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ABSTRACT 2 

 3 

Chilean territory is permanently affected by severe wildfires, which drastically reduce the forest cover and 4 

promote water runoff, soil erosion, sediment yields and slope instabilities. To understand how the geomorphic 5 

system responds to wildfires in terms of sediment dynamics, the assessment of sediment connectivity, i.e. 6 

the property describing the relationships between compartments of a geomorphic system, is crucial. This 7 

study aims to quantify the spatial linkages between fire severity and sediment connectivity to identify common 8 

patterns and driving factors. The compound use of field data and open-source satellite imagery helped to 9 

apply the Relative differenced Normalized Burn Ratio (RdNBR) and the Index of Connectivity (IC) in the 10 

context of two consecutive wildfires (occurred in 2002 and 2015) in the Rio Toro catchment (Chile). The fire 11 

severity assessment showed that the 2002 event affected 90% of the catchment, with high severity areas 12 

representing around 70%. The 2015 wildfire instead, affected 76% of the catchment with moderate severity 13 

around 42%. Accordingly, the IC increased after both wildfires, as a result of the sudden reduction in forest 14 

cover in severely affected areas. However, only for the second disturbance, it was possible to observe a 15 
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clear relationship between the RdNBR and the IC variations. The different degree of vegetation cover 16 

heterogeneity between the two pre-wildfire scenarios contributed to different fire severity and IC variability 17 

between the two disturbances. The use of open-source data and the development of a weighting factor (W), 18 

to be used in IC, able to capture the land cover change driven by the wildfires, could make it straightforward 19 

the application of this approach promoting its reproducibility in other catchments for land management and 20 

risk mitigation purposes.  21 

1. INTRODUCTION 22 

 23 

Landscape configuration is determined by the interaction of natural disturbances, geomorphic processes and 24 

landforms expressed at multiple spatial and temporal scales. Wildfires are recognized as major agents of 25 

land and soil degradation (Shakesby, 2011) and geomorphological changes in densely vegetated landscapes 26 

(Neary et al., 2005). In burned catchments, the interaction among vegetation, fire severity and hydro-27 

geomorphic components needs to be deeply investigated to understand the variety of observed responses. 28 

The high amount of burned material (e.g., charcoal and ashes) deposited on the soil surface can modify soil 29 

properties by increasing or reducing soil infiltration capacity depending on the time since fire (Woods and 30 

Balfour, 2008; Shakesby, 2011) (Swanson, 1981; Certini, 2005; Shakesby and Doerr, 2006; Larsen et al., 31 

2009). Therefore, the alteration of soil properties often leads to the increase of water runoff, exacerbation of 32 

soil erosion and, eventually, higher production of sediment yield, which can be detected even at a long-term 33 

scale (Benavides-Solorio and MacDonald, 2001; Neary et al., 2005). Furthermore, the fire effects are different 34 

in terms of hydrological (e.g. overland flow generation) and erosional (e.g. sediment loss) responses. As 35 

stated by Vieira et al. (2015) in fact, the latter is more evident because of the role played by the changes in 36 

soil aggregate stability and organic matter content, which indirectly favors erosive capacity of the runoff. 37 

Direct effects on river systems have been documented concerning the increase of in-channel wood 38 

recruitment (Benda and Sias, 2003), the alteration of channel stability (e.g. channel aggradation, DeBano et 39 

al., 1998), the speed of vegetation recovery and the rapid relocation of the channel heads along the hillslopes 40 

(Wohl and Scott, 2017). Indirect effects mainly concern the alteration of annual water yields (Hallema et al., 41 

2019) and hillslope instabilities given the higher occurrence of landslides and debris flows (Neary, 2005). 42 



3 
 

Many classification systems and change detection methods of multispectral data, based on satellite imagery, 43 

such the Relative differenced Normalized Burn Ratio (Miller and Thode, 2007), have been adopted to map 44 

and measure the overall effect of fire on vegetation and surficial soil, i.e. burn severity (DeBano et al., 1998). 45 

It is widely recognized that this overall effect strongly depends on the fire intensity, duration and pre-fire 46 

disturbance history, which determines variable sensitivity across the landscape and over time (Brogan et al., 47 

2019). Further intrinsic factors such as the area, topography, vegetation, geology and climate, affect the 48 

magnitude of changes caused by the natural disturbance (Swanson, 1981). Notably, topography shows 49 

strong relationships with fire severity because it influences biophysical gradients (e.g., moisture, solar 50 

radiation) and characteristics of the fuel. For instance, upper slope positions locations and steep slopes are 51 

typically increasing the pre-heat of fuels, whereas different orientations cause high variability in fuel’s drying 52 

out (Iniguez et al., 2008; Carmo et al., 2011).  53 

In this context, the assessment of fire severity, which often encompasses the properties of intensity and 54 

duration, is essential to quantify the fire-related impact. The determination of fire severity and related impacts 55 

would help to: i) protect sensitive ecosystems from reduction of soil organic matter, modification of population 56 

dynamics and roots failure; ii) to safeguard local forest and water users from the reduction of forest 57 

productivity and touristic value, and from the sudden release of chemicals into the stream network; iii) to 58 

prevent economic losses for downstream areas caused by mass failure and floods (Neary et al., 2005).  59 

Framing the response of an entire catchment to natural disturbances in terms of variation of sediment supply, 60 

routing and deposition is still a controversial issue due to the variety of factors involved (e.g., disturbance 61 

properties, sediment characteristics, topography, land cover, hydrological regime). In post-wildfire conditions,  62 

if a great amount of sediment is available for sudden mobilization, the awareness of how a catchment 63 

facilitates the transfer of sediment between source areas and channel network is vital to predict future 64 

scenarios and reduce the associated risk (Mazzorana et al., 2019). To this end, the geomorphic property 65 

known as connectivity (Wohl et al., 2019) is gaining interest from the scientific community especially 66 

concerning major disturbances. Specifically, sediment connectivity underlies the sediment transfer between 67 

the compartments of a geomorphic system and their relationships, which control the sediment cascade and 68 

geomorphic response to disturbance events (Bracken and Crooke, 2007; Fryirs, 2013). Several metrics of 69 

sediment connectivity have been proposed to overcome the more traditional field measurement and to exploit 70 
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the high amount of topographic data available nowadays (Heckmann et al., 2018). Following this trend, the 71 

topography-based Index of Connectivity (hereinafter IC), proposed by Borselli et al. (2008) and refined by 72 

Cavalli et al. (2013) has become a solid and accessible instrument to assess the degree of linkage between 73 

sources and sinks of sediment in various contexts. Therefore, many authors grasped the opportunity to map 74 

sediment connectivity using the IC in different environments and considering plenty of numerical approaches: 75 

Gay et al. (2016) and Kalantari et al. (2017), mapped connectivity in lowlands by integrating catchment 76 

infiltration/runoff properties and precipitation-runoff variability, respectively; López-Vicente and Ben-Salem 77 

(2019) developed a new aggregated index based on the RUSLE2 equation; Rainato et al. (2018) analyzed 78 

the (de)coupling relationships of a small dolomitic catchment.  79 

Mapping the IC with respect to major natural disturbances is becoming paramount to understand the variation 80 

of sediment connectivity’s spatial patterns, their evolution and to predict downstream adjustments (Cavalli et 81 

al., 2019). In post-disturbance scenarios, sensitivity is defined as the rate of response to the change, so that 82 

highly connected systems tend to respond faster than less-connected ones (Brunsden and Thornes, 1979). 83 

Geomorphic systems affected by volcanic eruptions (Martini et al., 2019), land-use change (Persichillo et al., 84 

2018; Llena et al., 2019), typhoons and monsoons (Chartin et al., 2017; Singh and Sinha, 2019), and wildfires 85 

(Williams et al., 2016; Estrany et al., 2019; Ortíz-Rodríguez et al., 2019) are closely monitored for their 86 

sensitivity in terms of sediment connectivity. However, still strong efforts need to be made to standardize a 87 

process to consider the land cover change and its effect on the IC to make such an accessible tool fully 88 

applicable. In other terms, is it possible to convey the essential information about land cover changes into a 89 

single parameter, such as the Index of Connectivity, to explain or predict catchment-scale responses to 90 

natural disturbances? To address this question, multi-disciplinary approaches are indeed required to consider 91 

different phenomena from different standpoints and to support useful catchment management decisions. 92 

Accordingly, the present study aims at defining how multiple wildfires interact with catchment-scale sediment 93 

connectivity by analysing fire severity and sediment connectivity spatial patterns and by identifying common 94 

driving factors and interlinked relations in an Andean catchment. The general objectives of the work are to 95 

improve awareness about the fire-related impacts from a multidisciplinary perspective, by linking the 96 

ecological and geomorphic response and to provide a methodological approach to prioritize areas of hillslope 97 

instabilities in wildfire-affected river basins. The specific objectives are:  98 
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i) to investigate interlinked relationship between fire severity and sediment connectivity changes induced by 99 

wildfires; 100 

ii) to move towards the standardization of a procedure to apply the IC after major disturbances;  101 

iii) to rely upon open source data so the application of the proposed methodology could be replicated in other 102 

contexts. 103 

 104 

2. STUDY AREA 105 

 106 

The study area is the Rio Toro catchment, located in Chile (Fig. 1a), close to the north-eastern border of the 107 

Araucanía Region (IX Región) (Fig. 1b) and affected by two wildfires in 2002 and 2015. The area extends for 108 

18 km2, entirely inside the Malleco National Reserve, with elevation ranging from 760 to 1810 m a.s.l. and a 109 

mean slope of 24°. The climate is classified as temperate warm humid (Fuenzalida, 1965), strongly influenced 110 

by the presence of the Andean Cordillera (E) and the Pacific Ocean (W). The average annual precipitation 111 

is about 2480 mm (Comiti et al., 2008), with a monthly maximum and minimum of 490 mm and 62 mm in 112 

June and January, respectively (average rainfall calculated for the period 2000-2018; 113 

source:http://explorador.cr2.cl/). Bedrock layer is primarily composed of pyroclastic rocks generated by the 114 

high volcanic activity of the Southern Andes volcanic Zone (SVZ, 33°S – 46°S) and triggered by the Nazca-115 

South America plate convergence (Cembrano and Lara, 2009). The Rio Toro channel network, which 116 

features a pluvial/nival hydrological regime (Comiti et al., 2008), develops mainly with south-north direction 117 

with a total length of 11 km from the upstream ridges to the downstream Rio Niblinto, where the outlet of the 118 

study catchment is established (Fig. 1c). The main channel, receiving water from two branches divided by 119 

the central ridge, is classified as a third-order stream featuring a step-pool / cascade bed morphology with a 120 

mean channel slope of 0.05 m/m (Comiti et al., 2008; Iroumé et al., 2015; Picco et al., in review). The forest 121 

is mainly composed of endemic species of Araucaria araucana and Nothofagus spp. (southern beech). The 122 

two species naturally form mixed forests along the Andes Cordillera in the South-Central Chile and western 123 

Argentina (Veblen et al., 1982). The understorey of Araucaria-Nothofagus forests hosts Chusquea spp. 124 

(quila), a fast-growing bamboo plant reaching high densities, especially after major natural disturbances that 125 
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typically affect this type of landscape (Gunckel et al., 1948; Veblen et al., 1981). Until 2002, when the first 126 

wildfire occurred, the Rio Toro catchment was almost completely covered by forests. At lower elevation 127 

(below 1200 m.a.s.l.) the main species were Nothofagus dombeyi and N. nervosa  while Araucaria araucana 128 

stands dominated the landscape above 1200-1300 m a.s.l. The 2002 fire, occurred in late February, affected 129 

both the Malleco National Reserve and the near Tolhuaca National Park, with an overall burned area of about 130 

11660 ha (Assal et al., 2018), greatly contributing to the 20000 ha burned in the region in the summer fire 131 

season (González et al., 2005). Besides, during the fire season of 2014-15, which counted 1344 wildfires 132 

and almost 46000 ha burned in the Araucanía Region alone (CONAF, 2019), another wildfire affected the 133 

same area in late February 2015.  134 

In central Chile, land use practices and extreme climatic conditions are exacerbating wildfires effects 135 

(Bowman et al., 2019). For this reason, there is growing interest in monitoring future developments for this 136 

and similar areas, where slope instabilities could be expected. Even though no instabilities were reported 137 

recorded by other studies after the 2002 wildfire (Comiti et al., 2008; Iroumé et al., 2015), the re-occurrence 138 

of the 2015 event may have increased their likelihood.  139 

 140 

### FIGURE1 ### 141 

3. MATERIAL AND METHODS 142 

 143 

The present study was carried out following a methodological workflow with two parallel phases regarding (i) 144 

the assessment of severity of the two wildfires occurred in 2002 and 2015, and (ii) the mapping of sediment 145 

connectivity changes following the aforementioned events (Fig. 2). The development of both activities relies 146 

upon field data, acquired during field campaigns carried out in 2019, and freely available satellite Landsat 147 

data provided by open-source websites.  148 

 149 

 150 

### FIGURE 2 ### 151 

3.1 Satellite data 152 

 153 
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The need for multi-temporal images and consistency among the two methodological phases drove the 154 

attention towards Landsat missions, which offer long time series and sufficient global coverage at 30 m 155 

resolution (Banskota et al., 2014). Two Landsat 7 ETM+ images corresponding to periods pre- and post-156 

2002 wildfire (01/02/2002, 20/02/2003) and two Landsat 8 OLI images corresponding to the pre- and post-157 

2015 wildfire (28/01/2015, 31/01/2016) periods were selected from the U.S. Geological Service free satellite 158 

provider EarthExplorer (EarthExplorer, 2019). After the selection, Landsat products were ordered and 159 

obtained from the Earth Resources Observation and Science Center (EROS) Science Processing 160 

Architecture On Demand Interface (ESPA). The ESPA allows the processing of Landsat data beyond the 161 

standard Landsat Level-1 processing level (ESPA, 2018). Therefore, the four images were provided 162 

atmospherically corrected at surface reflectance to account for sensor, solar and atmosphere distortion 163 

(Young et al., 2017). In addition, we applied transformations to guarantee continuity among the Landsat 7 164 

ETM+ and Landsat 8 OLI bands and avoid misinterpretations in the outcomes (Roy et al. 2016).   165 

The topographic information required for developing the sediment connectivity analysis is represented by the 166 

Global Digital Elevation Model (DEM) with a spatial resolution of 12.5 × 12.5 m cell size derived by the ALOS 167 

PALSAR satellite imagery system. The data were processed and redistributed by the Alaska Facility Service 168 

(ASF, 2019; dataset: ASF DAAC, 2009), which provides Radiometrically Terrain-Corrected (RTC) products. 169 

Detailed information about the accuracy of ASF’s products can be found in Gesch et al. (2014). 170 

 171 

3.2 Field data 172 

 173 

During January 2019, multiple field campaigns were carried out in the Rio Toro catchment to collect land 174 

cover data. We established a total of 106 square sampling plots of about 400 m2, in which the percentage of 175 

area covered by understorey, bare soil and rocks, grassland, deadwood (standing and/or lying on the 176 

ground)and trees was visually determined (Fig. 3). In particular, the understorey was defined as the 177 

vegetation layer including bamboo, Araucaria and Nothofagus seedlings and shrubs developing under the 178 

trees. The latter category instead, includes only living trees taller than 1.30 m.  179 

In addition, we also evaluated specific ground characteristics on a subset of 46 sampling plots regarding the 180 

number of standing dead and living trees and the number of obstructions on the ground (Table S1). The 181 
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distribution of the plots within the study catchment was highly constrained by the scarce accessibility due to 182 

steep slopes, lack of roads and presence of fallen logs. The position of each sampling plot was taken 183 

measuring the centroid using a GPS Trimble Juno 5. 184 

 185 

 186 

### FIGURE 3 ### 187 

 188 

 189 

3.3 Fire severity assessment 190 

 191 

Using the multispectral satellite data described in the section 3.1, we first calculated the Normalized Burn 192 

Ratio (NBR) for each pre- and post-wildfire year (2002, 2003; 2015, 2016) according to the following formula: 193 

 194 

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2
 (1) 195 

 196 

where, NIR is the Near InfraRed band and SWIR2 is the ShortWave InfraRed band, which are the two 197 

wavelengths most sensitive to wildfires (Key and Benson, 2006). In order to provide a quantitative measure 198 

of change, the NBR calculated after the fire was subtracted from the NBR calculated before the fire. The 199 

resulting delta NBR (dNBR) was calculated as follows: 200 

 201 

𝑑𝑁𝐵𝑅 = ((𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒) ∗ 1000) −  𝑑𝑁𝐵𝑅𝑜𝑓𝑓𝑠𝑒𝑡 (2) 202 

 203 

where, the dNBR is conventionally scaled up by a factor of 1000 to obtain an integer output (Miller et al., 204 

2009) and dNBRoffset is obtained by averaging dNBR values calculated outside the wildfires-affected areas in 205 

order to avoid reflectance biases given by the natural phenological effect (Parks, et al., 2014; Morresi et al. 206 

2019). Given the occurrence of two wildfires in the Rio Toro catchment, multiple dNBRs were calculated as 207 
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the difference between the years 2003-2002; 2016-2015 and 2016-2002. The latter aims at detecting the 208 

spectral changes given by the sum of the two wildfires and it has been considered only as a proxy variable 209 

in the function used to classify the severity of the two separate wildfires.  210 

Furthermore, to improve the accuracy of wildfire severity assessment we calculated the Relative dNBR 211 

(RdNBR), following equation 3: 212 

 213 

𝑅𝑑𝑁𝐵𝑅 =  
𝑑𝑁𝐵𝑅

√|𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒|
 (3) 214 

 215 

where the absolute sign in the denominator avoids unreal numbers as results.  216 

Choosing the relative ratio (RdNBR) instead of the absolute one (dNBR) permits to increase enhance the 217 

classification accuracy for high severity categories especially in more heterogeneous environments and to 218 

compare fires across time and spatial scales (Miller and Thode, 2007). The resulting three RdNBR maps 219 

(2002-2003, 2015-2016 and 2002-2016) were then classified using field data.  220 

From the sampling plots, we tested the combination of field metrics that best fitted with RdNBR values 221 

corresponding to the period 2002-2016, which summarizes all the changes in reflectance caused by both 222 

wildfires. The ratio between areas of bare ground and bare ground plus tree cover area (hereinafter defined 223 

as Severity Factor, SF) reported the strongest relationship with RdNBR values, according to a second-order 224 

polynomial function (R2 = 0.65). Using the natural breaks algorithm, the SF was grouped into four classes 225 

corresponding to unburned (or negligible severity), low, moderate and high severity. Using the polynomial 226 

function it was possible to carry out the four RdNBR classes’ thresholds, which determine the classification 227 

scheme used in the wildfire severity maps 2002-2003 and 2015-2016 (Fig. S1). The classification accuracy 228 

calculated between measured and predicted severity of sampling plots was 62% with a Cohen’s Kappa 229 

coefficient (κ) of 0.45, indicating moderate agreement between the raters.  230 

The final wildfire severity maps were then compared in terms of spatial patterns, with particular focus on the 231 

eventual changes or similarities among different severity areas between the two events. Similarity analysis 232 

was performed thanks to the Jaccard Index, calculated specifically between areas with the same severity 233 
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(e.g. unburned 2002 - unburned 2015). On the contrary, the variation was evaluated through the transition 234 

matrix (or cross-tabulation matrix), to highlight gains or losses among the classes.  235 

To improve awareness on how the topographic features of the Rio Toro affected the fire severity in the two 236 

events, two Generalized Linear Models (GLMs) were carried out. The effect of slope, elevation (continuous), 237 

slope position (Guisan et al., 1999), aspect (categorical) were tested on the RdNBR. We applied simple 238 

random sampling with a 95% confidence interval to select the most appropriate number of samples to be 239 

used in the GLMs.  240 

 241 

3.4 Mapping sediment connectivity 242 

 243 

The analysis of sediment connectivity was performed through the Index of Connectivity, applied to four 244 

periods corresponding to 2002, 2003, 2015 and 2016. The IC in the Rio Toro catchment was computed using 245 

the open-source, stand-alone software SedInConnect 2.3 (Crema and Cavalli, 2018), which operates using 246 

TauDEM tool for hydrological functions (Tarboton, 1997). Following the original formula by Borselli et al. 247 

(2008), the IC relies upon two components that describe the linking relationships between sediment sources 248 

and downstream areas, so: 249 

 250 

𝐼𝐶 = 𝑙𝑜𝑔10 (
𝐷𝑢𝑝

𝐷𝑑𝑛
) = 𝑙𝑜𝑔10 (

𝑊 ̅̅̅̅ 𝑆 ̅√𝐴

∑
𝑑𝑖

𝑆𝑖𝑊𝑖
𝑖

) (4) 251 

 252 

where, Dup is the upslope component representing the potential for downward routing of the sediment 253 

according to the catchment’s upslope area features. Hence, �̅� and 𝑆̅ are the average value of the impedance 254 

to sediment fluxes and the average slope (m/m) in the upslope catchment, is respectively and A is the 255 

contributing area (m2) of the specific point under investigation. On the denominator, Ddn is the downslope 256 

component including the characteristics that could affect the transfer of sediment: di is the length (m) of the 257 

flow path along the ith cell, Wi is the weighting factor and Si the slope gradient of the ith cell. 258 
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In the present study, we made use of a unique DEM as the main source of topographic information for the 259 

computation of the IC for the four wildfire scenarios. This choice was constrained by the lack of representative 260 

DEMs for the two events and by the assumption that no major morphological changes, detectable at 12.5 m 261 

resolution, occurred during the period between the two wildfires. On the contrary, an adaptive weighting factor 262 

has been developed to represents the differences of impedance to sediment fluxes likely to be caused by 263 

the large variability in land cover due to the wildfires.  264 

Finally, to highlight the linkages between hillslopes and the Rio Toro (i.e. lateral connectivity of the system), 265 

we set the whole stream network as target of the IC computation.  266 

 267 

3.4.1 Weighting factor 268 

 269 

To derive the weighting factor for the IC, the Manning’s n for the overland flow was selected original USLE 270 

C-factor (Wischmeier and Smith, 1978) and its variants (see Chartin et al., 2017; Lizaga et al., 2017; López-271 

Vicente and Ben-Salem, 2019) since we consider it a better proxy of sediment impedance in natural 272 

catchments. Following the additive method provided by Arcement and Schneider (1989), an ad-hoc 273 

Manning’s coefficient was computed for each of the 46 sub-sampling plots according to the ground 274 

characteristics collected during field campaigns and described in the section 3.2.  275 

From the plot-derived Manning’s n, a new approach has been adopted, based on the abrupt land cover 276 

changes at the pixel scale, in order to produce four catchment-scale weighting factor maps. The four W factor 277 

maps (hereinafter W factor maps) were generated starting from the correlation between the Manning’s n and 278 

the spectral vegetation index known as Integrated Forest Z-score (IFZ) calculated from the four Landsat 279 

images (eq. 5). The IFZ is a threshold-based index aiming at identifying the likelihood of a pixel to be not 280 

forested so that it represents a strong index to track vegetation changes and recovery after wildfires (Huang 281 

et al., 2010; Morresi et al., 2019) 282 

 283 

𝐼𝐹𝑍 = √ 1

𝑁𝐵 
 ∑ (

𝑏𝑖−�̅�𝑖

𝑆𝐷𝑖
)

2
𝑁
𝑖=1  (5) 284 

 285 
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Where, NB is the number of spectral bands employed (in this work SWIR and SWIR2) bi is the spectral value 286 

of the pixel of band i, �̅�𝑖 and SDi are respectively the mean and standard deviation of random pixel samples 287 

of the band i. Hence, the IFZ and Manning’s n are inversely related: higher is the chance for a pixel to be not 288 

forested and lower is the impedance to sediment fluxes. More information about the fitting model IFZ-289 

Manning’s n are present in the supplementary material (Fig. S2).  290 

Although similar approaches, combining land use-based roughness and spectral indexes, have been 291 

proposed in the field of connectivity (e.g. Mishra et al., 2019), they mainly focused on the use of Normalized 292 

Difference Vegetation Index (NDVI) that is less sensitive to the sudden changes in reflectance than the IFZ 293 

(Huang et al., 2010; Chu, et al., 2016; Morresi et al., 2019). Once the Manning’s n was extended for the 294 

whole catchment and the four periods, the final weighting factor maps (W) were generated following the 295 

normalization equation originally proposed by Trevisani and Cavalli (2016) for the topographic roughness:  296 

 297 

𝑊 = 1 −  
ln(𝑛)−ln(𝑛𝑚𝑖𝑛)

ln(𝑛𝑚𝑎𝑥)− ln(𝑛𝑚𝑖𝑛)
 (6) 298 

 299 

where nmin and nmax are the minimum and maximum Manning’s coefficients included within the range 0.001 -300 

1 and converted in the logarithmic form. The main advantages of this operation are: i) to preserve the 301 

adimensionality of IC, as also stressed by Zanandrea et al. (2020), ii) to offer a wider range of W factor 302 

values, otherwise constrained by the additive method of Arcement and Schneider (1989), and allowing an 303 

enhancement of the spatial variability in the final IC maps and iii) to move towards the full standardization of 304 

land use-based W factor.  305 

In the present work, differences among datasets were analysed for their statistical significance using the non-306 

parametric Kruskal-Wallis (KW) test; the comparisons were considered statistically significant if P<0.001 307 

(given the high statistical power from the high number of pixels). All statistical procedures were carried out 308 

with the support of Rstudio version 1.2.5019 (Rstudio Team, 2016) and Statgraphics 18.  309 

 310 

4. RESULTS 311 

 312 
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4.1 Wildfires severity maps 313 

 314 

Two severity maps based on RdNBR classification for 2002 (Fig. 4) and 2015 (Fig. 5) wildfires in the Rio 315 

Toro catchment are presented. After the 2002 event, significant burned areas covered 1657 ha, which 316 

corresponds to the 90.9% of the whole study catchment basin. Particularly, high severity represents the most 317 

widespread class, occupying 68.9%, whereas moderate and low severity classes characterize 14.7% and 318 

7.3% of the study area, respectively. On the contrary, the area classified as unburned covers 9.1% of the 319 

catchment area and it is mainly located in the further upstream and downstream positions. The 2015 fire 320 

severity map shows 1384 ha of burned areas (75.8%), with the prevalence of moderate severity areas, 321 

covering the 42.2% of the total study catchment. Less represented are the high and low severity patches, 322 

which covers 23.4% and 10.2% of the total area, respectively. The map shows a major presence of high 323 

severity areas, mainly located on the left slopes facing North-East and, conversely, moderate and low severity 324 

spread along the right slope, facing South-West. Still, the areas unaffected by the fire can be found at lower 325 

and upper elevations as well as in the higher and steeper ridges on the right slope. However, unburned areas 326 

are the second most represented class with 24.1%. 327 

 328 

### FIGURE 4 ### 329 

### FIGURE 5 ### 330 

 331 

Despite the major difference in high severity areas, similar patterns can be observed in the two maps: 332 

unburned areas near the northern and southern borders; high and moderate areas in the central part. The 333 

Jaccard Index, calculated using the intersection and union of the same fire severity areas in % for the two 334 

wildfires, demonstrates poor similarity in the overlap for the low and moderate severity classes, with 335 

outcomes of 0.06 and 0.12, respectively. The higher similarity was found for the extreme classes with 336 

outcomes of 0.30 (High severity) and 0.35 (Unburned). The comparison between the 2002 and 2015 fire 337 

severity maps led to the development of the transition matrix (Table 1), which points out the percentage of 338 

catchment within each combination of severity classes as well as the total for each period. Diagonal entries 339 
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show the percentage of severity that did not change throughout the years, suggesting that highly burned 340 

(21.4%) and unburned (8.7%) areas are the ones that persisted the most after the events. On the other hand, 341 

low (1.1%) and moderate (6.5%) severity areas are the classes that show lower persistence and therefore 342 

higher changes. The gain and losses from 2002 to 2015, exhibits that moderate severity class gained the 343 

35.8% of the catchment, whereas high severity class lost the 47.6% of the catchment. Lowest gains were 344 

experienced by the low severity class, 9.1% of the landscape, whereas lowest losses were experienced by 345 

the unburned class.  346 

 347 

### TABLE 1 ### 348 

 349 

The results of the GLMs showed that RdNBR values are statistically related to slope, aspect (p-value < 0.001) 350 

and slope position (p-value < 0.05) variables in both wildfires. On the contrary, elevation did not show 351 

statistical correlation with fire severity (p-value > 0.05) in the first wildfire, whereas in the second one did 352 

(Table 2). Since slope position is derived from the combination of slope and elevation, it showed a weaker 353 

but still significant correlation with fire severity in both cases. Besides, the analysis regarding the combined 354 

effect of the two categorical variables (slope position and aspect) gave negative results due to non-355 

significance (p-value > 0.05).  356 

 357 

### TABLE 2 ### 358 

 359 

4.2 Sediment connectivity 360 

 361 

Peculiar spatial patterns can be observed in the IC maps (Fig. 6). In 2002, high IC areas were located mainly 362 

on the left slopes and stream banks, whereas low IC values characterize the small sub-catchment close to 363 

the outlet, as well as the high and flat areas along the southern border (Fig. 6A). Following the 2002 wildfire, 364 

the IC maps show high values of the index also near the channel heads of the two main branches of the Rio 365 

Toro (Fig. 6B). Apparently, the IC remained constant also for 2015 (Fig. 6C) and 2016 (Fig. 6D) maps. 366 
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Although the multi-temporal assessment points out similar patterns of high and low IC in all the scenarios, 367 

the degree of linkage between slopes and channel network, enhanced in post-wildfire scenarios.  368 

 369 

### FIGURE 6 ### 370 

To emphasize the IC changes, the difference of IC (DoIC) between post-wildfire and pre-wildfire scenarios 371 

was computed for the two events. The DoIC maps are presented in Figure 7, where darker the colour, higher 372 

the increase in IC after the wildfire. It is important to mention that the classification of the two maps varies 373 

according to the value range of each map, except for the decrease class, since this class consistently refers 374 

to negative values. The 2003-2002 DoIC map (Fig. 7A) shows a clear upward trend, with a mean value of 375 

1.07(± 0.38) and observed minimum and maximum variation of -1.56 and 2.88 respectively. Low, moderate 376 

and high increase of IC values cover 24.1%, 51.8% and 23.4% of the whole catchment, with mean values of 377 

0.57, 1.11, 1.52. Notably, high positive DoIC values are detectable near the junction of the two main streams 378 

and in the proximity of areas of convergence of flows and channel heads. On the contrary, areas showing 379 

decreasing IC values are covering the 0.7% of the catchment (mean -0.28). 380 

 381 

### FIGURE 7 ### 382 

 383 

After the second wildfire, the 2016-2015 DoIC map (Fig. 7B) shows again an upward trend but with a lower 384 

mean values than the first event for the overall catchment (0.53 ± 0.22) and DoIC classes (-0.11, 0.20, 0.51, 385 

0.75). Nonetheless, the representativeness of each DoIC class is: decrease areas are 1.3%; low increase 386 

areas are 20.7%; moderate increase areas are 40% and high increase 38%. The spatial arrangement of the 387 

classes shows high increase IC areas close to the stream network and they are mainly located in the central 388 

part of the basin rather than at the channel heads. Decreasing IC areas are instead confined to small spots 389 

near the outlet and on the high and flat areas along the southern border, already characterized by low IC in 390 

the pre-wildfire scenario (Fig. 6C).  391 

 392 

4.3 Linking fire severity and sediment connectivity  393 

 394 
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The comparison between fire severity and sediment connectivity can help to shed light on the effect of how 395 

a wildfire can affect sediment connectivity. As expected, from a first qualitative assessment of the maps, the 396 

spatial patterns are very similar. Areas of lower DoIC (decrease and low increase) located where the fire 397 

severity is lower (unburned and low severity) and areas of higher DoIC (moderate and high increase) where 398 

the fire severity is higher (moderate and high severity).  399 

Quantitatively, the overlap between the connectivity and severity component is expressed as the area (%) of 400 

DoIC class that partly covers the corresponding fire severity class (Table 3). Particular attention was given 401 

to the diagonal values, representing the overlap of counterparts. After the first wildfire, the 84.7% overlap 402 

confirms what previously observed between the two maps: high DoIC spatial patterns extensively 403 

corresponds to high fire severity. 404 

 405 

### TABLE 3 ### 406 

 407 

On the contrary, the correspondence between decrease IC areas and unburned areas is only the 24.9%.  408 

Indubitably, the huge extent of high severity class causes most of the DoIC areas to be greatly overlapped 409 

by it. Even the decrease IC areas, in fact, are constituted by high severity areas for the 40.8%. After the 410 

second wildfire, the highest correspondence is between decrease IC areas and unburned areas (Table 4), 411 

with an overlap of 94.5%, which confirms what can be seen in the maps. Still, high overlap is visible among 412 

higher classes, i.e. moderate-moderate, high-high, with a 54.3% and 43.4% respectively. 413 

 414 

### TABLE 4 ### 415 

 416 

Figure 8A shows the DoIC distributions for the period 2003-2002 and Figure 8B the DoIC distributions for the 417 

2016-2015 time window. The medians of DoIC values according to the four severity classes were 0.68, 0.91, 418 

1.05, 1.19 for the first event and 0.22, 0.49, 0.62 and 0.70 for the second one, respectively. While considering 419 

the second wildfire the results suggest that higher the fire severity and higher is the increase in IC values, in 420 

the 2002 event, the correlation is less clear due to the higher data dispersion. However, in both cases, the 421 

distributions of each group were found statistically different among each other (KW test, p-value <0.001).  422 



17 
 

 423 

### FIGURE 8 ### 424 

 425 

The distribution of DoIC values, fire severity and topography is presented in Figure 9, where the three most 426 

significant topographic variables (Table 2) are used.  427 

Generally, among all fire severity classes, the higher DoIC values correspond to high severities but, again, 428 

the DoIC values for the first event show higher data dispersion than the second. After the 2002 wildfire, the 429 

higher DoIC values are found in areas facing North, whereas the lowest values in areas facing West, with 430 

both statistically different (KW test, p-value <0.001) from the others (Fig.9A). The DoIC values for the 2015 431 

wildfire instead do not show a clear pattern among the aspects and there is no statistical difference (KW test, 432 

p-value >0.001)  between North and West for the high fire severity classes (9B). The interaction with slope 433 

position for the first event (Fig.9C) shows that the highest and lowest DoIC interquartile ranges are observed 434 

for the lower slope positions, in which the DoIC distributions are also the only statistically different from the 435 

others.  436 

This result suggests that, when a fire occurs, slope positions at intermediate elevation characterized by low 437 

slopes greatly enhanced fire severity and consequently the increase in IC. On the other hand, without any 438 

disturbance, this type of position promotes vegetation development. In the second case, again unburned 439 

areas located on lower slopes show the lowest DoIC values but the highest increase characterizes the areas 440 

of high severity on upper slopes (Fig. 9D). 441 

Finally, the variation of DoIC as function of slope indicates that a higher increase in IC values is detected at 442 

minor slope degrees in the first event (Fig. 9E) but, the opposite trend, in the second event (Fig. 9F).  443 

 444 

### FIGURE 9 ### 445 

5. DISCUSSION 446 

 447 

In the Rio Toro catchment, two major wildfires occurred in 13 years, causing severe changes to the land 448 

cover and vegetation structures. The assessment of fire severity showed that most of the catchment was hit 449 
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by wildfire of moderate and high severity. Indeed the first wildfire strongly affected the vegetation community 450 

of the catchment and surrounding territory, as observed by other authors (Comiti et al., 2008; Iroumè et al., 451 

2015; Assal et al., 2018; Mazzorana et al., 2019; Picco et al., in review). On the other hand, the second 452 

wildfire showed lower severity values but similar spatial patterns, for instance, demonstrated by the 453 

persistence of unburned areas at the northern and southern borders. The result of lower severity after 454 

previous high severity events is in contrast with some studies developed in the south-west of the US (Holden 455 

et al., 2010; Parks et al., 2014) but shared by Stevens-Rumann et al. (2016), who found this divergence as 456 

caused by slower vegetation recover response after the prior disturbance. In our study area, in fact, the first 457 

fire had much more fuel’s availability compared to the second one, which occurred just after 13 years. In the 458 

assessment of the 2015second event, the use of a relative vegetation index, such the RdNBR, helped to 459 

avoid the bias of the low amount of 2015 pre-fire vegetation caused by the first wildfire. However, the 460 

difference between the two fire severity maps could be caused by the classification procedure, which relies 461 

upon field surveys carried out four years after the second wildfire, or by the RdNBR values used in the 462 

polynomial function and associated to total changes after both wildfires (RdNBR 2016-2002, see section 3.3). 463 

The resulting 62% of classification accuracy, obtained from the measured and predicted severity, can affect 464 

model outcomes. In the end, the choice of an appropriate spectral index for fire severity assessment is 465 

fundamental. We selected the SWIR-based NBR, for its higher sensitivity to fire damages and post-466 

disturbance forest structure recovery (Pickell et al., 2016). Although Ortíz-Rodríguez et al. (2019) found good 467 

classification agreement using the NDVI for fire severity assessment, the peculiar condition of fire recurrence 468 

in the Rio Toro catchment led us to avoid indexes with lower disturbance response, such as the NDVI, which 469 

proved to overestimate recovery rates (Schroeder et al., 2011; Morresi et al., 2019).  470 

As proved in several case studies (Iniguez et al., 2008; Oliveras et al., 2009; Estes et al., 2017), topography 471 

plays a fundamental role in the distribution patterns of burned areas. In the Rio Toro catchment, slope more 472 

than other variables showed correlation to fire severity. Nonetheless, other fire drivers like wind, temperature 473 

and fuel’s characteristics must not be neglected for their growing importance in the context of climate change 474 

and particularly in south-central Chile, where a strong decrease in precipitation is expected in the next years 475 

(CONAMA, 2006; Úbeda and Sarricolea, 2016).  476 
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The analysis of sediment connectivity highlighted a general increase of IC values after the wildfires, with high 477 

IC increase mainly located in the headwaters in 2002 and the central part of the catchment in 2015. This 478 

suggests that, after the second wildfire, potential loose sediment could have higher chances to enter the 479 

channel network and being transported downstream thanks to their proximity to the outlet. 480 

Moreover, the DoIC average values observed for the two wildfires, reflected the difference in fire severity: 481 

higher overall increase of IC values after the first wildfire than the second one (i.e. higher DoIC values for the 482 

2002 disturbance). However, the lower increase observed in the second scenario could be associated with 483 

the estimation of the Manning’s n, which primarily drives the IC in our study case. While for the fire severity 484 

assessment we made use of a relative index for burn detection, the IC calculation was based on the IFZ, 485 

which enhances the detection of forest recovery and thereby higher impedance to sediment fluxes. Hence, 486 

the difference in the DoIC between the two events can be associated to: i) lower severity of the 2015 wildfire, 487 

ii) IFZ overestimation of the 2015 pre-fire vegetation cover iii) actual fast recovering rate in the Araucaria-488 

Nothofagus forest after the first wildfire. The last hypothesis is also supported by field evidence. Just four 489 

years after the 2015 wildfire, shrubs species such the endemic Chusquea spp. re-occupied large patches of 490 

the study area and blocking many pathways. Therefore, in our study area, shrubs might represent the 491 

conjunction between the ecological and geomorphological response, since their encroachment can enhance 492 

rapidly the storage capacity and reduce sediment connectivity.  493 

Despite the overall higher increase of IC after the 2002 wildfire, the results demonstrated stronger correlation 494 

between fire severity and sediment connectivity after the 2015 event. The first wildfire was characterized by 495 

poorer spatial patterns overlap due to the huge extent of the high fire severity class: contrary to DoIC, the fire 496 

severity variable was almost saturated by the highest class. In addition, IC values showed higher data 497 

dispersion than for the second event. The cause of such different variability of IC values found after the two 498 

events may be attributable to the different degree of land cover heterogeneity in the pre-2002 scenarios. 499 

While before 2002 the catchment showed high variability of forest structures, hence high fuel vegetation 500 

heterogeneity, before the 2015 the vegetation was far more homogeneous. Since the severity of 2002 501 

disturbance was high on the majority of the study area, successional dynamics driving the vegetation 502 

recovery started from similar conditions (i.e. complete mortality of canopy trees and consumption of shrub 503 
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and herb layers) and the short time period between the two disturbances was not enough to differentiate fuel 504 

load and structure among different sites. given the passage of the first fire   505 

The application of the IC permitted to capture the main changes in possible sediment sources, routes and 506 

deposits at the catchment scale. In post-disturbance scenarios the IC has been used to summarize the 507 

sediment dynamic changes but, according to the characteristics of the disturbance and environment, different 508 

W factors would have been used. In forested mountain catchments, neither the standard Roughness Index 509 

(Cavalli et al., 2013) nor the C-factor are suggested since they are more focused on applications to high 510 

altitude headwater catchments characterized by lack of forest cover and agricultural catchments where the 511 

role of crop management systems in terms of soil loss is pivotal. On the contrary, Manning’s n is becoming 512 

much more used (e.g. Persichillo et al., 2018; Llena et al., 2019), especially with high land-use heterogeneity. 513 

Nonetheless, the Manning’s n causes low distribution in W factor values and requires tabled data. We tried 514 

to overcome the first issue, which has been proved to impact negatively the IC (Zanandrea et al., 2020), by 515 

normalizing the W factor. To avoid the mere use of tabled data, we implemented a methodology that exploits 516 

field observations and remote sensing data in order to adapt the W factor to specific post-disturbance 517 

conditions without yielding too much subjectivity. Zanandrea et al. (2020), offered an alternative W factor that 518 

properly preserved adimensionality and emphasized the role of forests but without the chance to adjust the 519 

methodology to dynamic environments. Therefore, with this work we tried to progress toward the 520 

standardization of the W factor without neglecting the importance of field data and considering the role of 521 

regeneration in post-wildfire scenarios by using the IFZ over the NDVI.  522 

The choice of the appropriate W factor also depends on the data availability as well as temporal and spatial 523 

scales. For instance, Mishra et al. (2019) calculated the impedance according to a simple remote assessment 524 

of vegetation, based on the C-factor and NDVI, to study major sediment connectivity patterns in a large basin; 525 

Estrany et al. (2019), used the traditional Roughness Index to study plot-scale vegetation-sediment structures 526 

in micro-catchments; Kalantari et al. (2017), proposed a W factor based on runoff generation potential, having 527 

different land use and group of soil types within the lowland study area.  528 

The compound analysis of fire severity and sediment connectivity highlighted the main areas of interest, 529 

where presumably the land cover changes were exacerbated and so characterized by high severity and high 530 

increase in IC. It is worth mentioning that the increase of IC at the pixel scale is not the mere result of the 531 
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adopted weighting factor but it is also the outcome of the propagation of changes due to land cover variations 532 

in the catchment. Considering also the intrinsic characteristics of the catchment, it was possible to identify 533 

where the IC increased the most for each fire severity class. Therefore, it appeared that during the first 534 

wildfire, lower slope positions and on gentle slopes facing North promoted fire severity; hence the IC. These 535 

results can be seen partially in contradiction with literature data. In fact, while on northern aspects, in the 536 

southern hemisphere, temperature and fuel conditions are usually suitable for increasing wildfire occurrence 537 

and severity, lower slope positions on gentle slopes are not (Carmo et al., 2011; Estes et al., 2017). These 538 

areas were actually covered by Nothofagus spp., species that do not present resistance traits and can be 539 

deeply affected even at intermediate fire intensity (Gonzalez et al., 2005). On upper slope positions the 540 

Araucaria stands were greatly damaged when high-intensity crown fires affected the stand, while with lower 541 

intensity the severity was lesser due to the resistance traits of the species, such as thick bark and a crown 542 

displaced several meters above the ground in mature trees (Burns 1993; Gonzalez et al., 2010).  543 

To provide useful information for management decisions, the results of the present study should be 544 

considered as a whole. Hence, the prioritization of catchment areas after wildfires would rely on: i) the fire 545 

severity maps, describing where overland flow, soil erosion and sediment yields could be suddenly boosted, 546 

ii) the most recent IC map, showing where there is higher degree of connectivity to sensitive targets, and iii) 547 

the DoIC map, demonstrating where the connectivity suddenly increased.  548 

However, in post-fire scenarios falling dynamics of damaged and standing dead trees can last for decades 549 

and, depending on species and snag size (Marzano et al., 2012; Molinas et al., 2017), they can either provide 550 

elements able to enhance microsite for regeneration on the slopes (Marzano et al., 2013) or be recruited as 551 

large wood in river systems. (Benda and Sias, 2003).   552 

Finally, it is important to point out that the IC offers only semi-quantitative information of the potential sediment 553 

transfers, while for accurately predicting sediment displacement and dynamics, a different analysis 554 

considering also other driving factors is indeed required. Notably, in post-wildfire scenarios these factors are 555 

associated with the reduction of soil infiltration parameters, changes in soil physicochemical properties and 556 

the presence of ashes, which are all responsible of alteration in runoff and sediment transfer (Shakesby, 557 

2011). Considering also these variables would have required dedicated field campaigns and would have 558 

moved simple approaches based on geomorphometric indices to more complex and sophisticated models 559 
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with all the uncertainties related to the different variables estimations. Aware of all the limitations of our 560 

approach, in the present work, the aforementioned factors have been overlooked to restrict the variables 561 

involved and focus on the topography and land cover based ones. We used land cover changes as the only 562 

proxy for sediment impedance. This choice is justified by the lack of multi-temporal DEMs and by the absence 563 

of major morphological changes occurred between the two wildfires. In addition, altough our work exploited 564 

open-source data, which can be used to replicate and standardize the procedure in different post-disturbance 565 

contexts, much attention has been paid to their spatial resolution to consider the most appropriate scale for 566 

the results. Sediment connectivity outcomes can cause serious misinterptrations if there is an imbalance 567 

between the scale of data and objectives. According to Cantreul et al. (2018), 1 m is the best resolution for 568 

the IC application in a crop-managed watershed of 1.24 km2, while López-Vicente and Álvarez (2018) 569 

suggested a 0.20 m resolution to study soil displacement in a 0.274 km2 area. Different resolutions have 570 

been chosen in other contexts. It is our opinion that the choice of the spatial resolution has to consider the 571 

objectives of the sediment connectivity analysis and, turning this concept over, the available spatial resolution 572 

poses a limit to geomorphometric analysis that could be carried out. High-resolution DEMs are fundamental 573 

to investigate fine-scale processes (Cantreul et al., 2018; López-Vicente and Álvarez, 2018; Tarolli et al., 574 

2019) and allows to derive important parameters as local surface roughness to characterize sediment 575 

dynamics at these scales Different and simplified approaches can be devised when only coarse DEMs are 576 

available and the aim of the study is focused on large scale processes as coarse material sediment transport 577 

in large catchments. Accordingly, we found that a Global DEM at a 12.5 m resolutions suitable for detecting 578 

major spatial patterns of IC in an Andean catchment. The proposed workflow could be effectively applied to 579 

investigatepost-disturbance scenarios in other areas where high-resolution data are not available.  580 

 581 

CONCLUSIONS 582 

 583 

The interaction between wildfire severity and sediment connectivity has been presented in order to map the 584 

ecological and geomorphological effects of multiple wildfires on the Rio Toro catchment (Chile). The 585 
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proposed method combines field data and open source satellite imagery to identify the spatial patterns of 586 

sediment connectivity variations driven by two subsequent wildfires.  587 

In the study catchment, the wildfire severity assessment pointed out the different severity patterns between 588 

the two events. The 2002 wildfire affected the 91% of the catchment, of which almost 70% was classified as 589 

high severity, while the 2015 wildfire significantly affected the 76%, of which only the 23% was classified as 590 

high severity. These results are mainly ascribed to the different fuel’s availability and land cover heterogeneity 591 

between the two pre-fire scenarios. The sediment connectivity maps showed large areas of high IC increase 592 

located at the headwaters, after the first wildfire, and in the central part of the catchment after the second 593 

wildfire. The IC values varied according to the difference in fire severity: catchment’s average increase of 594 

1.07 after the first wildfire, 0.53 after the second one. However, the response of IC to fire severity was less 595 

evident in the first event, being the overlap between fire severity and DoIC spatial patterns leveled off by the 596 

vastity of high severity areas. Therefore, the relationship between wildfire severity and sediment connectivity 597 

was weaker when the severity classification approached saturation.  598 

The methodology proposed represents a good compromise between the reliability of the results and the 599 

limited availability of high resolution data in inaccessible areas. The integration between geomorphometric 600 

analysis based on open-source satellite products and field work can definitely promote sediment connectivity 601 

spatial patterns characterization and the study of its relationship with wildfire severity, although more efforts 602 

can be made to improve the classification accuracy. In addition, the computation of a normalized W factor 603 

helped to better capture the main effects of the wildfires on the IC thanks to appropriate land cover change 604 

detection indices.  605 

Finally, we suggest that further research in this field may consider also the integration of soil properties in the 606 

analysis, which be source of significant alterations of the sediment impedance, as well as the use of multiple 607 

topographic surveys if available.  608 
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