in time and ψ ≥ 0. Then,
we take the limit as s ↑ t0 in the right-hand side of (3.37) and use dominated convergence,
continuity of V and boundary condition V (t0, y) = G(y) to obtain

0 ≥ −
∫ x2

x1

V (t0, y)LX∗ψ(y)dy = −
∫ x2

x1

G(y)LX∗ψ(y)dy = −
∫ x2

x1

LXG(y)ψ(y)dy.

(3.38)

There exists ` > 0 depending only on R such that LXG(y) < −` in [x1, x2], by (2.7) and
then we find the contradiction

0 ≥ `

∫ x2

x1

ψ(y)dy = ` > 0 (3.39)

by (3.38).

A basic example of a more general optimal stopping problem may be considered by
taking

G(t, x) := g(t, x)I{t<T} + h(x)I{t=T} (3.40)

in (2.2) with g and h bounded and continuous. A probabilistic proof of the existence of
an optimal stopping time in this setting may be found in [27] and the continuation set
is C :=

{
V > g

}
. Then, replacing assumptions on G with analogous ones for g one may

use the same arguments as above to show that b(t) as in Assumption 2.1 is continuous on
the open interval (0, T ). However, continuity at the maturity T may break down and it
should be studied again on a case by case basis. Note that if b(t) is decreasing on (t1, T ]
for some t1 < T , then it is also continuous at T since it is left-continuous on the interval.
On the other hand, for an increasing boundary on (t1, T ] one may easily check, proceeding
as in the proofs of Theorems 3.1 and 3.2, that sufficient conditions for continuity at T
are: i) LXh well defined and piecewise continuous, ii) LXh < −`ε for x ≤ b(T ).

All results of this paper naturally extend to the case of discounted gain functions and
in presence of running costs. In fact, if we take for instance a positive, C1 discount rate
function r(x) and a positive, continuous cost function C(t, x) such that

Ex
[ ∫ T

0

C(s,Xs)ds
]
< +∞ for x ∈ R (3.41)

and Cx ∈ C((0, T )× R), we may define the optimal stopping problem

V (t, x) := sup
0≤τ≤T−t

Ex
[
e−

∫ τ
0 r(Xs)dsG(t+ τ,Xτ )−

∫ τ

0

e−
∫ s
0 r(Xu)duC(t+ s,Xs)ds

]
. (3.42)

If (A.2) and (A.3) hold then τ∗ as in (2.3) is optimal. If we now modify conditions (C.1)
and (C.2) by using Gt + LXG − rG − C instead of Gt + LXG and assume for instance
that

ξ(t, x) := Ex
[ ∫ T−t

0

∣∣C(t+ s,Xs)
∣∣δds] (3.43)

is locally bounded on [0, T ]× R, for δ > 1 as in (C.4), all conclusions above remain true
(this is the case for instance of [9]).
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4 Two examples

For completeness we now discuss two examples of optimal stopping problems where con-
ditions listed in Section 2 can be checked by using mostly probabilistic arguments. The
literature on optimal stopping is huge and we pick these specific examples just because
they allow us to point out the local nature of our assumptions on G (Example 1) and the
interesting features of a decreasing boundary (Example 2).

Example 1. We consider the problem studied in [32] of finding the optimal exercise
boundary of an American call option with floating strike. In [32] it was shown that the
valuation of the option reduces to studying

V (t, x) := sup
0<τ≤T−t

Ex
[(

1− Xτ

t+ τ

)+ ]
(4.1)

where (Xt)t≥0 is the positive process solving

dXt = (1− rXt)dt+ σXtdBt, X0 = x ≥ 0 (4.2)

under Px, with r and σ positive constants. We remark that continuity of the boundary
was originally proved in [32], Theorem 3.1.

Conditions (A.1) and (A.2) are clearly verified and G(t, x) := (1 − x/t)+ is positive
and bounded by one on (0, T ] × R+, hence (C.4) holds as well. Continuity of V was
proved in points 2 and 3 of the proof of Theorem 3.1 in [32] by probabilistic comparison
arguments and the existence of an optimal stopping time as in (A.3) follows from general
theory of optimal stopping (cf. [31], Section 2, Corollary 2.9). Peskir and Uys also showed
that there exists a monotone increasing optimal boundary as in our Assumption 2.1 and
that 0 < b(t) < t/(1 + rt) for t ∈ (0, T ) (cf. points 6 and 7 of the proof of Theorem
3.1). It follows that our condition (A.4) holds. To prove existence of b authors employed
the generalisation of Itô’s formula described in [29] combined with a simple probabilistic
argument needed to obtain convexity of x 7→ V (t, x). To show monotonicity instead they
relied on a direct comparison of the value function at different times, i.e. they proved that
V (t2, x)− V (t1, x) ≤ G(t2, x)−G(t1, x) for all 0 ≤ t1 < t2 ≤ T and x > 0.

We observe that Gt + LXG = x/t2 − (1 − rx)/t < 0 for x < t/(1 + rt) and therefore
(C.1) is satisfied for all t ∈ (0, T ). All conditions of our Theorem 3.2 are fulfilled and
continuity of the free-boundary follows.

Example 2. We now consider the optimal stopping problem, linked to a singular stochas-
tic control one, that was studied in [9]. In that context continuity of the free-boundary
was only assumed (cf. [9], Assumption-[Cfb], p. 454). Our results allow to prove that such
boundary is indeed continuous.

We adapt the notation of [9] to ours to simplify the exposition2. The value function
of the problem analysed in Section 4 of [9] is

V (t, x) := inf
0≤τ≤T−t

Ex
[ ∫ τ

0

e−rs
(
Xs

)α−1
ds+ e−rτc1I{τ<T−t} + e−r(T−t)c2I{τ=T−t}

]
(4.3)

with 0 < α < 1 and c1, c2, r positive constants such that c1 ≥ c2. The dynamics of X is
given by

dXt = µXtdt+ σXtdBt, X0 = x > 0 (4.4)

2Here we use (Xx, r, c1, c2, µ, σ) instead of (Y y, µ̄, 1/fC , ao, σ
2
C − µC , σC) of [9]
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with µ ∈ R and σ > 0. Although (4.3) is a minimisation problem there is no substantial
difference in dealing with continuity of its boundary. In fact infτ Ex

[
Ĝ(t + τ,Xτ )

]
=

− supτ Ex
[
− Ĝ(t + τ,Xτ )

]
for any Borel-measurable Ĝ and we can rely on Theorem 3.3

by suitably adjusting inequalities in condition (C.2).
Condition (A.1) holds. The gain function G of (4.3) is of the form of (3.40) with

g(x) = c1 and h(x) = c2. Since c1 ≥ c2 we have G lower semi-continuous as it is natural
in minimisation problems. The running cost c(x) := xα−1 is C1 for x > 0. In Proposition
4.1-[viii]v̂ of [9] it was shown (again by probabilistic methods similar to those described
in Example 1 above) that V is continuous, i.e. our (A.3) holds. Since the gain function is
a constant our condition (A.4) is trivially true. In Propositions 4.2 and 4.3 of [9] it was
also shown that there exists a unique decreasing, left-continuous optimal boundary b for
(4.3), that b(T ) = 0 and that C and D fulfil our Assumption 2.1 (the free-boundary in [9]
is denoted by ŷ).

In order to apply our Theorem 3.3 we only need to check condition (C.2). However
since we are dealing with an infimum problem we need `′ε < 0 and reversed inequalities
in (2.8) and (2.9). The solution of (4.4) is P-a.s. increasing in its initial condition, hence
x 7→ V (t, x) is decreasing. Since the gain function c1 in (4.3) is constant and Vx ≤ 0 then
the counterpart of (2.9) in this setting is fulfilled. It is now easy to see that H(x) :=
(∂t + LX − r)c1 + xα−1 = xα−1 − r c1 and hence Hx(x) < 0 for x > 0 and the counterpart
of (2.8) holds as well. From arguments analogous to those used in the proof of Theorem
3.3 we obtain continuity of b for all t ∈ [0, T ). Since b is decreasing and left-continuous it
is continuous at the terminal time T as well.

We would like to remark that other running costs may be considered in (4.3) without
substantially altering the results. For instance free-boundaries of a zero sum optimal stop-
ping game that generalises (4.3) were studied in [11] under milder assumptions regarding
the running cost and their continuity was proven by methods similar to those developed
in Theorem 3.3.

Acknowledgments: I wish to thank G. Ferrari and G. Peskir for useful discussions and
comments.
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