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Abstract. Modeling of hospital’s Emergency Departments (ED) is vital
for optimisation of health services offered to patients that shows up at
an ED requiring treatments with different level of emergency. In this
paper we present a modeling study whose contribution is twofold: first,
based on a dataset relative to the ED of an Italian hospital, we derive
different kinds of Markovian models capable to reproduce, at different
extents, the statistical character of dataset arrivals; second, we validate
the derived arrivals model by interfacing it with a Petri net model of the
services an ED patient undergoes. The empirical assessment of a few key
performance indicators allowed us to validate some of the derived arrival
process model, thus confirming that they can be used for predicting the
performance of an ED.

Keywords: Stochastic Petri Nets · Markovian models · ED arrival pro-
cess

1 Introduction

Optimisation of hospital’s Emergency Departments (ED) is concerned with max-
imising the efficiency of health services offered to patients that shows up at an
ED requiring treatments with different level of emergency. In this respect the
ability to build formal models that faithfully reproduce the behaviour of an ED
and to analyse their performances is vital. A faithful model of an ED must con-
sist of at least two components: a model of the patients arrival and a model of
the ED services (the various activities that an ED patient may undergo through-
out his permanence at the ED). The composition of these two models must be
such that the model of patients arrival is used to feed in the services model and
the analysis of the performances of the composed model, through meaningful
key performance indicators (KPIs), may yield essential indications as to where
intervene so to improve the overall efficiency of the ED.
Contribution. In this paper we focus on the problem of deriving a stochastic
model of the patient arrivals that is capable of correctly reproducing the sta-
tistical character of a given arrivals dataset. To this aim we considered a real
dataset relative to the activity of the ED of an hospital of the city of Cantù
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in northern Italy and which contains different data including the complete set
of timestamps of the arrival of each patients over one year (i.e. the year 2015).
Based on the statistical analysis of the dataset we derived different instances of
Markovian models belonging to different classes (i.e. Markov renewal processes,
Markov arrival processes, hidden Markov models) and we showed that only one
model instance, amongst those derived, is capable of fully reproducing the sta-
tistical character of the dataset, including the periodicity of patients arrivals
exhibited by the dataset. To further validate the derived models we developed
a formal encoding in terms of stochastic Petri nets. This allowed us to compare
the performances of each arrival models, coupled with a model of ED services,
through assessment of a KPI formally encoded and accurately assessed through a
statistical model checking tool. The obtained results evidenced that one amongst
the derived arrival models faithfully match the dataset behaviour hence it can
reliably be used for analysing the performances of different ED services.
Paper organisation. The paper is organised as follows: In Section 2 we present
the statistical analysis of the dataset and discuss the main statistical character-
istics of the patient’s arrival process by considering different perspectives. In
Section 3 we describe the derivation of different kinds of Markovian models of
the patient arrival’s process, specifically we discuss the class of renewal Markov
processes given in terms of continuous phase type (CPH) distributions, in Sec-
tion 3.1, the class of Markov arrival process (MAP), in Section 3.2 and finally
the class of hidden Markov models (HMM), in Section 3.3. In Section 4 we give
the formal encoding of each of the derived models in terms of stochastic Petri
nets. Finally in Section 5 we present the results of some experiments aimed at
assessing a KPI against the model given by the composition of patient arrival
models and a simple model of the ED services. Conclusive remarks wrap up the
paper in Section 6.
Related work. Literature on modeling of hospital EDs is very wide, faces dif-
ferent kinds of problems and cannot be reviewed in brief. We mention only some
works to position ourselves in the literature and point out differences. Many
works, such as [21, 12, 3, 14, 2, 24], deal with forecasting the number of patients
arrivals but do not experiment with Markovian models. The models proposed
in this paper can also be applied to forecasting but we cannot elaborate on this
issue due to space limits. Several works, e.g., [22, 20], build a queuing model of
ED but do not deal with data driven modeling of the arrival process. Few works,
e.g., [31], are concerned with the data-driven development of stochastic models
capturing both the patient arrival as well as the services received at the ED.
Our paper falls in this category but with respect to other we experiment with
a wide range of Markovian processes to model patient arrivals and provide also
their Petri net counterpart which can be derived in an automatic manner.

2 Statistical analysis of the Cantù Hospital dataset

One way of representing the patient arrival flow is to register the time elapsed
between consecutive show ups. To this end let Xi, i = 1, 2, 3, ... denote the ith
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inter-arrival time. Another possibility is to count the number of patients that
arrive in an interval of a certain length. We will use intervals whose length is
one hour, one day or one week. The associated series are YH,i, YD,i and YW,i

with i = 1, 2, 3, ... which denote the number of patient arrivals in the ith hour,
day and week, respectively. Clearly, the second approach keeps less information
with respect to the first but it has the advantage that it relates easily to the
periodic nature of the patient arrival process. For example, the series YH,3+24j

with j = 0, 1, 2, ... provides the number of arrivals between 2am and 3am during
the 1st, the 2nd, the 3rd day, and so on.

We start off by analyzing the patient arrival pattern inside a day by consid-
ering the average and the variance of the number of patient arrivals during the
ith hour of the day. I.e., we calculate EH,i = E [{YH,i+k|k = 0, 24, 48, ...}] and
V arH,i = V ar [{YH,i+k|k = 0, 24, 48, ...}] with i = 1, 2, ..., 24. In Figure 1, EH,i

and V arH,i are depicted as a function of i. The highest number of patient arrivals
is registered between 9am and 10am with about 5.9 patients on average. Between
5am and 6am the average number of patients is instead less than 1. As expected,
the time of the day has a strong impact on the number of patient arrivals. The
variance, V arH,i, has very similar values to those of the mean EH,i, which is
compatible with a well-known characteristic of the Poisson process, hence sug-
gesting that the patient arrival process may be adequately modelled through a
Poisson process with time inhomogeneous intensity. To further investigate this
issue, we calculate the distribution of the number of arrivals during a given hour
of the day and compare it the Poisson distribution with the same mean. The
resulting probability mass function (pmf) is depicted in Figure 2 for the interval
1pm-2pm and 5am-6am. The interval 1pm-2pm is the hour of the day where
the Poisson distribution differs most from the actual distribution of the number
of arrivals (the difference is calculated as the sum of absolute differences in the
pmf) while the interval 5am-6am is the hour where the Poisson distribution is
most similar to the experimental distribution.
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Fig. 1. Average and vari-
ance of number of arrivals
in the ith hour of the day.
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Fig. 2. Pmf of number of arrivals between 1pm and 2pm
(left) and between 5am and 6am (right) and pmf of the
Poisson distribution with equal mean.

The hourly autocorrelation function (acf) is defined as

RH,n =
E[(YH,i − E[YH,i])(YH,i+n − E[YH,i])]

V ar[YH,i]
with n = 1, 2, 3, ...
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and it is depicted in Figure 3. The oscillation present in the autocorrelation is
due to the changing patient arrival intensity during the day (Figure 1) and it
remains unaltered even for very large values of n.

We study now YD,i in order to determine if there is a pattern in the patient
arrivals during a week. In Figure 4 we depict ED,i = E [{YD,i+k|k = 0, 7, 14, ...}]
and V arD,i = V ar [{YD,i+k|k = 0, 7, 14, ...}] with i = 1, 2, ..., 7 and observe that
there are not large differences between days of the week. The variance differs to
a large extent from the average on most days of the week. We calculated also the
acf of YD,i and saw that there is only a very mild correlation between number
of arrivals of consecutive days. For this reason we do not aim to model daily
correlation with our models.
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Fig. 3. RH,n, i.e., acf of the sequence YH,i

as function of n.
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Fig. 4. Average and variance of number
of arrivals in the ith day of the week.

Finally, we look at the series containing the inter-arrival times themselves,
Xi with i = 1, 2, 3.... The average inter-arrival time is 19.43 and its variance is
483.18. The largest value in the series is 337 minutes. In Figure 5 we provide the
front and the tail of the probability density function (pdf) of the inter-arrival
times, respectively. The autocorrelation present in Xi is depicted in Figure 6
where there is oscillation due to the fact that a period with high arrival intensity
(8am-22pm) are followed by a period with low arrival intensity (22pm-8am). This
oscillation however is less easy to interpret than that in Figure 3 and fades away
as n grows because for large values of n there is no deterministic connection
between the time of the day of the ith and the (i+ n)th arrival.
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Fig. 5. Front (left) and tail (right) of the pdf of the
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3 Markovian models of patient arrivals and their
application to the Cantù dataset

3.1 Markovian renewal process approximation

The simplest arrival models are renewal processes, i.e., processes in which con-
secutive inter-arrival times are independent and share the same distribution. To
have a Markovian renewal process, we can approximate the observed inter-arrival
time distribution by phase type (PH) distributions. A degree-n PH distributions
is given by the distribution of time to absorption in a Markov chain (MC) with
n transient states (the phases) and one absorbing state [25]. A PH distribution
is continuous if a continuous time MC (CTMC) is used and it is discrete if a
discrete time MC (DTMC) is applied. In this work we apply continuous PH
(CPH) distributions.

In order to understand basic concepts about CPH models, consider the
degree-3 CPH distribution depicted in Figure 7 where numbers inside a state
indicate the initial probability of the state and numbers on the arcs are transi-
tion intensities. The gray state is the absorbing one. A CPH distribution is con-
veniently described by the vector of initial probabilities of the transient states
denoted by α (we assume in this work that the initial probability of the absorbing
state is 0) and the matrix, denoted by Q, containing the transition intensities
among the transient states and the opposite of the sum of the intensities of
the outgoing transitions in the diagonal (this allows to determine the transition
intensities toward the absorbing state). For the CPH in Figure 7 we have

α = (0.2, 0.8, 0),

Q =



−3 2 0
2 −3 1
0 2 −8


 (1)
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Fig. 7. Graphical representation of the degree-3 PH dis-
tribution used as example (left) and its pdf (right).

The pdf of a CPH distribution can be obtained based on basic properties
of CTMCs as f(x) = αeQx(−Q)1I where 1I is the column vector of 1s. From
the previous the moments can be derived and have the form mi = i!α(−Q)−i1I.
We depicted the pdf of the above example in Figure 7. Several well-known dis-
tributions are contained in the family of CPH distributions. The exponential
distribution is a degree-1 CPH distribution. Also hyper-exponential and Erlang
distributions are simple to represent as CPH distributions.

Our aim is to find α and Q such that the pdf of the associated CPH dis-
tribution is a good approximation of the pdf of the patient inter-arrival times.
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There are two families of approaches to face this problem. The first is based on
the maximum likelihood principle, i.e., having set the degree n to a given value,
α and Q are searched for such that it is most likely to reproduce the empirical
value at hand. Techniques based on this approach suffers from two drawbacks:
first, the number of parameters in α and Q grows quadratically with n; second,
the vector-matrix representation provided by α and Q is redundant and this
gives rise to difficult optimization problems. One of the first methods in this
line is described in [9] and an associated tool is presented in [17]. The second
family of approaches is based on matching a set of statistical parameters of the
available data. The set usually includes only moments [18, 5] but can refer also
to characteristics of the pdf [4] or the cumulative distribution function at some
points [15]. We apply here moment matching techniques which require much
less computational effort, result in good fit of the inter-arrival distribution un-
der study and have the advantage of considering a non-redundant representation
(based on the moments every entry of α and Q is determined directly).

It is known that a degree-n CPH distribution is determined by 2n − 1 mo-
ments (see, e.g., [11]). Not any valid 2n − 1 moments can be realized however
by a degree-n CPH distribution. The approaches proposed in [18, 5] construct
a degree-n CPH distribution matching 2n − 1 moments if the moments can
be realized by a degree-n CPH distribution. The methods are implemented in
the BuTools package (http://webspn.hit.bme.hu/~butools/) and we applied
them with n = 1, 2 and 3. In the following we report the initial probabilities and
the transition intensities of the resulting CPH distributions:

– n = 1 (one moment matched): α = (1) and Q = (−0.051453)
– n = 2 (three moments matched): α = (0.0409229, 0.959077) and

Q =

(
−0.0213213 0.0213213

0 −0.0570911

)

– n = 3 (five moments matched): α = (0.0284672, 0.881506, 0.0900266) and

Q =



−0.699657 0 0
0.0667986 −0.0667986 0

0 0.0260063 −0.0260063




The pdf of the above CPH approximations is depicted in Figure 8. With n = 1,
the resulting exponential distribution, which captures only the first moment, is
a bad approximation both of the front and of the tail. With n = 2 the tail is
approximated well but the shape of the front is rather different. With n = 3
both the front and the tail are captured to a satisfactory extent.

It is evident that, even if the inter-arrival time distribution is well approxi-
mated, a renewal process is significantly different from the data set under study
because it cannot exhibit correlation and periodicity. Nevertheless, as we will
show in Section 5, the renewal process with a proper PH distribution can give
good approximation of some performance indices. In the following we propose
models in which there is correlation in the inter-arrival time sequence.
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Fig. 8. Front (left) and tail (right) of pdf of CPH distribution approximations of the
inter-arrival time distribution based on moment matching.

3.2 Markovian arrival processes

Continuous time Markovian arrival processes (MAP), introduced in [26], are a
wide class of point processes in which the events (arrivals) are governed by a
background CTMC and they can be seen as the generalization of the Poisson
process allowing for non-exponential and correlated inter-arrival times. We pro-
vide here a brief introduction to MAPs.

The infinitesimal generator matrix of the underlying CTMC of an n-state
MAP will be denoted by the n× n matrix D. Arrivals can be generated in two
ways. First, in each state i of the CTMC a Poisson process with intensity λi
is active and can give rise to arrivals during a sojourn in the state. Second,
when in the CTMC a transition from state i to j occurs an arrival is generated
with probability pi,j . A convenient and compact notation to describe a MAP is
obtained by collecting all intensities in two matrices, D(0) and D(1), in such a
way that D(0) contains the transition intensities that do not generate an event
and D(1) those that give rise to one, including the intensities of the Poisson
processes in the diagonal of D(1). Moreover, the diagonal entries of D(0) are set
in such a way that we have D(0) + D(1) = D. Accordingly, the entries of D(0)

and D(1) are

∀i, j, i 6= j : D
(0)
i,j = (1− pi,j)Di,j , D

(1)
i,j = pi,jDi,j

∀i : D
(0)
i,i = −

∑

∀j,j 6=i

Di,j − λi, D
(1)
i,i = λi

In most of the literature, the vector of steady state probabilities of the back-
ground chain, denoted by γ = (γ1, ..., γn), is used as initial probability vector
of the model3. In this paper we will do the same. As an example, consider the
2-state MAP described by

D
(0)

=

(
−3 1
0 −7

)
D

(1)
=

(
0 2
2 5

)
D =

(
−3 3
2 −2

)
(2)

which implies that during a sojourn in state 1 no arrivals are generated while
during a sojourn in state 2 a Poisson process with intensity equal to 5 is active.

3 Notice that γ exists and is independent of the initial state as the background CTMC
is, by definition, ergodic.
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Moreover, a transition from state 1 to state 2 generates an arrival with probabil-
ity 2/3 while transitions from state 2 to 1 are always associated with an arrival.
The steady state probabilities of the background chain are γ = (0.4, 0.6).

The well-known Poisson process is a MAP with a single state (n = 1). The
renewal process used in Section 3.1 can be expressed in terms of a MAP by
setting D(0) = Q, D(1) = (−Q)1Iα. The Markov modulated Poisson process,
in which a Poisson process is active in every state of a background CTMC, is a
MAP whose D(1) matrix contains non-zero entries only in its diagonal.

As for CPH distributions, two families of parameter estimation methods have
been developed in the literature: the first based on the maximum-likelihood prin-
ciple ([29, 13, 27]) and the second based on matching a few statistical parameters
of the arrival process. The representation given by D(0) and D(1) contains 2n2−n
parameters (in every row of D = D(0)+D(1) the sum of the entries must be zero)
and it is redundant as an n-state MAP is determined by n2 + 2n− 1 parameters
(2n − 1 moments of the inter-arrival times and n2 joint moments of consecu-
tive inter-arrival times; see [30] for details). Maximum-likelihood based methods
suffers from the same drawbacks described before in case of CPH distributions.
In this paper we experiment with methods that belong to the second family of
approaches.

A 2-state MAP is determined by 3 moments of the inter-arrival times and the
lag-1 auto-correlation of the inter-arrival time sequence [10, 30]. Our sequence
has however such a lag-1 auto-correlation that cannot be realized with only 2
states. In [19] a method was proposed that creates a MAP with any 3 inter-
arrival time moments and lag-1 auto-correlation. This method, implemented in
the BuTools package, provides the following 6-state MAP:

D
(0)

=




−0.0293 0.0293 0 0 0 0
0 −0.1883 0 0 0 0
0 0 −0.0103 0.0103 0 0
0 0 0 −0.0989 0.0989 0
0 0 0 0 −0.0989 0.0989
0 0 0 0 0 −0.0989




(3)

D
(1)

=




0. 0. 0. 0. 0. 0.
0.023 0.1288 0.0002 0.0362 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.

0.0037 0.0207 0.0004 0.074 0. 0.




(4)

with which the steady state probability vector of the background Markov chain
is γ = (0.149503, 0.153343, 0.0126432, 0.22817, 0.22817, 0.22817).

As opposed to the approach used in Section 3.1, in the arrival process gener-
ated by a MAP there can be correlation between subsequent inter-arrival times.
In Figure 9 we depict the acf in the inter-arrival time sequence generated by the
above 6-state MAP and that computed on the available dataset. As guaranteed
by the applied method for n = 1 the auto-correlation is matched exactly but
then it fails to follow the auto-correlation of the data. The acf of the sequence
counting the number of arrival per hour generated by the same MAP is given
instead in Figure 10 which is very different from the that of the dataset. In the
number of patients per day sequence the auto-correlation of the 6-state MAP
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with n = 1 is 0.00469433, i.e., it is negligible, as opposed to that in the data
where it is 0.22.
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Fig. 9. Acf of the inter-arrival time se-
quence of the original data and of the
MAP given in (3-4).
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per hour sequence of the original data
and of the MAP given in (3-4).

As seen above, 6 states are necessary to match three moments and just the
lag-1 autocorrelation of the inter-arrival times. This indicates that a MAP with
large number of states is necessary to capture the peculiar statistical features
of the patient arrival process. General purpose MAP fitting techniques are not
applicable however with such large number of states.

3.3 Hidden Markov processes

A Hidden Markov model (HMM) [28] can be thought of as a generalisation of
a DTMC for which an external observer cannot directly see the states but only
observe some output whose probability to be emitted depends on the state. In
practice an HMM is characterised by: i) a set of states S = {s1, . . . , sn}; ii)
a set of possible observations O = {o1, . . . , om}; iii) a n × n state-transition
probability matrix A = {aij} with aij being the probability of transitioning
from state si to sj ; iv) a n×m state-observation probability matrix B = {bij}
where bij is the probability of observing oj when the chain enters state si; v) an
initial distribution over the set of states S denoted by α. Accordingly, an HMM
is completely determined by the triple (α,A,B).

There exist three classical problems for HMM, all of which requiring a se-
quence of observations O = (o1, . . . ok). The first one is the evaluation problem:
given an HMM by (α,A,B) and a sequence O, calculate the probability that the
HMM produces O. The second, called decoding problem, consists of determining
the most probable state sequence given a HMM and a sequence O. The third
one, the learning problem, has only O as input and is about finding such triple
(α,A,B) with which observing O is most probable.

In this paper we focus on the third type of problem and in particular we
develop and study two HMMs aimed at reproducing the statistical characteristics
of the patients’ arrival dataset (described in Section 2). We start off with a rather
coarse-grained (only 3-state) but general HMM, which reveals to be capable of
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reproducing only marginally the auto-correlation characteristics of the patients
arrivals data. Then we propose a HMM with particular underlying DTMC that
shows good agreement with the dataset from a statistical point of view.

A 3 states HMM Here we consider a 3 state HMM in which every time slot
corresponds to one hour and the possible observations are O = {0, 1, ..., 14}
interpreted as the number of patient arrivals per hour4. This means that the
sequence generated by the HMM has to be post-processed if we need to specify
the exact arrival instance for each patient. This post-processing will consist of
distributing the arrivals in uniform manner inside the hour.

There are 2 free parameters in π, 3 × 2 = 6 in A and 3 × 14 = 42 in
B (because π must be normalized and also the rows both in A and B must be
normalized). We applied the Baum-Welch algorithm [8] to determine the optimal
parameters starting from several initial parameter sets chosen randomly. With
this relatively small model, the final optimal parameters obtained by the Baum-
Welch algorithm are independent of the initial values (apart from permutations
of the states). The obtained HMM is with π = (0, 1, 0) and

A =




0.865 0.135 0
0 0.835 0.165

0.134 0 0.866


 B =




0.0007 0.0227 0.0807 0.1569 0.1756 0.1731
0.024 0.1103 0.2237 0.2249 0.19 0.1323
0.3533 0.3752 0.1989 0.0583 0.0116 0.0025

0.1652 0.0991 0.0625 0.0292 0.0177 0.009 0.0058 0.0006 0.0006
0.0544 0.0303 0.0052 0.0025 0 0 0.0004 0 0

0 0 0 0 0 0 0 0 0


 (5)

The mean number of arrivals per hour with the above HMM is 3.0862 and its
variance is 5.67669 while in the data trace the mean and the variance are 3.08676
and 5.69061, respectively.

In Figure 11 (left) we depict the autocorrelation of the number of arrivals
per hour. As one can expect, the 3-state HMM is not able to reproduce the
sustained oscillation present in the data shown in Figure 3 (autocorrelation is
negligible for n ≥ 10) but does much better than the 6-state MAP given in (3-4)
(see Figure 10).

A 24 states HMM In order to have a model that is able to exhibit oscillation
in the autocorrelation function of the number of arrivals per hour, we define a
24-state HMM in which each state corresponds to an hour of the day and the
transition probabilities are such that the process deterministically cycles through
the 24 states. Accordingly, A is 24 × 24 and its entry in position (i, j) is 1 in
j = (i + 1) (mod 24) and it is 0 otherwise. The initial probability vector is set
to π = (1, 0, ..., 0). As before, the possible observations are O = {0, 1, ..., 14}.

The Baum-Welch algorithm is such that parameters set to 0 initially remain
0. Consequently, the algorithm does not change the matrix A and the vector

4 More than 14 patients per hour are very rare in our dataset.
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π and has an effect only on the entries of B. The number of parameters is
larger, it is 24 × 14 = 336, but thanks to the deterministic behavior of the
underlying DTMC the Baum-Welch algorithm determines the parameters in a
single iteration. With the resulting HMM the mean number of arrivals per hour
is 3.08619 while the variance is 5.67465. The hourly autocorrelation is shown in
Figure 11 (center). This model provides very similar hourly autocorrelation to
that of the data set.

We experimented also with a 24-state HMM letting the Baum-Welch algo-
rithm to change any entry of the matrix A (i.e., the initial entries of A are random
strictly greater than 0 and strictly smaller than 1). This way the number of free
parameters is 24×23+24×14 = 888. With this large number of parameters the
Baum-Welch algorithm performs 4798 iterations and requires about 3 minutes
of computation time on a standard portable computer. The resulting HMM has
mean and variance equal to 3.08539 and 5.67468, respectively. The matrix A
has a similar structure to the one before but the probabilities of going to the
next state is not 1 but a value between 0.6 and 0.99. The resulting autocorrela-
tion structure is depicted in 11 (right). With the non-deterministic underlying
Markov chain the autocorrelation cannot exhibit sustained oscillation and the
autocorrelation vanishes after about 150 hours (i.e., 6-7 days).
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Fig. 11. Comparing the autocorrelation function (acf) of the dataset with that of the 3-
state HMM (left), the 24-state HMM with deterministic (center) and non-deterministic
(right) underlying Markov chain.

4 Petri nets model of the patients arrival process

In order to assess the validity of the patients arrivals models presented in Sec-
tions 3.1-3.3, we define a formal encoding of, respectively, the renewal Markov
arrival model, the MAP and the HMM models, in terms of a superset of the
Generalised Stochastic Petri Net (GSPN) [23] formalism, that we refer to as
extended GSPN (eGSPN). Specifically, eGSPN is a class of stochastic Petri nets
that, like GSPN, allows for combining immediate and stochastic timed transi-
tions, but that, differently from the original GSPN, is not constrained to expo-
nentially distributed timed transitions. We will use the eGSPN models described
in this section to run a validation through the assessment of a number of key
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performance indicators (KPIs, see Section 5). For the sake of space we only give
the syntactic elements necessary for characterizing an eGSPN, while we omit
the formal semantics. We remark that if it is well known that the semantics
of a GSPN can be reduced (by elimination of vanishing markings) to a CTMC
process, equivalently it can be shown that the semantics of an eGSPN model cor-
responds to a generalised semi-Markov process (GSMP) [16], i.e. a larger class
of stochastic processes that subsumes CTMCs.

Definition 1 An eGSPN is defined by a 8-tuple (P, T, I,O,H, del,W, pol) where:

– P : set of places,
– T : set of transitions,
– I,O,H : T → Bag(P ): are the input (I), output (O) and inhibition (H) arc

functions (where Bag(P ) is the set of multi-sets built on P ),
– del : T → dist(R≥0): is a function that associates transitions with delay

distributions (where dist(R≥0) is the set of probability distributions with
non-negative real support),

– W : T → R+: is the weight function that maps transitions onto positive real
numbers,

– pol : T → {single, infinite} associates each transition with a semantics which,
in this paper, is either single server or infinite server.

I, O and H give the multiplicities of arcs of connecting places of P with transi-
tions of T . The function del allows to associate a generic probability distribution
with the delay of firing of an enabled transition. Observe that since we put no
restriction on the nature of the delay distributions, identical schedules for differ-
ent transitions may have a positive probability (in case of non-continuous delay
distributions): in this case the weight W is used to chose in a probabilistic man-
ner the next transition to fire. In this paper, we will use four kinds of delay in
del. Immediate transitions are associated with constant zero firing time. Expo-
nential transitions fire after a delay described by the exponential distribution.
Deterministic transitions are associated with fixed positive delay. Finally, uni-
form transitions have a firing time according to the uniform distribution. For
what concerns pol, single server and infinite server semantics are as usual [23].

4.1 Petri Net encoding of Markov renewal arrival models

In the following we define a Petri net that represents the patient arrival process in
which inter-arrival times follow a degree-n PH distribution given by the vector-
matrix pair, (α,Q) (as described in Section 3.1).

The set of places is P = {P0, P1, ..., Pn, Pn+1, Arrs} where P0 will be used
to start the process according to α after each arrivals, P1, ..., Pn correspond to
the transient states of the PH distribution, Pn+1 corresponds to the absorbing
state and Arrs is the place where patient arrivals are accumulated. The set
of immediate transitions is TI = {tarr ∪ {t0,i : 1 ≤ i ≤ n, αi > 0}} where
the weight of transition tarr is 1 and the weight associated with transitions
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ti, 1 ≤ i ≤ n, αi > 0 is αi. Firing of tarr will generate an arrival while firing
of a transition ti will imply that phase i is chosen as initial state in the MC
associated with the PH distribution. Exponential transitions are used to model
the transitions among the phases. Their set is TE = {{ti,j : 1 ≤ i, j ≤ n,Qi,j >
0}∪{ti,n+1 : 1 ≤ i ≤ n,∑n

j=1Qi,j < 0}} where the first set in the union contains
transitions among the transient states while the second those to the absorbing
state. Accordingly, the rate associated with these transitions is Qi,j for transition
ti,j if 1 ≤ i, j ≤ n and it is −∑n

j=1Qi,j for transition ti,n+1 with 1 ≤ i ≤ n. The
set of transitions is T = TI ∪ TE . Transition ti,j , 0 ≤ i, j ≤ n + 1, if present, is
with input bag {Pi} and output bag {Pj}. Input bag of transition tarr is {Pn+1}
and its output bag is {P0, Arrs}. In Figure 12 we depict the PN representation of
the arrival process in which inter-arrival times are PH according to the example
proposed in Section 3.1. For immediate transitions (black bars) we specify the
weight while for exponential ones (white rectangles) the rate.

4.2 Petri Net encoding of Markov arrival models

Now we turn our attention to MAPs defined by the pair of matrices D(0) and
D(1) as described in Section 3.2.

In case of an n-state MAP, the set of places is P = {P0, P1, ..., Pn, Arrs}
where P0 is used to start to model, places P0, ..., Pn correspond to the states of
the MAP and place Arrs is where the patients are gathered. A set of immediate
transitions is used to start the process according to the steady state probabilities,
γ. This set is TI = {t0,i : 1 ≤ i ≤ n, γi > 0} in which each transition t0,i is
associated with weight γi. In the set of exponential transitions, a transition is
associated with each positive entry of the matrices D(0) and D(1). Accordingly,
the set is TE = {{ti,j : 1 ≤ i, j ≤ n,D(0)

i,j > 0}∪{t∗i,j : 1 ≤ i, j ≤ n,D(1)
i,j > 0}}

where the second set in the union is the set of transitions that generate arrival.
The rates of transitions ti,j and t∗i,j are D(0)

i,j and D(1)
i,j , respectively. The set

of transitions is T = TI ∪ TE . Transition ti,j , 0 ≤ i, j ≤ n, if present, is with
input bag {Pi} and output bag {Pj}. Transition t∗i,j , 0 ≤ i, j ≤ n, if present, is
with input bag {Pi} and output bag {Pj , Arrs}. Figure 13 shows the eGSPN
encoding of the arrival process using the MAP specified in (2).

4.3 Petri Net encoding of HMM arrival models

In the following we provide the PN encoding of an n-state HMM given by the
triple (π,A,B), assuming that the observations are interpreted as number of
arrivals in an hour and distributing the arrivals within the hour in a uniform
manner.

The set of places is P = {P0, P1, ..., Pn, O1, ..., On,W,Arrs} where P0 is
used to start the model according to the initial probabilities given in π, places
P1, ..., Pn correspond to the states of the background chain, places Oi, 1 ≤ i ≤ n
are used to emit the observation when the background chain enters state i, place
W collect arrivals that has to be distributed in a given hour, and place Arrs
gathers all arrivals. A set of immediate transitions, TI,1 = {t0,i : 1 ≤ i ≤ n, πi >
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Fig. 12. eGSPN encoding of PH arrival
model with PH specified in (1) in Sec-
tion 3.1
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Arrs
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Fig. 13. eGSPN encoding of MAP ar-
rival model with MAP given in (2) in
Section 3.2

0}, is used to start the process according to π. A set of deterministic transitions
models the background Markov chain: TD = {ti,j : 1 ≤ i, j ≤ n,Ai,j > 0} in
which all transitions are associated with fixed delay of one time unit and ti,j , if

present, is with weight Ai,j . Another set of immediate transitions, TI,2 = {t(o)i,j :

1 ≤ i ≤ n, 1 ≤ j ≤ m,Bi,j > 0} in which t
(o)
i,j is with weight Bi,j , is used to

emit observations. In order to distribute the arrivals inside an hour a uniform
transition is used tdist whose minimal firing time is 0 and maximal firing time
is 1. The overall set of transitions is T = TI,1 ∪ TI,2 ∪ TD ∪ {tdist}. Input bag
and output bag of transition t0,i is {P0} and {Pi, Oi}, respectively. Input bag
and output bag of transition ti,j is {Pi} and {Pj , Oj}, respectively. Input bag of

transition t
(o)
i,j is {Oi} while its output bag contains j−1 times place W in order

to generate the right number of arrivals. Input bag and output bag of transition
tdist is {W} and {Arrs}, respectively. Transition tdist is the only one associated
with infinite server policy.
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Fig. 14. Part of Petri net encoding of the 3-state HMM model given in (5).
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In Figure 14 we show a part of the PN that represents the 3-state HMM given
in (5). Deterministic transitions are drawn as gray rectangles and are provided
with their weight. The single uniform transition is drawn as a black rectangle
and labeled with its firing interval. Number of occurrences of a place in a bag is
written as a label to the corresponding arc if it is different from 1. In the figure

we omitted transitions t
(o)
i,• with i = 1, 2 and connecting arcs.

5 Validation through KPI assessment

In order to validate the different models of patients arrival process we have
coupled each of them with an elementary model of the ED services a patient
may go through during his permanence at the ED and assessed meaningful KPI
on the coupled models. For the sake of simplicity we assumed the ED patient flow
consisting of a simple pipeline of 3 services: triage, visit and discharge for each
of which we considered exponentially distributed service time with the following
settings 5: triage∼Exp(12), the visit∼Exp(6) and discharge∼Exp(60) (i.e. visit
is assumed to be the slowest while discharge the fastest service). Figure 15 shows
the eGSPN encoding of the ED service model: notice that place Arrs is shared
with the eGSPN models of the patient arrivals (representing the composition of
the two models). To validate each arrival model we compared their performance
with that resulting by the simulation of the ED service model (Figure 15) with
the actual arrivals of the dataset (for this we generated an eGSPN encoding of
the dataset arrivals).

Arrs triage, Exp(12) visitQ visit , Exp(6) dischargeQ discharge, Exp(60)

Fig. 15. A simple eGSPN model of ED services consisting of 3 pipelined services (to be
composed by overlapping of place Arrs with an eGSPN model of the patients arrivals).

One relevant KPI that we considered for comparing the performances of the
different patient arrival models coupled with the ED services model is:

φ1 ≡ pmf of the number of patients in the ED during a periodic time-window .

We formally specified φ1 by means of the Hybrid Automata Specification Lan-
guage (HASL) [7] and assessed it through the statistical model checking platform
Cosmos [6, 1]. HASL model checking is a procedure that takes a stochastic model
(in terms of an eGSPN) as input as well as a linear hybrid automaton (LHA)
together with a list of quantities Zi to be estimated. The procedure uses the
LHA as a monitor (i.e., a filter) to select trajectories which are automatically

5 The rates have been devised form statistical analysis of the Cantù dataset.
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sampled from the eGSPN. The statistics, which are stored in the LHA variables,
are collected on the trajectories and used to obtain a confidence interval for each
quantity Zi associated with the LHA monitor (we refer the reader to [7] for more
details).

Figure 16 depicts the HASL specification for φ1. The LHA consists of 4 states
(l0,lon ,loff ,lend), 1 clock variable (t), 2 stopwatches (ta, tp), M+1 real valued
variables xi (0 ≤ i ≤M , whose final value is the probability that i patients have
been observed in the ED during the periodic time windows), plus a number of
auxiliary variables and parameters.
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i=0 xi
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Fig. 16. Automaton for measuring the pmf of the number of patients in the ED.

The LHA is designed so that measuring, along a trajectory, is periodically
switched ON/OFF (parameter TP being the ON period duration) and stops as
soon as the NP -th period has occurred. In the initial state l0 the occurrence of

any transition is ignored (l0
ALL,t<initT,∅−−−−−−−−−→ l0) for an initial transient of duration

initT (initT being a parameter of the LHA) at the end of which the LHA moves

to lon (l0
],t≥initT,∅−−−−−−−→ lon). In lon the LHA reacts to the occurrence of patients

arrival as well as patients discharge events. When a patient arrives (resp. is dis-

charged) while i patients are in the ED (lon
{tarr},n=i∧tp<TP∧tp<TP∧np<NP−−−−−−−−−−−−−−−−−−−−−−→

{n+=1,xi+=ta,ta=0}
lon ,

resp. lon
{discharge},n=i∧np<NP−−−−−−−−−−−−−−−→
{n−=1,xi+=ta,ta=0}

lon) the patients counter n is incremented (resp.

decremented), the duration of the last time interval on which the ED contained i
patients is added up to xi, and the arrival stopwatch ta is reset. Any event differ-

ent from a patient’s arrival/discharge is ignored in lon (lon
ALL\{tarr,discharge}−−−−−−−−−−−−−−−→

tp<TP∧np<NP,tp<TP,∅
lon). As soon as the ON-period expires (tp =TP) the LHA moves from lon to loff

where it suspends registering the duration of different number of patients in the
ED. In that respect observe that if the end of an ON-period corresponds with i
patients being in the ED, the variable xi (which accumulates the durations of i
patients being in the ED) is added up with the time elapsed since the arrival of
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the last patient (lon
],np<NP∧tp=TP∧n=i−−−−−−−−−−−−−→
np+=1,xi+=ta,tp=0}

loff ), hence the end of the ON-period is

made corresponding with the end of the duration of having i patients in the ED.

In loff the automata ignores any event (loff
ALL,tp<24−TP,∅−−−−−−−−−−−→ loff ) while it switches

back to lon as soon as the reciprocal (w.r.t. 24 hours) of the ON-period duration

elapsed (loff
],tp=24−TP,{ta=0}−−−−−−−−−−−−→ lon) and in so doing the timer ta (which stores

the duration of the occupation at i patients since the last arrival/departure) is
reset so that it can correctly be used in the freshly started ON-period. Finally,
the LHA stops monitoring as soon as NP ON-periods have been observed along
the monitored trajectory: at that moment each xi is normalised w.r.t. the sum
of all xi, hence on ending the monitoring of trajectory xi is assigned with the
probability that the i patients have been observed in the ED during NP ob-

served periods (lon

],np=NP,{x0=
x0∑M
i=0

xi
,...,xM=

xM∑M
i=0

xi
}

−−−−−−−−−−−−−−−−−−−−−−−−→ lend). Observe that such an
LHA can also be used for “non-periodic” measures: it suffices to set TP = 0.
The HASL specification for φ1 is completed by the list of HASL expressions
AVG(last(xi)) which indicate that a confidence interval for average of the last
value that xi has at the end of an accepted trajectory is computed by COSMOS.
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Fig. 17. Pmf of the num. of patients in the ED computed through 3-phases PH renewal
model, 6-state MAP, 3-state HMM and 24-state HMM versus dataset model over the
whole day (left), during a low-arrival hour (center) and high-arrivals hour (right).

Figure 17 depicts plots computed with the COSMOS tool and resulting from
assessing specification φ1 (i.e., the pmf of the number of patients in the ED)
against the eGSPN models of the patient arrivals coupled with the 3-services
model of the ED (Figure 15). Plotted results refer to a 1-year (365 days) obser-
vation window and have been computed as 99.99% confidence interval of 10−3

width. The plot on the left refers to the pmf measured without taking into ac-
count any specific time-window over the day (continuous measuring over 24h
for 365 days), while the plots in the center and on the right refer to periodic
measuring over a 1-hour period, at low arrival intensity (from 2am to 3am, cen-
ter picture) and at high arrival intensity (from 11am to 12pm, right picture),
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respectively. The obtained results witness the clear advantage of the HMM24
model over the rest: if when no specific hour of the day is considered the pmf
of the 3-phases renewal model and of the 6-states MAP provide an acceptable
approximation of the pmf computed w.r.t. to dataset (red dashed plot) and the
pmf of the HMM3 and HMM24 are essentially indistinguishable, this is no longer
the case when the pmf is computed on a specific time window as shown in the
center and right plots. Only the pmf of the HMM24 matches that of the dataset
during a low-arrivals [2am,3am] window and a high-arrival [11am,12pm] window:
the pmf of the renewal and map models instead are essentially identical to those
measured continuously while that for the HMM3 exhibits a slight tendency to-
wards matching the pmf of the dataset at low-arrivals but completely fails to do
so when arrivals become intense.

6 Conclusion

In this paper we have considered the problem of deriving stochastic models that
are capable to accurately reproduce the statistical nature of patients arrivals pro-
cess observed on a real dataset of the ED of an Italian hospital. Starting from
the statistical analysis of the dataset we figured out relevant characteristics of
the patients arrival process, e.g., the hour of the day with highest/lowest num-
ber of arrivals, the moments, the variance and, most importantly, the periodic
nature of number of arrivals-per-hour, the latter shown by auto-correlation func-
tion estimated on the dataset. In quest for a model capable of capturing all of
these aspects we have considered different classes of Markovian models namely,
renewal Markov processes, Markov arrival processes and hidden Markov models.
Based on the considered dataset, we derived for each class a few model instances
(1, 2 and 3-phase PH renewal process, a 6-state MAP, a 3-state and a 24-state
HMM). We assessed the quality of each model by comparing their basic statisti-
cal characteristics (i.e., moments, auto-correlation) with those assessed initially
on the dataset. To complete the validation process we then considered the cou-
pling of patient’s arrival model with a simple Petri net model of the ED services.
To this aim we gave a formal encoding of the different kind of patients arrival
Markov models in form of stochastic Petri nets. We then evaluated each model
by estimation of the pmf of the number of patients in the ED during a given
period of the day which we formally encoded and accurately assessed through
HASL statistical model checking. The obtained results showed that the 24-states
HMM is the only model, amongst those considered, capable of reproducing the
statistical characteristics of the dataset, including the hourly periodicity of the
arrivals. Therefore such a model could be validly used for predicting the perfor-
mances of a realistic ED design once coupled with a more realistic model of the
internal ED services.

Bibliography

[1] Cosmos home page. http://cosmos.lacl.fr.



Petri nets Emergency Department arrivals 19

[2] G. Abraham, G. B. Byrnes, and C. A. Bain. Short-term forecasting of
emergency inpatient flow. IEEE Transactions on Information Technology
in Biomedicine, 13(3):380–388, May 2009.

[3] Mohamed Afilal, Farouk Yalaoui, Frédéric Dugardin, Lionel Amodeo, David
Laplanche, and Philippe Blua. Forecasting the emergency department pa-
tients flow. Journal of Medical Systems, 40(7):175, Jun 2016.
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