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PROBABILISTIC TIMED AUTOMATA WITH ONE CLOCK AND

INITIALISED CLOCK-DEPENDENT PROBABILITIES

JEREMY SPROSTON

Dipartimento di Informatica, University of Turin, Italy
e-mail address: sproston@di.unito.it

Abstract. Clock-dependent probabilistic timed automata extend classical timed automata
with discrete probabilistic choice, where the probabilities are allowed to depend on the
exact values of the clocks. Previous work has shown that the quantitative reachability
problem for clock-dependent probabilistic timed automata with at least three clocks is un-
decidable. In this paper, we consider the subclass of clock-dependent probabilistic timed
automata that have one clock, that have clock dependencies described by affine functions,
and that satisfy an initialisation condition requiring that, at some point between tak-
ing edges with non-trivial clock dependencies, the clock must have an integer value. We
present an approach for solving in polynomial time quantitative and qualitative reacha-
bility problems of such one-clock initialised clock-dependent probabilistic timed automata.
Our results are obtained by a transformation to interval Markov decision processes.

1. Introduction

The diffusion of complex systems with timing requirements that operate in unpredictable
environments has led to interest in formal modelling and verification techniques for timed
and probabilistic systems. Model checking [13, 3] is an example of a formal verification
technique, and comprises the automatic verification of a system model against formally-
specified properties. A well-established modelling formalism for timed systems is timed

automata [2]. A timed automaton consists of a finite graph equipped with a set of real-valued
variables called clocks, which increase at the same rate as real-time and which can be used to
constrain the relative time of events. To model probabilistic systems formally, frameworks
such as Markov chains or Markov decision processes are used typically. Model-checking
algorithms for these formalisms have been presented in the literature: for overviews of
these techniques see, for example, [7] for timed automata, and [3, 15] for Markov chains and
Markov decision processes. Furthermore, timed automata and Markov decision processes
have been combined to obtain the formalism of probabilistic timed automata [17, 26, 29],
which can be viewed as timed automata with probabilities associated with their edges
(or, equivalently, as Markov decision processes equipped with clocks and their associated
constraints).

For the modelling of certain systems, it may be advantageous to model the fact that
the probability of some events, in particular those concerning the environment in which
the system is operating, vary as time passes. For example, in automotive and aeronautic
contexts, the probability of certain reactions of human operators may depend on factors

Key words and phrases: Timed automata, interval Markov chains, probabilistic model checking.

Preprint submitted to
Logical Methods in Computer Science

© Jeremy Sproston
CC© Creative Commons

http://arxiv.org/abs/2006.04202v2
http://creativecommons.org/about/licenses


2 JEREMY SPROSTON

W

x < 3

S

T

F

x < 5

1 < x < 3
3x−3

8

11−3x

16

11−3x

16

4 < x < 5

x−4

2

{x}

6−x

2

Figure 1: An example of one-clock clock-dependent probabilistic automaton P.

such as fatigue, which can increase over time (see, for example, [14]); an increase in the
amount of time that an unmanned aerial vehicle spends performing a search and rescue
operation in a hazardous zone may increase the probability that the vehicle incurs damage
from the environment; an increase in the time elapsed before a metro train arrives at a
station can result in an increase in the number of passengers on the station’s platform,
which can in turn increase the probability of the doors failing to shut at the station, due
to overcrowding of the train (see [4]). A natural way of representing such a dependency
of probability of events on time is using a continuous function: for example, for the case
in which a task can be completed between 1 and 3 time units in the future, we could
represent the successful completion of the task by probability x+1

4 , where the clock variable
x (measuring the amount of time elapsed) ranges over the interval [1, 3]. The standard
probabilistic timed automaton formalism cannot express such a continuous relationship
between probabilities and time, being limited to step functions (where the intervals along
which the function is constant must have rational-numbered endpoints). This limitation led
to the development of an extension of probabilistic timed automata called clock-dependent

probabilistic timed automata [33], in which the probabilities of crossing edges can depend on
clock values according to piecewise constant functions. Figure 1 gives an example of such
a clock-dependent probabilistic timed automaton, using the standard conventions for the
graphical representation of (probabilistic) timed automata (the model has one clock denoted
by x, and black boxes denote probabilistic choices over outgoing edges). In location W, the
system is working on a task, which is completed after between 1 and 3 units of time. When
the task is completed, it is either successful (edge to location S), fails (edge to location F) or
leads to system termination (edge to location T). For the case in which the task completion
fails, between 4 and 5 time units after work on the task started the system may either restart
the task from the beginning (edge to location W, resetting x to 0), or to terminate (edge to
location T). The edges corresponding to probabilistic choices are labelled with expressions

over the clock x, which describe how the probability of those edges changes in accordance
with changes in the value of x. For example, the longer the time spent in location W, the
higher the value of x when location W is left, and the higher the probability of making a
transition to location S, which corresponds to the successful completion of the task.

Previous work on clock-dependent probabilistic timed automata showed that a basic
quantitative reachability problem, regarding whether there is a scheduler of nondeterministic
choice such that the probability of reaching a set of target locations exceeds some probability
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threshold, is undecidable, but that an approach based on the region graph (which is a finite-
state abstraction used extensively for timed automata) can be employed to approximate
optimal reachability probabilities [33]. The undecidability result relied on the presence of
at least three clocks: in this paper, following similar precedents in the context of (non-
probabilistic and probabilistic) variants of timed automata (for example, [27, 8, 24, 5, 6, 1]),
we restrict our attention to clock-dependent probabilistic timed automata with a single

clock variable. As in [33], we consider the case in which the dependencies of transition
probabilities on the value of the clock are described by affine functions. Furthermore, we
assume that, between any two edges with a non-constant dependence on the clock, the
clock must have a natural-numbered value, either through being reset to 0 or by increasing
as time passes. We call this condition initialisation, following the precedents of [1] and
[22], in which similar conditions are used to obtain decidability results for stochastic timed
systems with one clock, and hybrid automata, respectively; intuitively, the value of the clock
is “reinitialised” (either explicitly, through a reset to 0, or implicitly, through the passage
of time) to a known, natural value between non-constant dependencies of probability on
the value of the clock. Note that the clock-dependent probabilistic timed automaton of
Figure 1 satisfies this assumption (although clock x is not reset on the edge to location
F, it must take values 3 and 4, i.e., at least one natural-numbered value, before location
F can be left). We show that, for such clock-dependent probabilistic timed automata,
quantitative reachability problems can be solved in polynomial time. Similarly, we can
also solve in polynomial time qualitative reachability problems, which ask whether there
exists a scheduler of nondeterminism such that a set of target locations can be reached
with probability 1 (or 0), or whether all schedulers of nondeterminism result in the target
locations being reached with probability 1 (or 0).

These results rely on the construction of an interval Markov decision process from
the one-clock clock-dependent probabilistic timed automaton. Interval Markov decision
processes have been well-studied in the verification context (for example, in [31, 21, 18]),
and also in other contexts, such as planning [16] and control [28, 37]. They comprise a
finite state space where transitions between states are achieved in the following manner: for
each state, there is a nondeterministic choice between a set of actions, where each action
is associated with a decoration of the set of edges from the state with intervals in [0, 1];
then a nondeterministic choice as to the exact probabilities associated with each outgoing
edge is chosen from the intervals associated with the action chosen in the first step; finally,
a probabilistic choice is made over the edges according to the probabilities chosen in the
second step, thus determining the next state. In contrast to the standard formulation of
interval Markov decision processes, we allow edges corresponding to probabilistic choices to
be labelled not only with closed intervals, but also with open and half-open intervals. While
(half-)open intervals have been considered previously in the context of interval Markov
chains in [9, 34], we are unaware of any work considering them in the context of interval
Markov decision processes. The presence of open intervals is vital to obtain a precise
representation of the one-clock clock-dependent probabilistic timed automaton.

We proceed by giving some preliminary concepts in Section 2: this includes a reduction
from interval Markov decision processes to interval Markov chains [23, 25, 32] with the
standard Markov decision process-based semantics, which may be of independent interest.
The reduction takes open and half-open intervals into account; while [9] has shown that
open interval Markov chains can be reduced to closed Markov chains for the purposes
of quantitative properties, [34] shows that the open/closed distinction is critical for the
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evaluation of qualitative properties. In Section 3, we present the definition of one-clock
clock-dependent probabilistic timed automata, and present the transformation to interval
Markov decision processes in Section 4. This paper extends the conference version [35] with
full proofs of the results.

2. Interval Markov Decision Processes

2.1. Preliminaries. We use R≥0 to denote the set of non-negative real numbers, Q to
denote the set of rational numbers, and N to denote the set of natural numbers. A (dis-
crete) probability distribution over a countable set Q is a function µ : Q→ [0, 1] such that
∑

q∈Q µ(q) = 1. Let Dist(Q) be the set of distributions over Q. For a (possibly uncountable)

set Q and a function µ : Q → [0, 1], we define support(µ) = {q ∈ Q | µ(q) > 0}. Then, for
an uncountable set Q, we define Dist(Q) to be the set of functions µ : Q→ [0, 1] such that
support(µ) is a countable set and µ restricted to support(µ) is a distribution. Given a binary
function f : Q×Q → [0, 1] and element q ∈ Q, we denote by f(q, ·) : Q → [0, 1] the unary
function such that f(q, ·)(q′) = f(q, q′) for each q′ ∈ Q.

A Markov chain (MC) C is a pair (S,P) where S is a set of states and P : S×S → [0, 1]
is a transition probability function, such that P(s, ·) ∈ Dist(S) for each state s ∈ S. A path

of MC C is a sequence s0s1 · · · of states such that P(si, si+1) > 0 for all i ≥ 0. Given a path
r = s0s1 · · · and i ≥ 0, we let r(i) = si be the (i+1)-th state along r. The set of paths of C
starting in state s ∈ S is denoted by PathsC(s). In the standard manner (see, for example,
[3, 15]), given a state s ∈ S, we can define a probability measure PrCs over PathsC(s).

A Markov decision process (MDP) M = (S,A,∆) comprises a set S of states, a set
A of actions, and a probabilistic transition function ∆ : S × A → Dist(S) ∪ {⊥}. The
symbol ⊥ is used to represent the unavailability of an action in a state, i.e., ∆(s, a) = ⊥
signifies that action a ∈ A is not available in state s ∈ S. For each state s ∈ S, let
A(s) = {a ∈ A | ∆(s, a) 6= ⊥}, and assume that A(s) 6= ∅, i.e., there is at least one available
action in each state. Transitions from state to state of an MDP are performed in two
steps: if the current state is s, the first step concerns a nondeterministic selection of an
action a ∈ A(s); the second step comprises a probabilistic choice, made according to the
distribution ∆(s, a), as to which state to make the transition (that is, a transition to a state
s′ ∈ S is made with probability ∆(s, a)(s′)). In general, the sets of states and actions can
be uncountable. We say that an MDP is finite if S and A are finite sets.

A(n infinite) path of an MDP M is a sequence s0a0s1a1 · · · such that ai ∈ A(si) and
∆(si, ai)(si+1) > 0 for all i ≥ 0. Given an infinite path r = s0a0s1a1 · · · and i ≥ 0, we let
r(i) = si be the (i + 1)-th state along r. Let PathsM be the set of infinite paths of M. A
finite path is a sequence r = s0a0s1a1 · · · an−1sn such that ai ∈ A(si) and ∆(si, ai)(si+1) > 0
for all 0 ≤ i < n. Let last(r) = sn denote the final state of r. For a ∈ A(sn) and s ∈ S

such that ∆(sn, a)(s) > 0, we use ras to denote the finite path s0a0s1a1 · · · an−1snas. Let
PathsM∗ be the set of finite paths of the MDP M. Let PathsM(s) and PathsM∗ (s) be the
sets of infinite paths and finite paths, respectively, of M starting in state s ∈ S.

A scheduler is a function σ : PathsM∗ →
⋃

s∈S Dist(A(s)) such that σ(r) ∈ Dist(A(last(r)))

for all r ∈ PathsM∗ . 1 Let ΣM be the set of schedulers of the MDP M. We say

1From [19, Lemma 4.10], without loss of generality we can assume henceforth that schedulers map to
distributions assigning positive probability to finite sets of actions, i.e., schedulers σ for which |support(σ(r))|
is finite for all r ∈ PathsM∗ .
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that infinite path r = s0a0s1a1 · · · is generated by σ if σ(s0a0s1a1 · · · ai−1si)(ai) > 0
for all i ∈ N. Let Pathsσ be the set of paths generated by σ. The set Pathsσ∗ of fi-
nite paths generated by σ is defined similarly. Let Pathsσ(s) = Pathsσ ∩ PathsM(s) and

Pathsσ∗ (s) = Pathsσ∗ ∩ PathsM∗ (s). Given a scheduler σ ∈ ΣM, we can define a countably
infinite-state MC Cσ that corresponds to the behaviour of σ: we let Cσ = (Pathsσ∗ ,P), where,
for r, r′ ∈ Pathsσ∗ , we have P(r, r′) = σ(r)(a) ·∆(last (r), a)(s) if r′ = ras and a ∈ A(last(r)),
and P(r, r′) = 0 otherwise. For r = s0a0s1a1 · · · an−1sn, we denote the (i + 1)-th prefix
of r by ri, i.e., ri = s0a0s1a1 · · · ai−1si, for i ≤ n. Given s ∈ S and r ∈ Pathsσ∗ , we
let Prσ∗,s(r) = P(r0, r1) · . . . · P(rn−1, rn). Let Cyl(r) ⊆ PathsM(s) be the set of infinite
paths starting in s that have the finite path r as a prefix. Then we let Prσs be the unique
probability measure over Pathsσ(s) such that Prσs (Cyl(r)) = Prσ∗,s(r) (for more details, see
[3, 15]).

Given a set T ⊆ S, we define ♦T = {r ∈ PathsM | ∃i ∈ N . r(i) ∈ T} as the set of
infinite paths of M such that some state of T is visited along the path. Let s ∈ S. We define
the maximum probability of reaching T from s as Pmax

M,s(♦T ) = supσ∈ΣM Prσs (♦T ). Similarly,

the minimum probability of reaching T from s is defined as Pmin
M,s(♦T ) = infσ∈ΣM Prσs (♦T ).

The maximal reachability problem for M, T ⊆ S, s ∈ S, D ∈ {≥, >} and λ ∈ [0, 1] is to
decide whether Pmax

M,s(♦T ) D λ. Similarly, the minimal reachability problem for M, T ⊆ S,

s ∈ S, E ∈ {≤, <} and λ ∈ [0, 1] is to decide whether Pmin
M,s(♦T ) E λ. The maximal

and minimal reachability problems are called quantitative problems. We also consider the
following qualitative problems: (∀0) decide whether Prσs (♦T ) = 0 for all σ ∈ ΣM; (∃0)
decide whether there exists σ ∈ ΣM such that Prσs (♦T ) = 0; (∃1) decide whether there
exists σ ∈ ΣM such that Prσs (♦T ) = 1; (∀1) decide whether Prσs (♦T ) = 1 for all σ ∈ ΣM.

2.2. Interval Markov Chains. We let I denote the set of (open, half-open or closed)
intervals that are subsets of [0, 1] and that have rational-numbered endpoints. Given an
interval I ∈ I, we let left(I) (respectively, right(I)) be the left (respectively, right) endpoint
of I.

An interval distribution over a finite set Q is a function d : Q→ I such that:

(1):
∑

q∈Q left(d(q)) ≤ 1 ≤
∑

q∈Q right(d(q)),

(2a):
∑

q∈Q left(d(q)) = 1 implies that d(q) is left-closed for all q ∈ Q, and

(2b):
∑

q∈Q right(d(q)) = 1 implies that d(q) is right-closed for all q ∈ Q.

We define Dist(Q) as the set of interval distributions over Q. An assignment for interval

distribution d is a distribution α ∈ Dist(Q) such that α(q) ∈ d(q) for each q ∈ Q. Note
that conditions (1), (2a) and (2b) in the definition of interval distributions guarantee that
there exists at least one assignment for each interval distribution. Let G(d) be the set of
assignments for d.

An (open) interval Markov chain (IMC) C is a pair (S,P), where S is a finite set
of states, and P : S × S → I is a interval-based transition function such that P(s, ·) is
an interval distribution for each s ∈ S (formally, P(s, ·) ∈ Dist(S)). An IMC makes a
transition from a state s ∈ S in two steps: first an assignment α is chosen from the set
G(P(s, ·)) of assignments for P(s, ·), then a probabilistic choice over target states is made
according to α. The semantics of an IMC corresponds to an MDP that has the same state
space as the IMC, and for which each state is associated with a set of distributions, the
precise transition probabilities of which are chosen from the interval distribution of the



6 JEREMY SPROSTON

s

a1

a2

s1

s2

s3

s

(s, a1)

(s, a2)

s1

s2

s3

( 1

4
, 2

3
]

[ 1
3
, 3

4
)

[ 1
2
, 1

2
]

[ 1
2
, 1

2
]

[0, 1]

[0, 1]

( 1

4
, 2

3
]

[ 1
3
, 3

4
)

[ 1
2
, 1

2
]

[ 1
2
, 1

2
]

Figure 2: Example fragments of IMDP M (left) and the constructed IMC C[M] (right).

state. Formally, the semantics of an IMC C = (S,P) is the MDP [[C]] = (S,G(P),∆), where
G(P) =

⋃

s∈S G(P(s, ·)), and for which ∆(s, α) = α for all states s ∈ S and assignments
α ∈ G(P(s, ·)) for P(s, ·). In previous literature (for example, [32, 11, 12]), this semantics
is called the “IMDP semantics”.

Computing Pmax
[[C]],s(♦T ) and Pmin

[[C]],s(♦T ) can be done for an IMC C simply by transform-

ing the IMC by closing all of its (half-)open intervals, then employing a standard maxi-
mum/minimum reachability probability computation on the new, “closed” IMC (for exam-
ple, the algorithms of [32, 12]): the correctness of this approach is shown in [9]. Algorithms
for qualitative problems of IMCs (with open, half-open and closed intervals) are given in
[34]. All of the aforementioned algorithms run in polynomial time in the size of the IMC,
which is obtained as the sum over all states s, s′ ∈ S of the binary representation of the
endpoints of P(s, s′), where rational numbers are encoded as the quotient of integers written
in binary.

2.3. Interval Markov Decision Processes. An (open) interval Markov decision pro-

cess (IMDP) M = (S,A,D) comprises a finite set S of states, a finite set A of actions,
and an interval-based transition function D : S × A → Dist(S) ∪ {⊥}. Let A(s) =
{a ∈ A | D(s, a) 6= ⊥}, and assume that A(s) 6= ∅ for each state s ∈ S. In contrast to
IMCs, an IMDP makes a transition from a state s ∈ S in three steps: (1) an action
a ∈ A(s) is chosen, then (2) an assignment α for D(s, a) is chosen, and finally (3) a
probabilistic choice over target states to make the transition to is performed according
to α. Formally, the semantics of an IMDP M = (S,A,D) is the MDP [[M]] = (S,A,∆)
where A(s) = {(a, α) ∈ A× Dist(S) | a ∈ A(s) and α ∈ G(D(s, a))} for each state s ∈ S,
and ∆(s, (a, α)) = α for each state s ∈ S and action/assignment pair (a, α) ∈ A(s). Note
that (as in, for example, [31, 21, 18]) we adopt a cooperative resolution of nondetermin-
ism for IMDPs, in which the choice of action and assignment (steps (1) and (2) above) is
combined into a single nondeterministic choice in the semantic MDP.

Given the cooperative nondeterminism for IMDPs, we can show that, given an IMDP, an
IMC can be constructed in polynomial time such that the maximal and minimal reachability
probabilities for the IMDP and the constructed IMC coincide, and furthermore qualitative
properties agree on the IMDP and the constructed IMC. Formally, given the IMDP M =
(S,A,D), we construct an IMC C[M] = (S̃, P̃) in the following way:

• the set of states is defined as S̃ = S∪(S⊗A), where S⊗A =
⋃

s∈S{(s, a) ∈ S × A | a ∈ A(s)};

• for s ∈ S and a ∈ A(s), let P̃(s, (s, a)) = [0, 1], and let P̃((s, a), ·) = D(s, a).
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Example 2.1. In Figure 2 we illustrate a fragment of an IMDP (left), and give the corre-
sponding fragment of the constructed IMC C[M] (right). Note that the nondeterministic
choice between actions a1 and a2 from state s of M is replaced in C[M] by a choice between
states (s, a1) and (s, a2); more precisely, the choice of a scheduler of M from a path end-
ing in state s as to probabilities to assign to actions a1 and a2 is reflected by the choice
of assignment made in C[M] over states (s, a1) and (s, a2) (note that this latter choice is
unconstrained by the interval [0, 1] used for these transitions).

The following proposition states the correctness of the construction of C[M] with respect
to quantitative and qualitative problems.

Proposition 2.2. Let M = (S,A,D) be an IMDP, and let s ∈ S, T ⊆ S and λ ∈ {0, 1}.
Then:

• Pmax
[[M]],s(♦T ) = Pmax

[[C[M]]],s(♦T ) and Pmin
[[M]],s(♦T ) = Pmin

[[C[M]]],s(♦T );

• there exists σ ∈ Σ[[M]] such that Prσs (♦T ) = λ if and only if there exists σ′ ∈ Σ[[C[M]]] such

that Prσ
′

s (♦T ) = λ;

• Prσs (♦T ) = λ for all σ ∈ Σ[[M]] if and only if Prσ
′

s (♦T ) = λ for all σ′ ∈ Σ[[C[M]]].

In order to show Proposition 2.2, we consider two lemmata that show that a scheduler
of M can be matched by a “mimicking” scheduler of C[M] (Lemma 2.3), and vice versa
(Lemma 2.4), such that the probabilities of reaching a set of target states for the two
schedulers coincide. Together, these lemmata suffice to establish Proposition 2.2.

Lemma 2.3. Let s ∈ S and T ⊆ S. Then, for each σ ∈ Σ[[M]], there exists π ∈ Σ[[C[M]]] such

that Prσs (♦T ) = Prπs (♦T ).

Proof. Let M = (S,A,D). To avoid ambiguity, we henceforth refer to ele-
ments of A as M-actions. Recall that [[M]] = (S,A,∆[[M]]) where A(s) =
{(a, α) ∈ A× Dist(S) | a ∈ A(s) and α ∈ G(D(s, a))} and ∆[[M]](s, (a, α)) = α for each s ∈ S

and (a, α) ∈ A(s). Note that an action (a, α) ∈ A of [[M]] comprises an A-action a and an as-

signment α from Dist(S). We can observe that finite paths of [[M]] (i.e., elements of Paths
[[M]]
∗ )

have the form s0(a0, α0)s1(a1, α1) · · · (an−1, αn−1)sn, where si ∈ S for all 0 ≤ i ≤ n, and
(aj , αj) ∈ A× Dist(S) for all 0 ≤ i ≤ n.

Recall that C[M] = (S∪(S⊗A), P̃), where P̃(s, (s, a)) = [0, 1] and P̃((s, a), ·) = D(s, a)
for s ∈ S and a ∈ A(s), i.e., C[M] alternates between states from S and S ⊗ A, where
the probability of transitions from S to S ⊗ A are unconstrained, and the probability of
transitions from S ⊗ A to S are constrained by intervals defined by D. Finally, we also re-
call that [[C[M]]] = (S ∪ (S ⊗ A),G(P̃),∆[[C[M]]]), where G(P̃) =

⋃

s̃∈S∪(S⊗A)G(P̃(s̃, ·)) and

∆[[C[M]]](s̃, α) = α for all s̃ ∈ S∪(S⊗A) and α ∈ G(P̃(s̃, ·)). Note that the actions of [[C[M]]],

i.e., elements of the set G(P̃), are themselves the assignments that are used to determine the
next state: given the aforementioned alternation between S and S⊗A in C[M], from states
in S, only assignments in Dist(S ⊗ A) are available; similarly, from states in S ⊗ A, only

assignments in Dist(S) are available. We partition Paths
[[C[M]]]
∗ into two sets, on the basis

of whether the final state of a path is in S or S ⊗ A: let Paths
[[C[M]]]
∗,S ⊆ Paths

[[C[M]]]
∗ be the

set of finite paths of the form s0β0(s0, a0)γ0s1β1(s1, a1)γ1 · · · sn−1βn−1(sn−1, an−1)γn−1sn,

and let Paths
[[C[M]]]
∗,S⊗A ⊆ Paths

[[C[M]]]
∗ be the set of finite paths of the form

s0β0(s0, a0)γ0s1β1(s1, a1)γ1 · · · smβm(sm, am).



8 JEREMY SPROSTON

Let s ∈ S, T ⊆ S and σ ∈ Σ[[M]]. The proof of the lemma consists of constructing
π ∈ Σ[[C[M]]] from σ, and showing that Prσs (♦T ) = Prπs (♦T ). Intuitively, the construction of
scheduler π proceeds in the following manner: each choice made by σ (which we recall, from
the definition of [[M]], is a distribution over M-action/assignment pairs) is mimicked by a
sequence of two choices made by π, the first of which mimics the choice of σ over M-actions,
and where the second mimics the choice of σ over assignments.

To describe formally the construction of π, we first introduce the function f :

Paths
[[C[M]]]
∗,S (s) → Paths

[[M]]
∗ (s) that associates, for each finite path in Paths

[[C[M]]]
∗,S (s), a

finite path in Paths
[[M]]
∗ (s) that (1) visits the same states of S, and (2) features the

same actions from A and assignments from Dist(S). Formally, for r ∈ Paths
[[C[M]]]
∗,S (s)

such that r = s0β0(s0, a0)γ0s1β1(s1, a1)γ1 · · · sn−1βn−1(sn−1, an−1)γn−1sn, we let f(r) =
s0(a0, γ0)s1(a1, γ1) · · · (an−1, γn−1)sn. That is, f(r) retains fully the subsequence s0s1 · · · sn
of states from S, the subsequence a0a1 · · · an−1 of actions of M from A, and the subse-
quence γ0γ1 · · · γn−1 of assignments from Dist(S), but not β0β1 · · · βn−1 of assignments from

Dist(S ⊗ A). We note that f(r) is an element of Paths
[[M]]
∗ (s) by the following reasoning:

for each 0 ≤ i < n, we require that (a) ai ∈ A(si) and (b) γi ∈ G(D(si, ai)); both (a)
and (b) follow from the definition of C[M], with (a) following because (si, ai) ∈ S ⊗ A

implies that ai ∈ A(si), and (b) following because P̃((si, ai), ·) = D(si, ai), and hence

γi ∈ G(P̃((si, ai), ·)) implies that γi ∈ G(D(si, ai)).

Consider finite path r ∈ Paths
[[C[M]]]
∗,S (s). We define the choice of π after r by mimicking

the choice of σ after f(r). Recall that σ(f(r)) ∈ Dist(A), and that A ⊆ A × Dist(S), i.e.,
support(σ(f(r))) contains pairs of the form (a, α) for a ∈ A and α ∈ Dist(S). We assume
w.l.o.g. that, for a ∈ A(last (r)), there exists at most one α ∈ G(D(last(r), a)) such that
(a, α) ∈ support(σ(f(r))). The assumption can be made w.l.o.g. because the set of assign-
ments G(D(last(r), a)) is closed under convex combinations (as noted in, for example, [21]).
In the following, for a ∈ A(last (r)) such that (a, α) ∈ support(σ(f(r))) for some α ∈ Dist(S),
we let pol (r, a) = α, i.e., pol (r, a) denotes the unique assignment such that (a, pol (r, a)) ∈
support(σ(f(r))). For each a ∈ A(last(r)), let β(last (r),a) : S ⊗ A → {0, 1} be the function
such that, for each (s′, a′) ∈ S ⊗A, we have β(last (r),a)(s

′, a′) = 1 if (s′, a′) = (last(r), a) and

β(last (r),a)(s
′, a′) = 0 otherwise. Note that β(last(r),a) ∈ G(P̃(last(r), ·)), i.e., β(last(r),a) is an

assignment for P̃(last(r), ·) (recall that, for any a ∈ A(last(r)), we have P̃(s, (last(r), a)) =
[0, 1]). We then let π(r) be such that π(r)(β(last (r),a)) = σ(f(r))(a, pol (r, a)) for each

a ∈ A(last(r)) such that (a, pol (r, a)) ∈ support(σ(f(r))).2

Now consider finite path r′ ∈ Paths
[[C[M]]]
∗,S⊗A(s), where r

′ = rβ(last(r), a) for some r ∈

Paths
[[C[M]]]
∗,S (s), β ∈ G(P̃(last(r), ·)) and (last(r), a) ∈ S ⊗A (note that we use the notation

rβ(last(r), a) to denote the finite path with prefix r and suffix last(r)β(last (r), a); we use
similar notation throughout this and subsequent proofs). We define the choice of π after
r′ as follows. Consider the case in which (a, pol (r, a)) ∈ support(σ(f(r))); then we let π(r′)
be such that π(r′)(pol (r, a)) = 1. Instead, in the case in which there does not exist any
(a, α) ∈ support(σ(f(r))), we let π(r′) be an arbitrary distribution.

2We note that the scheduler π(r) can be defined in an alternative way, as follows. Define β : S ⊗ A →
[0, 1] to be the function such that β(last(r), a) = σ(f(r))(a, pol(r, a)) for each a ∈ A(last(r)) such that
(a, pol(r, a)) ∈ support(σ(f(r))), and let π(r)(β) = 1, i.e., the probabilistic choice of the distribution σ(f(r))
is encoded in β, which is chosen by π(r) with probability 1. We do not use this alternative definition of π.
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Recall that Pathsσ∗ (s) and Pathsπ∗ (s) are the sets of finite paths from state s induced by

σ and π, respectively. Let Pathsπ∗,S(s) = Pathsπ∗ (s) ∩ Paths
[[C[M]]]
∗,S (s) and Pathsπ∗,S⊗A(s) =

Pathsπ∗ (s) ∩ Paths
[[C[M]]]
∗,S⊗A(s). Let Prσ∗,s (respectively, Prπs ) be the probability measure over

finite paths induced by σ (respectively, π), defined in the standard manner. In particular,
we note that, for finite paths r, r′ ∈ Pathsπ∗,S(s), if r

′ = rβ(last(r), a)γs′, then Prπ∗,s(r
′) =

Prπ∗,s(r) · π(r)(β) · β(last(r), a) · π(rβ(last (r), a))(γ) · γ(s
′) (where Prπ∗,s(s) = 1). Similarly,

for finite paths r, r′ ∈ Pathsσ∗ (s), if r
′ = r(a, α)s′, then Prσ∗,s(r

′) = Prσ∗,s(r) · σ(a, α) · α(s
′)

(where Prσ∗,s(s) = 1). We show that Prπ∗,s(r) = Prσ∗,s(f(r)), for r ∈ Pathsπ∗,S(s), by induction
on the length of paths, where the length of a finite path of Pathsσ∗ (s) or Paths

π
∗,S(s) is the

number of states from S along the path (although paths Pathsπ∗,S(s) visit states from S

and from S ⊗ A, when considering the length of such a path, we only consider states from
S). For the base case, i.e., for the path of length 1, which comprises state s only, we note
that f(s) = s, and that Prπ∗,s(s) = Prσ∗,s(f(s)) = 1. Now consider r, r′ ∈ Pathsπ∗,S(s) such

that r′ = rβ(last(r), a)γs′, and assume that we have already established that Prπ∗,s(r) =

Prσ∗,s(f(r)). Furthermore (given that r′ ∈ Pathsπ∗,S(s)), we have β(last (r), a) = 1 and

γ = pol (r, a). Recalling that f(r′) = f(r)(a, pol (r, a))s′ and, by construction, π(r)(β) =
σ(f(r))(a, pol (r, a)) and π(rβ(last(r), a))(pol (r, a)) = 1, we can establish the following:

Prπ∗,s(r
′) = Prπ∗,s(r) · π(r)(β) · β(last (r), a) · π(rβ(last(r), a))(γ) · γ(s

′)

= Prσ∗,s(f(r)) · σ(f(r))(a, pol (r, a)) · pol (r, a)(s
′)

= Prσ∗,s(f(r
′)) .

The fact that Prπ∗,s and Prσ∗,s assign the same probability to finite paths related by f ,
together with the fact that finite paths related by f visit the same states from S, means
that Prπ∗,s and Prσ∗,s assign the same probability to sets of finite paths that visit T . By
standard reasoning, this means that Prσs (♦T ) = Prπs (♦T ).

Lemma 2.4. Let s ∈ S and T ⊆ S. Then, for each π ∈ Σ[[C[M]]], there exists σ ∈ Σ[[M]] such

that Prσs (♦T ) = Prπs (♦T ).

Proof. We proceed by constructing σ from π by using the “reverse” of the construction used
for Lemma 2.3: each sequence of two choices of π, the first determining a transition from a
state in S to a state in S ⊗A, the second determining a transition from a state in S ⊗A to
a state in S, is mimicked by a single choice of σ.

In the following, we assume w.l.o.g. that, for each finite path r ∈ Paths
[[C[M]]]
∗ , there

exists some β ∈ G(P̃(last(r), ·)) such that π(r)(β) = 1. The assumption is w.l.o.g. because,

as in the proof of Lemma 2.3, the set G(P̃(last(r), ·)) is closed under convex combinations.
As in the proof of Lemma 2.3, we introduce a function from the set of finite paths of

Paths
[[M]]
∗ (s) to the set of finite paths of Paths

[[C[M]]]
∗ ; however, in constrast to the proof of

Lemma 2.3, the range of the function includes only finite paths that are generated by π,

with ⊥ used to represent cases in which a finite path of Paths
[[M]]
∗ (s) has no corresponding

finite path in Pathsπ∗ (s). Let g : Paths
[[M]]
∗ (s) → Pathsπ∗ (s) ∪ {⊥} be the function defined

as follows: for r ∈ Paths
[[M]]
∗ (s), where r = s0(a0, α0)s1(a1, α1) · · · (an−1, αn−1)sn, if there

exists sequence β0β1 · · · βn−1 for which the finite path

r′ = s0β0(s0, a0)α0s1β1(s1, a1)α1 · · · sn−1βn−1(sn−1, an−1)αn−1sn
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is such that r′ ∈ Pathsπ∗ (s), then g(r) = r′, otherwise g(r) = ⊥. Note that, from the
assumption on π made in the previous paragraph, if such a sequence β0β1 · · · βn−1 exists, it
is unique, and hence the function g is well-defined.

Let r ∈ Paths
[[M]]
∗ (s). If g(r) = ⊥, then we define σ(r) to be an arbitrary distribution.

Otherwise we derive σ(r) from π(g(r)). First, recall that π(g(r))(β) = 1 for some β ∈
G(P̃(last(r), ·)). Furthermore, recall that β ∈ Dist(S ⊗ A) and note that, by construction,
for all (s′, a) ∈ support(β) we have s′ = last(r). Consider some (last(r), a) ∈ support(β). For
the resulting finite path g(r)β(last (r), a), we now consider π(g(r)β(last (r), a)). As above,

we can assume w.l.o.g. that π(g(r)β(last (r), a))(γ) = 1 for some γ ∈ G(P̃((last (r), a), ·)).
We can now define σ(r)(a′, α) for each (a′, α) ∈ A(s): if (a′, α) = (a, γ), then σ(r)(a′, α) =
β(last(r), a′) and σ(r)(a′, α) = 0 otherwise.

Next, we show that Prσ∗,s(r) = Prπ∗,s(g(r)), for r ∈ Pathsσ∗ (s) by induction on the
length of paths. For the base case, given that g(s) = s, we have Prσ∗,s(s) = Prπ∗,s(g(s)) =

1. Now consider r, r′ ∈ Pathsσ∗ (s) such that r′ = r(a, α)s′, and assume that we have
already established that Prσ∗,s(r) = Prπ∗,s(g(r)). From the definition of g, we have that

g(r′) = g(r)β(last (r), a)αs′, where β ∈ G(P̃(last(r), ·)) such that π(g(r))(β) = 1 (and hence
g(r′) ∈ Pathsπ∗ (s)). Recall that we have constructed σ such that σ(r)(a, α) = β(last(r), a);
furthermore, we have assumed w.l.o.g. π(g(r))(β) = 1 and π(g(r)β(last (r), a))(α) = 1.
Then we have:

Prσ∗,s(r
′) = Prσ∗,s(r) · σ(r)(a, α) · α(s

′)

= Prπ∗,s(g(r)) · π(r)(β) · β(last(r), a) · π(g(r)β(last (r), a))(α) · α(s
′)

= Prπ∗,s(g(r
′)) .

As in the proof of Lemma 2.3, we conclude that Prσs (♦T ) = Prπs (♦T ).

3. Clock-Dependent Probabilistic Timed Automata with One Clock

In this section, we recall the formalism of clock-dependent probabilistic timed automata.
The definition of clock-dependent probabilistic timed automata of [33] features an arbitrary
number of clock variables. In contrast, we consider models with only one clock variable.
This clock variable will be denoted x for the remainder of the paper.

A clock valuation is a value v ∈ R≥0, interpreted as the current value of clock x. Follow-
ing the usual notational conventions for modelling formalisms based on timed automata, for
clock valuation v ∈ R≥0 and X ∈ {{x}, ∅}, we write v[X:=0] to denote the clock valuation
in which clocks in X are reset to 0; in the one-clock setting, we have v[{x}:=0] = 0 and

v[∅:=0] = v. In the following, we write 2{x} rather than {{x}, ∅}.
The set Ψ of clock constraints over x is defined as the set of conjunctions over atomic

formulae of the form x ∼ c, where ∼∈ {<,≤,≥, >} and c ∈ N. A clock valuation v satisfies
a clock constraint ψ, denoted by v |= ψ, if ψ resolves to true when substituting each
occurrence of clock x with v.

For a set Q, a distribution template ℘ : R≥0 → Dist(Q) gives a distribution over Q for
each clock valuation. In the following, we use notation ℘[v], rather than ℘(v), to denote the
distribution corresponding to distribution template ℘ and clock valuation v. Let Temp(Q)
be the set of distribution templates over Q.
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A one-clock clock-dependent probabilistic timed automaton (1c-cdPTA) P = (L, inv , prob)
comprises the following components:

• a finite set L of locations;
• a function inv : L→ Ψ associating an invariant condition with each location;
• a set prob ⊆ L×Ψ × Temp(2{x} × L) of probabilistic edges.

A probabilistic edge (l, g, ℘) ∈ prob comprises: (1) a source location l; (2) a clock constraint
g, called a guard ; and (3) a distribution template ℘ with respect to pairs of the form

(X, l′) ∈ 2{x} × L (i.e., pairs consisting of a first element indicating whether x should be
reset to 0 or not, and a second element corresponding to a target location l′). We refer to
pairs (X, l′) ∈ 2{x} × L as outcomes.

The behaviour of a 1c-cdPTA takes a similar form to that of a standard (one-clock)
probabilistic timed automaton [17, 26, 24]: in any location time can advance as long as the
invariant condition holds, and the choice as to how much time elapses is made nondetermin-
istically; a probabilistic edge can be taken if its guard is satisfied by the current value of the
clock, and the choice as to which probabilistic edge to take is nondeterministic; for a taken
probabilistic edge, the choice of whether to reset the clock and which target location to make
the transition to is probabilistic. In comparison with probabilistic timed automata, the key
novelty of 1c-cdPTAs is that the distribution used to make the aforementioned probabilistic
choice depends on the probabilistic edge taken and on the current clock valuation.

A state of a 1c-cdPTA is a pair comprising a location and a clock valuation satisfying
the location’s invariant condition, i.e., (l, v) ∈ L × R≥0 such that v |= inv(l). In any state
(l, v), a certain amount of time t ∈ R≥0 elapses, then a probabilistic edge is traversed. The
choice of t requires that the invariant inv(l) remains satisfied continuously while time passes.
The resulting state after the elapse of time is (l, v+t). A probabilistic edge (l′, g, ℘) ∈ prob

can then be chosen from state (l, v+t) if l = l′ and it is enabled, i.e., the clock constraint
g is satisfied by v+t. Once a probabilistic edge (l, g, ℘) is chosen, a successor location, and
whether to reset the clock to 0, is chosen at random, according to the distribution ℘[v+t].
For example, in the case of the 1c-cdPTA of Figure 1, from state (W, 0) (i.e., the location
is W and the value of clock x is equal to 0), a time delay t ∈ (1, 3) elapses, increasing the
value of x to t, before the probabilistic edge leaving W is traversed. Then the resulting state
will be (S, t) with probability 3t−3

8 , (T, t) with probability 11t−3
16 , and (F, t) with probability

11t−3
16 .

We make the following assumptions on 1c-cdPTAs, in order to simplify the definition of
their semantics. Firstly, we consider 1c-cdPTAs featuring invariant conditions that prevent
the clock from exceeding some upper bound and impose no lower bound: formally, for each
location l ∈ L, we have that inv(l) is a constraint x ≤ c for some c ∈ N, or a constraint
x < c for some c ∈ N \ {0}. Secondly, we restrict our attention to 1c-cdPTAs for which it is
always possible to take a probabilistic edge, either immediately or after letting time elapse.
Formally, for each location l ∈ L, if inv(l) = (x ≤ c) then (viewing c as a clock valuation)
c |= g for some (l, g, ℘) ∈ prob ; instead, if inv(l) = (x < c) then c− ε |= g for all ε ∈ (0, 1)
and (l, g, ℘) ∈ prob . Thirdly, we assume that all possible target states of probabilistic edges
satisfy their invariants. Observe that, given the first assumption, this may not be the case
only when the clock is not reset. Formally, for all probabilistic edges (l, g, ℘) ∈ prob, for all
clock valuations v ∈ R≥0 such that v |= g, and for all l′ ∈ L, we have that ℘[v](∅, l′) > 0
implies v[∅ := 0] |= inv(l′), i.e., v |= inv(l′). Note that we relax some of these assumptions
when depicting 1c-cdPTAs graphically (for example, the 1c-cdPTA of Figure 1 can be made
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to satisfy these assumptions by adding invariant conditions and self-looping probabilistic
edges to locations S and T).

The semantics of the 1c-cdPTA P = (L, inv , prob) is the MDP [[P]] = (S,A,∆) where:

• S = {(l, v) ∈ L× R≥0 | v |= inv(l)};
• A = R≥0 × prob ;
• for (l, v) ∈ S, ṽ ∈ R≥0 and (l, g, ℘) ∈ prob such that (1) ṽ ≥ v, (2) ṽ |= g and (3) w |=
inv(l) for all v ≤ w ≤ ṽ, then we let ∆((l, v), (ṽ, (l, g, ℘))) be the distribution such that,
for (l′, v′) ∈ S:

∆((l, v), (ṽ, (l, g, ℘)))(l′ , v′) =















℘[ṽ]({x}, l′) + ℘[ṽ](∅, l′) if v′ = ṽ = 0
℘[ṽ](∅, l′) if v′ = ṽ > 0
℘[ṽ]({x}, l′) if v′ = 0 and ṽ > 0
0 otherwise.

Note that the summation in the first case of the definition of ∆ is performed because the
valuation v′ = 0 may be obtained from ṽ = 0 either by resetting the clock to 0 (summand
℘[ṽ]({x}, l′)) or by not resetting the clock to 0 (summand ℘[ṽ](∅, l′)).

Let F ⊆ L be a set of locations, and let TF = {(l, v) ∈ S | l ∈ F} be the set of states
of [[P]] that have their location component in F . Then the maximum value of reaching
F from state (l, v) ∈ S corresponds to Pmax

[[P]],(l,v)(♦TF ). Similarly, the minimum value of

reaching F from state (l, v) ∈ S corresponds to Pmin
[[P]],(l,v)(♦TF ). As in Section 2, we can

define a number of quantitative and qualitative reachability problems on 1c-cdPTA, where
the initial state is (l, 0) for a particular l ∈ L. The maximal reachability problem for P,
F ⊆ L, l ∈ L, D ∈ {≥, >} and λ ∈ [0, 1] is to decide whether Pmax

[[P]],(l,0)(♦TF ) D λ; similarly,

the minimal reachability problem for P, F ⊆ L, l ∈ L, E ∈ {≤, <} and λ ∈ [0, 1] is to
decide whether Pmin

[[P]],(l,0)(♦TF )Eλ. Furthermore, we can define analogues of the qualitative

problems featured in Section 2: (∀0) decide whether Prσ(l,0)(♦TF ) = 0 for all σ ∈ Σ[[P]]; (∃0)

decide whether there exists σ ∈ Σ[[P]] such that Prσ(l,0)(♦TF ) = 0; (∃1) decide whether there

exists σ ∈ Σ[[P]] such that Prσ(l,0)(♦TF ) = 1; (∀1) decide whether Prσ(l,0)(♦TF ) = 1 for all

σ ∈ Σ[[P]].

3.1. Affine Clock Dependencies. In this paper, we consider distribution templates that
are defined in terms of sets of affine functions in the following way. Given probabilistic
edge p = (l, g, ℘) ∈ prob , let Ip be the set of clock valuations in which p is enabled, i.e.,
Ip = {v ∈ R≥0 | v |= g ∧ inv(l)}. Note that Ip ⊆ R≥0 corresponds to an interval with

natural-numbered endpoints. Let Ip be the closure of Ip. We say that p is affine if, for
each e ∈ 2{x}×L, there exists a pair (cpe , d

p
e) ∈ Q2 of rational constants, such that ℘[v](e) =

c
p
e+d

p
e ·v for all v ∈ Ip. Note that, by the definition of distribution templates, for all v ∈ Ip,

we have cpe + d
p
e · v ≥ 0 for each e ∈ 2{x}×L, and

∑

e∈2{x}×L(c
p
e + d

p
e · v) = 1. A 1c-cdPTA is

affine if all of its probabilistic edges are affine. Henceforth we assume that the 1c-cdPTAs
we consider are affine. An affine probabilistic edge p is constant if, for each e ∈ 2{x}×L, we
have dpe = 0, i.e., ℘[v](e) = c

p
e for some cpe ∈ Q, for all v ∈ Ip. The following technical fact

will be useful in subsequent sections: for a probabilistic edge p ∈ prob, outcome e ∈ 2{x}×L
and open interval I ⊆ Ip, if dpe 6= 0, then ℘[v](e) > 0 for all v ∈ I (because the existence of
v=0 ∈ I such that ℘[v=0](e) = 0, together with dpe 6= 0 and the fact that I is open, would
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1c-cdPTA P IMDP M[P] IMC C[M[P]]

MDP [[P]] MDP [[M[P]]] MDP [[C[M[P]]]]
Lemma 4.5
Lemma 4.7

Lemma 2.3
Lemma 2.4

Figure 3: Overview of the use of the IMDP construction in the overall solution process.

mean that there exists v′ ∈ I such that ℘[v′](e) < 0, which contradicts the definition of
distribution templates).

3.2. Initialisation. In this paper, we also introduce a specific requirement for 1c-cdPTAs
that allows us to analyse faithfully 1c-cdPTA using IMDPs in Section 4. A symbolic path

fragment is a sequence (l0, g0, ℘0)(X0, l1)(l1, g1, ℘1)(X1, l2) · · · (ln, gn, ℘n) ∈ (prob × (2{x} ×
L))+ × prob of probabilistic edges and outcomes such that ℘i[v](Xi, li+1) > 0 for all v ∈
I(li,gi,℘i) for all i < n. In this paper, we consider 1c-cdPTAs for which each symbolic
path fragment that begins and ends with non-constant probabilistic edges requires that
the clock takes a natural numbered value at some point along the path fragment, either
from being reset or from passing through guards that have at most one (natural numbered)
value in common. Formally, a 1c-cdPTA is initialised if, for any symbolic path fragment
(l0, g0, ℘0)(X0, l1)(l1, g1, ℘1)(X1, l2) · · · (ln, gn, ℘n) such that (l0, g0, ℘0) and (ln, gn, ℘n) are

non-constant, either (1) Xi = {x} for some 0 ≤ i < n or (2) I(li,gi,℘i) ∩ I(li+1,gi+1,℘i+1) is
empty or contains a single valuation, for some 0 < i < n. We henceforth assume that all
1c-cdPTAs considered in this paper are initialised.

4. Translation from 1c-cdPTAs to IMDPs

In this section, we show that we can solve quantitative and qualitative problems of (affine
and initialised) 1c-cdPTAs. In contrast to the approach for quantitative problems of
multiple-clock cdPTAs presented in [33], which involves the construction of an approxi-

mate MDP, we represent the 1c-cdPTA precisely using an IMDP, by adapting the standard
region-graph construction for one-clock (probabilistic) timed automata of [27, 24].

We summarise our overall approach in Figure 3. From the 1c-cdPTA P, we construct
an IMDP M[P], from which we can obtain in turn the IMC C[M[P]] according to the
construction of Section 2 (top line, from left to right). Furthermore, by Lemma 2.3 and
Lemma 2.4, for any scheduler of [[M[P]]], we can find an equivalent (in terms of assigning
the same probabilities for reaching a set of locations) scheduler of [[C[M[P]]]], and vice versa
(as indicated by the lower right dashed line). In this section, in Lemma 4.5 and Lemma 4.7,
we will also show that analogous results allowing us to find, for any scheduler of [[P]], an
equivalent scheduler of [[M[P]]], and vice versa (lower left dashed line). Overall, this allows
us to relate the quantitative and qualitative problems defined at the level of 1c-cdPTA to
analogous problems defined at the level of IMCs, for which there exist efficient solution
algorithms [31, 12, 9, 34].

Let P = (L, inv , prob) be a 1c-cdPTA. Let Cst(P) be the set of constants that are
used in the guards of probabilistic edges and invariants of P, and let B = Cst(P) ∪ {0}.
We write B = {b0, b1, . . . , bk}, where 0 = b0 < b1 < . . . < bk. The set B defines the set
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IB = {[b0, b0], (b0, b1), [b1, b1], · · · , [bk, bk]}, i.e., IB is a partition of the interval [0, bk] into
subintervals with endpoints in B, and where each element of B has a corresponding closed
interval in IB comprising only that element. We define a total order on IB in the following
way: [b0, b0] < (b0, b1) < [b1, b1] < · · · < [bk, bk]. Given an open interval B = (b, b′) ∈ IB, its
closure is written as B, i.e., B = [b, b′]. Furthermore, let le(B) = b and re(B) = b′ refer to
the left- and right-endpoints of B. For a closed interval [b, b] ∈ IB, we let le(B) = re(B) = b.

Let ψ be a guard of a probabilistic edge or an invariant of P. By definition, we have
that, for each B ∈ IB, either B ⊆ {v ∈ R≥0 | v |= ψ} or B ∩ {v ∈ R≥0 | v |= ψ} = ∅. We
write B |= ψ in the case of B ⊆ {v ∈ R≥0 | v |= ψ} (representing the fact that all valuations
of B satisfy ψ).

Example 4.1. Consider the 1c-cdPTA of Figure 1. We have B = {0, 1, 3, 4, 5} and IB =
{[0, 0], (0, 1), [1, 1], (1, 3), [3, 3], (3, 4), [4, 4], (4, 5), [5, 5]}. Consider the clock constraint x < 3:
we have B |= (x < 3) for all B ∈ {[0, 0], (0, 1), [1, 1], (1, 3)}. Similarly, for the clock constraint
4 < x < 5, we have (4, 5) |= (4 < x < 5).

4.1. B-minimal Schedulers. The following technical lemma specifies that any scheduler
of the 1c-cdPTA can be made “more deterministic” in the following way: for each interval
B̃ ∈ IB and probabilistic edge p ∈ prob, if, after executing a certain finite path, a scheduler
chooses (assigns positive probability to) multiple actions (ṽ1, p), · · · , (ṽn, p) that share the

same probabilistic edge p and for which ṽi ∈ B̃ for all 1 ≤ i ≤ n, then we can obtain another
scheduler for which the aforementioned actions are replaced by a single action (ṽ, p) such

that ṽ ∈ B̃. Formally, we say that a scheduler σ ∈ Σ[[P]] of [[P]] is B-minimal if, for all

finite paths r ∈ Paths
[[P]]
∗ , for all probabilistic edges p ∈ prob, and for all pairs of actions

(ṽ1, p1), (ṽ2, p2) ∈ support(σ(r)), either p1 6= p2 or v1 and v2 belong to distinct intervals in

IB, i.e., the intervals B̃1, B̃2 ∈ IB for which ṽ1 ∈ B̃1 and ṽ2 ∈ B̃2 are such that B̃1 6= B̃2. Let

Σ
[[P]]
B be the set of schedulers of Σ[[P]] that are B-minimal. The lemma allows us to consider

only B-minimal schedulers in the sequel, permitting us to obtain a close correspondence
between the schedulers of [[P]] and the schedulers of the IMDP that we describe how to
construct in the next subsection.

Lemma 4.2. Let (l, v) ∈ SP and F ⊆ L. Then, for each σ ∈ Σ[[P]], there exists π ∈ Σ
[[P]]
B

such that Prσ(l,v)(♦TF ) = Prπ(l,v)(♦TF ).

Proof. Let (l, v) ∈ SP , F ⊆ L and σ ∈ Σ[[P]]. We proceed by describing the construction

of π ∈ Σ
[[P]]
B , and then show that Prσ(l,v)(♦TF ) = Prπ(l,v)(♦TF ). The overall approach to the

construction of π is that each finite path of π is associated with a number of finite paths of σ;
then a choice of π after a finite path r is based on a weighted average of the corresponding
choices made by σ after the finite paths associated with r. The association between finite
paths of σ and finite paths of π is defined on the basis of the locations that are visited, the
intervals from IB that the value of the clock passes through, and the probabilistic edges
that are taken along those finite paths. To define the choice of transition of π after a finite
path r, we consider a pair (B̃, p) ∈ IB × prob, and, if σ assigns positive probability to at

least one transition (ṽ, p) such that ṽ ∈ B̃, we define a unique transition (ṽ′, p) that is

assigned positive probability by π and for which ṽ′ ∈ B̃. There are two principal cases for
the transitions assigned positive probability by π: if B̃ is a closed interval, then there is only
one possible choice for ṽ′ (i.e., if B̃ = [b, b] then ṽ′ = b); instead, if B̃ is an open interval, the
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definition of the π is substantially more complicated, and the choice of ṽ′ ∈ B̃ takes into
account the “recent” history of the scheduler. More precisely, while the scheduler π chooses
transitions for which the value of the clock remains within B̃, the scheduler passes between
three phases, where the number of transitions in the first and third phases is arbitrary,
and where the second phase consists of at most one transition. The first phase consists of
transitions derived from constant probabilistic edges, where the value of the clock is kept
“low” (equal to the minimum of the value of the clock at the end of the corresponding finite
paths of σ). The second phase consists of a single transition derived from a non-constant
probabilistic edge, where the value of the clock is chosen carefully so as to replicate exactly
the probability of taking the same probabilistic edge by σ. The third phase consists of
transitions derived from constant probabilistic edges, and the value of the clock can be
chosen in an arbitrary manner. Note that the assumption of initialisation guarantees that
we cannot have more than one non-constant probabilistic edge between points at which the
clock is equal to a value from B, and hence at most one non-constant probabilistic edge can
be taken while the value of the clock remains in the open interval B̃.

We first introduce the following notation. Given a probabilistic edge (l, g, ℘) ∈ prob,

we let source(l, g, ℘) = l and guard(l, g, ℘) = g. Furthermore, given interval B̃ ∈ IB, we say

that (l′, B′) ∈ L× IB is a successor of (B̃, (l, g, ℘)) if either B′ = [0, 0] and ℘[v]({x}, l′) > 0

for some v ∈ B̃, or B′ = B̃ and ℘[v](∅, l′) > 0 for some v ∈ B̃.

A (finite) B-path is a sequence (l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃n−1, pn−1)(ln, Bn)
where (1) li ∈ L, Bi ∈ IB and Bi |= inv(li) for all 0 ≤ i ≤ n, and (2) source(pi) = li,

B̃i ∈ IB, B̃i ≥ Bi, B̃i |= guard(pi) ∧ inv(li) and (li+1, Bi+1) is a successor of (B̃i, pi), for all
0 ≤ i < n.

Consider a finite path r = (l0, v0)(ṽ0, p0)(l1, v1)(ṽ1, p1) · · · (ṽn−1, pn−1)(ln, vn) of [[P]]

(i.e., r ∈ Paths
[[P]]
∗ ), and a B-path ρ = (l′0, B0)(B̃0, p

′
0)(l

′
1, B1)(B̃1, p

′
1) · · · (B̃m−1, p

′
m−1)(l

′
m, Bm).

Then r corresponds to ρ if (1) n = m, (2) li = l′i and vi ∈ Bi for all 0 ≤ i ≤ n, and

(3) ṽi ∈ B̃i and pi = p′i for all 0 ≤ i < n. Given a scheduler σ ∈ Σ[[P]] and a B-path ρ, we let
Λσ(ρ) ⊆ Pathsσ∗ be the set of finite paths of σ that correspond to ρ.

Note that, for a B-minimal scheduler π ∈ Σ
[[P]]
B and a B-path

ρ = (l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃n−1, pn−1)(ln, Bn) ,

there exists at most one finite path r ∈ Λπ(ρ) (i.e., Λπ(ρ) is either empty or a single-
ton). The reasoning underlying this fact is as follows: for each i < n, letting ρi =

(l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃i−1, pi−1)(li, Bi), and assuming that Λπ(ρi) contains a

unique path denoted by r, then there exists at most one valuation ṽ ∈ B̃i such that
π(r)(ṽ, pi) > 0. Furthermore, there exists at most one valuation v′ ∈ Bi+1 such that
∆P(last(r), (ṽ, pi))(li+1, v

′) > 0. Conversely, by using similar reasoning, for any finite path

r ∈ Paths
[[P]]
∗ , there exists exactly one B-path ρ such that r ∈ Λπ(ρ).

We now construct π ∈ Σ
[[P]]
B , proceeding by induction on the length of paths. Given

a finite path r = (l0, v0)(ṽ0, p0)(l1, v1)(ṽ1, p1) · · · (ṽn−1, pn−1)(ln, vn), we consider the prob-
lem of defining π(r) (assuming that π has been defined for all prefixes of r). Let ρ =

(l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃n−1, pn−1)(ln, Bn) be the unique B-path such that r cor-

responds to ρ. Now consider the extension of ρ with (B̃, p) such that source(p) = ln,

B̃ ∈ IB, B̃ ≥ Bn, and B̃ |= guard(p) ∧ inv(ln). Let Ξρ,(B̃,p) be the set of clock valuations

in B̃ that are featured with p in actions that are assigned positive probability by σ after
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paths corresponding to ρ; formally:

Ξρ,(B̃,p) = {ṽ ∈ B̃ | (ṽ, p) ∈ support(σ(r′)) and r′ ∈ Λσ(ρ)} .

In order to define π(r), we consider a number of cases that depend on r and the pair (B̃, p)
used to extend ρ. In all of the cases, we identify a clock valuation ṽ∗

ρ,(B̃,p)
that depends on

the case, and define:

π(r)(ṽ∗
ρ,(B̃,p)

, p) =

∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)

Prσ∗,(l,v)(Λ
σ(ρ))

,

where Prσ∗,(l,v)(Λ
σ(ρ)) =

∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′).

First we consider the case in which B̃ is a closed interval, i.e., B̃ = [b, b] for b ∈ B, which
corresponds to the first phase described above. In this case, we simply let ṽ∗

ρ,(B̃,p)
= b. Note

that Ξρ,(B̃,p) is a singleton, i.e., Ξρ,(B̃,p) = {ṽ∗
ρ,(B̃,p)

}.

Next, we consider the case in which B̃ is an open interval. Recall the description of
the three phases given above. Let k ≤ n be the maximum index for which Bk 6= B̃ (and

let k = 0 if no such index exists). Note that B̃k = Bk+1 = B̃k+1 = · · · = B̃n−1 = Bn = B̃.
First we consider the subcase in which all probabilistic edges in the sequence pk · · · pn are
constant, and p is also constant: this corresponds to the first phase described above. Note
that there may be multiple choices made by σ that correspond to (B̃, p) (i.e., from each
finite path in Λσ(ρ), the scheduler σ may assign positive probability to multiple time delays,

each of which corresponds to a clock valuation in B̃). In order to replicate these choices in π
we consider a time delay that results in a clock valuation that is equal to the minimum clock
valuation assigned positive probability after any finite path in Λσ(ρ), with the motivation
that taking such a minimum gives π sufficient freedom in the third phase. Hence we let
ṽ∗
ρ,(B̃,p)

= minΞρ,(B̃,p).

Now consider the subcase in which B̃ is an open interval, and all probabilistic edges in
the sequence pk · · · pn are constant, but p is non-constant, i.e., the transition corresponds to
the second phase described above. The definition of π is similar to that of the first phase,
although the choice of clock valuation by π corresponds to the weighted average of the choice
of clock valuations made by σ, where the weights refer to the probabilities of the finite paths
of σ multiplied by the probability assigned by σ to the particular clock valuation. Formally,
let:

ṽ∗
ρ,(B̃,p)

=

∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p) · ṽ
∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)
.

Finally, we consider the subcase in which B̃ is an open interval, there exists i ∈
{k, . . . , n} such that pi is non-constant, and for all other j ∈ {k, . . . , n} we have that
pi is constant, and also p is constant. This corresponds to the third phase described above.
For this subcase, the clock valuation can be arbitrary: for simplicity we retain the same
clock valuation as was used in the final state of r. Formally, if last(r) is equal to (l′, v′), we
let ṽ∗

ρ,(B̃,p)
= v′.

We repeat this process for all (B̃, p) such that source(p) = ln, B̃ ∈ IB, B̃ ≥ Bi, and

B̃ |= guard(p) ∧ inv(ln). This suffices to define comprehensively the distribution π(r). For
example, consider the case in which the choice of π, to replicate the choices of σ, assigns
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positive probability to actions with clock valuations in both closed and open intervals, and
with probabilistic edges that are both constant and non-constant. Let Υ be the set of pairs
(B̃, p) such that source(p) = ln, B̃ ∈ IB, B̃ ≥ Bi, and B̃ |= guard(p)∧ inv(ln). Now observe
that, for any r′ ∈ Λσ(ρ), we have:

∑

(B̃,p)∈Υ

∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p) = 1

(because, for each (ṽ, p) ∈ support(σ(r′)) there exists (B̃, p) ∈ Υ such that ṽ ∈ Ξρ,(B̃,p)). We

now show that
∑

(B̃,p)∈Υ π(r)(ṽ
∗
ρ,(B̃,p)

, p) = 1, i.e., π(r) is a distribution:

∑

(B̃,p)∈Υ

π(r)(ṽ∗
ρ,(B̃,p)

, p)

=
∑

(B̃,p)∈Υ

(
∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)

Prσ∗,(l,v)(Λ
σ(ρ))

)

=

∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′) ·
∑

(B̃,p)∈Υ

∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)

Prσ∗,(l,v)(Λ
σ(ρ))

=

∑

r′∈Λσ(ρ) Pr
σ
∗,(l,v)(r

′)

Prσ∗,(l,v)(Λ
σ(ρ))

= 1 .

We now proceed to show that Prσ(l,v)(♦TF ) = Prπ(l,v)(♦TF ). It suffices to show that

Prσ∗,(l,v)(Λ
σ(ρ)) = Prπ∗,(l,v)(Λ

π(ρ)) for all B-paths ρ (because all paths in Λσ(ρ) reach a

location in F if and only if the unique path in Λπ(ρ) reaches a location in F ). We proceed
by induction on the length of B-paths. Let ρ be a B-path, and assume that we have
established that Prσ∗,(l,v)(Λ

σ(ρ)) = Prπ∗,(l,v)(Λ
π(ρ)). Now consider the B-path ρ(B̃, p)(l′, B′)

that extends ρ with one transition. Our aim is to show that Prσ∗,(l,v)(Λ
σ(ρ(B̃, p)(l′, B′))) =

Prπ∗,(l,v)(Λ
π(ρ(B̃, p)(l′, B′))). In the sequel, we overload the notation ∆P in the following way:

given ṽ ∈ Ξρ,(B̃,p), we let ∆P(last(r
′), (ṽ, p))(l′, B′) = 0 if ∆P(last(r

′), (ṽ, p))(l′, v′) = 0 for

all v′ ∈ B′, and ∆P(last(r
′), (ṽ, p))(l′, B′) = ∆P(last(r

′), (ṽ, p))(l′, v′) for the unique clock
valuation v′ ∈ B′ such that ∆P(last(r

′), (ṽ, p))(l′, v′) > 0 (note that uniqueness follows from
the fact that either v′ = 0 or v′ = ṽ). In the following we consider the most involved case,

namely that concerning B̃ being open and p being non-constant, i.e., the second phase of
the case of open B̃ described above. Assume that ∆P(last(r

′), (ṽ, p))(l′, B′) > 0, i.e., there
is a clock valuation v′ ∈ B′ such that ∆P(last(r

′), (ṽ, p))(l′, v′) > 0. Furthermore, assume
that v′ = ṽ, which means that ∆P(last(r

′), (ṽ, p))(l′, B′) = ℘[ṽ](∅, l′) (the case in which
B′ = [0, 0], and hence v′ = 0 and ∆P(last(r

′), (ṽ, p))(l′, B′) = ℘[ṽ]({x}, l′), is similar). Let
(cp(∅,l′), d

p

(∅,l′)) ∈ Q2 be the pair associated with p and (∅, l′) defining the clock dependency;

in order to simplify notation in the sequel, we let c = c
p

(∅,l′) and d = d
p

(∅,l′). Furthermore,

we let Λπ(ρ) = r, and write Prσ∗ and Prπ∗ rather than Prσ∗,(l,v) and Prπ∗,(l,v), respectively. In

the following, we use ℘ to denote the distribution template of probabilistic edge p. Then
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we have:

Prσ∗ (Λ
σ(ρ(B̃, p)(l′, B′)))

=
∑

r′∈Λσ(ρ(B̃,p)(l′,B′)) Pr
σ
∗ (r

′)

(by definition of Λσ(ρ(B̃, p)(l′, B′)))
=

∑

r′∈Λσ(ρ)

∑

ṽ∈Ξ
ρ,(B̃,p)

Prσ∗ (r
′) · σ(r′)(ṽ, p) ·∆P(last(r

′), (ṽ, p))(l′, B′)

(by definition of Prσ∗ )
=

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p) · ℘[ṽ](∅, l′)

(rearranging and by definition of ∆P)
=

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p) · (c + d · ṽ)

(by definition of non-constant probabilistic edges)

= c
(

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)
)

+d
(

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p) · ṽ
)

(rearranging)

=
(

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)
)

(

c + d

∑
r′∈Λσ(ρ) Pr

σ
∗ (r

′)·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ,p)·ṽ
∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′)·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ,p)

)

(rearranging)

=
(

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)
)

(c + d · ṽ∗
ρ,(B̃,p)

)

(by definition of ṽ∗
ρ,(B̃,p)

)

=
(

∑

r′∈Λσ(ρ) Pr
σ
∗ (r

′) ·
∑

ṽ∈Ξ
ρ,(B̃,p)

σ(r′)(ṽ, p)
)

℘[ṽ∗
ρ,(B̃,p)

](∅, l′)

(by definition of non-constant probabilistic edges)
= Prσ∗ (Λ

σ(ρ)) · π(r)(ṽ∗
ρ,(B̃,p)

, p) ·∆P(last(r), (ṽ
∗
ρ,(B̃,p)

, p))(l′, B′)

(from the construction of π and by the overloaded definition of ∆P)
= Prπ∗ (r) · π(r)(ṽ

∗
ρ,(B̃,p)

, p) ·∆P(last(r), (ṽ
∗
ρ,(B̃,p)

, p))(l′, B′)

(by induction)

= Prπ∗ (Λ
π(ρ)(B̃, p)(l′, B′))

(by definition of Prπ∗ ).

We remark briefly that the cases for the second and fourth phases are simpler, because
the probabilities ℘[·](∅, l′) and ℘[·]({x}, l′) are constant (this means that the choice of clock

valuation made by π, as long as it is in the open region denoted by B̃ above, is arbitrary).
The first phase is even more straightforward, because there is only one choice of clock
valuation when considering choices of σ and π that correspond to ρ extended with (B̃, p)

for which B̃ is closed.

Example 4.3. Consider the 1c-cdPTA of Figure 1. In the following, we denote the outgoing
probabilistic edges fromW and F as pW and pF, respectively. Consider a scheduler σ ∈ Σ[[P]],
where σ(W, 0) (i.e., the choice of σ after the finite path comprising the single state (W, 0))
assigns probability 1

2 to the action (54 , pW) and probability 1
2 to the action (74 , pW) (where the

two actions refer to either 5
4 or 7

4 time units elapsing, after which the probabilistic edge pW

is taken). Then we can construct a B-minimal scheduler π ∈ Σ
[[P]]
B such that π(W, 0) assigns

probability 1 to the action (32 , pW) (i.e., where 3
2 = 1

2 ·
5
4 +

1
2 ·

7
4). Now consider finite paths
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(W, [0, 0])

((1, 3), pW, le) ((1, 3), pW, re)

(S, (1, 3))

(T, (1, 3))

(F, (1, 3))

((4, 5), pW, le)

((4, 5), pW, re)

(T, (4, 5))

[0, 0]

((1, 3), pW)

(0, 1) (0, 1)

[ 1
2
,
1

2
]

[ 1
2
,
1

2
][ 3

4
,
3

4
]

[ 1
8
,
1

8
]

[ 1
8
,
1

8
]

((4, 5), pF)
(0, 1)

(0, 1)

[ 1
2
,
1

2
]

[0, 0]

[1, 1]

[ 1
2
,
1

2
]

Figure 4: Interval Markov decision process M[P] obtained from P of Figure 1.

r = (W, 0)(54 , pW)(F, 54) and r′ = (W, 0)(74 , pW)(F, 74). Note that Prσ∗,(W,0)(r) =
1
2 ·

11− 3·5
4

16

and Prσ∗,(W,0)(r
′) = 1

2 ·
11− 3·7

4
16 . Say that σ(r) assigns probability 1 to (174 , pF) and probability

1 to (194 , pF). Then π((W, 0)(32 , pW)(F, 32)) assigns probability 1 to action (ṽ, pF), where

ṽ = Prσ∗,(W,0)(r) · 1 ·
17
4 +Prσ∗,(W,0)(r

′) · 1 · 19
4 , i.e., a weighted sum of the time delays chosen

by σ after r and r′, where the weights correspond to the probabilities of r and r′ under σ.
Repeating this reasoning for all finite paths yields a B-minimal scheduler π such that the
probability of reaching a set of target states from (W, 0) is the same for both σ and π.

4.2. IMDP Construction. We now present the idea of the IMDP construction. The
states of the IMDP fall into two categories: (1) pairs comprising a location and an interval
from IB, with the intuition that the state (l, B) ∈ L×IB of the IMDP represents all states
(l, v) of [[P]] such that v ∈ B; (2) triples comprising an interval from IB, a probabilistic
edge and a bit that specifies whether the state refers to the left- or right-endpoint of the
interval. A single transition of the semantics of the 1c-cdPTA, which we recall represents
the elapse of time (therefore increasing the value of the clock) followed by the traversal
of a probabilistic edge, is represented by a sequence of two transitions in the IMDP. The
first IMDP transition in the sequence represents the choice of (i) the probabilistic edge,
(ii) the interval in IB which contains the valuation of the clock after letting time elapse
and immediately before the probabilistic edge is traversed, and (iii) in the case in which the
aforementioned interval is open, an endpoint of the interval chosen in (ii). The second IMDP
transition in the sequence represents the probabilistic choice made according to the chosen
probabilistic edge, interval and endpoint chosen in the first transition of the sequence.

Example 4.4. The IMDP construction, applied to the example of Figure 1, is shown in
Figure 4 (note that transitions corresponding to probability 0 are shown with a dashed line).
The location W, and the value of the clock being 0, is represented by the state (W, [0, 0]).
Recall that the outgoing probabilistic edge from W is enabled when the clock is between
1 and 3: hence the single action ((1, 3), pW) is available from (W, [0, 0]) (representing the
set of actions (ṽ, pW) of [[P]] with ṽ ∈ (1, 3)). The action ((1, 3), pW) is associated with
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two target states, ((1, 3), pW , le) and ((1, 3), pW, re), where the third component of the state
(le or re) denotes whether the state refers to the left- or right-endpoint of (1, 3). Each of
the states ((1, 3), pW, le) and ((1, 3), pW, re) is associated with the probability interval (0, 1),
referring to the probability of making a transition to those states from (W, [0, 0]). The choice
of probability within the interval can be done in the IMDP to represent a choice of clock
valuation in (1, 3): for example, the valuation 3

2 would be represented by the assignment

that associates probability 3
4 with ((1, 3), pW, le) and 1

4 with ((1, 3), pW, re) (i.e., assigns a

weight of 3
4 to the lower bound of (1, 3), and a weight of 1

4 to the upper bound of (1, 3),

obtaining the weighted combination 3
4 · 1 + 1

4 · 3 = 3
2). Then, from both ((1, 3), pW, le)

and ((1, 3), pW, re), there is a probabilistic choice regarding the target IMDP state to make
the subsequent transition to, i.e., the transitions from ((1, 3), pW, le) and ((1, 3), pW, re) do
not involve nondeterminism, because there is only one action available, and because the
resulting interval distribution assigns singleton intervals to all possible target states.3 The
probabilities of the transitions from ((1, 3), pW, le) and ((1, 3), pW, re) are derived from the
clock dependencies associated with 1 (i.e., the left endpoint of (1, 3)) and 3 (i.e., the right
endpoint of (1, 3)), respectively. Hence the multiplication of the probabilities of the two
aforementioned transitions (from (W, [0, 0]) to either ((1, 3), pW, le) or ((1, 3), pW, re), and
then to (S, (1, 3)), (T, (1, 3)) or (F, (1, 3))) represents exactly the probability of a single
transition in the 1c-cdPTA. For example, in the 1c-cdPTA, considering again the example
of the clock valuation associating 3

2 with x, the probability of making a transition to location

S is 3x−3
8 = 3

16 ; in the IMDP, assigning 3
4 to the transition to ((1, 3), pW, le) and 1

4 to the
transition to ((1, 3), pW, re), we then obtain that the probability of making a transition to
(S, (1, 3)) from (W, [0, 0]) is 3

4 · 0 + 1
4 · 3

4 = 3
16 . Similar reasoning applies to the transitions

available from (F, (1, 3)).

We now describe formally the construction of the IMDP M[P] = (SM[P],AM[P],DM[P]).

The set of states of M[P] is defined as SM[P] = S
reg

M[P] ∪ S
end
M[P], where:

S
reg

M[P] = {(l, B) ∈ L× IB | B |= inv(l)}

Send
M[P] = {(B̃, (l, g, ℘), ep) ∈ IB × prob × {le, re} | B̃ |= g ∧ inv(l)} .

In order to distinguish states of [[P]] and states of M[P], we refer to elements of Sreg

M[P] as

regions, and elements of Send
M[P] as endpoint indicators. The set of actions of M[P] is defined

as
AM[P] = {(B̃, (l, g, ℘)) ∈ IB × prob | B̃ |= g ∧ inv(l)} ∪ {τ}

(i.e., there is an action for each combination of interval from IB and probabilistic edge
such that all valuations from the interval satisfy both the guard of the probabilistic edge
and the invariant condition of its source location). For each region (l, B) ∈ S

reg

M[P], let

AM[P](l, B) = {(B̃, (l′, g, ℘)) ∈ AM[P] | l = l′ and B̃ ≥ B}.4 For each (B̃, p, ep) ∈ Send
M[P], let

AM[P](B̃, p, ep) = {τ}. The transition function DM[P] : SM[P]×AM[P] → Dist(SM[P])∪{⊥}
is defined as follows:

3Given that there is only one action available from states such as ((1, 3), pW, le) and ((1, 3), pW, re), we
omit both the action and the usual black box from the figure.

4Note that AM[P](l, B) 6= ∅ for each (l, B) ∈ S
reg

M[P]
, by the assumptions that we made on 1c-cdPTA in

Section 3 (namely, that it is always possible to take a probabilistic edge, either immediately or after letting
time elapse).
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• For each (l, B) ∈ S
reg

M[P] and (B̃, p) ∈ AM[P](l, B), we let DM[P]((l, B), (B̃, p)) be the inter-

val distribution such thatDM[P]((l, B), (B̃, p))(B̃, p, le) = (0, 1), DM[P]((l, B), (B̃, p))(B̃, p, re) =

(0, 1), and DM[P]((l, B), (B̃, p))(s) = [0, 0] for all s ∈ SM[P] \ {(B̃, p, le), (B̃, p, re)}.

• For each (B̃, (l, g, ℘), ep) ∈ Send
M[P] and (l′, B′) ∈ S

reg

M[P], let:

λ
(B̃,(l,g,℘),ep)
(l′,B′) =















℘[ep(B̃)]({x}, l′) + ℘[ep(B̃)](∅, l′) if B′ = B̃ = [0, 0]

℘[ep(B̃)](∅, l′) if B′ = B̃ > [0, 0]

℘[ep(B̃)]({x}, l′) if B′ = [0, 0] and B̃ > [0, 0]
0 otherwise.

Then DM[P]((B̃, (l, g, ℘), ep), τ) is the interval distribution such that, for all s ∈ SM[P]:

DM[P]((B̃, (l, g, ℘), ep), τ)(s) =

{

[λ
(B̃,(l,g,℘),ep)
s , λ

(B̃,(l,g,℘),ep)
s ] if s ∈ S

reg

M[P]

[0, 0] otherwise.

We recall that DM[P](s, a) = ⊥ for s ∈ SM[P] and a ∈ AM[P] \ AM[P](s).

4.3. Correctness of the IMDP construction. Next, we consider the correctness of the
construction of M[P], i.e., that M[P] can be used for solving quantitative and qualitative
properties of the 1c-cdPTA P. The proof relies on showing that a transition of the semantic
MDP [[P]] of P can be mimicked by a sequence of two transitions of the semantic MDP
[[M[P]]] of M[P], and vice versa. Let [[P]] = (SP , AP ,∆P) be the semantic MDP of P.
Given state (l, v) ∈ SP , we let reg(l, v) = (l, B) ∈ S

reg

M[P] be the unique region such that

v ∈ B. In the following, we let [[M[P]]] = (SM[P], AM[P],∆M[P]) be the semantic MDP of
M[P].

We now show that, for any scheduler of (the semantics of) the 1c-cdPTA P, there exists
a scheduler of (the semantics of) the IMDP M[P] such that the schedulers assign the same
probability to reaching a certain set of locations from a given location with the value of
the clock equal to 0. Let TF = {(l, B) ∈ S

reg

M[P] | l ∈ F} be the set of regions with location

component in F .

Lemma 4.5. Let l ∈ L be a location and let F ⊆ L be a set of locations. Given a B-

minimal scheduler π ∈ Σ
[[P]]
B , there exists a scheduler π̂ ∈ Σ[[M[P]]] such that Prπ(l,0)(♦TF ) =

Prπ̂reg(l,0)(♦TF ).

Before presenting the formal proof of Lemma 4.5, we sketch the overall approach for
the construction of a scheduler π̂ of [[M[P]]] from a B-minimal scheduler π of [[P]], and give
an example. For each finite path r of π, we can identify a set of finite paths of π̂ of length
twice that of r, that visit the same locations in order, choose the same probabilistic edges in
order, and visit the same intervals in order, both regarding the clock valuations/intervals in
states and in actions; in fact, finite paths of π̂ that are associated with r differ only in terms
of the le and re components used in endpoint indicators. Furthermore, π̂ replicates exactly
the choice of π made after r in terms of interval of IB and probabilistic edge chosen in all of
its finite paths associated with r. Finally, π̂ chooses assignments (over edges labelled with
(0, 1)) in order to represent exactly the choices of clock valuations made by π, in the manner

described in Example 4.4 above: more precisely, the choice of action (ṽ, p) by π, where B̃ is
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the unique open interval such that ṽ ∈ B̃, is mimicked by π̂ choosing the action ((B̃, p), α)

for which α(B̃, p, le) = re(B̃)−ṽ

re(B̃)−le(B̃)
, and α(B̃, p, re) = 1− α(B̃, p, le) = ṽ−le(B̃)

re(B̃)−le(B̃)
.

Example 4.6. Consider the 1c-cdPTA of Figure 1. Let π ∈ Σ
[[P]]
B be a B-minimal scheduler

such that π(W, 0) assigns probability 1 to the action (32 , pW). Then π̂ ∈ Σ[[M[P]]] is con-
structed such that π̂(W, [0, 0]) assigns probability 1 to (((1, 3), pW), α), where α((1, 3), pW , le) =
3
4 and α((1, 3), pW, re) =

1
4 (observe that α((1, 3), pW, le) =

3− 3
2

2 and that α((1, 3), pW , re) =

1 − α((1, 3), pW, le) =
3
2
−1

2 ). Furthermore, π̂((W, [0, 0])(((1, 3), pW ), α)) assigns probability

1 to τ . Now consider the finite path r = (W, 0)(32 , pW)(F, 32) of π: then the correspond-
ing set of finite paths of π̂ is r′ = (W, [0, 0])(((1, 3), pW), α)((1, 3), pW , le)(F, (1, 3)) and
r′′ = (W, [0, 0])(((1, 3), pW), α)((1, 3), pW , re)(F, (1, 3)). Now say that π(r) assigns prob-
ability 1 to the action (92 , pF): then both π̂(r′) and π̂(r′′) assign probability 1 to the

action (((4, 5), pF), α
′), where α′((4, 5), pF, le) = 1

2 and α′((4, 5), pF, re) = 1
2 (note that

α′((4, 5), pF, le) = 5 − 9
2 and α′((4, 5), pF, re) = 1 − α′((4, 5), pF, le) = 9

2 − 4). Hence, re-
gardless of whether ((1, 3), pW, le) or ((1, 3), pW , re) was visited, scheduler π̂ makes the same

choice to mimic π(r).

Proof of Lemma 4.5. Let l ∈ L, F ⊆ L and π ∈ Σ
[[P]]
B . We proceed by describing the

construction of scheduler π̂ ∈ Σ[[M[P]]], then show that Prπ(l,0)(♦TF ) = Prπ̂reg(l,0)(♦TF ).

Before describing the construction of π̂ ∈ Σ[[M[P]]], we first simplify the notation for
transitions along paths of [[M[P]]] to remove redundant elements, in the following way: a

sequence (l, B)((B̃, p), α)(B̃, p, ep)(τ, β)(l′, B′) of two transitions between regions will be

simplified to (l, B)((B̃, p), α)(ep)(l′, B′) (note that, for the endpoint indicator (B̃, p, ep), the

interval B̃ and the probabilistic edge p have been featured in the previous position in the
sequence, and that, from (B̃, p, ep), only one action is available, namely (τ, β), and hence
we can omit it from the sequence).

Recall that, from the proof of Lemma 4.2, each finite path r ∈ Pathsπ∗ of π corresponds
to a B-path. Furthermore, for a given B-path, we can identify a set of finite paths of [[M[P]]]
that agree with the B-path in terms of locations, intervals, and probabilistic edges. Formally,
for a B-path ρ which equals

(l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃n−1, pn−1)(ln, Bn)

and a finite path r which equals

(l′0, B
′
0)((B̃

′
0, p

′
0), α0)(ep0)(l

′
1, B

′
1)((B̃

′
1, p

′
1), α1)(ep1) · · · ((B̃

′
m−1, p

′
m−1), αm−1)(epm−1)(l

′
m, B

′
m)

of M[P], we say that r corresponds to ρ if (1) n = m, (2) li = l′i, Bi = B′
i for all 0 ≤ i ≤ n,

and (3) B̃i = B̃′
i and pi = p′i for all 0 ≤ i < n. Given a scheduler π̂ ∈ Σ[[M[P]]] and a B-path

ρ, we let Λπ̂(ρ) ⊆ Paths π̂∗ be the set of finite paths of π̂ that correspond to ρ.
Recall thatM[P] alternates between regions (elements of Sreg

M[P]) and endpoint indicators

(elements of Send
M[P]). We partition Paths

[[M[P]]]
∗ (reg(l, 0)) into the set Paths

[[M[P]]]

∗,Sreg

M[P]

(reg(l, 0))

of finite paths of the form

(l0, B0)((B̃0, p0), α0)(ep0)(l1, B1)((B̃1, p1), α1)(ep1) · · · ((B̃n−1, pn−1), αn−1)(epn−1)(ln, Bn)
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that end with a region, and the set Paths
[[M[P]]]

∗,Send
M[P]

(reg(l, 0)) of finite paths of the form

(l0, B0)((B̃0, p0), α0)(ep0)(l1, B1)((B̃1, p1), α1)(ep1) · · · ((B̃m, pm), αm)(epm)

that end with an endpoint indicator (note that epm, in the context of the last transition of

the finite path, denotes the endpoint indicator (B̃m, pm, epm)).
The construction of π̂ is based on the following principles: for any two finite paths

that correspond to the same B-path, the choice made by π̂ after those finite paths will be
the same; furthermore, for any action of M[P] of the form (B̃, p), the scheduler π̂ assigns

positive probability to at most one action of [[M[P]]] of the form ((B̃, p), α), where α is used

to represent the actual clock valuation chosen by π within the interval B̃.
We now describe the formal construction of π̂. As elsewhere in this paper, we proceed

by induction on the length of paths. Let r ∈ Paths
[[M[P]]]

∗,Sreg

M[P]

(reg(l, 0)) be a finite path of M[P]

that ends in a region, and assume that we have already defined the choices of π̂ along all of
the prefixes of r. Let ρ be the unique B-path to which r corresponds (it is obtained by simply
removing the components denoted by α and ep), and let r′ ∈ Pathsπ∗ be the unique path of
π that corresponds to ρ. Consider (ṽ, p) ∈ support(π(r′)); we aim to mimic this choice in

the construction of π̂(r). Let B̃ ∈ IB be the unique interval for which ṽ ∈ B̃. By definition,

(B̃, p) ∈ AM[P](last(r)). Then we let π̂(r)((B̃, p), α) = π(r′)(ṽ, p), where α is defined as

follows: let α(B̃, p, le) = re(B̃)−ṽ

re(B̃)−le(B̃)
, and let α(B̃, p, re) = 1 − α(B̃, p, le) = ṽ−le(B̃)

re(B̃)−le(B̃)
. This

completes the construction of π̂, because only the action τ is available in the final states of

finite paths in Paths
[[M[P]]]

∗,Send
M[P]

(reg(l, 0)), and because π̂ can be defined in an arbitrary manner

for paths not starting in reg(l, 0).
Next we show that Prπ(l,0)(♦TF ) = Prπ̂reg(l,0)(♦TF ). Our approach is to show that

Prπ(l,0)(Λ
π(ρ)) = Prπ̂reg(l,0)(Λ

π̂(ρ)) for all B-paths ρ (this is sufficient to show Prπ(l,0)(♦TF ) =

Prπ̂reg(l,0)(♦TF ) because the unique path in Λπ(ρ) reaches a location in F if and only if all

paths in Λπ̂(ρ) reach a location in F ). We proceed by induction on the length of B-paths.

Consider the B-path ρ(B̃, p)(l′, B′), and assume that it has already been established that

Prπ(l,0)(Λ
π(ρ)) = Prπ̂reg(l,0)(Λ

π̂(ρ)). Our aim is now to show that Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) =

Prπ̂reg(l,0)(Λ
π̂(ρ(B̃, p)(l′, B′))). As in the construction of π̂, also in the following we denote

Λπ(ρ) by r′. Given that π is a B-minimal scheduler, there is at most one clock valua-

tion ṽ ∈ B̃ such that (ṽ, p) ∈ support(σ(r′)). For the case in which no such ṽ ∈ B̃

exists, i.e., {ṽ | (ṽ, p) ∈ support(σ(r′))} ∩ B̃ = ∅, then Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) = 0 and

Prπ̂reg(l,0)(Λ
π̂(ρ(B̃, p)(l′, B′))) = 0, and we are done In the remainder of this proof, we con-

sider the case in which there exists ṽ ∈ B̃ such that (ṽ, p) ∈ support(π(r′)). As in the proof
of Lemma 4.2, we let ∆P(last(r

′), (ṽ, p))(l′, B′) be the probability of making a transition to
a state in (l′, B′) from state last(r′) with action (ṽ, p). We also concentrate on the case in

which B̃ is open, p is non-constant, and B′ = B̃, which corresponds to the outcome (∅, l′)
(i.e., the clock is not reset), with the other cases being similar. We write c and d rather

than cp(∅,l′) and d = d
p

(∅,l′), respectively. Furthermore, we write α(ep) rather than α(B̃, p, ep),

for ep ∈ {le, re}.
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First we observe the following (where the second step is obtained from ṽ − le(B̃) =

α(re)(re(B̃)− le(B̃)), and the fourth and fifth steps also use the fact that α(le)+α(re) = 1):

c + d · ṽ = c + d · (le(B̃) + ṽ − le(B̃))

= c + d · (le(B̃) + α(re)(re(B̃)− le(B̃)))

= c + d · (le(B̃) + α(re) · re(B̃)− α(re) · le(B̃))

= c + d · (le(B̃) + α(re) · re(B̃)− le(B̃) + α(le) · le(B̃))

= (α(le) + α(re)) · c + d · α(re) · re(B̃) + d · α(le) · le(B̃)

= α(le)(c + d · le(B̃)) + α(re)(c + d · re(B̃)) .

The fact that c+d · ṽ = α(le)(c+d · le(B̃))+α(re)(c+d · re(B̃)) is then used in the following
derivation (where ℘ denotes the distribution template of probabilistic edge p):

Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′)))

= Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) ·∆P(last(r

′), (ṽ, p))(l′, B′)

= Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) · ℘[ṽ](∅, l′)

= Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) · (c + d · ṽ)

= Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) ·

(

α(le))(c + d · le(B̃)) + α(re)(c + d · re(B̃))
)

= Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) ·

(

α(le) · ℘[le(B̃)](∅, l′) + α(re) · ℘[re(B̃)](∅, l′)
)

.

For the subsequent steps, we require the following notation. Recall that, for any given
(B̃, p, ep) ∈ Send

M[P], the interval distribution DM[P]((B̃, (l, g, ℘), ep), τ) assigns singleton inter-

vals to each s ∈ SM[P]. Hence, there is only one action associated with (B̃, p, ep) in [[M[P]]]

which we denote as (τ, αB̃,p,ep), where αB̃,p,ep is the assignment such that αB̃,p,ep(s) =

λ
(B̃,p,ep)
s for each s ∈ S

reg

M[P]. Recall that we have assumed Prπ(l,0)(Λ
π(ρ)) = Prπ̂reg(l,0)(Λ

π̂(ρ)),

and have π̂(r)((B̃, p), α) = π(r′)(ṽ, p) for all finite paths r ∈ Λπ̂(ρ). In the following, we let
r̂ ∈ Λπ̂(ρ) be an arbitrary finite path from Λπ̂(ρ). Then by construction:

Prπ(l,0)(Λ
π(ρ)) · π(r′)(ṽ, p) ·

(

α(le) · ℘[le(B̃)](∅, l′) + α(re) · ℘[re(B̃)](∅, l′)
)

= Prπ̂reg(l,0)(Λ
π̂(ρ)) · π̂(r̂)((B̃, p), α)

×
(

α(le) ·∆M[P]((B̃, p, le), (τ, α
B̃,p,le))(l′, B′)

+α(re) ·∆M[P]((B̃, p, re), (τ, α
B̃,p,re))(l′, B′)

)

= Prπ̂reg(l,0)(Λ
π̂(ρ)) · π̂(r̂)((B̃, p), α) · α(le) ·∆M[P]((B̃, p, le), (τ, α

B̃,p,le))(l′, B′)

+Prπ̂reg(l,0)(Λ
π̂(ρ)) · π̂(r̂)((B̃, p), α) · α(re) ·∆M[P]((B̃, p, re), (τ, α

B̃,p,re))(l′, B′)

=
∑

r∈Λπ̂(ρ)

∑

ep∈{le,re}

Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α) · α(ep)

×∆M[P]((B̃, p, ep), (τ, α
B̃,p,ep))(l′, B′)

= Prπ̂reg(l,0)(Λ
π̂(ρ(B̃, p)(l′, B′))) .
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This completes showing that Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) = Prπ̂reg(l,0)(Λ

π̂(ρ(B̃, p)(l′, B′))) when

B′ = B̃. The case for B′ = [0, 0] follows similarly.

The following lemma considers the converse direction, namely that (starting from a
given location with the clock equal to 0) any scheduler of [[M[P]]] can be mimicked by a
B-minimal scheduler of [[P]] such that the schedulers assign the same probability of reaching
a certain set of locations.

Lemma 4.7. Let l ∈ L be a location and let F ⊆ L be a set of locations. Given a sched-

uler π̂ ∈ Σ[[M[P]]], there exists a B-minimal scheduler π ∈ Σ
[[P]]
B , such that Prπ(l,0)(♦TF ) =

Prπ̂reg(l,0)(♦TF ).

Proof. Let l ∈ L, F ⊆ L and π̂ ∈ Σ[[M[P]]]. We describe the construction of scheduler

π ∈ Σ
[[P]]
B , and then show that Prπ(l,0)(♦TF ) = Prπ̂reg(l,0)(♦TF ).

Before presenting the details, we sketch the overall approach of the proof. The proof
proceeds in a similar manner to that of Lemma 4.2: here, as for the proof of Lemma 4.2,
our aim is to obtain a (B-minimal) scheduler π of [[P]], i.e., a scheduler for which there is a
one-to-one relationship between its finite paths and (a subset of) B-paths. The principles
underlying the construction of π are the same as those underlying the analogous construction
of Lemma 4.2: for a finite path r of [[P]], in order to define π(r), we consider extensions
of the unique B-path ρ that corresponds to r; for each of those extensions that correspond
to a set of finite paths of π̂, we define a choice made by the distribution π(r) that mimics
the final transition of the aforementioned set of finite paths of π̂. The probabilities of
the distribution π(r) are obtained as weighted averages of the choices of π̂. Showing that
Prπ(l,0)(♦TF ) = Prπ̂reg(l,0)(♦TF ) will be done in a similar manner to the analogous part of the

proof of Lemma 4.5.

We first describe the construction of π ∈ Σ
[[P]]
B . Consider the finite path

r = (l0, v0)(ṽ0, p0)(l1, v1)(ṽ1, p1) · · · (ṽn−1, pn−1)(ln, vn)

of [[P]]. Let

ρ = (l0, B0)(B̃0, p0)(l1, B1)(B̃1, p1) · · · (B̃n−1, pn−1)(ln, Bn)

be the unique B-path such that r corresponds to ρ. Similarly, recall that Λπ̂(ρ) is the set of
finite paths of π̂ that correspond to ρ (where the notion of correspondence of finite paths of

π̂ to a B-path is given in the proof of Lemma 4.5. Consider the extension of ρ with (B̃, p)

such that source(p) = ln, B̃ ∈ IB, B̃ ≥ Bn, and B̃ |= guard(p) ∧ inv(ln).
We recall an assumption that we can make without loss of generality, as already de-

scribed in the proof of Lemma 2.3: given r′ ∈ Λπ̂(ρ), we assume that there exists at most

one α ∈ G(DM[P](last(r
′), (B̃, p))) such that ((B̃, p), α) ∈ support(π̂(r′)) (this follows from

the fact that the set of assignments G(DM[P](last(r
′), (B̃, p))) is closed under convex com-

binations). If such α ∈ G(DM[P](last(r
′), (B̃, p))) exists, we denote it by αr′

(B̃,p)
.

As in the proof of Lemma 4.2, to define π(r), for each pair (B̃, p) used to extend ρ, we
identify a clock valuation ṽ∗

ρ,(B̃,p)
, and then let:

π(r)(ṽ∗
ρ,(B̃,p)

, p) =

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,reg(l,0)(r

′) · π̂(r′)((B̃, p), αr′

(B̃,p)
)

Prπ̂∗,reg(l,0)(Λ
π̂(ρ))

,
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where Prπ̂∗,reg(l,0)(Λ
π̂(ρ)) =

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,(l,0)(r

′), and where π̂(r′)((B̃, p), αr′

(B̃,p)
) = 0 if there

does not exist any α ∈ G(DM[P](last(r
′), (B̃, p))) such that ((B̃, p), α) ∈ support(π̂(r′)).

For the case in which B̃ is a closed interval, i.e., B̃ = [b, b] for b ∈ B, we let ṽ∗
ρ,(B̃,p)

= b.

We now consider the case in which B̃ is an open interval. The approach we take is
analogous to that taken in the proof of Lemma 4.2: intuitively, if p is a constant probabilistic
edge, and no non-constant probabilistic edge has been taken while the clock value remains
in B̃, then the scheduler π maintains the clock as having a value that is a (small) amount

greater than the left endpoint of B̃; if p is instead a non-constant probabilistic edge, then
the value of the clock is advanced to a particular value in the interval B̃, in order to
mimic the choice of particular assignments in π̂; finally, if p is a constant probabilistic
edge, and a non-constant probabilistic edge has been taken previously while the clock value
remains in B̃, then the scheduler π can choose the value of the clock from B̃ in an arbitrary
manner. The construction more complicated than that of the proof of Lemma 4.2, because
the clock valuations must be chosen by π to reflect assignments chosen by π̂ (instead,
for Lemma 4.2, the clock valuations were chosen in the construction of π to reflect clock

valuations chosen by σ, which was simpler conceptually). As in the proof of Lemma 4.2, let

k ≤ n be the maximum index for which Bk 6= B̃ (with k = 0 if no such index exists), noting

that B̃k = Bk+1 = B̃k+1 = · · · = B̃n−1 = Bn = B̃. We consider the following function

hB̃ : Dist({(B̃, , le), (B̃, , re)}) → B̃ that maps an assignment (over the target endpoint

indicators (B̃, , le), (B̃, , re) associated with (B̃, p)) to a clock valuation in B̃ (where the

probabilistic edge in the endpoint indicators (B̃, , le) and (B̃, , re) is omitted because it is
irrelevant to the definition of the function). The function hB̃ is defined as follows: given

α ∈ Dist({(B̃, , le), (B̃, , re)}), we let hB̃(α) = re(B̃) − α(le) · (re(B̃) − le(B̃)) (note that,

as in the proof of Lemma 4.5, we write α(le) rather than α(B̃, , le) for simplicity; in the

sequel, we will also usually write α(re) rather than α(B̃, , re)). The intuition underlying the
definition of hB̃ is that hB̃(α) is a clock valuation that represents faithfully the assignment
α, in the sense that the greater the probability of α(le), the closer the clock valuation is to

the left endpoint of B̃.
First we consider the subcase in which all probabilistic edges in pk · · · pn are constant,

and p is also constant. While the clock must be set to some value in B̃, it is important
that the value chosen is no greater than the value needed in the future to replicate the
probabilities corresponding to a non-constant probabilistic edge. We now identify such
values. We first define the set Ωρ,(B̃,p), which contains finite suffixes of paths in Λπ̂(ρ),

where the suffixes (1) start with a transition derived from (B̃, p), (2) feature only B̃ (apart
from the suffixes’ first state), and (3) features only constant probabilistic edges until the final
transition, which features a non-constant probabilistic edge. We now define formally Ωρ,(B̃,p).

For a finite path r′ ∈ Paths π̂∗,Sreg

M[P]
(reg(l, 0)), let SuffFrom π̂

∗ (r
′) be the set of (finite) suffixes

of r′ generated by π̂ that end in a state in Send
M[P]; formally, SuffFrom π̂

∗ (r
′) is the smallest set

such that, if r′′ ∈ Paths π̂
∗,Send

M[P]
(reg(l, 0)), where r′′ = r′r′′′, then r′′′ ∈ SuffFrom π̂

∗ (r
′). We let

Suffixes π̂∗ (reg(l, 0)) be the set of all suffixes of finite paths of π̂, starting in a state of Sreg

M[P]
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and terminating in a state in Send
M[P], that is:

Suffixes π̂∗ (reg(l, 0)) =
⋃

r′∈Paths π̂
∗,S

reg

M[P]

(reg(l,0))

SuffFrom π̂
∗ (r

′) .

Consider r′ ∈ Suffixes π̂∗ (reg(l, 0)), where r
′ = (l0, B0)((B̃0, p0), α0)(ep0) · · · ((B̃m, pm), αm)(epm).

We let FA(r′) = αm be the assignment featured in the final transition of r′. Furthermore,
we say that:

• r′ starts with (B̃, p) if B̃0 = B̃ and p0 = p;

• r′ remains in B̃ if B̃i = B̃ for all 0 ≤ i ≤ m and Bi = B̃ for all 0 < i ≤ m;
• r′ terminates with a non-constant probabilistic edge if pm is a non-constant probabilistic
edge and pi is a constant probabilistic edge for all 0 ≤ i < m.

We say that r′ ∈ Suffixes π̂∗ (reg(l, 0)) is a (B̃, p)-critical path if r′ starts with (B̃, p), remains

in B̃, and terminates with a non-constant probabilistic edge. Let Critical π̂
(B̃,p)

be the set of

(B̃, p)-critical paths. We can now let:

Ωρ,(B̃,p) = Critical π̂
(B̃,p)

∩
⋃

r′∈Λπ̂(ρ)

SuffFrom π̂
∗ (r

′) .

Then we let Ψρ,(B̃,p) be the set of assignments featured in the final transition of finite

paths in Ωρ,(B̃,p): formally Ψρ,(B̃,p) = {FA(r′) | r′ ∈ Ωρ,(B̃,p)}. Finally we let ṽ∗
ρ,(B̃,p)

=

min{hB̃(α) | α ∈ Ψρ,(B̃,p)}.

Now consider the subcase in which B̃ is an open interval, and all probabilistic edges in
the sequence pk · · · pn are constant, but p is non-constant. As in the analogous case of the
proof of Lemma 4.2, the choice of clock valuation by π corresponds to a weighted average
from a set of clock valuations. In the case of this proof, the set of clock valuations used is
that obtained from assignments used by π̂ after finite paths corresponding to ρ extended
with (B̃, p), using a similar “transformation from assignment to clock valuation” approach
as used in the previous paragraph. We now give the formal details. Recall that we have
assumed w.l.o.g. that, given r′ ∈ Λπ̂(ρ), there exists at most one α ∈ Dist(Send

M[P]) such that

π̂(r′)((B̃, p), α) > 0, and that we denote such an assignment α by αr′

(B̃,p)
. Then we let:

ṽ∗
ρ,(B̃,p)

=

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,(reg(l,0))(r

′) · π̂(r′)((B̃, p), αr′

(B̃,p)
) · hB̃(α

r′

(B̃,p)
)

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,(reg(l,0))(r

′) · π̂(r′)((B̃, p), αr′

(B̃,p)
)

.

Finally, we consider the subcase in which B̃ is an open interval, there exists i ∈
{k, . . . , n} such that pi is non-constant, and for all other j ∈ {k, . . . , n} we have that
pi is constant, and also p is constant. As in the proof of Lemma 4.2, for this subcase, the
clock valuation can be arbitrary; for simplicity we retain the same clock valuation as was
used in the final state of r, i.e., if last(r) is equal to (l′, v′), we let ṽ∗

ρ,(B̃,p)
= v′.

Repeating this overall process for all (B̃, p) ∈ AM[P](l, B) suffices to define the dis-
tribution π(r). Following similar reasoning to the analogous part of Lemma 4.2, we can
show that π(r) is indeed a distribution, i.e.,

∑

(B̃,p)∈AM[P](reg(last(r)))
π(r)(ṽ∗

ρ,(B̃,p)
, p) = 1

(recall that reg(last(r)) = (ln, Bn)). From the construction of π, and from the fact that
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∑

(B̃,p)∈AM[P](ln,Bn)
π̂(r′)((B̃, p), αr′

(B̃,p)
) = 1, we have the following:

∑

(B̃,p)∈AM[P](ln,Bn)

π(r)(ṽ∗
ρ,(B̃,p)

, p)

=
∑

(B̃,p)∈AM[P](ln,Bn)





∑

r′∈Λπ̂(ρ) Pr
π̂
∗,reg(l,0)(r

′) · π̂(r′)((B̃, p), αr′

(B̃,p)
)

Prπ̂∗,reg(l,0)(Λ
π̂(ρ))





=

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,reg(l,0)(r

′) ·
∑

(B̃,p)∈AM[P](ln,Bn)
π̂(r′)((B̃, p), αr′

(B̃,p)
)

Prπ̂∗,reg(l,0)(Λ
π̂(ρ))

=

∑

r′∈Λπ̂(ρ) Pr
π̂
∗,reg(l,0)(r

′)

Prπ̂∗,reg(l,0)(Λ
π̂(ρ))

= 1 .

The next step of the proof is to show that Prπ(l,0)(♦TF ) = Prπ̂reg(l,0)(♦TF ). As in previ-

ous proofs, it is sufficient to show that Prπ(l,0)(Λ
π(ρ)) = Prπ̂reg(l,0)(Λ

π̂(ρ)) for all B-paths ρ.

Proceeding by induction on the length of B-paths, consider the B-path ρ(B̃, p)(l′, B′), and
assume that Prπ(l,0)(Λ

π(ρ)) = Prπ̂reg(l,0)(Λ
π̂(ρ)). Our aim is to show that

Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) = Prπ̂reg(l,0)(Λ

π̂(ρ(B̃, p)(l′, B′))) .

We consider the case in which B̃ is open, p is non-constant and B′ = B̃, i.e., the target
region (l′, B′) is obtained using the outcome (∅, l′) (which does not reset the clock, and hence

the interval B′ of the target region is equal to the interval B̃ obtained just before the the
probabilistic edge p is taken). Other cases are dealt with similarly; in particular, the cases
for constant probabilistic edges are more straightforward. Our approach is slightly different
to that used in the proof of Lemma 4.5 because, in the scheduler of [[M[P]]] constructed in
the proof of Lemma 4.5, the choice made after all finite paths corresponding to a particular
B-path was the same; instead, this property does not necessarily hold for π̂. Let r ∈ Λπ̂(ρ).

Now consider the finite paths in Λπ̂(ρ(B̃, p)(l′, B′)) that have r as a prefix: these finite

paths are r((B̃, p), αr
(B̃,p)

)(le)(l′, B′) and r((B̃, p), αr
(B̃,p)

)(re)(l′, B′). From the construction

of π̂ and by definition (where ℘ denotes the distribution template of probabilistic edge p),
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we have the following:
∑

ep∈{le,re}

Prπ̂reg(l,0)(r((B̃, p), α
r
(B̃,p)

)(ep)(l′, B′))

= Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

×
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) ·∆M[P]((B̃, p, ep), (τ, α
B̃,p,ep))(l′, B′)

= Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) · ℘[ep(B̃)](∅, l′)

= Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) · (c + d · ep(B̃))

= c · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep)

+ d · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) · ep(B̃) .

Note that
∑

ep∈{le,re} α
r
(B̃,p)

(B̃, p, ep) = 1 (because αr
(B̃,p)

is a distribution over the set

{(B̃, p, le), (B̃, p, re)}). Furthermore, recalling the definition of hB̃ , we observe that:

αr
(B̃,p)

(B̃, p, le) =
re(B̃)− hB̃(α

r
(B̃,p)

)

re(B̃)− le(B̃)

αr
(B̃,p)

(B̃, p, re) =
hB̃(α

r
(B̃,p)

)− le(B̃)

re(B̃)− le(B̃)
.

Hence we have:
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) · ep(B̃)

=
re(B̃)− hB̃(α

r
(B̃,p)

)

re(B̃)− le(B̃)
· le(B̃) +

hB̃(α
r
(B̃,p)

)− le(B̃)

re(B̃)− le(B̃)
· re(B̃)

=
re(B̃) · le(B̃)− hB̃(α

r
(B̃,p)

) · le(B̃) + hB̃(α
r
(B̃,p)

) · re(B̃)− le(B̃) · re(B̃)

re(B̃)− le(B̃)

=
hB̃(α

r
(B̃,p)

) · re(B̃)− hB̃(α
r
(B̃,p)

) · le(B̃)

re(B̃)− le(B̃)

= hB̃(α
r
(B̃,p)

) .
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Therefore we have:

c · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep)

+ d · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) ·
∑

ep∈{le,re}

αr
(B̃,p)

(B̃, p, ep) · ep(B̃)

= c · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

+ d · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) · hB̃(α
r
(B̃,p)

) .

We now use this equality to establish that Prπ(l,0)(Λ
π(ρ)) = Prπ̂reg(l,0)(Λ

π̂(ρ)). First observe

the following:

Prπ̂(l,0)(Λ
π(ρ(B̃, p))(l′, B′))

=
∑

r∈Λπ̂(ρ(B̃,p))(l′,B′)

Prπ̂reg(l,0)(r)

=
∑

r∈Λπ̂(ρ)

∑

ep∈{le,re}

Prπ̂reg(l,0)(r((B̃, p), α
r
(B̃,p)

)(ep)(l′, B′))

=
∑

r∈Λπ̂(ρ)

c · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

+
∑

r∈Λπ̂(ρ)

d · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) · hB̃(α
r
(B̃,p)

)

Recalling the definition of ṽ∗
ρ,(B̃,p)

(for the case of open B̃ and non-constant p), we have that
∑

r∈Λπ̂(ρ) Pr
π̂
∗,(reg(l,0))(r) · π̂(r)((B̃, p), α

r
(B̃,p)

) ·hB̃(α
r
(B̃,p)

) = ṽ∗
ρ,(B̃,p)

·
∑

r∈Λπ̂(ρ) Pr
π̂
∗,(reg(l,0))(r) ·

π̂(r)((B̃, p), αr
(B̃,p)

). Hence we then obtain:

∑

r∈Λπ̂(ρ)

c · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

+
∑

r∈Λπ̂(ρ)

d · Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) · hB̃(α
r
(B̃,p)

)

= c ·
∑

r∈Λπ̂(ρ)

Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

+ d · ṽ∗
ρ,(B̃,p)

·
∑

r∈Λπ̂(ρ)

Prπ̂∗,(reg(l,0))(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) .

Let ř denote the unique path in Λπ(ρ). By the definition of π(ř), and from the fact that
Prπ∗,(l,0)(Λ

π(ρ)) = Prπ̂∗,reg(l,0)(Λ
π̂(ρ)) by induction, we have:

∑

r∈Λπ̂(ρ)

Prπ̂∗,reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

) = Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p) .
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We then obtain:

c ·
∑

r∈Λπ̂(ρ)

Prπ̂reg(l,0)(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

+ d · ṽ∗
ρ,(B̃,p)

·
∑

r∈Λπ̂(ρ)

Prπ̂∗,(reg(l,0))(r) · π̂(r)((B̃, p), α
r
(B̃,p)

)

= c · Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p)

+ d · ṽ∗
ρ,(B̃,p)

· Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p)

= Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p) · (c + d · ṽ∗

ρ,(B̃,p)
)

= Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p) · ℘[ṽ∗

ρ,(B̃,p)
](∅, l′)

= Prπ∗,(l,0)(Λ
π(ρ)) · π(ř)(ṽ∗

ρ,(B̃,p)
, p) ·∆P(last(ř), (ṽ

∗
ρ,(B̃,p)

, p))(l′, B′)

= Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) .

This establishes that Prπ(l,0)(Λ
π(ρ(B̃, p)(l′, B′))) = Prπ̂reg(l,0)(Λ

π̂(ρ(B̃, p)(l′, B′))). We note

that the cases for other outcomes are similar, and for constant probabilistic edges and/or
closed intervals are more straightforward.

We characterise the size of a 1c-cdPTA as the sum of the number of its locations, the
size of the binary encoding of the clock constraints used in invariant conditions and guards,
and the size of the binary encoding of the constants used in the distribution templates of
the probabilistic edges (i.e., cpe and dpe for each p ∈ prob and e ∈ 2{x} × L).

Theorem 4.8. Quantitative and qualitative problems for 1c-cdPTA can be solved in poly-

nomial time.

The theorem follows from Lemma 4.2, Lemma 4.5, Lemma 4.7, Proposition 2.2, the
fact that the IMDP defined in this section can be constructed in polynomial time, and
the fact that quantitative and qualitative problems for IMDPs can be solved in polynomial
time, given that there exist polynomial-time algorithms for analogous problems on IMCs
with the semantics adopted in this paper [31, 12, 9, 34]. We add that the quantitative and
qualitative problems for 1c-cdPTAs are PTIME-hard, following from the PTIME-hardness
of the corresponding problems for MDPs [30, 10].

5. Conclusion

We have presented a method for the transformation of a class of 1c-cdPTAs to IMDPs such
that there is a precise relationship between the schedulers of the 1c-cdPTA and the IMDP,
allowing us to use established polynomial-time algorithms for IMDPs to decide quantitative
and qualitative reachability problems on the 1c-cdPTA. Overall, the results establish that
such problems are in PTIME. The techniques rely on the initialisation requirement, which
ensures that optimal choices for non-constant probabilistic edges correspond to the left or
right endpoints of intervals that are derived from the syntactic description of the 1c-cdPTA.
The initialisation requirement restricts dependencies between non-constant probabilistic
edges: while this necessarily restricts the expressiveness of the formalism, the resulting
model nevertheless retains the expressive power to represent basic situations in which the
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probability of certain events depends on the exact amount of time elapsed, such as those
described in the introduction.

The IMDP construction can be simplified in a number of cases: for example, in the
case in which at most two outcomes e1, e2 of every probabilistic edge p are non-constant,
i.e., for which dpe1 6= 0 and dpe2 6= 0, endpoint indicators are unnecessary; instead, when a
probabilistic edge is taken from an open interval B̃, each of e1 and e2 are associated with
(non-singleton) intervals (other outcomes are associated with singleton intervals), and the
choice of probability to assign between the two intervals represents the choice of clock valu-
ation in B̃. This construction is also polynomial in the size of the 1c-cdPTA. Future work
could consider lifting the initialisation requirement: we conjecture that this is particularly
challenging for quantitative properties, in particular recalling that Figure 2 of [33] provides
an example of a non-initialised 1c-cdPTA for which the maximum probability of reaching
a certain location is attained by choosing a time delay corresponding to an irrational num-
ber. Solutions to the qualitative problem for non-initialised 1c-cdPTAs could potentially
utilise connections with parametric MDPs [20, 36]. Furthermore, time-bounded reachability
properties could also be considered in the context of 1c-cdPTAs.
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