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Abstract. Software-intensive systems can have thousands of interde-
pendent configuration options across different subsystems. Feature mod-
els allow designers to organize the configuration space by describing con-
figuration options using interdependent features: a feature is a name
representing some functionality and each software variant is identified
by set of features. Different representations of feature models have been
proposed in the literature. In this paper we focus on the propositional
representation (which works well in practice) and the extensional rep-
resentation (which has been recently shown well suited for theoretical
investigations). We provide an algebraic and a propositional character-
ization of novel and existing feature model operations and relations,
and we formalize the connection between the two characterizations as
monomorphisms from lattices of propositional feature models to lattices
of extensional features models. These results shed new light on the corre-
spondence between the extensional and the propositional representations
of feature models. Thus paving the way towards facilitating practical ex-
ploitation, by relying on the propositional representation, of theoretical
developments expressed by relying on the extensional representation.

1 Introduction

Software-intensive systems can have thousands of interdependent configuration
options across different subsystems. In the resulting configuration space, different
software variants can be obtained by selecting among these configuration options
and accordingly assembling the underlying subsystems. The interdependencies
between options are dictated by corresponding interdependencies between the
underlying subsysems [5].

Feature models [6] allow developers to organize the configuration space and
facilitate the construction of software variants by describing configuration op-
tions using interdependent features [18]: a feature is a name representing some
functionality, a set of features is called a configuration, and each configuration
that fulfills the interdependencies expressed by the feature model (called a prod-
uct) identifies a software variant.

Software-intensive systems can comprise thousands of features and several
subsystems [10, 9, 27, 19]. The design, development and maintenance of feature



models with thousands of features can be simplified by representing large fea-
ture models as sets of smaller interdependent feature models [9, 24] which we
call fragments. To this aim, several representations of feature models have been
proposed in the literature (see, e.g., [6] and Sect. 2.3 of Apel et al. [4]) and
many approaches for composing feature models from fragments have been inves-
tigated [1, 3, 12, 13, 23, 26].

In this paper we focus on the propositional representation (which works well
in practice [22, 8, 28]) and the extensional representation (which has been re-
cently shown well suited for theoretical investigations [25, 20]). We investigate
the correspondence between these two representation and between the corre-
sponding formulation of existing and novel feature model operators and rela-
tions. The starting point of this investigation is a novel partial order between
feature models (the feature model fragment relation), which is induced by a no-
tion of feature model composition that has been used to model industrial-size
configuration spaces [25, 20]. We exploit this partial order to provide an algebraic
characterization of feature model operations and relations, we provide a propo-
sitional characterizations of them, and we formalize the connection between the
two characterizations as monomorphisms from lattices of propositional feature
models to lattices of extensional features models.

The remainder of this paper is organized as follows. In Section 2 we recollect
the necessary background and introduce the feature model fragment relation. In
Section 3 we present the algebraic characterization of feature model operations
and relations, and in Section 4 we present the propositional characterization
of the operations and relations together with a formal account of the relation
between the two characterizations. We discuss related related work in Section 5,
and conclude the paper in Section 6 by outlining planned future work.

2 Background and Concept

This section presents a formalization of feature models (FM) and related notions,
including feature model interfaces and composition.

2.1 Feature Model Representations and Analyses

In this paper, we focus on the propositional and on the extensional representa-
tions of feature models (see, e.g., Batory [6] and Sect. 2.3 of Apel et al. [4] for a
discussion about other representations).

Definition 1 (Feature model, propositional representation). A propo-
sitional feature model Φ is a pair (F , φ) where F is a set of features and φ is a
propositional formula whose variables x are elements of F :

φ = x | φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ | false | true

Its products are the set of features p ⊆ F such that φ is satisfied by assigning
value true to the variables x in p and false to the variables in F \ p.
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Example 1 (A propositional representation of the glibc feature model). Gentoo
packages can be configured by selecting features (called use flags in Gentoo),
which may trigger dependencies or conflicts between packages. Version 2.29 of
the glibc library, that contains the core functionalities of most Linux systems,
is provided by the package sys-libs/glibc-2.29-r2 (abbreviated to glibc in the se-
quel). This package has many dependencies, including (as expressed in Gentoo’s
notation):

doc? ( sys−apps/texinfo )
vanilla?( !sys−libs/timezone−data )

This dependency expresses that glibc requires the texinfo documentation gen-
erator (provided by any version of the sys-apps/texinfo package) whenever the
feature doc is selected and if the feature vanilla is selected, then glibc con-
flicts with any version of the time zone database (as stated with the !sys-
libs/timezone-data constraint). These dependencies can be expressed by a feature cannot talk about

conflict here, since
it is a key notion
in the rest of the
paper

cannot talk about
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in the rest of the
paper

model (Fglibc, φglibc) where

Fglibc = {glibc, txinfo, tzdata, glibc:doc, glibc:v}
φglibc = glibc ∧ (glibc:doc→ txinfo) ∧ (glibc:v→ (¬tzdata))

Here, the feature glibc represents the glibc package; txinfo represents any sys-
apps/texinfo package; tzdata represents any version of the sys-libs/timezone-data
package; and glibc:doc (resp. glibc:v) represents the glibc’s doc (resp. vanilla) use
flag.

The propositional representation of feature models works well in practice [22,
8, 28]. Recently, Schröter et al. [25] pointed out that using an extensional repre-
sentation of feature models simplifies the presentation of feature model concepts
and proofs.

Definition 2 (Feature model, extensional representation). An exten-
sional feature modelM is a pair (F ,P) where F is a set of features and P ⊆ 2F
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this is the only rel-
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Example 2 (An extensional representation of the glibc feature model). Let 2S

denote the powerset of S. The feature model of Example 1 can be given an
extensional representationMglibc = (Fglibc,Pglibc) where Fglibc is the same as in
Example 1 and

Pglibc ={{glibc}, {glibc, txinfo}, {glibc, tzdata}, {glibc, txinfo, tzdata}} ∪
{{glibc, glibc:doc, txinfo}, {glibc, glibc:doc, txinfo, tz-data}} ∪
{{glibc, glibc:v}, {glibc, glibc:v, txinfo}} ∪
{{glibc, glibc:doc, glibc:v, txinfo}}

In the description of Pglibc, the first line contains products with glibc but none of
its use flags are selected, so texinfo and tz-data can be freely installed; the second
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line contains products with the use flag doc selected in glibc, so a package of sys-
apps/texinfo is always required; the third line contains products with the use
flag vanilla selected in glibc, so no package of sys-libs/timezone-data is allowed;
finally, the fourth line contains products with both glibc’s use flags selected, so
sys-apps/texinfo is mandatory and sys-libs/timezone-data forbidden.

Definition 3 (Empty feature model and void feature models). The
empty feature model, denoted M∅ = (∅, {∅}), has no features and has just the
empty product ∅. A void feature model is a feature model that has no products,
i.e., of the formMF = (F , ∅) for some set of features F .

2.2 Feature Model Composition

Complex software systems, like the Gentoo source-based Linux distribution [17],
often consist of many interdependent configurable packages [21, 19, 20]. The con-
figuration options of each package can be represented by a feature model. There-
fore, configuring two packages in such a way that they can be installed together
corresponds to finding a product in the composition of their associated feature
models. In We prove that in the propositional representation of feature mod-
els this composition corresponds to logical conjunction: the composition of two
feature models (F1, φ1) and (F2, φ2) is the feature model

(F1 ∪ F2, φ1 ∧ φ2).

In the extensional representation of feature models, this composition corresponds
to the binary operator • of Schröter et al. [25]. This operator, which is similar
to the join operator from relational algebra [14], yields all combinations between
both product sets.

Definition 4 (Feature model composition). The composition of two feature
models M1 = (F1,P1) and M2 = (F2,P2), denoted M1 • M2, is the feature
model defined by:

M1 • M2 = (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}).

The composition operator • is associative and commutative, with M∅ as
identity element (i.e.,M •M∅ =M). Composing a feature model with a void
feature model yields a void feature model: (F1,P1) • (F2, ∅) = (F1 ∪ F2, ∅).

Example 3 (Composing glibc and gnome-shell feature models). Let us consider
another important package of the Gentoo distribution: gnome-shell, a core com-
ponent of the Gnome Desktop environment. Version 3.30.2 of gnome-shell is pro-
vided by the package gnome-base/gnome-shell-3.30.2-r2 (abbreviated to g-shell in
the sequel), and its dependencies include the following statement:

networkmanager?( sys−libs/timezone−data )
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This dependency expresses that g-shell requires any version of the time zone
database when the feature networkmanager is selected.

The propositional representation of this dependency can be captured by the
feature model (Fg-shell, φg-shell), where

Fg-shell = {g-shell, tzdata, g-shell:nm}
φg-shell = g-shell ∧ (g-shell:nm→ tzdata)

The corresponding extensional representation of this feature model isMg-shell =
(Fg-shell, Pg-shell), where:

Pg-shell ={{g-shell}, {g-shell, tzdata}}∪
{{g-shell, tzdata, g-shell:nm}}

Here, the first line contains products with g-shell but none of its use flags are
selected: tzdata can be freely selected; the second line is the product where g-
shell:nm is also selected and tzdata becomes mandatory; finally, the third line
represents products without g-shell.

The propositional representation of the composition is the feature model
(Ffull, φfull), where

Ffull = Fglibc ∪ Fg-shell

= {glibc, txinfo, tzdata, g-shell, glibc:doc, glibc:v, g-shell:nm}
φfull = φglibc ∧ φg-shell

= (glibc ∧ ((glibc:doc→ txinfo) ∧ (glibc:v→ (¬tz-data)))∧
(g-shell ∧ (g-shell:nm→ tzdata))

The extensional representation of the composition is the feature modelMfull =
Mglibc • Mg-shell = (Ffull,Pfull) where

Pfull = {{glibc, g-shell} ∪ p | p ∈ 2{txinfo, tzdata}} ∪

{{glibc, glibc:doc, txinfo, g-shell} ∪ p | p ∈ 2{tzdata}} ∪

{{glibc, glibc:v, g-shell} ∪ p | p ∈ 2{txinfo}} ∪

{{glibc, g-shell, g-shell:nm, tzdata} ∪ p | p ∈ 2{txinfo}} ∪
{{glibc, glibc:doc, glibc:v, txinfo, g-shell}} ∪
{{glibc, glibc:doc, txinfo, g-shell, g-shell:nm, tzdata}}

Here, the first line contains the products where both glibc and g-shell are installed,
but without use flags selected, so all optional package can be freely selected; the
second line contains the products with the glibc’s use flag doc selected, so sys-
apps/texinfo becomes mandatory; the third line contains the products with the
glibc’s use flag vanilla selected, so sys-libs/timezone-data is forbidden; the fourth
line contains the products with the g-shell’s use flag vanilla network manager,
so sys-libs/timezone-data is mandatory; the fifth line contains the product with
glibc’s both use flags selected and the sixth line contains the product with glibc’s
use flag doc and g-shell’s use flag networkmanager are selected.
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Feature model slices were defined by Acher et al. [2] as a unary operator ΠY

that that restricts a feature model to the set Y of features. In order to simplify the
presentation of the slice operator, we introduce the following auxiliary notation
(where P is a set of products and Y is a set of features): P |Y = {p∩ Y | p ∈ P}.

Definition 5 (Feature model slice operator). LetM = (F ,P) be a feature
model. The slice operator ΠY on feature models, where Y is a set of features, is
defined by: ΠY (M) = (F ∩ Y,P |Y ).

More recently, Schröter et al. [25] introduced the following notion of feature
model interface.

Definition 6 (Feature model interface relation). A feature model M0 =
(F0, P0) is an interface of feature model M = (F ,P), denoted as M0 � M,
whenever both F0 ⊆ F and P0 = P |F0 hold.

Remark 1 (Feature model interfaces and slices are equivalent). As pointed out
in [25], feature model slices and interfaces are closely related. Namely:M0 �M
holds if and only if there exists a set of features Y such thatM0 = ΠY (M).

Example 4 (A slice of the glibc feature model). Applying the operatorΠ{glibc, glibc:v}
to the feature modelMglibc of Example 2 yields the feature model

F ={glibc, glibc:v}
P ={∅, {glibc}, {glibc, glibc:v}},

which (according to Remark 1) is is an interface forMglibc.

2.4 Feature Model Components

The notion of feature model composition induces the following notion of feature
model component.

Definition 7 (Feature model component relation). A feature model M0

is a component of a feature model M, denoted as M0 ≤ M, whenever there
exists a feature modelM1 such thatM0 • M1 =M.

In practice, this relation captures at the level of feature models the fact
that the combination of two configurable programs contains both programs: the
composition of the packages glibc and g-shell contains both packages, and its
feature model consequently contains the feature models of both packages. We
have (by definition) thatMg-shell ≤ (Mg-shell • Mglibc).

Interestingly, this relation has some counter-intuitive properties: some configurations
might not be possible anymore. if M0 ≤ M then some configurations of M0

might not be possible anymore inM.
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Example 5. Consider for instance the version 3.0.8 of the library libical in Gen-
too. Its feature model contains the following constraint (as expressed in Gentoo
notation):

berkdb? ( sys−libs/db ) sys−libs/timezone−data

This dependency expresses that libical requires the db library whenever the
feature berkdb is selected and requires the package sys-libs/timezone-data to be
installed. These dependencies can be extensionally expressed by a feature model
Mlibical(Flibical,Plibical) where

Flibical = {libical, berkdb, sys-libs/db, tzdata}
Plibical = {{libical, tzdata}, {libical, tzdata, berkdb, sys-libs/db}}

Composing the feature model of glibc and libical raises the feature modelMc =
(Fc,Pc) where Fc = Fglibc ∪ Flibical and @MICHAEL’:

something is miss-
ing here.

@MICHAEL’:
something is miss-
ing here.

of the composition is the feature modelMfull =Mglibc • Mg-shell = (Ffull,Pfull)
where

Pc = {{glibc, libical, tzdata} ∪ p | p ∈ 2{txinfo, sys-libs/db}} ∪

{{glibc, glibc:doc, txinfo, libical, tzdata} ∪ p | p ∈ 2{sys-libs/db}} ∪

{{glibc, libical, berkdb, sys-libs/db, tzdata} ∪ p | p ∈ 2{txinfo}} ∪
{{glibc, glibc:doc, txinfo, libical, berkdb, sys-libs/db, tzdata}}

Here, the first line contains the products where both glibc and libical are in-
stalled, but without use flags selected, so only the annex package timezone-data
is mandatory; the second line contains the products with the glibc’s use flag doc
selected, so sys-apps/texinfo becomes mandatory; the third line contains theprod-
ucts with the libical’s use flag berkdb, so sys-libs/db becomes mandatory; finally,
the fourth line contains the product with all optional features of both glibc and
libical selected.

It is easy to see from the constraint, and also from the extensional repre-
sentation, that combining glibc and libical makes the feature glibc:v dead. When
composed, the feature models interract and not all combination of product are
available.

This property is counter-intuitive, since combining two programs make the
declarations of both programs available, but combining two configurable pro-
grams is far more subtle, due to interractions between the two configuration
spaces.

In the following section, we analyse that order relation and identify precisely
its counter-intuitive property. We will then use this to construct the rest of the
paper.

@MICHAEL: please complete, to match the abstract. Consider changing ac-
cordingly the examples in the previous subsections.

====================
@MICHAEL: la relazione ≤ andrebbe motivata in termini di gentoo. Se non

bastasse, magari si potrebbe parlare (anche) di Elsa.
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3 Algebraic Characterization of Feature Models

In Section 3.1 we recall some relevant algebraic notions. In Section 3.2 we show
that the feature model component relation induces a lattice of feature models
where the join operation is feature model composition. Then, in Section 3.3 we
show that the feature model component relation generalizes the feature model
interface relation and provide some algebraic properties of the feature model
slice operation.

3.1 A Recollection of Algebraic Notions

In this section we briefly recall the notions of lattice, bounded lattice and Boolean
algebra (see, e.g., Davey and Priestley [16] for a detailed presentation). An or-
dered lattice is a partially ordered set (P,v) such that, for every x, y ∈ P , both
the least upper bound (lub) of {x, y}, denoted inf{x, y} = min{a | x, y ≤ a}, and
the greatest lower bound (glb) of {x, y}, denoted inf{x, y} = max{a | a ≤ x, y},
are always defined.

An algebraic lattice is an algebraic structure (L,t,u) where L is non-empty
set equipped with two binary operations t (called join) and u (called meet)
which satisfy the following:

– Associative laws: x t (y t z) = (x t y) t z, x u (y u z) = (x u y) u z.
– Commutative laws: x t y = y t x, x u y = y u x.
– Absorption laws: x t (x u y) = x, x u (x t y) = x.
– Idempotency laws: x t x = x, x t x = x.

As known, the two notions of lattice are equivalent (Theorem 2.9 and 2.10
of [16]). In particular, given an ordered lattice (P,v) with the operations xty =
sup{x, y} and x u y = inf{x, y}, the following three statements are equivalent
(Theorem 2.8 of [16]):

– x v y,
– x t y = y,
– x u y = x.

A bounded lattice is a lattice that contains two elements ⊥ (the lattice’s
bottom) and > (the lattice’s top) which satisfy the following: ⊥ v x v >. Let L
be a bounded lattice, y ∈ L is a complement of x ∈ L if xuy = ⊥ and xty = >.
If x has a unique complement, we denote this complement by x̄.

A distributive lattice is a lattice which satisfies the following distributive law:
xu (y t z) = (xt y)u (xt z). In a bounded distributive lattice the complement
(whenever it exists) is unique (see [16, Section 4.13]).

A Boolean lattice (a.k.a. Boolean algebra) L is a bounded distributive lattice
such that each x ∈ L has a (necessarily unique) complement x̄ ∈ L.
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3.2 Lattices of Feature Models

Although only finite feature models are relevant in practice, in our theoretical
development (in order to enable a better understanding of the relation between
the extensional and the propositional representations) we consider also feature
models with infinitely many features and products. The following definition in-
troduces a notation for three different sets of extensional feature models (see
Definition 2) over a given set of features.

Definition 8 (Sets of extensional feature models over a set of features).
Let X be a set of features. We denote:

– E(X) the set of the extensional feature models (F ,P) such that F ⊆ X;
– Efin(X) the subset of the finite elements of E(X), i.e., (F ,P) such that
F ⊆fin X; and

– Eeql(X) the subset of elements of E(X) that have exactly the features X, i.e.,
(F ,P) such that F = X.

Note that, if X has infinitely many elements then Efin(X) has infinitely many
elements too. Instead, if X is finite then E(X) and Efin(X) are the same coincide
and have a finite number of elements. For this reason, in the following, we
consider Efin(X) only under the hypothesis that X is infinite.

Lemma 1 (Two criteria for the feature model component relation).
Given a set X, for allM1 = (F1,P1) andM2 = (F2,P2) in E(X), the following
properties are equivalent:

i) M1 ≤M2

ii) M1 • M2 =M2

iii) F1 ⊆ F2 and P1 ⊇ P2 |F1

Proof. i)⇒ ii). It is easy to check thatM′ • M′ =M′, for allM′. We have

M1 • M2 =M1 • (M1 • M) for someM∈ E(X)

= (M1 • M1) • M for someM∈ E(X)

=M1 • M for someM∈ E(X)

=M2

ii) ⇒ iii). By definition of •, it is clear from the hypothesis that F1 ⊆ F2.
Moreover, if we write S = P2 |F1

, the hypothesis say us that P2 = {q | q ∈
P2, q ∩ F1 ∈ (P1 ∩ S)}. We can thus conclude with the following equivalences:

P2 = {q | q ∈ P2, q ∩ F1 ∈ (P1 ∩ S)}
⇔ ∀q ∈ P2, q ∩ F1 ∈ (P1 ∩ S)
⇔ {q ∩ F1 | q ∈ P2} ⊆ (P1 ∩ S)
⇔ S ⊆ (P1 ∩ S)
⇔ S ⊆ P1

Moreover, P2 = {p∪ q | p ∈ P1, q ∈ P2, p∩F2 = q ∩F1} immediately implies
that P2 = {q | p ∈ P1, q ∈ P2, p = q ∩ F1}, which in turn implies P2 |F1

⊆ P1.
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iii)⇒ i). Let still write S = P2 |F1
. We have:

M1 • M2 = (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1})
= (F2, {q | q ∈ P2, q ∩ F1 ∈ P1})
= (F2, {q | q ∈ P2, q ∩ F1 ∈ (P1 ∩ S)}

∪{q | q ∈ P2, q ∩ F1 ∈ {p | p ∈ P1,∀q ∈ P2, p 6= q ∩ F1}})
= (F2, {q | q ∈ P2, q ∩ F1 ∈ (P1 ∩ S)})
= (F2, {q | q ∈ P2, q ∩ F1 ∈ S)})
=M2

By hypothesis, (F1 ∪F2, {p∪ q | p ∈ P1, q ∈ P2, p∩F2 = q∩F1}) = (F2,P2),
thusM1 • M2 =M2. This implies, by definition of ≤, thatM1 ≤M2. ut

Theorem 1 (Lattices of feature models over a set of features). Given
a set X and two feature models M1 = (F1,P1),M2 = (F2,P2) ∈ E(X), we
define:M1 ?M2 = (F1 ∩F2, P1 |F2

∪ P2 |F1
), andM1 = (F1, 2

F1 \P1). Then:

1. (E(X),≤) is a bounded lattice with join •, meet ?, bottom M∅ = (∅, {∅})
and top (X, ∅).

2. If X has infinitely many elements, is an infinite set then Efin(X) is a sub-
lattice of E(X) with the same bottom and no top.

3. Eeql(X) is a sublattice of E(X) which is a Boolean lattice with bottom (X, 2X),
same top of E(X), and complement .̄

Proof. Part 1.1: ≤ is a partial order on E(X). For anyM1 ≤M2 ≤M3 ∈
E(X), we have

• Reflexivity: M1 • M∅ =M1

• Antisymmetry: suppose additionallyM2 ≤M1. We have
M1 =M2 • M for someM∈ E(X)

=M1 • M′ • M for someM,M′ ∈ E(X)

=M1 • M′ • M′ • M for someM,M′ ∈ E(X)
=M2 • M′ • M for someM,M′ ∈ E(X)

=M2 • M •M′ for someM,M′ ∈ E(X)

=M1 • M′ for someM′ ∈ E(X)

=M2

• Transitivity:
M3 =M1 • M for someM∈ E(X)

= (M1 • M′) • M for someM,M′ ∈ E(X)

=M1 • (M′ • M) for someM,M′ ∈ E(X)

Part 1.2: (E(X),≤) is a lattice with M∅ as bottom and (X, ∅) as top.@MICHAEL:
qui le cose sono
state copiate
dall’appendice in
modo approssima-
tivo senza neanche
leggere i commenti
che avevo lasciato
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pezze, ma non ho
molto tempo: per
favore cura di piu il
tuo lavoro
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Let ↑ M be the set of upper bounds ofM w.r.t. ≤, viz. {M′ | M ≤M′}; and,
let ↓ M be the set of lower bounds ofM w.r.t. ≤, viz. {M′ | M′ ≤M}.
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– By definition of ≤ , we haveM1 • M2 ∈ (↑ M1)∩ (↑ M2). Moreover, with
M∈ (↑ Mx) ∩ (↑ My), for all common upper boundM∈ (↑ M1)∩(↑ M2),
we have (cf. Lemma 1)

M =M1 • M =M1 • (M2 • M) = (M1 • M2) • M

And so we haveM1 uM2 =M1 • M2.M1 tM2 =M1 • M2.
– Let M = (F ,P) = (F1 ∩ F2,P1 |F2

∪P2 |F1
). We have {p ∩ F | p ∈

Pi} ⊆ P and F ⊆ Fi for i ∈ {1, 2}: we thus haveM∈ inf(M1) ∩ inf(M2).
M ∈ (↓ M1) ∩ (↓ M2). Moreover, with (F ′,P ′) ∈ inf(M1) ∩ inf(M2), we
have that F ′ ⊆ Fi and {p ∩ F ′ | p ∈ Pi} ⊆ P ′ for i ∈ {1, 2}. Hence, we have
F ′ ⊆ F and {p ∩ F ′ | p ∈ P} ⊆ P ′, which implies that (F ′,P ′) ≤M. for
all (F ′,P ′) ∈ (↓ M1)∩ (↓ M2), it is easy to see that, F ′ ⊆ F1 ∩F2 ⊆ F and
P |F ′⊆ P ′ by Lemma 1. And so we haveM1 tM2 =M.M1 uM2 =M.

As for all M ∈ E(X), we have M • M∅ = M which implies by definition
that M∅ ≤ M. Similarily, it is easy to see that for all M ∈ E(X), we have
M • (X, ∅) = (X, ∅) which implies by definition thatM≤ (X, ∅).

Part 2: Efin(X), is a sublattice of E(X) with the same bottom and
no top. It is clear that for every M1 ∈ Efin(X) and M2 ∈ E(X) such that
M2 ≤ M1, we have that M2 ∈ Efin(X). It follows that Efin(X) is a sublattice
of E(X) withM∅ as bottom. Moreover, if follows from the definition of • that if
Efin(X) with X infinite had a top (F ,P), we would have S ⊆ F for all S ⊆fin X.
This means that F should be equal to X, which is not possible since X is infinite.
.

Part 3: Eeql(X) is a bounded sublattice of E(X) with the same top @MICHAEL: please
update according to
the statement.

@MICHAEL: please
update according to
the statement.

and (X, 2X) as bottom. It is clear that for every M1,M2 ∈ Eeql(X) we
have that M1 • M2 ∈ Eeql(X) and M1 ? M2 ∈ Eeql(X). It follows that
Efin(X) is a sublattice of E(X) with (X, ∅) as top. Finally, it is easy to see that
(X, 2X) ∈ Eeql(X) and that for allM1 ∈ Eeql(X), we have (X, 2X) • M =M.

ut

3.3 On Components and Interfaces

Theorem 2 (Interfaces are components). IfM1 �M2 thenM1 ≤M2.

Proof. Immediate by Definition 6 and Lemma 1. ut

Lemma 2 (Monotonocity properties of the feature model slice opera-
tor). For all F ,F1,F2 ⊆ X andM,M1,M2 ∈ E(X)

1. If F1 ⊆ F2 then ΠF1(M) � ΠF2(M).
2. If F1 ⊆ F2 then ΠF1(M) ≤ ΠF2(M).
3. IfM1 �M2 then ΠF (M1) � ΠF (M2).
4. IfM1 ≤M2 then ΠF (M1) ≤ ΠF (M2).

Proof. 1. Clearly ΠF1
(M) • ΠF2

(M) = ΠF2
(M). Thus the proof follows by

Definition 6.
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2. Immediate by Lemma 2.1 and Theorem 2.
3. By Definition 6, we have that F1 ⊆ F2 and P1 = P2 |F1 . Consequently,

for all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F= P2 |F1
|F . Still,

ΠF (M1) � ΠF (M2) by Definition 6.
4. By Lemma 1, we have that F1 ⊆ F2 and P1 ⊇ P2 |F1 . Consequently, for

all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F⊇ P2 |F1
|F . Still,

ΠF (M1) ≤ ΠF (M2) by Lemma 1.

We remark that Lemma 2.3 and Theorem 2 do not imply Lemma 2.4.

Theorem 3 (Algebraic properties of the feature model slice operator).
For allM1,M2,M3 ∈ E(X) and F4,F5 ⊆ X, we have

≤-Monotonicity. IfM1 ≤M2 and F4 ⊆ F5, then ΠF4
(M1) ≤ ΠF5

(M2).
�-Monotonicity. IfM1 �M2 and F4 ⊆ F5, then ΠF4(M1) � ΠF5(M2).
Commutativity. ΠF4

(ΠF5
(M3)) = ΠF5

(ΠF4
(M3)).

Proof. ≤-Monotonicity. First, it is easy to see that for allM∈ E(X), we have
ΠF4

(M) • ΠF5
(M) = ΠF5

(M). We can thus apply Lemma 1 to obtain that
ΠF4

(M) ≤ ΠF5
(M). Moreover, by Lemma 1, we have that F1 ⊆ F2 and

P1 ⊇ P2 |F1
. It is thus clear that for all F ⊆ X, we have (F1∩F) ⊆ (F2∩F)

and P1 |F⊇ P2 |F1 |F , which implies, by Lemma 1, thatΠF (M1) ≤ ΠF (M2).
We can then conclude by transitivity of ≤:

ΠF4
(M1) ≤ ΠF5

(M1) ≤ ΠF5
(M2)

By Lemma 2.2 and Lemma 2.4.
�-Monotonicity. Since M1 � M2, there exists by definition F ⊆ X such

thatM1 = ΠF (M2). It follows that

ΠF4
(M1)=ΠF4

(ΠF (M2))
=ΠF4∩F (M2)
=ΠF4∩F5∩F (M2) since F4 ⊆ F5

=ΠF4∩F (ΠF5
(M2))

It follows, by definition, that ΠF4(M1) � ΠF5(M2). By Lemma 2.1 and
Lemma 2.3.

Commutativity. In accord to to Definition 6, it is sufficient to observe that
ΠF4(ΠF5(M3)) = ΠF4∪F5(M3) = ΠF5(ΠF4(M)) holds. ut

4 Propositional Characterization of Feature Models

In Section 4.1 we provide a formal account of the relation between the propo-
sitional representation and the extensional representation of feature models (cf.
Sect. 2.1). Then, in Section 4.2, we provide a propositional characterization for
the component relation (≤), for the composition (•) and the meet (?) operations,
for the feature modelsMX (the bottom of the lattice E(X)) andMX (the top of
the lattice E(X)), and for the complement operation (̄ ). Finally, in Section 4.3,
we provide a propositional characterization for the slice operator (ΠY ) and for
the interface relation (�).
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4.1 Relating Extensional and Propositional Feature Models

As stated at the beginning of Sect. 3.2, in our theoretical development we con-
sider also feature models with infinitely many features and products, where each
product may have infinitely many features. The following definition introduces a
notion for three different sets of propositional feature models (see Definition 1)
over a set of features (cf. Definition 8).

Definition 9 (Sets of propositional feature models over a set of fea-
tures). Let X be a set of features. We denote:

– P(X) the set of the propositional feature models (F , φ) such that F ⊆ X;
– Pfin(X) the subset of the finite elements of P(X), i.e., (F , φ) such that
F ⊆fin X; and

– Peql(X) the subset of elements of P(X) that have exactly the features X,
i.e., (F , φ) such that F = X.

We denote ftrs(φ) the set of features occurring in a propositional formula φ, and
(as usual) we say that φ is ground whenever ftrs(φ) is empty. We recall that
an interpretation (a.k.a. truth assignment or valuation) I is a function which
maps propositional logic variables to true or false [4, 7]. As usual, we denote
dom(I ) the domain of an interpretation I and we write I |= φ to mean that the
propositional formula φ is true under the interpretation I (i.e., ftrs(φ) ⊆ dom(I )
and the ground formula obtained from φ by replacing each feature x occurring
in φ by I (x) evaluates to true). We write |= φ to mean that φ is valid (i.e., it
evaluates to true under all the interpretations I such that ftrs(φ) ⊆ dom(I )),
we write φ1 |= φ2 to mean that φ2 is is a logical consequence of φ1 (i.e., for all
interpretations I with ftrs(φ1) ∪ ftrs(φ2) ⊆ dom(I ), if I |= φ1 then I |= φ2),
and we write φ1 ≡ φ2 to mean that φ1 and φ2 are logically equivalent (i.e.,
they are satisfied by exactly the same interpretations with domain including
ftrs(φ1) ∪ ftrs(φ2)). We recall that:

– I1 is included in I2, denoted I1 ⊆ I2, whenever dom(I1) ⊆ dom(I2) and
I1(x) = I2(x), for all x ∈ dom(I1);

– I1 and I2 are compatible whenever I1(x) = I2(x), for all x ∈ dom(I1) ∩
dom(I2); and

– if I1 |= φ then its restriction I0 to ftrs(φ) is such that I0 |= φ and, for all
interpretations I2 such that I0 ⊆ I2, it holds that I2 |= φ.

The following definition gives a name to the interpretations that represent
the products of the feature models with a given set of features.

Definition 10 (Interpretation representing a product). Let (F ,P) be
an extensional feature model and p ∈ P. The interpretation that represents the
product p, denoted by IFp , is the interpretation with domain F such that:

IFp (x) =

{
true if x ∈ p,
false if x ∈ F \ p.

13



The following definition gives a name to the mapping that associates each
propositional feature model to its extensional representation.

Definition 11 (The extmapping). Let (F , φ) ∈ P(X). We denote ext((F , φ))
(or ext(F , φ), for short) the extensional feature model (F ,P) ∈ E(X) such that
P = {p | p ⊆ F and IFp |= φ}. In particular, ext maps Pfin(X) to Efin(X), and
maps Peql(X) to Eeql(X).

We denote≡ the equivalence relation over feature models defined by: (F1, φ1) ≡
(F2, φ2) if and only if both F1 = F2 and φ1 ≡ φ2. We write [P(X)], [Pfin(X)] and
[Peql(X)] as short for the quotient sets P(X)/≡, Pfin(X)/≡ and Peql(X)/≡,
respectively.

Note that, if X has infinitely many elements and (F , φ) ∈ P(X), then F may
contain infinite many features, while the propositional formula φ is syntactically
finite (cf. Definition 1). Moreover, Pfin(X) has infinitely many elements (even
when X if finite). It is also worth observing that, if X is finite, then P(X) and
Pfin(X) are the same and the quotient set [Pfin(X)] is finite.

Note that the mapping ext, for all Φ1, Φ2 ∈ P(X), we have that: ext(Φ1) =
ext(Φ2) if and only if Φ1 ≡ Φ2.

All the finite feature models have a propositional representation, i.e., if (F ,P) ∈
Efin(X), then there exists (F , φ) ∈ Pfin(X) such that ext(F , φ) = (F ,P). Take,
for instance, the formula in disjunctive normal form φ =

∨
p∈P

(
(∧f∈pf) ∧

(∧f∈F\p¬f)
)
. Given [Φ1], [Φ2] ∈ [P(X)], we define (with an abuse of nota-

tion) ext([Φ1]) = ext(Φ1). Then, we have that ext is an injection from [P(X)]
to E(X), an injection from [Peql(X)] to Eeql(X), and a bijection from [Pfin(X)]
to Efin(X).

Instead, as showed by the following example, if X has infinitely many ele-
ments, then there are feature models in E(X)\Efin(X) that have no propositional
representation.

Example 6 (Extensional feature models without a propositional representation).
Consider the natural numbers as features. Then the extensional feature models
(N, {{3}}), (N, {{n | n is even}}) and (N, {{n} | n is even}) have no proposi-
tional representation.

Note that, if φ 6≡ false, then (F , φ) may not constraint the value of the
features in F \ ftrs(φ). In particular, we have that ext(F , φ) = ext(ftrs(φ), φ) •
(F \ ftrs(φ), 2F\ftrs(φ)). Therefore (since the set ftrs(φ) is finite) we have that,
if X has infinitely many elements, then there are infinitely many elements of
P(X) \Pfin(X) that do not have a propositional representation.

4.2 Propositional Characterization of the Lattices of Feature
Models

The following theorem states that the feature model component relation ≤ cor-
responds to (the converse of) logical consequence.
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Theorem 4 (Propositional characterization of the relation ≤). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write (with an abuse of notation)
Φ1 ≤ Φ2 to mean that both F1 ⊆ F2 and φ2 |= φ1 hold. Then: ext(Φ1) ≤ ext(Φ2)
holds if and only Φ1 ≤ Φ2 holds.

Proof. We have: (F1,P1) = ext(Φ1) ≤ ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 ⊇ P2 |F1

(by Lemma 1)
iff F1 ⊆ F2 and {p1 | IF1

p1 |= φ1} ⊇ {p2 ∩ F1 | IF2
p2 |= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, IF2
p |= φ2 implies IF2

p |= φ1

iff F1 ⊆ F2 and φ2 |= φ1

iff Φ1 ≤ Φ2. ut

The following theorem provides a formal account of the fact that the fea-
ture model composition operator • corresponds to propositional conjunction (cf.
Sect. 2.2).

Theorem 5 (Propositional characterization of the operator •). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define (with an abuse of notation):
Φ1 • Φ2 = (F1 ∪ F2, φ1 ∧ φ2). Then: ext(Φ1) • ext(Φ2) = ext(Φ1 • Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi), for i = 1, 2.
ext(Φ1) • ext(Φ2) = (F3,P3)
iff F3 = F1 ∪ F2 and iff P3 = {p1 ∪ p2 | IF1

p1 |= φ1, IF2
p2 |= φ1, p1 ∩ F2 = p2 ∩ F1}

iff F3 = F1 ∪ F2 and P3 = {p | p1 ∪ p2 ⊆ p and IXp |= φ1, IXp |= φ2}
iff F3 = F1 ∪ F2 and P3 = {p | IF3

p |= φ1 ∧ φ2}
iff (F3,P3) = ext(Φ1 • Φ2). ut

In order to provide a propositional characterization of the meet operator ?
(introduced in Theorem 1), we introduce the following auxiliary notation (where
Y is a finite set of features and φ a propositional formula over features):

(∨∨∨
Y
φ) =

{
φ if Y = ∅,
( ∨∨∨
Y−{x}

(φ[x := true]) ∨ (φ[x := false])) otherwise.

Theorem 6 (Propositional characterization of the operator ?). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define (with an abuse of notation):

Φ1 ? Φ2 =
(
F1 ∩ F2, ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)
)
.

Then: ext(Φ1) ? ext(Φ2) = ext(Φ1 ? Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2.
Since ext(F1, φ1) ? ext(F2, φ2) = (F1 ∩ F2,P1 |F2 ∪P2 |F1), we have that:
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ext(Φ1) ? ext(Φ2) = (F3,P3)
iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F2 | IF1

p1 |= φ1} ∪ {p2 ∩ F1 | IF2
p2 |= φ2}

iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F3 | IF1
p1 |= φ1} ∪ {p2 ∩ F3 | IF2

p2 |= φ2}
iff F3 = F1 ∩ F2 and P3 = P1 |F3

∪ P2 |F3

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either ∃p1 s.t. p = p1 ∩ F3 and IF1

p1 |= φ1 or ∃p2 s.t. p = p2 ∩ F3 and IF2
p2 |= φ2

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either IF3

p |= ( ∨∨∨
ftrs(φ1)\F2

φ1) or IF3
p |= ( ∨∨∨

ftrs(φ2)\F1

φ2)

iff F3 = F1 ∩ F2 and, p ∈ P3 implies IF3
p |= ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff (F3,P3) = ext(Φ1 ? Φ2). ut

The following theorem states that the feature models of the form MF =
(F , 2F ) andMF = (F , ∅) correspond to true and false, respectively—recall that
(see Theorem 1) M∅ is the bottom of the lattices (E(X),≤) and (Efin(X),≤),
while MX is the bottom of the Boolean lattice (Eeql(X),≤), and MX is the
top of the lattice (E(X),≤) and of the Boolean lattice (Eeql(X),≤) and, if X is
finite, of the lattice (Efin(X),≤).

Theorem 7 (Propositional characterization of the feature modelsMF
and MF). Let (F , φ) ∈ P(X).

1. ext(F , φ) =MF = (F , 2F ) if and only if φ ≡ true.
2. ext(F , φ) =MF = (F , ∅) if and only if φ ≡ false.

Proof. 1. Immediate, because true is satisfied by all interpretations. 2. Immedi-
ate, because no interpretation satisfies false. ut

The following theorem shows that the feature model complement operator ¯
(introduced in Theorem 1) corresponds to logical negation.

Theorem 8 (Propositional characterization of the operator ¯). Given
Φ = (F , φ) in P(X), we define (with an abuse of notation): Φ = (F ,¬φ). Then
ext(Φ) = ext(Φ).

Proof. Straightforward. ut

The following lemma introduces a novel feature model operator, that we
denote +, which corresponds to logical disjunction.

Lemma 3 (Propositional characterization of the operator +). Given
two sets Y and Z, we define: Y dZ = {y ∪ z | y ∈ Y, z ∈ Z}. Given two feature
models M1 = (F1,P1) and M2 = (F2,P2) in E(X), we define: M1 +M2 =
(F1∪F2, (P1d2(F2\F1))∪(P2d2(F1\F2))). Given Φ1 = (F1, φ1) and Φ2 = (F2, φ2)
in P(X), we define (with an abuse of notation): Φ1 + Φ2 = (F1 ∪ F2, φ1 ∨ φ2).
Then: ext(Φ1) + ext(Φ2) = ext(Φ1 + Φ2).
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Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2. We have that
ext(Φ1) + ext(Φ2) = (F3,P3)
iff P3 = F1 ∪ F2 and P3 = {p1 d 2(F2\F1)) | IF1

p1 |= φ1} ∪ {p2 d 2(F1\F2) | IF2
p2 |= φ2}

iff P3 = F1 ∪ F2 and, p ∈ P3 implies
either p ∈ {p1 d 2(F2\F1)) | IF1

p1 |= φ1} or p ∈ {p2 d 2(F1\F2) | IF2
p2 |= φ2}

iff P3 = F1 ∪ F2 and, p ∈ P3 implies either IF3
p |= φ1 or IF3

p |= φ2

iff P3 = F1 ∪ F2 and, p ∈ P3 implies IF3

p∩F1
|= φ1 ∨ φ2

iff (F3,P3) = ext(Φ1 + Φ2). ut

The following lemma shed some light on the Boolean lattice Eeql(X).

Lemma 4 (The operators ?, + and • on Eeql(X)). Given two feature models
M1 = (X,P1) andM2 = (X,P2) in Eeql(X), we have that:

1. M1 • M2 = (X,P1 ∩ P2), and
2. M1 ?M2 =M1 +M2 = (X,P1 ∪ P2).

Proof. 1. According to the definition of • we have:
M1 • M2 = (X, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2}) = (X,P1 ∪ P2).
2. Straightforward from the definitions of ? and +. ut

Given [Φ1], [Φ2] ∈ [P(X)], we define (with an abuse of notation): [Φ1] ≤ [Φ2]
as Φ1 ≤ Φ2, [Φ1] • [Φ2] = [Φ1 • Φ2], [Φ1] ? [Φ2] = [Φ1 ? Φ2], [Φ1]+[Φ2] = [Φ1+Φ2],
and [Φ1] = [Φ1]. Recall that a homomorphism is a structure-preserving map
between two algebraic structures of the same type (e.g., between two lattices), a
monomorphism is a injective homomorphism, and an isomorphism is a bijective
homomorphism.

Theorem 9 (ext is a lattice monomorphism).

– ([P(X)],≤) is a bounded lattice with join •, meet ?, bottom [(∅, true)] and
top [(X, false)]. Moreover, ext is a bounded lattice monomorphism from
([P(X)],≤) to (E(X),≤).

– If X has infinitely many elements, then [Pfin(X)] is a sublattice of [P(X)]
with the same bottom and no top. Moreover, ext is a lattice isomorphism
from [Pfin(X)] to Efin(X).

– [Peql(X)] is a sublattice of [P(X)] which is a Boolean lattice with bottom
[(X, true)], same top of [P(X)], complement ,̄ and where the meet behaves
like +. Moreover, ext is a Boolean lattice monomorphism from [Peql(X)] to
Eeql(X), which is an isomorphism whenever X is finite.

Proof. Straightforward from Theorems 1, 4-8 and Lemmas 3 and 4.

4.3 Propositional Characterization of Slices and Interfaces

The following theorem provides a propositional characterization of the slice op-
erator.
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Theorem 10 (Propositional characterization of the operator ΠY ).
Let Φ = (F , φ) be in P(X). We define (with an abuse of notation): ΠY (Φ) =
(Y ∩ F , ( ∨∨∨

ftrs(φ)\Y
φ)). Then: ΠY (ext(Φ)) = ext(ΠY (Φ)).

Proof. We have: ΠY (ext(Φ)) = (F0,P0)
iff F0 = F ∩ Y and P0 = {p | IFp |= φ}|Y
iff F0 = F ∩ Y and P0 = {p ∩ Y | IFp |= φ}
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF∩Yp |= φ}
iff F0 = F ∩ Y and, p0 ∈ P0 implies IF∩Yp0 |= ( ∨∨∨

ftrs(φ)\Y
φ)

iff (F0,P0) = ext(ΠY (Φ)). ut

The following corollary provides a propositional characterization of the inter-
face relationM1 �M2 which, unsurprisingly, is the same of the interpretation
of the slice operatorM1 = ΠY (M2) when Y are the features ofM1 (cf. Theo-
rem 10 and Remark 1).

Corollary 1 (Propositional characterization of the relation �). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write (with an abuse of notation)
Φ1 � Φ2 to mean that both both F1 ⊆ F2 and φ1 ≡ ( ∨∨∨

ftrs(φ2)\F1

φ2) hold. Then:

ext(Φ1) � ext(Φ2) holds if and only Φ1 � Φ2 holds.

Proof. We have:
(F1,P1) = ext(Φ1) � ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 = P2 |F1

(by Definition 6)
iff F1 ⊆ F2 and {p1 | IF1

p1 |= φ1} = {p2 ∩ F1 | IF2
p2 |= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, both φ2 |= φ1 and φ1 |= ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff F1 ⊆ F2 and φ1 ≡ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff Φ1 � Φ2. ut

5 Related Work

WORK IN PROGRESS.
Although the propositional representation of feature models is well known

in the literature (see, e.g., Sect. 2.3 of Apel et al. [4]), we are not aware of
any work that (as done in the present paper) formalizes this representation in
the general case of feature models with infinitely many features and relates it
with an algebraic characterization of feature model operators and relations. The
starting point of the instigation presented in this paper is the feature model
fragment relation, which is induced by the feature model composition operator
considered in [25, 20] to investigate industrial-size configuration spaces. In the
following we discuss related work on feature model composition operators and
on feature model relations.

Feature-model composition operators are often investigated in connection
with multi software product lines, which are sets of interdependent product
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lines [?,?,?,19]. Eichelberger and Schmid [?] present an overview of textual-
modeling languages which support variability-model composition (like FAMIL-
IAR [?], VELVET [24], TVL [13], VSL [?]) and discuss their support for compo-
sition, modularity, and evolution. Acher et al. [3] consider different feature-model
composition operators together with possible implementations and discuss ad-
vantages and drawbacks.

The feature-model fragment relation introduced in this paper generalizes the
feature-model interface relation introduced by Schröter et al. [25], which (see
Remark 1) is closely related to the feature model slice opeator introduced by
Acher et al. [2]. The work of Acher et al. [2] focuses on feature model decompo-
sition. In subsequent work [?], Acher et al.use the slice operator in combination
with a merge operator to address evolutionary changes for extracted variability
models, focusing on detecting differences between feature-model versions during
evolution.

===
Instead, Schröter et al. [25] study how feature model interfaces can be used to

support evolution for a feature model composed from feature models fragments.
Changes to fragments which do not affect their interfaces do not require the
overall feature model to be rebuilt (by composing the fragments) in order to
reanalyze it. Challenges encountered to support evolution in software product
line engineering have previously been studied by Dhungana et al. [?]. They use
interfaces to hide information in feature model fragments and save a merge
history of fragments to give feedback and facilitate fragment maintenance. No
automated analysis is considered. In contrast to this work on feature model
interfaces for evolution, the

in our work is for efficient automated product discovery in huge feature mod-
els represented as interdependent feature model fragments.

Feature-model views [?,?,?] focus on a subset of the relevant features of a
given feature model, similarly to feature-model interfaces. Different views re-
garding one master feature model are used to capture the needs of different
stakeholders, so that a product of the master feature model can be identified
based on the views’ partial configurations. This work on multiple views to a
product in a feature model is orthogonal to our work on an algebraic character-
ization of feature-model operations and relations.

, which targets the efficient configuration of systems comprising many inter-
dependent configurable packages.

6 Conclusion
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A — — — Michael’s OLD Section 3 — — —

Definition 12 (Feature Model). A Feature ModelM is a pair (F ,P) where
F is a set and P ⊆ 2F is a set of products. M∅ = (∅, {∅}) is the empty feature
model. For any set X, we write E(X) to denote the set of all feature model
(F ,P) such that F ⊆ X.

For any set X, we define the operators ∪ and • on E(X) as follows:La prima delle op-
erazioni qui sotto
(viz. ∪) non è mai
usata: sbaglio?

La prima delle op-
erazioni qui sotto
(viz. ∪) non è mai
usata: sbaglio?

(Fx,Px) ∪ (Fy,Py) = (Fx ∪ Px Fy,Px ∪ Py)

(Fx,Px) • (Fy,Py) = (Fx ∪ Fy, {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})

Additionally, we define the binary relation ≤ on E(X) such that:

Mx ≤My ⇔ ∃Mz,My =Mx • Mz

Moreover, for anyM∈ E(X),we write sup(M) = {M′ ∈ E(X) | M ≤M′} andi sup-inf sono co-
munemente chia-
mati (principal)-
filters and ideals ed
indicati come ↑M
and ↓M

i sup-inf sono co-
munemente chia-
mati (principal)-
filters and ideals ed
indicati come ↑M
and ↓M

inf(M) = {M′ ∈ E(X) | M′ ≤M}.

Theorem 11. For any set X, we have the following properties:

– (E(X), •,M∅) is a positive, idempotent and commutative monoid. Moreover,
this monoid is not cancellative.

– (E(X),≤) is a lattice with M∅ as lower bound and such that for all Mx =
(Fx,Px),My = (Fy,Py) ∈ E(X):
• Mx uMy =Mx • My where u should be sup/join/lub in accord to the
proof!
*** La prova segue dal Theorem 2.2 [11, p.20] dove l’ordine è invertito,
che mostra che : Every commutative idempotent semigroup can be ordered
in such a way that it forms a meet semilattice. ***

• Mx tMy = (Fx ∩Fy, {px ∩Fy | px ∈ Px}∪{py ∩Fx | py ∈ Py}) where
t denotes a lub!?!!!! Indeed, we have an idempotent semiring ... and its
induced lattice

Proof. We prove this theorem in four distinct parts.
Part 1: (E(X), •,M∅) is a monoid with the described properties. For any
(Fx,Px), (Fy,Py), (Fz,Pz) ∈ E(X), we have

• Associativity: gia dimostrato in [15, Appendix A, p.225]
(Fx,Px) • ((Fy,Py) • (Fz,Pz))
= (Fx,Px) • (Fy ∪ Fz, {py ∪ pz | py ∈ Py, pz ∈ Pz, py ∩ Fz = pz ∩ Fy})
= (Fx ∪ Fy ∪ Fz, {px ∪ py ∪ pz | px ∈ Px, py ∈ Py, pz ∈ Pz,

py ∩ Fz = pz ∩ Fy, px ∩ (Fy ∪ Fz) = (py ∪ pz) ∩ Fx})
= (Fx ∪ Fy ∪ Fz, {px ∪ py ∪ pz | px ∈ Px, py ∈ Py, pz ∈ Pz,

py ∩ Fz = pz ∩ Fy, px ∩ Fy = py ∩ Fx, px ∩ Fz = pz ∩ Fx})
as px∩(Fy∪Fz)=(py∪pz)∩Fx

⇔ px∩Fz=(py∩Fz∪pz)∩Fx∧px∩Fy=(py∪pz∩Fy)∩Fx

⇔ px∩Fz=pz∩Fx∧px∩Fy=py∩Fx due to py ∩ Fz = pz ∩ Fy

= ((Fx,Px) • (Fy,Py)) • (Fz,Pz)
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• Commutativity: gia dimostrato in [15, Appendix A, p.225]
(Fx,Px) • (Fy,Py)

= (Fx ∪ Fy, {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})
= (Fy ∪ Fx, {q ∪ p | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})
= (Fy,Py) • (Fx,Px)

• Neutral Element: gia dimostrato in [15, Appendix A, p.225]
(Fx,Px) • (∅, {∅})
= (Fx ∪ ∅, {p ∪ q | p ∈ Px, q ∈ {∅}, p ∩ ∅ = q ∩ Fx})
= (Fx, {p | p ∈ Px, p ∩ ∅ = ∅})
= (Fx,Px)

• Positivity: in presenza di elemento neutro è triviale: togliere?
(Fx,Px) • (Fy,Py) =M∅ ⇒ (Fx,Px) =M∅ ∧ (Fy,Py) =M∅

⇒ Fx ∪ Fy = ∅ ∧ {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx} = {∅}
⇒ Fx = ∅ ∧ Fy = ∅ ∧ {p ∪ q | p ∈ Px, q ∈ Py} = {∅}
⇒ (Fx,Px) =M∅ ∧ (Fy,Py) =M∅

• Non Cancellative: M∅ • (∅, ∅) = (∅, ∅) = (∅, ∅) • (∅, ∅)
• Idempotent: (Fx,Px) • (Fx,Px)

= (Fx ∪ Fx, {p ∪ q | p ∈ Px, q ∈ Px, p ∩ Fx = q ∩ Fx})
= (Fx, {p ∪ q | p ∈ Px, q ∈ Px, p = q})
= (Fx,Px)

• Zero element: (X, ∅) • (F ,P) = (F ,P) • (X, ∅) = (X, ∅)

Part 2: ≤ is a partial order on E(X). For any Mx ≤ My ≤ Mz ∈ E(X),
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we have

• Reflexivity: Mx • M∅ =Mx

• Antisymmetry: suppose additionallyMy ≤Mx. We have
Mx =My • M for someM∈ E(X)

=Mx • M′ • M for someM,M′ ∈ E(X)

=Mx • M′ • M′ • M for someM,M′ ∈ E(X)
=My • M′ • M for someM,M′ ∈ E(X)

=My • M •M′ for someM,M′ ∈ E(X)

=Mx • M′ for someM′ ∈ E(X)

=My

• Transitivity:
Mz =My • M for someM∈ E(X)

= (Mx • M′) • M for someM,M′ ∈ E(X)

=Mx • (M′ • M) for someM,M′ ∈ E(X)

Part 3: (E(X),≤) is a lattice with M∅ as lower bound. As for all M ∈
E(X), we have M • M∅ = M which implies by definition that M∅ ≤ M.
Therefore,M∅ is the bottom. Surprisingly, the top is the zero FM: (X, ∅) which
the absorbent element !!!

– By definition, we have Mx • My ∈ sup(Mx) ∩ sup(My). Moreover, with
M∈ sup(Mx) ∩ sup(My), we have

M =Mx • M
=Mx • (My • M)
= (Mx • My) • M

And so we haveMx uMy =Mx • My.
LP:Mx,My ≤Mx • My quindi parliamo del LUB (SUP, JOIN): giusto?

– Let M = (F ,P) = (Fx ∩ Fy, {px ∩ Fy | px ∈ Px} ∪ {py ∩ Fx | py ∈ Py}).
We have F ⊆ Fi and {p ∩ F | p ∈ Pi} ⊆ P for i ∈ {x, y}: we thus have
M∈ inf(Mx)∩ inf(My). Moreover, with (F ′,P ′) ∈ inf(Mx)∩ inf(My), we
have that F ′ ⊆ Fi and {p∩F ′ | p ∈ Pi} ⊆ P ′ for i ∈ {x, y}. Hence, we have
F ′ ⊆ F and {p ∩ F ′ | p ∈ P} ⊆ P ′, which implies that (F ′,P ′) ≤ M. And
so we haveMx tMy =M. LP:M≤Mx,My ! This a glb! Swap?
LP: The proof is unclear to me, but it seems reasonable. It seems to rests on the fact that:
LP: (φ1 → φ) ∧ (φ2 → φ) is logically eqivalent to (φ1 ∨ φ2)→ φ

The next theorem is the core of Theorem 16 .

Theorem 12. For any set X and everyMx,My ∈ E(X), withMx = (Fx,Px)
andMy = (Fy,Py), the following properties are equivalent:

i) Mx ≤My

ii) Mx • My =My

iii) Fx ⊆ Fy ∧ Px ⊇ {q ∩ Fx | q ∈ Py}
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Proof. i)⇒ ii). We have

Mx • My =Mx • (Mx • M) for someM∈ E(X)

= (Mx • Mx) • M for someM∈ E(X)

=Mx • M for someM∈ E(X)

=My

ii) ⇒ iii). By definition of •, it is clear from the hypothesis that Fx ⊆ Fy.
Moreover, if we write S = {q ∩ Fx | q ∈ Py}, the hypothesis give us that
Py = {q | q ∈ Py, q ∩ Fx ∈ (Px ∩ S)}. We can thus conclude with the following
equivalences:

Py = {q | q ∈ Py, q ∩ Fx ∈ (Px ∩ S)}
⇔ ∀q ∈ Py, q ∩ Fx ∈ (Px ∩ S)
⇔ {q ∩ Fx | q ∈ Py} ⊆ (Px ∩ S)
⇔ S ⊆ (Px ∩ S)
⇔ S ⊆ Px

iii)⇒ i). Let still write S = {q ∩ Fx | q ∈ Py}. We have:

Mx • My = (Fx ∪ Fy, {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})
= (Fy, {q | q ∈ Py, q ∩ Fx ∈ Px})
= (Fy, {q | q ∈ Py, q ∩ Fx ∈ (Px ∩ S)}

∪{q | q ∈ Py, q ∩ Fx ∈ {p | p ∈ Px,∀q ∈ Py, p 6= q ∩ Fx}})
= (Fy, {q | q ∈ Py, q ∩ Fx ∈ (Px ∩ S)})
= (Fy, {q | q ∈ Py, q ∩ Fx ∈ S)})
=My

This implies, by definition of ≤, thatMx ≤My.

B — — — OTHER STUFF BY MICHAEL — — —

Theorem 13. Given two sets X and Y with Y ⊆ X, the function ΠY is: idem-
potent; monotonic increasing with respect to ≤ such that ΠY (M) = max≤(inf(M)∩
E(Y )); and a morphism with respect to • iff #X ≤ 1.
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Proof. Let consider any feature modelM = (F ,P) ∈ E(X).

• Idempotent:
ΠY (ΠY (M)) = ((F ∩ Y ) ∩ Y, {(p ∩ Y ) ∩ Y | p ∈ P})

= (F ∩ Y, {p ∩ Y | p ∈ P})
= ΠY ((F ,P)) = ΠY (M)

• ΠY (M) ≤M:
ΠY (M) • M = ((F ∩ Y ) ∪ F , {(p ∩ Y ) ∪ q | p, q ∈ P ∧ p ∩ Y = q ∩ Y })

= (F , {q | p, q ∈ P ∧ p ∩ Y = q ∩ Y })
= (F ,P) =M

• ΠY (M) = max≤(inf(M) ∩ E(Y )): consider (F ′,P ′) ∈ inf(M) ∩ E(Y ), we have{
F ′ ⊂ Y ∧ F ′ ⊂ F ⇒ F ′ ⊂ Y ∩ F
P ′ ⊇ {p ∩ F ′ | p ∈ P} = {(p ∩ Y ) ∩ F ′ | p ∈ P}
⇒ (F ′,P ′) ≤ ΠY (M)

• ΠY is a morphism when #X ≤ 1{
E(∅) = {(∅, ∅), (∅, {∅})}
E({a}) = E(∅) ∪ {({a}, ∅), ({a}, {∅}), ({a}, {a}), }

It is easy to check that for anyM1,M2 ∈ E(X) and any Y ⊆ X,
we have ΠY (M1 • M2) = ΠY (M1) • ΠY (M2)

• ΠY is not a morphism when #X > 1. Consider a ∈ X, Y = X \ {a}, M1 =
(X, {X}) andM2 = (X, {X \ {a}}). We have:{

ΠY (M1 • M2) = ΠY ((X, ∅)) = (Y, ∅)
ΠY (M1) • ΠY (M2) = (Y, {Y }) • (Y, {Y }) = (Y, {Y })

C — — — Luca Reasonings — — —

C.1 Semantic of composition in propositional FM

In accordance with redundant Definitions 2 and 12, we denote E(X) the set of
all extensional feature model (F ,P) such that F ⊆ X. In addition, we denote
P(X) the set of all propositional feature model (F , φ) such that F ⊆ X.

We remind that an interpretation (a.k.a. truth assignment or valuation) is a
function which maps propositional logic variables to true or false.

Definition 13. Let (F ,P) be an extensional feature model. If p ∈ P then we
denote IFp the interpretation mapping F in true or false such that:

IFp (f) =

{
true if f ∈ p,
false iff ∈ F \ p.

Definition 14. Let F1,F2 be sets of feature models and p1 ⊆ F1 and p2 ⊆ F2.

– If F1 ⊆ F2 then IF1
p ⊆ IF2

p2 means that IF1
p1 (f) = IF2

p2 (f), for all f ∈ P1.
– We say that IF1

p1 , I
F2
p2 (f) are compatible whenever IF1

p1 (f) = IF2
p2 (f), for all

f ∈ P1 ∩ P2.

Definition 15. Let (F , φ) ∈ P(X). We denote ext(F , φ) denotes its corre-
sponding extensional feature model (F ,P), where P is the set of all and only
products p such that IFp |= φ.
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We write φ1 ≡ φ2 whenever φ1, φ2 are logically equivalent. Note that, if
(F1, φ1), (F2, φ2) ∈ P(X) then: ext(F , φ1) = ext(F , φ2) iff φ1 ≡ φ2.

Formalizing the implicit characterization of Example 3. This characteri-
zation is not pre-
sented anywhere:
SBAGLIO?

This characteri-
zation is not pre-
sented anywhere:
SBAGLIO?

Theorem 14 (Semantic of composition). If (F1, φ1), (F2, φ2) ∈ P(X) then

ext(F1, φ1) • ext(F2, φ2) = ext(F1 ∪ F2, φ1 ∧ φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi), for i = 1, 2. By Definition 12,

(F1,P1) • (F2,P2) = (F1 ∪F2, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩F2 = p2 ∩F1}).

But p1 ∩ F2 = p2 ∩ F1 iff IF2
p1 , I

F2
p2 are compatible. Therefore IF2

p1 , I
F2
p2 can

be extended in a common interpretation IF1∩F2
p1∪p2 , namely IF2

p1 , I
F2
p2 ⊆ I

F1∩F2
p1∪p2 .

Clearly, IF1∩F2
p1∪p2 |= φi for i = 1, 2 and IF1∩F2

p1∪p2 |= φ1 ∧φ2 so the proof is done. ut

C.2 New-order characterization

Let ≤ the partial order defined in sub-Section 2.4 on feature models. Just to
remind:M≤M′ iff ∃M′′ withM′ =M •M′′. By Theorem 12, we know that
M •M′ =M′.

The above relation is explained by the following lemma.

Theorem 15. Let (F1, φ1), (F2, φ2) ∈ P(X) and let ext(Fi, φi) = (Fi,Pi), for
i = 1, 2.

– If F1 = F2 then the following statements are equivalent:
1. (F1,P1) ≤ (F2,P2);
2. P2 ⊆ P1;
3. |= φ2 → φ1.

– If F1 ⊆ F2 then the following statements are equivalent:
1. (F1,P1) ≤ (F2,P2);
2. P2 |F1

⊆ P1;
3. IF2

p2 |= φ1, for all p2 ∈ P2;
4. |= φ2 → φ1;
5. if q |= φ2 then q |= φ1.

Proof. – First, we prove that 1 . iff 2 . By Theorem 12, we know that

P2 = {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩ F2 = p2 ∩ F1}
= {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2}
= {p2 ∈ P2 | p1 ∈ P1, p1 = p2} ⊆ P1

Second, we prove that 2 . iff 3 . We know that pi ∈ Pi iff IFi
pi |= φi.

Moreover, |= φ2 → φ1 means that Ip1I |= φ1 implies Ip1I |= φ2. Therefore
|= φ2 → φ1 exactly when P2 ⊆ P1.

27



– First, we prove that 1 . iff 2 . By Theorem 12, we know that

P2 = {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩ F2 = p2 ∩ F1}
= {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2 ∩ F1}
= {p2 ∈ P2 | p1 ∈ P1, p1 = p2 ∩ F1}

Second, we prove that 2 . iff 3 .
Similar to the analogous point before.

C.3 Schroter-order characterization

In accordance with the interface Schröter et al. [25]:
(F1,P1) � (F2,P2) iff F1 ⊆ F2 and {p ∩ F1 | p ∈ P2}) = P1.

Theorem 16. Let (F1, φ1), (F2, φ2) ∈ P(X) and let ext(Fi, φi) = (Fi,Pi), for
i = 1, 2.

– If F1 = F2 then the following statements are equivalent:
1. (F1,P1) � (F2,P2);
2. P2 = P1;
3. |= φ2 ↔ φ1 or, in other words, φ1, φ2 are logically equivalent (i.e. φ1 ≡

φ2);
4. (F2,P2) � (F1,P1).

– If F1 ⊆ F2 then the following statements are equivalent:
1. (F1,P1) � (F2,P2);
2. P2 |F1= P1;
3. |= φ2 → φ1 and for all p1 ∈ P1 there is a p2 ∈ P2 such that IP2

p2 ⊆ I
P1
p1 .

4. |= ( ∨∨∨
P2\P1

φ2)↔ φ1 where: (∨∨∨
∅
ϕ) = ϕ and (∨∨∨

S
ϕ) = ( ∨∨∨

S−{x}
ϕ[x := true]).

Proof. TBD

C.4 Comparing the two orders

In accordance with the interface Schröter et al. [25], we defined in Definition ??
that:M1 �M2, whenever there exists Y such thatM1 = (F ∩ Y, {p ∩ Y | p ∈
P}).

Lemma 5. Let (F1,P1), (F2,P2) ∈ E(X).
(F1,P1) � (F2,P2) iff F1 ⊆ F2 and {p ∩ F1 | p ∈ P2}) = P1.

Proof. Trivial, if the new definition is equivalent to the old one. ut

But in accord with Theorem 12, we have:
(F1,P1) ≤ (F2,P2) iff F1 ⊆ F2 and {p ∩ F1 | p ∈ P2} ⊆ P1

Theorem 17. IfM1 �M2 impliesM1 ≤M2.

Proof. Immediate, by Lemma 5 and Theorem 12. ut
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C.5 Other possible compositions

The semantics above suggest some other possible composition of feature models.
We wonder if there are operations +,� on extensional feature models satisfying:

ext(F1, φ1)� ext(F2, φ2) = ext(F1 ∪ F2, φ1 ∨ φ2),
ext(F1, φ1) + ext(F2, φ2) = ext(F1 ∪ F2, φ1 ⊕ φ2).

The disjunction. We denote X · Y the set {x ∪ y | x ∈ X, y ∈ Y }. In a
pure logic perspective, we can consider the set of interpretations satisfying the
disjunction:

(F1,P1)� (F2,P2) = (F1 ∪ F2,P1 · 2(F2\F1) ∪ F2 · 2(F1\F2))

However, in the SPL context we are (possibly) including set of features that pro-
jected (restricted to relevant Fi) pick up product not considered in the original
FMs.

C.6 Lattice-algebraic

Consider the next two operations:

(F1,P1) • (F2,P2) = (F1,P1) t (F2,P2) = (F1 ∪ F2, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩ F2 = p2 ∩ F1})
(F1,P1) ? (F2,P2) = (F1,P1) u (F2,P2) = (F1 ∩ F2, {p1 ∩ F2 | p1 ∈ P1} ∪ {p2 ∩ F1 | p2 ∈ P2})

We can prove what follows.

– Commutativity of t and u are trivial.
– Associativity of t is in [15, Appendix A, p.225]. Associativity of t is quite

evident.
– Idempotency of t and u are easy.
– Absorption (Sembrerebbe di si)

(F1,P1) • ((F1,P1) ? (F2,P2))
= (F1,P1) • (F1 ∩ F2, {p1 ∩ F2 | p1 ∈ P1} ∪ {p2 ∩ F1 | p2 ∈ P2}) = (F1,P1)

(F1,P1) ? ((F1,P1) • (F2,P2))
= (F1,P1) ? (F1 ∪ F2, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩ F2 = p2 ∩ F1}) = (F1,P1)

Thus they form a lattice, and morever a bounded lattice:

– The top is (X, ∅) because (X, ∅) ? (F ,P) = (F ,P) is immediate. Moreover,
(X, ∅) • (F ,P) = (X, ∅).

– The bottom (∅, {∅}) because (∅, {∅}) • (F ,P) = (F ,P) is immediate. More-
over, (∅, {∅}) ? (F ,P) = (∅, {∅}).

These operations do not form a distributive lattice, because they are not
cancellative!
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Definition 16 (Heyting Pseudocomplement). If M1 = (F1,P1) ∈ E(X)
then the set { (F2,P2) | (F1,P1) ? (F2,P2) = (∅, {∅}) } is:
– {(F2,P2) | F2 ⊆ X \ F1 and P2 ⊆ 2F2} whenever P2 6= ∅;
– {(F2,P2 ∪ {∅}) | F2 ⊆ X \ F1 and P2 ⊆ 2F2} whenever P2 = ∅.

Since max{ (F2,P2) | (F1,P1) ? (F2,P2) = (∅, {∅}) } is the pseudocomplement
of M, we have: M∗1 = {(X \ F1, ∅)} whenever P2 6= ∅; M∗1 = {(X \ F1, {∅})}
whenever P2 = ∅.
Proposition 1 (Corollary p.104 of [11]).

– If P1 = P2 = ∅ then

(F1,P1) u ((F1,P1) u (F2,P2))∗ = (F1,P1) u (F1 ∩ F2, ∅)∗ =
(F1,P1) u (X \ F1 ∩ F2, {∅}) = (F1 \ F2, {∅})
(F1,P1) u (X \ F2, {∅}) = (F1,P1) u (F2,P2)∗

If P1 6= ∅ and P2 = ∅ then
If P2 6= ∅ and P1 = ∅ then
If P1,P2 6= ∅ then

– (F1,P1) ? (X, ∅) = (F1,P1)
– (∅, {∅})∗ = (X, ∅) and (X, ∅)∗ = (∅, {∅}).

C.7 Other Logical characterizations

LetM = (F ,P) be a feature model. The slice operator ΠY on feature models,
where Y is a set of features, is defined by: ΠY (M) = (F ∩ Y,P |Y ) where
P |Y = {p ∩ Y | p ∈ P}.
Theorem 18. Let (Fi, φi) ∈ P(X) and let ext(Fi, φi) = (Fi,Pi) for i = 1, 2.
If ΠY (F1,P1) = (F2,P2) then |= ( ∨∨∨

F1\F2

φ1)↔ φ2.

Note that (F1,P1)?(F2,P2) = (F1∩F2,P1 |F2 ∪P2 |F1), so the next corollary
hold.

Corollary 2. Let (Fi, φi) ∈ P(X) and let ext(Fi, φi) = (Fi,Pi) for i = 1, 2, 3.
If (F1,P1) ? (F2,P2) = (F3,P3) then |=

(
( ∨∨∨
F1∩F2

φ1)↔ φ3

)
∨
(
( ∨∨∨
F1∩F2

φ2)↔ φ3

)
Theorem 19. Let (F , φ) ∈ P(X).

– If ext(F , φ) = (∅, {∅}) then φ ≡ true.
– If ext(F , φ) = (X, {}) then φ ≡ false.

C.8 We do not have a ring!

– • is the MULTIPLICATION andM∅ = (∅, {∅}) is the ONE
– ? is the SUM andMX = (X, ∅) is the ZERO

Let M = (F ,P). We wonder if it has opposite: it clear that (F ,P) ?
(−F ,−P) = (X, ∅) in general ha no solution, because F ∩ −F is sporadically
equal to X. This implies that we do not have a boolean algebra.
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