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Abstract

Background: Particulate matter (PM) air pollution is a human lung carcinogen; however, the
components responsible have not been identified. We assessed the associations between PM

components and lung cancer incidence.

Methods: We used data from 14 cohort studies in eight European countries. We geocoded
baseline addresses and assessed air pollution with land-use regression models for eight
elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM; 5 and PM 3. We used Cox
regression models with adjustment for potential confounders for cohort-specific analyses and

random effect models for meta-analysis.

Results: The 245 782 cohort members contributed 3 229 220 person—years at risk. During
follow-up (mean, 13.1 years), 1878 incident cases of lung cancer were diagnosed. In the meta-
analyses, elevated hazard ratios (Rs) for lung cancer were associated with all elements
except V; none was statistically significant. In analyses restricted to participants who did not
change residence during follow-up, statistically significant associations were found for PM; 5
Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5 ng/m®), PM Zn (1.28; 1.02-1.59 per 20 ng/m’),
PMp S (1.58; 1.03-2.44 per 200 ng/m’), PMjo Ni (1.59; 1.12-2.26 per 2 ng/m”) and PM g K
(1.17; 1.02-1.33 per 100 ng/m°). In two-pollutant models, associations between PM o and
PM; 5 and lung cancer were largely explained by PM; s S.

Conclusions: This study indicates that the association between PM in air pollution and lung

cancer can be attributed to various PM components and sources. PM containing S and Ni

might be particularly important.

Key words: air pollution; particulate matter; sulphur; nickel; cohort study; lung cancer
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1, Intreduction

We recently reported from the European Study of Cohorts for Air Pollution Effects
{ESCAPE) that particulate matter (PM) in air pollution with a diameter < 10 um (PM,g) and
2.5 um (PMa s) is associated with a risk for the development of lung cancer (Raaschou-
Nielsen and others 2013}, This result, among others, formed the basis for ¢lassification of
outdoor air pollution and PM in outdoor air as carcinogenic to humans in a recent Monograph
of the International Agency for Research on Cancer (L.oomis and others 2013). Most
knowledge about associations between air pollution and risk for lung cancer is based on
measures of exposure to PM as a whole (Hamra and others 2014), sulphur oxide-related
pollution {(Dockery and others 1993; Pope 11I and others 2002}, oxides of nitrogen {Nafstad
and others 2003; Raaschou-Nielsen and others 2011} or cruder indicators such as proximity to
traffic (Beelen and others 2008; Hystad and others 2013). PM is a complex mixture of
particles from different sources with different composition. Little i1s known about the
associations between specific components of PM and risk for cancer, although this could be of
major importance in choosing the most efficient strategies for reducing the exposure of
populations to carcinogenic air pollution.

As the concentrations of specific components of PM in air are often correlated, it is
difficult to single out the specific components responsible for observed associations with
health effects. A specific issue in air pollution epidemiology is to assess whether associations
for specific components arg stronger than associations for particle mass (Mostofsky and
others 2012). Particle mass is uscd in air quality regulations. Associations with lung cancer
have been indicated in studies of exposure to the PM compoenents elemental Carbon (Garshick
and others 2012; Steentand and others 1998) and polycyclic aromatic hydrocarbons (Yuan
and others 2014), but, to cur knowledge, ho work on associations between exposure to other
clements of PM and risk for lung cancer in general populations has been published. PM
clements in air can serve as indicators of air pollution from different sources, but their
compounds may also be carcinogenic for the lung per se, as seen for nickel (International
Agency for Research on Cancer Monograph Working Group 2012).

Within the European study of Transport-related Air Poliution and Health Impacis—
Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM;
www.trapsphorm.ew/}, we analtysed data from the 14 cohort of the ESCAPE
(www.escapeproject.el/) study on hung cancer where PM air pollution was measured to
determine associations between elementary components of PM air pollution at the residence

and risk for lung cancer. A secondary aim was to investigate whether any particular
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clementary component could explain the previously observed association between PM air

pollution and lung cancer.

2. Methods
2.1 Study design and participants

We conducted a prospective study of data collected within the ESCAPE and
TRANSPHORM projects. The 14 cohorts were in Sweden (European Prospective
Investigation into Cancer and Nutrition[ EPIC]-Umea, Swedish National Study on Aging and
Care in Kungsholmen [SNAC-K}, Stockholm Screening Across the Lifespan Twin Study and
TwinGene [SALT], Stockholm 60 years old and IMPROVE study [60-y/IMPROVE],
Stockholm Diabetes Prevention Program [SDPP}), Norway {Oslo Health Study [HUBRO]),
Denmark (Diet, Cancer and Health Study [DCH]), the Netherlands (EPIC-Monitoring Project
on Risk Factors and Chronic Diseases in the Netherlands [MORGEN], EPIC-PROSPECT),
the UK (EPIC-Oxford), Austria (Vorarlberg Health Monitoring and Prevention Programme
[VHM&PP), Italy (EPIC-Turin, Italian Studies of Regpiratory Disorders in Childhood and
Environment [SIDRIA]-Turin and Rome, and Greece (EPIC-Athens); Figure 1). Most of the
study areas were large cities and the surrounding suburban or rural communities, as specified
in Table 1 and in the online appendix (pp. 2-15). Information on lifestyle etc. among cohort
participants was obtained by questionnaires or interviews at enrolment (see online appendix,
Table S1). The use of cohort data was approved by the local ethical and data protection

authorities. All participants signed informed consent forms at inception of the studies.

2.2 Procedures and lung cancer definition

Exposure was assessed in each arca separately by standardised procedures. The association
between long-term cxposure to air polintion and incidence of lung cancer was analysed in
each cohort separately at the local centre by common standardised protocols for outcome
definition, confounder models and statistical analysis. Cohort-specific effect estimates were
subsequently combined in a meta-analysis centrally. A pooled analysis of all cohort data was
not possible because of data-transfer and privacy issues. We included cancers located in the
bronchus and the lung (ICD10/ICDO3: C34.0-C34.9) and only primary cancers (i.e. not
metastases); [ymphomas in the lung (ICDO3 morphology codes 9590/3—-9729/3) were not
included. The cohort members were followed up for cancer incidence in national or local
cancer registries, except in the SIDRIA cohorts in Italy and Athens. In the SIDRIA cohorts,

hospital discharge and mortality register data were used. In Athens, cases were identified by
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active follow-up using questionnaires and telephone interviews with participants or next-of-
kin, followed by verification of the cancer case through pathology records, medical records,

discharge diagnosis or death certificates {online appendix, Table S1).

2.3 Exposure assessment

Air pollution concentrations at the baseline residential addresses of study participants were
estimated by Land Use Regression (LUR) models following a standardized procedure that has
been described elsewhere (de Hoogh and others 2013; Eeftens and others 2012a). In brief, air
pollution monitoring campaigns were performed between October 2008 and May 2011 in all
study areas. Three two-week measurements of particles with aecrodynamic diameter <2.5um
(PM;5) and <10um (PM ) were performed at 20 sites in each cohort area. The three
measurements were then averaged, adjusting for temporal trends using data from a
background monitoring site with continuous data (Eeftens and others 2012a; Eeftens and
others 2012b). PM filters were weighed before and after each measurement centrally at IRAS,
Utrecht University and were then sent to Cooper Environmental Services (Portiand, OR,
USA) to analyse elemental composition using X-Ray Fluorescence (XRF)(de Hoogh and
others 2013)}. We collected information about potential predictor variables relating to nearby
traffic intensity, population/household density and land use from Geographic Information
Systemns (GIS), and evaluated these to explain spatial variation of annual average
concentrations using regresston modelling, LUR model results for all study arcas are shown in
the online appendix {Tables $2-89). The LUR models were evaluated using Leave-One-Out-
Cross-Validation, which successively leaves one site out of the data and refits the model with
the remaining N-1 sites. The LUR models were used to estimate ambient air poliution
concentration at the participants’ baseline addresses. If values of predictor variables for the
cohort addresses were outside the range of values for the monitoring sites, values were
truncated to the minirmun and maximum values at the monitoring sites. Truncation was
performed to prevent unrealistic predictions (e.g. related to too small distance to roads in GIS)
and because we did not want to extrapolate the derived model beyond the range for which it
was developed. Truncation has beent shown 1o improve predictions at independent sites (Wang
and others 2012)
We selected eight of the 48 measured elements for epidemiological evaluation (de Hoogh and
others 2013; Tsai) on the basis of evidence for their health effects (toxicity), their
representivity of major anthropogenic sources, a high percentage of detected samples (> 75%)

and precise measurements. We selected Cu, Fe and Zn as indicators mainly of non-tailpipe



traffic emissions such as brake and tyre wear; S mainly for long-range transport; Ni and V for
mixed oil-burning and industry; Si for crustal material and K for biomass buming (de Hoogh
and others 2013; Eeftens and others 2014; Viana and others 2008; Wang and others 2014).
Each element can have multiple sources. Land use regression models for Cu, Fe, and Zn in
both fractions (PM;p and PM; 5) had average cross-validation explained variance (R2)
between 52% and 84% with a large variability between areas (online appendix, Tables S2-
§9). Traffic variables contributed to most of these models, reflecting nontailpipe emissions.
Models for the other elements performed moderately with average cross-validation R2
generally between ~50% and ~60%. For PM 5 S the average cross-validation R2 was 32%
with a range from 2 to 67%, consistent with the relatively low spatial varation of suiphur

concentrations within the cohort areas.

2.4 Statistical analyses

Proportional hazards Cox regression models were fitted for each cohort, with age as the
underlying time scale. Partictpants were followed up for lung cancer from enrolment until
censoring. Participants with a cancer {except non-melanoma skin cancer) before enrolment
were excluded. Others were censored at the time of death, a diagnosis of any other cancer
{except non-melanoma skin cancer), emigration, disappearance, loss to follow-up for other
reasons or end of follow-up, whichever came first. We censored participants with another
cancer because cancer treatment and change of life style might change the subsequent risk for
development of another cancer. The proportional hazards assumption was tested in our
previous study with the identical set of potential confounders and no violation was observed
{Raaschou-Nielsen and others 2013). Exposure to air pollution was analysed as a linear
variable in three a-priori specified-confounder models identical to those applied previously
{Raaschou-Nielsen and others 2013). Model I included gender, calendar time (year of
enrolment, linear) and age (time axis). Model 2 included additional adjustment for smoking
status (never, former, current), smoking intensity, (smoking intensity)z, smoking duration,
time since quitting smoking, envirommental tobacco smoke, occupation, fruit intake, marital
status, educational level and employnmient status (all in reference to baseline). We entered a
squared term of smoking intensity because we expected & non-linear association with lung
cancer. Model 3 (the main model) included further adjustment for area-level socio-economic
status, which might be correlated with both air poliution levels and tung cancer incidence
rates and, thus, having the potential of being a confounder (Pope 11I and others 2002). The

definition of area-level socio-econontic status differed by cohort (online appendix, p. 2-15). In
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eight of the cohorts, income was used. In four cohorts, national or regional indices were used
that incorporated multiple dimensions of SES. In one cohort education and another
unemployment rate was used. In seven cohorts data was included at the municipality level, in

the remaining five cohorts a smaller spatial scale was used (neighbourhood or census tract).

Information on at least age, gender, calendar time, smoking status, smoking intensity and
smoking duration was available for all cohorts. Further information on the available variables
for each cohort is given in the online appendix (pp. 2—-15 and Table S10). We repeated the
overall analyses after restriction to participants who had lived at the baseline address
throughout the follow-up period, thus minimizing misclassification of long-term exposure
relevant to the development of lung cancer in this sub-population.

First we fit models with one pollutant at a time and then we fit two-pollutant models for
each element, including concentrations of particle mass (PMjs, PMjo, PMcoarse)y PMas
absorbance, NO; and NOy, which were previously estimated at the cohort members’ addresses
(Raaschou-Nielsen and others 2013). The main purpose of the two pollutant analyses was to
investigate whether the effect of the complex mixture can be represented better by individual
components reflecting specific sources than with generic particle mass. We included cohort-
specific results from two-pollutant models only if the Pearson correlation between the two
pollutants was < 0.7.

In the meta-analysis, we used random-effects models to pool the results for cohorts
(DerSimonian and Laird 1986). I” statistics (Higgins and Thompson 2002) and p values for
the x2 test from Cochran’s Q were calculated to determine heterogeneity among cohort-
specific effect estimates. Effect modification in relation to performance of the land-use
regression models was tested with the y° test of heterogeneity between meta-analysis
estimates in two strata of cohorts, one stratum including cohorts with leave-one-out cross-
validation R? below 0.50 and another stratum above.

We used a common STATA (www.stata.com) script for all analyses. All tests were two-

sided, and p values < 0.05 were deemed statistically significant.

3. Results
The 14 cohorts in eight European countries consisted of 245 782 people, who contributed
3 229 220 person—years at risk; 1878 incident lung cancer cases were diagnosed during

follow-up (average follow-up, 13.1 years) (Table 1). The details of each cohort, including the
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characteristics of participants, the available variables and their distribution, are given in the
online appendix (pp. 2—13). Participants were recruited into most of the cohort studies in the
1990s. The number of participants and the number of lung cancer cases varied substantially
among cohorts; the Austrian and Danish cohorts contributed more than half the lung cancer
cases (Table 1)

Substantial variations in estimated annual mean concentrations of PM elements at
participant addresses were found both within and between cohorts. Higher concentrations of
all elements except Si were observed in southern study areas. For S, the variation within
cohorts was smaller than that between cohorts. The patterns seen for PM, s (Figure 2} and
PMj (online appendix, Figure St) elements were similar. The correlation between PM
constituents and their corresponding PM;g and PMa2 5 mass concentration differed widely
across cohorts and PM constituent with typical median correlation coefficients between 0.4
and 0.6 (online appendix, Table S11).

In the overall analyses, exposure to all elements except V was associated with higher risks
for lung cancer. None of these associations were statistically significant in model 3, the main
model. Hazard ratios (HRs) were generally lower in models 2 and 3 than in the cruder model
1, consistent with our findings for PM, s and PM g, this difference in HRs between the models
was due to adjustment for smoking (Raaschou-Nielsen and others 2013). The results for 14 of
the element-particle size combinations showed no or low heterogeneity among the cohorts,
whereas heterogeneity was observed in the risk estimates for PMa5 S (12:{)‘47; p=0.03) and
PMa 5 Ni (I*=0.30; p=0.17) (Table 2).

In general, the results of the two-pollutant models showed little effect of mutual
adjustment for elements, although the risk estimate for PM Cu was affected by adjustment for
PM Fe and vice versa (online appendix Figures S2-3). The previously observed increased HR
for lung cancer in association with PM,; and PM> 5 was robust to adjustment for clements in
two-pollutant models, although the association with PM;q was attenuated by adjustment for
PM; s S and the association with PM, s was attenuated by adjustment for PM, s S, PM, s K and
PM,e K. The HR associated with PM> 5 S was robust to adjustment for PM ¢ and PMa 5 (Table
3; online appendix, Figures S2-4).

Analyses restricted to participants who did not change residence during follow-up,
implying less misclassification of long-term exposure, showed higher HRs than observed in
the fidl population (Table 4). The higher HRs associated with exposure to PM; 5 Cu, PMyy Zn
and PMp K among participants who did not change residence were not due to selection of

cohorts for whom this information was available, whereas selection might have played a
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minor role in the higher risk estimates associated with PM g S, PMy s S and PM1o Ni (Table
4). We observed statistically significant associations in non-movers between risk for lung
cancer and exposure to PMs s Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5 ng/ms), PMp Zn {1.28;
1.02-1.59 per 20 ng/m’), PMyg S (1.58; 1.03-2.44 per 200 ng/m’), PMyo Ni (1.59; 1.12-2.26
per 2 ng/nr’) and PMy K (1.17; 1.02-1.33 per 100 ng/m’”). None of these estimates from the
meta-analysis showed signs of heterogeneity between cohort-specific HRs (Table 4), PM> 5 S
was associated with a high HR, which, was not, however, statistically significant; this result
was based on heterogeneous cohort-specific results (I’=0.57; p=0.01). Forest plots for
exposure of participants who did not change residence to all 16 PM components are shown in
the online appendix {Figures S5-20); the different contributions of the cchorts to the meta-
analysis estimates reflect differences in number of lung cancer cases and the contrast of
EXPOSLITe.

There was no statisticalty significant difference in meta-analysis HRs for any PM element
between cohorts with land-use regression models showing leave-one-out cross-validation R2

values below and above 0.50, respectively (all p were > 0.20) (results not shown).

4, Discussion

This study shows non-signiticantly elevated HRs for lung cancer associated with
concentrations of Cu, Fe, Zn, S8, Ni, 8i and K in airborne PM at the residence. Anatyses
restricted to participants who did not change residence during follow-up showed clevated HRs
for all PM elements, which were larger than for the full population. Associations were
statistically significant for PM; s Cu, PMyp Zn, PM g S, PM)p Ni and PM o K. Adjustment for
other pollutants in two-pollutant models had little effect on risk estimates, with the exception
of PM; s S: adjustment for PM; s S reduced the HR for PM; s and PM, ¢, whereas the HR for

PM; s S was robust to adjustment for PM mass.

4.1 Previous studies

Our previous study based on ESCAPE data showed associations between risk for lung
cancer and PM in air pollution (Raaschou-Nielsen and others 2013). PM concentrations were
estimated from land-use regression models that included variables for the densities of
population, household, traffic and streets in the cohort areas and variables for ports and
industry in some areas, indicating that PM from muitiple sources may be related to the lung
cancer risk. In line with this, the present study showed associations between lung cancer and

multiple PM components from different sources, including fossil fuel combustion, e.g. in
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shipping, residential heating, industry and road traffic and non-tailpipe traffic emissions
(Viana and others 2008).

In the two-pollutant models, PM» s § was more robustly associated with risk for lung
cancer than PM; s or PM)q (Table 3). In both the Harvard Six Cities Study (Dockery and
others 1993} and the American Cancer Society Study on Particulate Air Pollution and
Mortality (ACS study) (Pope III and others 1995), associations were found between sulphate
air pollution and lung cancer mortality, in addition to the associations reported for PM; s
{Krewski and others 2000). A strong correlation between PMs s and sulphate air pollution,
however, made it difficult to disentangle their effects in previous studies. The correlation
between PM, s and sulphate was 0.98 in the Harvard Six Cities Study (Krewski and others
2000) and 0.73 in the ACS study (Pope 111 and others 1995); in the present study, the
correlation was more moderate with a range between 0.26 and 0.67 (mean: 0.47) (online
appendix, Table S11).

Previous studies of occupational exposure to nickel compounds have convincingly
established associations with cancers of the lung, nasal cavity and paranasal sinuses
(International Agency for Research on Cancer Monograph Working Group 2012); we alse
found an association with PM g Ni. Although inhalation of Ni from ambient air is considered
to be a minor route of exposure for the general population, it is present in combusted fossil
fuel, which is the major contributor of atmospheric Ni {International Agency for Research on
Cancer Monograph Working Group 2012). The association observed in the present study
could be due to Ni compounds per se or their presence in pollution from fossil fuel

combustion.

4.2 Sulphur in PM

In this study, PM S was associated with risk for tung cancer, although the relation was
statistically significant only for PM,y S among people who did not change residence during
folHow-up. The result for PM; s S was based on heterogeneous cohort-specific results (with
seven HRs above | and three HRs below 1) and therefore less robust than the estimates for
other elements, Further, the established association between the overall, mass-based PM
measures and risk for lung cancer (Loomis and others 2013) could to a great extent be
explained by PM; 5 S in the two-pollutant models, whereas the HR associated with PM;5 S
was virtually unaffected by adjustment for PM mass. Acknowledging the caveats of two-
potllutant models to investigate effects of complex mixtures (Mostofsky and others 2012),

these findings indicate a more robust association with PMj s S than with the two PM mass
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measures (PMip and PM3 5). The correlation between S and PM mass was generally moderate
(median correlation coefficient = 0.48 for PMs s and 0.32 for PM,4) and PM is affected by
many more sources than long-range transport of sulphur containing particles.

Arguments for a particular role of PM; 5 S in PM-associated lung carcinogenicity include
the refatively high HR associated with PMa2 5 § (Tables 2 and 4) and the finding that PM; 5 S
explained some of the associations between PM; s and PM ), and risk for lung cancer in two-
pollutant models. The association between PM; 5 S and risk for [ung cancer was, however,
sensitive to adjustment, never reached statistical significance and showed statistically
significant heterogeneity between cohort-specific HRs in the meta-analysis. Further, sulphate
particles, which make up a large proportion of PM S in ambient air, are not known to be
carcinogenic. S in PM probably represents a mixture of pollutants that is also rich in other
(secondary) combustion-related components, such as secondary organics or polycyclic
aromatic hydrocarbons. More studies are needed to determine the role of S and associated

components in the carcinogenicity of PM in air polution.

4.3 Strengths and limitations

The study benefited from a large number of participants in the 14 cohort studies, widely
different levels of air pollution and virtually complete foliow-up. The strengths of our study
also include the use of standardised protocols for exposure assessment and data analysis. We
assessed multiple PM elements, with a high percentage of detectable samples and highly
precise measwements in all 14 cohorts, Further, we tock advantage of exposure assessment at
address level, such that within-city contrasts in PM element concentrations were used in the
risk analyses. We adjusted the analyses for a number of potential confounders. In particular,
all cohort-specific analyses were adjusted for the important smoking variables smoking status,
smoking intensity and smoking duration. Other potential confounding factors affected the risk
estimates associated with PM only marginally (Raaschou-Nielsen and others 2013), although
the possibility of residual confounding or confounding from risk factors not accounted for,
such as radon, cannot be excluded.

The study also benefited from knowledge about residential mobility during follow-up.
Exposure was assessed at the address at the time of enrolment, and some participants changed
residence after enrolment. We conducted an additional analysis including only participants
who did not change residence during follow-up in order to obtain a more precise assessment
of long-term exposure. The stronger associations between PM elements and risk for lung

cancer in this sub-population add credibility to our findings. Information about addresses and
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exposure from several decades before enrolment would have been ideal due to the long
incubation period for lung cancer. Such information would also have facilitated analyses of
latency periods, which our data did not permit.

Our study has some limitations. We used measurements made in 2008-2011 to develop
land use regression models but applied them to addresses of participants at baseline, which
was mainly 10-15 years eartier. Recent research in Canada, Italy and the Netherlands shows,
however, that spatial contrasts of NO; are stable over 10-year periods (Cesaroni and others
2012; Eeftens and others 201 1; Wang and others 2013), and spatial models for black smoke in
the United Kingdom provided reasonable predictions, even going back to the 1960s (Gulliver
and others 2011). We cannot rule out the possibility that the spatial contrast was less stable
for specific elements. The information about potential confounders was collected at baseline
and would therefore not reflect changes in life style after baseline. The mean age of the
participating cohort members ranged from 43 to 73 years and we believe that life style in
these age groups 1s more stable than earlier in life.

We used land-use regression models to estimate exposure to PM elements, which involves
some degree of misclassification. Any misclassification would, however, be non-differential
and would consequently not be expected to create artificial associations. In the two-pollutant
models, different degrees of misclassification of PM elements would affect the results. Thus,
when two PM elements are correlated, some of the association between lung cancer and the
element with greater misclassification could be shified to the risk estimate for the element
with less misclassification. Measurement precision was best for S, Cu and Fe but poorer for
Ni and V {de Hoogh and others 2013), but the performance of the land use regression model
for § was among the lowest when evaluated by the model R% Therefore, a lower degree of
misclassification hardly explains why PM- s S rather than other elements accounted for the
associations between PMig and PM; 5 and risk for lung cancer. Two pollutant models can be
difficult to interpret especially if the same sources contribute to several PM components and
create high correlations. Further, only two of the many PM constituents were included in each
model. The results of these models, thus, should not be interpreted as the independent effect
of the specific element but rather as a representation of the effect of a complex mixture. Still,
they can contribute to a better understanding of the PM mixture and its association with risk
for lung cancer.

Analysis of eight elernents in two different PM fractions involved 16 main analyses and 16
analyses of participants who did not change residence during follow-up; we therefore cannot

exclude the possibility that some of the significant associations were due to multiple testing.
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4.4 Conclusion

In conclusion, assoctations with risk for lung cancer were found with several PM elements
from different sources; the strongest associations were seen for participants who did not
change their address during follow-up. Considering strengths and limitations, this study
indicates that the association between PM in air pollution and lung cancer can be attributed to
various PM components and sources; S- and Ni-containing PM might be particularly

important, but this must be confirmed in future studies.
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Figure 1

Figure 1. Cohort locations. Four cohorts were located in Stockholm, two in the Netherlands
and two in Turin.
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Supplementary Information
Click here to download Supplementary Information: Supplementary appendix 15.pdf



