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ABSTRACT 15 

In this paper we present a physical modelling approach where the stability of rock blocks 16 

against toppling in the field can be estimated using a tilt table, engineered rock models 17 

and 3D-printed small-scale versions of a natural rock boulder. To achieve this goal, first, 18 

simple geometry rock elements are tilted and results interpreted according to analytical 19 

formulations. Then, more complex geometry engineered rock blocks, including some 20 

whose centers of gravity do not project on the center of the base element, are tested and 21 

results properly interpreted. Eventually, the 3D-printed version of the rock boulder is 22 

produced from 3D point clouds recovered in the field by means of a combination of 23 

photogrammetry and laser scanner techniques. Analytical formulations and numerical 24 

calculations have been used in order to validate the proposed approach, to explain the 25 

physical phenomena involved, and to allow for possible extension of the physical 26 

modelling results to different scenarios, such as those considering the influence of water 27 

or seismic loading on stability. 28 

  29 
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List of symbols 30 

α base plane inclination angle 31 

αcr critical angle of toppling 32 

b width of the block 33 

cog center of gravity 34 

ɸ friction angle 35 

FS factor of safety 36 

g acceleration of gravity (9.81 m/s2) 37 

h height of the block or model 38 

P rotation pivot of a given block or model and origin of the (xi, yi) coordinates 39 

r radius 40 

rc radius of the block corners (expressed as the radius of curvature) 41 

xi distance from P to the cog of the i-th sub-section along the x-axis for a given 42 

block or model 43 

yi distance from P to the cog of the i-th sub-section along the y-axis for a given 44 

block or model 45 

w width of the block (out of plane) 46 

W weight of the block 47 

Wi weight of the i-th section  48 



1. Introduction 49 

Analysing the stability of natural or man-made slopes in rock masses is a complex task. 50 

The principles of the discipline addressing this problem (typically known as rock slope 51 

engineering) were established in the seminal works developed during the 1960s and 1970s 52 

at Imperial College in London and by Richard Goodman in Berkeley, and they are 53 

summarized in the book entitled “Rock Slope Engineering” (Hoek and Bray, 1974). In 54 

this book, it was clearly stated that, unlike in the case of soils, where failure mechanisms 55 

typically involve sliding along a rotational or planar sliding surface, for rocks, a variety 56 

of failure mechanisms could occur according to the number, continuity, spacing, 57 

orientation and geomechanical characteristics of existing discontinuity sets. 58 

 59 

Four typical types of failure mechanisms were identified at the time as the most common 60 

possibilities for rock slope instabilities: planar, wedge, (block) toppling and circular. This 61 

classification combined with the simple mathematical tools provided to analyse their 62 

stability, represented a significant step forward in the rock engineering field, leading to 63 

improved rock slope stability analyses and designs. However, as wisely noted in the 64 

preface of Hoek and Bray’s (1974) book, ‘Because the rock mass behind every slope is 65 

unique, there are no standard recipes or routine solutions which are guaranteed to produce 66 

the right answer each time they are applied’. This is why it is important to bear in mind 67 

that rock slope instability phenomena do not necessarily occur according to simple failure 68 

mechanisms as those described in these early works. 69 

 70 

Whereas three of these basic mechanisms refer to sliding phenomena, only one of them 71 

involves toppling. Toppling corresponds to rotation of relatively slender rock columns or 72 

blocks about a fixed base. There are two distinct types of toppling failure mechanisms 73 

named block and flexural toppling (Goodman and Bray, 1976). In the first case, the 74 

toppling block is already fully detached from the rest of the rock mass. The second implies 75 

flexural or tensile failure, where the block is not completely detached of the rock mass 76 

such that new tensile failure cracks need to occur to fully detach the block from the 77 

surrounding ones for toppling instability to occur. In this study we focus on the analysis 78 

of block toppling.  79 

 80 



The simplest toppling case considered in this study is that of a single toppling block. The 81 

first analyses of the stability against toppling of a single block were performed by Ashby 82 

(1971) and then extended and formalized by other authors (Hoek and Bray, 1974; 83 

Sagaseta, 1986). All these analyses start with strict geometrical assumptions considering 84 

perfectly rectangular blocks with sharp corners resting on a dipping plane striking in the 85 

same direction as the block face in contact with the plane. 86 

 87 

Some studies have recently begun to address the influence of more realistic shapes of 88 

blocks on block stability against toppling. Alejano et al. (2015) studied the influence of 89 

the rounding of block corners on the stability of a block. This geometric condition 90 

observed in some rock masses and associated with spheroidal weathering erosive 91 

processes was shown to significantly affect block stability. The authors proposed a 92 

formulation to compute the stability of a round-cornered block to account for this effect. 93 

This formulation relies on the position of the potential rotation axis and was verified using 94 

physical models and field observations. While such a contribution is interesting and 95 

extends the type of toppling instability that can be analyzed, when one observes certain 96 

natural rock environments, more complex irregular block geometries exist for which no 97 

analysis methods can be observed. 98 

 99 

As an example, Fig. 1 illustrates three zones in two different mountain environments, 100 

where a number of toppled and stable blocks are observed. In most of the cases and based 101 

on our current capabilities to analyze stability of blocks, it would be indeed difficult to 102 

rigorously perform a back analysis of the instability or stability of these blocks to explain 103 

why are they stable or unstable. For the stable blocks, it would also be difficult to assess 104 

their stability after a potential change in loading conditions, such as in the case of a 105 

seismic event. Accordingly, the main goal of this study is to develop a methodology 106 

through which the stability of complex blocks (such as those illustrated in Fig. 1) can be 107 

analyzed in a more or less reliable manner. 108 

 109 

Since their early studies, the authors have considered cases involving increasingly 110 

complex estimates of the toppling stability of individual rock blocks taking into account 111 

the occurrence of rounded corners on the toppling blocks (Alejano et al., 2017) or rock 112 

boulders (Alejano et al., 2010b; Pérez-Rey et al., 2019). They also considered other 113 

studies available from literature focusing on the potential destabilizing effects of 114 



earthquakes on rock blocks or groups of rock blocks (Christianson et al., 1995; Shi et al., 115 

1996; Vann et al., 2019), where it has been necessary to extend available methodologies 116 

to model the nature of these structures in a more realistic manner. 117 

 118 

In the process of developing the above-mentioned studies, tilting small-scale rock 119 

elements with simple geometries has revealed as an interesting technique that, in 120 

combination with analytical formulations can help to understand a number of issues 121 

associated to toppling phenomena. Therefore, a number of simple and a little bit more 122 

complex geometry engineered rock blocks have been tilted and results explained in this 123 

document to illustrate the potential interest of extending this technique to more realistic 124 

block shapes. 125 

 126 

 127 

Fig. 1. Different geological environments where toppled and stable rock blocks are observed. 128 

 129 

The study is an extension of basic toppling equilibrium calculations and was developed 130 

in parallel with particular rock slope stability studies. The initial concepts associated with 131 

the proposed methodology developed while studying the stability of footwall slopes 132 

(Alejano et al., 2011) and masonry retaining walls (Alejano et al., 2012). In both cases it 133 

was possible to resort to physical models subjected to tilt tests in order to carry out simple 134 



analyses with the aim of confirming particular failure mechanisms and the validity of 135 

some formulations (Fig. 2). This previously developed approach is valid if only friction 136 

is involved, and block’s geometries can be easily reproduced using common rock cutting 137 

approaches (typically with saw-blades). 138 

 139 

 140 

Fig. 2. Physical models of dry masonry retaining walls used to understand the failure mechanism 141 

of these structures and check limit equilibrium calculations.  142 

 143 

Since the turn of this century, photogrammetric and laser scanning techniques for point 144 

cloud acquisition have become widely available, such that a very good representation of 145 

a given rock slope geometry can be achieved (Alejano et al., 2013; Armesto et al., 2009; 146 

Ferrero et al., 2011, 2009; Riquelme et al., 2014). Most recently, relatively large and 147 

accurate 3D point clouds have become available at very reasonable costs (Girardeau-148 

Montaut, 2018). It is therefore possible to obtain 3D point clouds representing the 149 

complex block geometries observed in nature (such as in Fig. 1). Based on such geometric 150 

data, the center of gravity (cog), which is critical for toppling stability analyses, can be 151 

precisely located. Other relevant geometrical aspects of the rock blocks or boulders such 152 

as the position of the contact base between the block and basal plane can be also 153 

rigorously defined. This geometrical information largely facilitates computing the factor 154 

of safety of these boulders against toppling, as the ratio of stabilizing moments to 155 

overturning moments. 156 

 157 

Additionally, in the last five years, 3D printing has improved so rapidly that it is relatively 158 

easy to produce a scaled 3D printed version of any rock block based on the point cloud 159 

representing its outer surface  (Bader et al., 2018; Virtanen et al., 2014). Therefore, it 160 

allows for the possibility of using tilt testing as a methodology to analyze the stability of 161 

blocks with complex geometry against toppling.  162 



Consequently, in this paper we introduce a new physical modelling approach, where a tilt 163 

table, classic limit equilibrium computations, and rock physical models using a 3D-164 

printed version of a real boulder are used to estimate the factor of safety against toppling 165 

of rock blocks in Nature. The use of analytical formulations and numerical models in 166 

parallel with this approach is strongly recommended. This would allow a deeper 167 

understanding of the phenomena at stake and will help to extend physical modelling 168 

observations to different scenarios (water pressure or dynamic loadings). 169 

 170 

 171 

2. The mechanics of toppling 172 

 173 

Despite the fact that some authors consider the occurrence of pure toppling as an 174 

uncommon failure mechanism, and that toppling is typically associated with larger 175 

failures or as a consequence of other mechanisms like slope undercutting or weakening 176 

at the toe (Hencher, 2015), toppling has been extensively reported as the origin of several 177 

rock-mass failures experienced in different fields such as open-pit mining (Al Mandalawi 178 

et al., 2019; Alejano et al., 2010a; Amini and Ardestani, 2019), civil engineering 179 

(Akbarpour et al., 2012; Cai et al., 2019; Tu et al., 2007) and natural rock slopes (Guo et 180 

al., 2017). 181 

 182 

The mechanism of toppling had long been partially identified in the field by some authors 183 

(Müller, 1968; Terzaghi, 1962), though it was not until the late 1960’s  that it began to be 184 

considered as a mode of failure unto itself (Bray, 1969). A few years later, some authors 185 

started the study of toppling in a more rigorous way, through both laboratory models 186 

(Ashby, 1971; Barton, 1971) and early applications of numerical methods (Cundall, 1971; 187 

St. John, 1972). 188 

 189 

Ashby (1971) developed a seminal study on different sliding and toppling modes of 190 

failure based on laboratory physical models and observations on rock slopes. This author 191 

derived a simplified analytical 2-D toppling model for an isolated straight block of height 192 

h and width b, resting on a plane dipping α degrees with a friction angle between contacts, 193 

ɸ (Fig. 3). 194 



Considering the base plane angle,  𝛼 < 𝜙 and the x and y components of the weight (W) 195 

of the block, a factor of safety against toppling can be estimated by relating the stabilizing 196 

and overturning moments with respect to the rotation pivot, P (Fig. 3a), as presented in a 197 

general form in Eq. 1. 198 

𝐹𝑆 =
∑ 𝑀𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔

∑ 𝑀𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔
 (1) 

 199 

 200 

 201 

Fig. 3. (a) 2D sketch of a single block placed on an inclined plane for toppling stability analysis; 202 

(b) conditions for sliding and toppling according to Ashby (1971). 203 

 204 

It is therefore easy to derive that the toppling condition (represented as FS ≤ 1 in Eq. 1) 205 

solely depends on the slenderness of the block and the plane dip (α) (Ashby, 1971) and is 206 

defined by the geometrical relationship presented in Eq. 2: 207 

 208 

𝑏

ℎ
≤ tan 𝛼 (2) 

 209 

According to Fig. 3b and depending on the considered kinematic conditions stablished by 210 

Eq. 1 and the condition 𝛼 = 𝜙, that refers to sliding stability, four zones can be identified: 211 

stability, sliding, toppling and sliding and toppling simultaneously occurring. Even 212 

though this model laid the groundwork for subsequently reproduced studies on toppling 213 

(Hoek and Bray, 1974), some errors were detected in the conditions presented in Fig. 3b, 214 

as corrected by other authors (Bray and Goodman, 1981; Sagaseta, 1986). The 215 



“corrected” solution for a single block toppling condition, as proposed by Sagaseta 216 

(1986), is given by Eq. 3: 217 

4 · tan 𝛼 · [1 + (
𝑏
ℎ

)
2

] − 3 · (tan 𝛼 −
𝑏
ℎ

)

4 · [1 + (
𝑏
ℎ

)
2

] + 3 ·
𝑏
ℎ

· (tan 𝛼 −
𝑏
ℎ

)

≤ tan 𝜙 (3) 

 218 

If Eq. 3 is considered, the boundary conditions for the possible modes of failure for a 219 

slab-like straight block with slenderness b/h, placed on an inclined plane dipping α 220 

degrees and with a friction angle ɸ = 30º can be correctly plotted (Fig. 4). 221 

 222 

Fig. 4 Stability chart for dynamic conditions, considering a block of dimensions b × h placed on 223 

a inclined plane dipping α degrees (as modified from Sagaseta (1986)). The line dividing toppling 224 

and sliding + toppling failure regions corresponds to a friction angle ɸ = 30º. 225 

For a block such as the already referred, in Fig. 4 the stability region is determined by the 226 

vertical line (tan α = tan ɸ) and the 1:1 line (tan α = b/h). The sliding failure will take 227 

place for the region defined by the same vertical line and the condition tan ɸ = b/h 228 

(horizontal line). The curved line, as derived from Eq. 3, divides the toppling and toppling 229 

+ sliding failure regions. Note that the position of this line will depend on the friction 230 

angle, and will always intercept the horizontal axis at a value tan α = 4·tan ɸ. 231 

 232 

 233 



To consider the case of rounding on the block edges caused by weathering, the single 2D 234 

straight block model was reevaluated several years later (Alejano et al., 2015). Starting 235 

from Eq. 2, the authors proposed a new equation by considering a radius of curvature (rc) 236 

representative of the edge rounding in such a way that toppling condition is given by the 237 

geometrical relationship presented in Eq. 4: 238 

 239 

𝑏 − 2𝑟𝑐

ℎ
< tan 𝛼 (4) 

 240 

It must be noted that the approaches presented above should only be applied to 2D 241 

problems or to simplifications of 3D bodies presenting a constant cross-section, as 242 

illustrated in Fig. 5. Additionally, the rotating pivot is already known, and defined by an 243 

identifiable edge. 244 

 245 

 246 

Fig. 5. (a) 3D body resting on an inclined plane with constant cross-section along the x-direction; 247 

(b) 2D simplification of the problem on the z–y plane. 248 

 249 

Nevertheless, this situation is seldom found in natural blocks (particularly, in rock 250 

boulders), that usually present irregular shapes and poorly defined contact planes, such 251 

that 2D analyses are unrealistic. In these cases, the third dimension cannot be disregarded 252 

and other approaches are needed for a correct assessment of the toppling mechanism 253 

(Domokos et al., 2012; Yeung and Wong, 2007; Zábranová et al., 2020).  254 

 255 

 256 

 257 



3. Analytical assessment and laboratory physical modelling 258 

An experimental program was designed in order to study the critical angle of toppling of 259 

engineered models subjected to tilt tests under laboratory conditions. The idea was to test 260 

different blocks or assemblies presenting features that determine their kinematic behavior 261 

with respect to toppling: the symmetry of the block section, the edge rounding, the 262 

concavity of the contact base and the position of the center of gravity with respect to a 263 

central cross-section of the block. A sketch showing these features and the models used 264 

is presented in Fig. 6. 265 

 266 

 267 
Fig. 6. Sketch showing the specimens used for 2D and 3D toppling analyses according to the type 268 

of contact base (planar or non-planar), edge rounding (straight or rounded), symmetry of the 269 

cross-section and position of the cog. 270 

 271 

 272 

 273 

 274 

3.1. Physical models and laboratory testing 275 

 276 

The models presented in Fig. 6 were selected to perform the laboratory tilt tests. The 277 

majority of them (Fig. 6 a–e) consisted of some saw-cut pieces of two igneous rocks 278 

(granite and orthogneiss) assembled by gluing them together to form the physical model 279 

(Fig. 7). A photo of each model is presented in Fig. 8. In mode case PM-6 (Fig. 6f and 280 

Fig. 8f), steel (with a density of 7900 kg/m3) was used to fabricate the upper cylinder; as 281 

can be appreciated, this part of the model was intended to displace the center of gravity 282 



of the corresponding assembly. The replica of a real boulder was 3D-printed with PLA 283 

(polylactide) plastic based on a 3D point cloud recovered from the original geological 284 

structure (Pérez-Rey et al., 2019).  285 

 286 

The density of the plastic is lower than that of the rock. Additionally, the printed version 287 

presents an internal plastic pattern with regular hollow zones. Since toppling stability 288 

depends in both the stabilizing and overturning moments and they are both proportional 289 

to the block weight, density does not influence stability in uniform bodies. The friction 290 

force in the base is also proportional to the weight in case the contact is considered planar, 291 

though it may affect results for rough joints, as Barton’s formula suggests. Since the 292 

contacts of the studied elements are typically planar, the weight does not significantly 293 

affect the frictional response. If one wants to avoid the sliding mechanism, in cases where 294 

it can take place at lower tilt angles than toppling, a piece of sand paper can be glued to 295 

the base of the element to increase friction strength. In conclusion, density, when constant, 296 

and friction angle are considered to have a negligible impact on the presented results. 297 

 298 

Fig. 7. Process of fabrication of the rock models (1, 2) dimensioning and parts of a model; (3) 299 

gluing of parts to create the complete model and (4) model being tested. 300 



 301 

Fig. 8. Photos of the physical models used in this study (a. symmetric section; b. asymmetric 302 

section; c. rounded edges; d. concave base; e. displaced cog (rectangular base); f. displaced cog 303 

(circular base); g. 3D printed replica of a real boulder). The name assigned to each model is also 304 

provided. 305 

 306 

Regarding the tilt tests, they were carried out with a testing frame designed at the 307 

University of Vigo that consists of a metallic platform able to rotate about a fixed axis 308 

and driven by an asynchronous motor that assures constant angular lifting velocities (from 309 

0.1º/min to 26º/min) are maintained. The ‘start’ and ‘stop’ orders can be given to the 310 

machine by a manual control. A constant record of the tilting angle is kept using an 311 

inclinometer (Leica DISTO D5) with an accuracy of 0.1º attached to the platform (Fig. 312 

9). The critical angle of toppling for each tested model could be registered by simply 313 

stopping the rotation of the platform as the onset of instability was observed. For that 314 

purpose, the tilting velocity was set at 12º/min for all tests in order to balance precision 315 

in determination of the critical angle with testing time. Each model was tested three times 316 

until toppling (or sliding, if it was the case) occurred, and results were collected for 317 

comparison with analytical and numerical predictions. 318 

 319 



 320 

Fig. 9. Tilting platform used for carrying out tilt tests with the physical models (1. rotating 321 

platform; 2. connection box and velocity control; 3. ‘start and stop’ control; 4. digital 322 

inclinometer). 323 

 324 

 325 

3.2. Analytical assessment of toppling 326 

 327 

With the models PM-1 to PM-4 presented in Fig. 6, it is possible to develop simple 2D 328 

analytical predictions of the critical angle of toppling. To do that, some cross-sections 329 

were divided into simpler shapes (like squares, rectangles and triangles). The driving 330 

forces were located at the centroids of each subsection and the stabilizing and overturning 331 

moments were calculated by considering the rotation axis as the lower corner of the model 332 

in contact with the tilting table, which was also set as the origin of the coordinate system 333 

for calculations. The critical angle of toppling, αcr, can easily be estimated by imposing a 334 

factor of safety, FS = 1 in Eq. 1.  335 

 336 

Other scenarios, like those presented for models PM-5 to PM-7, require a more detailed 337 

analysis on the positioning of the cog as well as the rotation pivot. 338 

 339 

It is relevant to note that the relative stability of any of the blocks under scrutiny for any 340 

position can be both computed in terms of factor of safety and in terms of critical stability 341 

angle. Obviously, these two approaches are related to one another, so they can be 342 



computed for different scenarios. For test interpretation purposes where no additional 343 

actions exist (water pressures, earthquakes), the authors have selected the critical angle 344 

approach, thinking it could be more illustrative for output comparison purposes. 345 

However, a factor of safety approach could also be developed.  346 

 347 

3.2.1. Symmetric model with straight edges and planar base 348 

The simplest geometry studied (PM-1), consists of a symmetric block with a constant 349 

cross-section that can be divided in two triangles and a rectangle. The model is defined 350 

in terms of the central block breadth, b. A sketch of this model is presented in Fig. 10, 351 

where the relevant force components and the rotation axis for a given inclination of the 352 

base (α) are also shown. 353 

 354 

 355 

Fig. 10. Sketch of the symmetric model with constant cross-section, where the centroid of each 356 

sub-element is shown as well as the rotation pivot and origin of x-y coordinates. 357 

 358 

For demonstrative purposes, we present the derivation of the critical angle formulation, 359 

based on the computation of the factor of safety for the rock block illustrated in Fig. 10. 360 

If one considers the rotation pivot (P) as the origin, the expression for estimating the factor 361 

of safety (FS) dividing the block in its three basic elements is as follows: 362 

 363 



𝐹𝑆 =
∑ 𝑀𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔

∑ 𝑀𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔
=

𝑊1 cos α 
𝑏
2 − 𝑊2 cos α 

𝑥𝑏
3 + 𝑊3 cos α 

(3 + 𝑥)𝑏
3

𝑊1 sin α 
𝑥𝑏
2 + 𝑊2 sin α 

𝑥𝑏
2 + 𝑊3 sin α 

𝑥𝑏
2

  (5) 

 364 

In this case, all forces acting parallel to the x-axis correspond strictly to destabilizing 365 

moments, while those acting parallel to the y-axis contribute to both the stabilization (sub-366 

sections 1 and 3) and destabilization (sub-section 2) of the block shown in Fig. 10.  367 

 368 

Accounting for the fact that W2 = W3, and that W=W1+W2+W3, Eq. 5 can be simplified to 369 

Eq. 6:  370 

𝐹𝑆 =
∑ 𝑀𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑖𝑛𝑔

∑ 𝑀𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔
=

𝑊 cos α 
𝑏
2 

𝑊 sin α
𝑥𝑏
2

 =
1

𝑥 · tan 𝛼
 (6) 

 371 

Equating the FS to 1, the point at which instability initiates, the critical angle for toppling 372 

in Fig. 10 can be derived as Eq. 7: 373 

𝛼𝑐𝑟 = atan (
1

𝑥
) (7) 

 374 

This implies that, as mentioned above, the size of the sample does not influence results, 375 

so the physical model represents the behavior of any smaller or larger homothetic block. 376 

For the analyzed case and considering that x = 2.7, the critical angle in this case will be 377 

cr = 20.32º as derived from Eq. 7. The influence of the height of the central rectangular 378 

block could be easily computed by testing different values of x in Eq. 7. This kind of 379 

analytical solution is therefore quite suitable for evaluation of the influence of some 380 

geometrical parameters of the blocks under scrutiny.   381 

 382 

Alternatively, the FS can be computed for the case the cog is known from the beginning 383 

accounting for the stabilizing and overturning moments of the weight as presented in Eq. 384 

1. For blocks with more complex geometry, it therefore tends to be most convenient to 385 

compute the position of the cog to simplify subsequent computations.  386 

 387 

 388 

 389 

 390 



3.2.2. Asymmetric model with straight edges and planar base 391 

 392 

This model (named as PM-2) presents an asymmetric cross-section that can be divided 393 

into simpler shapes (i.e. two rectangles and two triangles) to simplify calculations, as 394 

presented in Fig. 11. 395 

 396 

 397 
Fig. 11. Sketch of an asymmetric model with constant cross section and straight edges. All the 398 

possible testing positions for toppling analyses are presented (a-h). The sub-sections (1-4) 399 

indicated in the enlarged sketch (i) on the left are kept for all models. 400 

 401 

 402 

For the model sketched in Fig. 11i (equivalent to that in Fig. 11b), the angle of critical 403 

toppling can be estimated with Eq. 8, in which the cross section was divided in four 404 

simpler subsections. 405 

𝛼𝑐𝑟 = arctan (
𝑊1 ·

𝑎
3 + 𝑊2 ·

𝑎
4 + 𝑊3 ·

3𝑎
4 + 𝑊4 ·

2𝑎
3

𝑊1 ·
4𝑎
3 + 𝑊2 ·

𝑎
2 + 𝑊3 ·

5𝑎
4 + 𝑊4 ·

𝑎
3

) (8) 

 406 

By modifying the position of the PM-2 block as presented in Fig. 11i, it is possible to get 407 

different geometries that will change the cross section to be analyzed, as shown in Fig. 408 

11a-h and, consequently, the critical angle of toppling. This procedure is valuable when 409 

performing the experimental part of the present work, since it will allow testing a single 410 

model in eight different positions.  411 

 412 

To illustrate how the stability against toppling and, ultimately, the critical angle of this 413 

relatively complex geometry block could be computed, the complete set of equations (Eq. 414 



9-16) for calculating the analytical critical angle of toppling for each position of the block 415 

is presented in Table 1. Again, in this case, as in any other, the stability against toppling 416 

will be completely independent of the block size. 417 

 418 

Table 1. Equations for estimating the FS against toppling and angles of critical toppling for all 419 

the positions presented in Fig. 10 (a-h). 420 

Block 

position 

Equation  

(a) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

5𝑎
6

+ 𝑊3 ·
3𝑎
4

− 𝑊4 ·
𝑎
6

𝑊1 ·
2𝑎
3

+ 𝑊2 ·
3𝑎
4

+ 𝑊3 ·
𝑎
4

+ 𝑊4 ·
𝑎
3

) (9) 

(b) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

𝑎
3

+ 𝑊2 ·
𝑎
4

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
2𝑎
3

𝑊1 ·
4𝑎
3

+ 𝑊2 ·
𝑎
2

+ 𝑊3 ·
5𝑎
4

+ 𝑊4 ·
𝑎
3

) (10) 

(c) 𝛼𝑐𝑟 = arctan (
−𝑊1 ·

𝑎
3

+ 𝑊2 ·
𝑎
2

− 𝑊3 ·
𝑎
4

+ 𝑊4 ·
2𝑎
3

𝑊1 ·
𝑎
3

+ 𝑊2 ·
𝑎
4

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
2𝑎
3

) (11) 

(d) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

2𝑎
3

+ 𝑊2 ·
3𝑎
4

+ 𝑊3 ·
𝑎
4

+ 𝑊4 ·
𝑎
3

𝑊1 ·
2𝑎
3

+ 𝑊2 ·
3𝑎
2

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
5𝑎
3

) (12) 

(e) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

2𝑎
3

+ 𝑊2 ·
3𝑎
2

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
5𝑎
3

𝑊1 ·
2𝑎
3

+ 𝑊2 ·
3𝑎
4

+ 𝑊3 ·
𝑎
4

+ 𝑊4 ·
𝑎
3

) (13) 

(f) 𝛼𝑐𝑟 = arctan (
−𝑊1 ·

𝑎
6

− 𝑊2 ·
𝑎
4

+ 𝑊3 ·
𝑎
4

+ 𝑊4 ·
𝑎
6

𝑊1 ·
2𝑎
3

+ 𝑊2 ·
3𝑎
2

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
5𝑎
3

) (14) 

(g) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

4𝑎
3

+ 𝑊2 ·
𝑎
2

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
𝑎
3

𝑊1 ·
𝑎
3

+ 𝑊2 ·
𝑎
4

+ 𝑊3 ·
3𝑎
4

+ 𝑊4 ·
2𝑎
3

) (15) 

(h) 𝛼𝑐𝑟 = arctan (
𝑊1 ·

𝑎
6

+ 𝑊2 ·
𝑎
4

− 𝑊3 ·
𝑎
4

− 𝑊4 ·
𝑎
6

𝑊1 ·
4𝑎
3

+ 𝑊2 ·
𝑎
2

+ 𝑊3 ·
5𝑎
4

+ 𝑊4 ·
𝑎
3

) (16) 

 421 

 422 

3.2.3. Symmetric model with rounded edges and planar base 423 

Another model presenting a symmetric cross-section is that corresponding to a 424 

rectangular prism with rounded corners (PM-3), as originally analyzed by Alejano et al. 425 

(2015). The cross-section of the model is shown in Fig. 12 and, due to the simplicity of 426 

this section, only the cog of the entire model was considered.  427 



If the moment equilibrium calculation is performed for the model presented in Fig. 12, 428 

the angle of critical toppling can be estimated (Eq. 17) as rearranged from Eq. 4. Note 429 

that the addition of a non-zero radius of curvature (r) reduces the critical angle of toppling, 430 

since it decreases the actual contact width by 2rc. 431 

 432 

𝛼𝑐𝑟 = arctan (
𝑏 − 2𝑟𝑐

ℎ
) (17) 

 433 

 434 

Fig. 12. Sketch of the symmetric model with rounded edges (for the studied model: h/b = 2.125 435 

and rc/h = 0.147). 436 

 437 

 438 

3.2.4. Model with non-planar (concave) base 439 

The present model is intended to illustrate the effect of a non-planar (concave) base, as a 440 

potentially stabilizing factor. The idea was to study a circular cross-section in which part 441 

of it is embedded in the inclined plane, resting on a concave base that coincides with the 442 

curvature of the cross section (see Fig. 7b and Fig. 13a). 443 

 444 

It can be demonstrated that the angle of critical toppling, αcr, of the model presented in 445 

Fig. 13a solely depends on the depth of the slot (s) relative to the radius of the circular 446 

cross-section (r), n, where n = s/r for n ∈ (0, 1). The angle of critical toppling can 447 

therefore be calculated from Eq. 18. 448 

 449 

𝛼𝑐𝑟 = atan {
sin[acos(1 − 𝑛)]

1 − 𝑛
} (18) 



With the aim of illustrating the effect of a concave contact on the angle of critical toppling 450 

of such a circular section of radius r, the critical angle is plotted against the depth of the 451 

slot expressed as a proportion of the radius (n) in Fig. 13b. 452 

 453 

Fig. 13. (a) Sketch of the model with non-planar (concave) base; (b) Dependence of the angle of 454 

critical toppling (y-axis) with the relative depth of the slot, n (x-axis), for the model depicted in 455 

(a). 456 

 457 

As is shown in Fig. 13b, the effect of a concave contact clearly influences the angle of 458 

critical toppling of a block with a circular section. This effect is most significant for low 459 

values of n, where the derivative dαcr/dn is larger 460 

Though almost no blocks are expected to match the geometry shown in Fig. 13a perfectly, 461 

in practice, these results mean that even relatively small concavities of the basal plane of 462 



a block of more irregular shape have the potential to increase the angle of critical toppling 463 

by a few degrees. 464 

 465 

3.2.5. Model with the cog not contained in a symmetry plane: squared/rectangular 466 

base 467 

The position of the center of gravity (cog) clearly influences the toppling behavior of an 468 

element as in the case of the blocks already analyzed in this study. If a block is positioned 469 

onto a flat surface and the vertical projection of its cog falls inside the contact area, the 470 

block will remain stable against toppling. Consider the situation illustrated in Fig. 14a for 471 

a square-based, symmetric and homogeneous block. In this case, if the cog is projected 472 

onto the base, that projection will fall on the center of the square section. If the block is 473 

progressively tilted along the dash-dot plane, it will topple once the projection of the cog 474 

falls out the base. 475 

 476 

Fig. 14. Different 3D elements (a, b, c and d) to be subjected to a tilt test to illustrate the role of 477 

geometry on toppling. On the upper row, 3D view of the elements resting on a horizontal base to 478 

be tilted. On the second row, initial top view with the projection including the cog. On the third 479 

row, top view of the surface after tilting and in the moment of toppling and, on the last row, side 480 

view of platform and element when toppling. 481 



Fig. 14b shows a more complex geometry with similar prism and cube attached to its 482 

upper back face. The cog of this model, when placed on a flat surface, will not project on 483 

the center of the base but will instead project somewhere behind the center of the base 484 

due to the added mass. Because of this, when tilting the plane where this element stands, 485 

it will topple at a higher angle than the previous case; in other words, the angle of critical 486 

toppling in this case (α) will be higher than the one observed for the element shown in 487 

Fig.14a (β). 488 

 489 

The third element (Fig. 14c) is similar to element ‘b’, but the added cube is now attached 490 

on the upper part of a lateral face. Its cog will be at the same height as for element b (since 491 

it is the same element in the same position), but its projection onto a horizontal plane will 492 

be moved to the left in relation to element ‘a’ (Fig. 14c, second row). When tilting the 493 

platform where element ‘c’ rests, it will topple at a lower angle than α, because its cog is 494 

located higher than in case ‘a’, meaning its projection will fall outside its base at a lower 495 

angle ɣ, which will be also less steep than β. 496 

 497 

Element ‘d’ is a rectangular prism with a square cross-section where two cubes are 498 

attached on the upper part of its lateral backward and leftward faces. In this case, the cog 499 

of the element will be even more displaced upwards than in the case of elements ‘b’ and 500 

‘c’ and the cog projection on its base will be slightly moved backwards and a little bit to 501 

the left in relation to the case of element ‘a’ in Fig 14. This will clearly be less stable than 502 

‘b’ (since the side-attached cubes displace the cog upwards) but more stable than ‘c’ 503 

(since the back-attached cube will increase its stability by moving the projection of its 504 

cog backwards). According to the previous analyses, a hierarchy on the angle of critical 505 

toppling can be stablished for the studied models shown in Fig. 14 as: β > δ >α > ɣ. 506 

 507 

With the goal of assessing the effect of a displaced cog on the toppling behavior in a more 508 

detailed way and following the ideas described in the previous paragraphs, the model 509 

presented in Fig. 15 has been considered. It consists of a rectangular-based block with a 510 

small prismatic slab attached on the upper part of a lateral face (see Fig. 14b.1). 511 



 512 
Fig. 15. (a) 3D view of the model with the axis of rotation and origin of coordinates for positioning 513 

the cog marked; (b) levelled front view of the assembly and (c) levelled lateral view of the 514 

assembly. 515 

 516 

As previously mentioned, the effect of adding such a piece to a rectangular-based block 517 

as shown in Fig. 15 implies a displacement of the cog, which will move towards the added 518 

mass. This positioning of the cog can be easily determined by resorting to Eqs.19, 20 and 519 

21 for each coordinate, respectively, when considering mi = Wi / g. 520 

 521 

𝑥𝐺,𝑑 =
∑(𝑚𝑖 · 𝑥𝑖)

∑ 𝑚𝑖
 (19) 

𝑦𝐺,𝑑 =
∑(𝑚𝑖 · 𝑦𝑖)

∑ 𝑚𝑖
 (20) 

𝑧𝐺,𝑑 =
∑(𝑚𝑖 · 𝑧𝑖)

∑ 𝑚𝑖
 (21) 

 522 

 523 



Once the 3D coordinates of the displaced cog are set (xG,d, yG,d, zG,d), the angle of critical 524 

toppling for the model sketched in Fig. 15b.1 can be estimated using Eq. 22: 525 

 526 

𝛼𝑐𝑟 = atan (
𝑦𝐺,𝑑

𝑧𝐺,𝑑
) (22) 

 527 

In a similar way as presented in Eq. 8, the angle of critical toppling can also be estimated 528 

as a function of dimensions a and b of the specimen (Eq. 23): 529 

 530 

𝛼𝑐𝑟 = atan [
(𝑊1 + 𝑊2)

𝑏
2

𝑊1 · 𝑎 + 𝑊2 ·
3𝑎
2

] (23) 

 531 

It has to be highlighted that all the models with a rectangular or squared-base such as 532 

those shown in the previous sections and particularly the last shown in Fig. 15 will always 533 

have a pre-defined axis of rotation, which coincides with an edge of the block in contact 534 

with the base. This is not the case for circular or irregular-based specimens, as considered 535 

in Section 3.2.6. 536 

 537 

 538 

3.2.6. Model with the cog not contained in a symmetry plane: circular base 539 

Real rock blocks and boulders as found in Nature rarely have cogs that project in the 540 

center of their bases when resting on horizontal surfaces, nor do they have well-defined 541 

axes of rotation against toppling mechanism due to their typically irregular shapes. As 542 

already noted, for a precise assessment of their stability against toppling, it will be 543 

necessary to correctly position the cog as well as the pivot or axis around which the 544 

toppling mechanism will take place. 545 

 546 

The study of these features has been carried out using a laboratory physical model (as 547 

shown in Fig. 6f) consisting of two cylinders composed of different materials (rock and 548 

steel with densities of ρr = 2700 kg/m3 and ρs = 7900 kg/m3, respectively). Both cylinders 549 

have the same radius (r = 27 mm) but different heights, with the rock cylinder measuring 550 

100 mm in height and the steel cylinder measuring 35 mm in height. The assembly is 551 

sketched in Fig. 16b.1. 552 



This test consisted of placing the two cylinders as shown in Fig. 16b.1, with the top piece 553 

displaced a distance of r/2 along the x direction. This position of the top steel cylinder 554 

moves the center of gravity out of the center of the base, as can be seen in the front view 555 

shown in Fig. 16c. Then, the specimen was progressively tilted (being the platform 556 

rotation around the x-axis) until toppling of the entire set occurred, when the tilting angle 557 

(angle of critical toppling) was reached. 558 

 559 

Fig. 16. (a.1-4), (b.1-4) Different views of the model containing the cog out of a symmetry axis 560 

(model PM-6); (c), (d) Different views of the model PM-6 at the equilibrium limit state, where 561 

the axis of rotation does not coincide with that of the rotating platform. 562 

 563 

By considering the origin of the coordinate system at the center of the base of the lower 564 

cylinder (Fig. 16a.4), and regarding that zg,d can be easily obtained  as function of the 565 

densities and block geometries, the angle of critical toppling for the model presented in 566 

Fig. 16b.1 when tilted around the x-axis can be calculated using Eq. 24. 567 

 568 



𝛼𝑐𝑟 = atan (
𝑑

𝑧𝐺,𝑑
) (24) 

 569 

Unlike the other examples considered in this study, this model will behave differently 570 

once the limit equilibrium for toppling has been reached. Specifically, although the 571 

critical angle of toppling can be calculated in a similar way to that of the other models 572 

(Eq. 12), the rotation of the cross-section containing the cog of the assembly (shown in 573 

green in Fig. 16b.3 and Fig. 16b.4) has to be considered, as it influences the rotation axis. 574 

  575 

As shown in Fig. 16c, d, the axis (pivot) of rotation will not coincide with that of the 576 

rotating platform and will move laterally due to the displacement of the cog and the 577 

circular base in such a way that the new axis of rotation corresponds to the tangent at the 578 

intersection point between the plane containing the new cog (shown in green color in Fig. 579 

16c, d) and the base of the model. The displacement angle, 𝛿, as shown in Fig. 16d can 580 

be calculated using Eq. 25. 581 

 582 

𝛿 = asin (
𝑥𝐺,𝑑

𝑟
) (25) 

 583 

3.2.7. 3D-printed model representative of a real boulder 584 

The last model (PM-7) considered in this study corresponds to a plastic (PLA) replica of 585 

a real granitic boulder located in the NW of Spain, as studied by Pérez-Rey et al. (2019). 586 

The replica, made at a scale of approximately 1:50, was created from an 3D point cloud 587 

of the real boulder collected in the field, which was afterwards processed with the 588 

software CloudCompare (Girardeau-Montaut, 2018) and Meshlab (Cignoni et al., 2008) 589 

in order to develop the 3D printing stage with a BCN Sigma 3D printer (see Fig. 17). 590 



 591 

Fig. 17 (a, b) Two views of the 3D point cloud of the studied boulder; (c) Isolation of the boulder 592 

from the rest of the structure; (d) 3D-printed replica on the testing platform and (e) Detailed view 593 

of the position of the cog projected onto the contact plane, showing the distance d required for 594 

estimating the critical angle of toppling. 595 

 596 

By taking advantage of such a precise 3D point cloud and with the assistance of 597 

CloudCompare software, it is possible to approximate, in a reasonable manner, the 598 

contact area between the boulder and the base and to position the cog.  599 

Using the relationship presented in Eq. 23 and the geometrical parameters presented in 600 

Fig. 17e, it is possible to estimate the approximate angle of critical toppling of the boulder 601 

to be αcr = 31.4°. 602 



4. Results 603 

4.1. Comparison of analytical and experimental results 604 

After carrying out all calculations of the angle of critical toppling of each of the models 605 

considered for this study, as presented in Section 3, all analytical results are shown in 606 

Table 1. Together with these results, the experimental angles of toppling obtained for 607 

each series of three tests carried out with the seven physical models are also provided 608 

with an averaged result. As it can observed in this table, the discrepancy of the analytical 609 

and average laboratory results is always less than 1.3º, and the median error is 0.66o. 610 

It must be noted that some models did not achieve toppling failure in the laboratory tests 611 

(in particular, the PM-2 model in some positions). This occurs when the theoretical 612 

toppling angle is greater than the basic friction angle of the base contact surface, and the 613 

block slides before reaching its toppling angle. These results are indicated in Table 2 with 614 

an ‘s’. It has also been observed that PM-2 model in position (h) was not self-stable in a 615 

horizontal position (αcr < 0). 616 

Table 2. Analytical and experimental results for the angle of critical toppling (in degrees) as 617 

obtained for the seven studied models. 618 

Model Position Analytical Experimental (s = slide) 

αcr α1 α2 α3 αmean 

PM-1 — 20.32 20.2 20.3 20.5 20.3 

PM-2 (a) 44.22 30.4 (s) 27.2 (s) 30.1 (s) 29.2 (s) 

(b) 28.66 29.1 29.0 29.2 29.1 

(c) 4.18 3.2 3.2 3.1 3.2 

(d) 24.55 25.4 25.3 25.6 25.4 

(e) 65.45 33.5 (s) 30.9 (s) 27.0 (s) 30.5 (s) 

(f) 1.41 2.6 2.7 2.7 2.7 

(g) 61.34 29.0 (s) 25.6 (s) 26.5 (s) 27.0 (s) 

(h) < 0 — — — — 

PM-3 — 10.01 11.0 11.0 9.67 10.6 

PM-4 (a) (n =1/6) 33.56  33.3 32.5 32.8 32.9 

(b) (n=1/3) 48.19  47.3 48.3 48.4 48.0 

PM-5 — 11.88 11.6 12.3 12.4 12.1 

PM-6 — 17.29 16.5 15.9 16.2 16.2 

PM-7 — 31.39 30.8 30.4 30.7 30.6 

 619 

 620 



4.2. 3D discrete numerical modelling 621 

Another way to validate the results of the physical models is by comparing these results 622 

with those obtained by numerical analysis. For this part of the study, we have utilized the 623 

Distinct Element Method (DEM), which applies an explicit finite difference method for 624 

modelling large displacements and rotations of block systems (Cundall, 1971). This 625 

method has been used in numerous studies of toppling (Brideau and Stead, 2010; Lanaro 626 

et al., 1997; Pritchard and Savigny, 1990). In this case, we used the DEM as implemented 627 

in the software 3DEC v5.20 (Itasca, 2016). 628 

Discrete Element Methods can deal with geological structures of any size and shape, and 629 

with a great variety of constitutive models for both the intact rock and the discontinuities. 630 

They also allow for simulation of complex hydrogeological environments or time-631 

dependant phenomena like rock-dynamics or creep. Another advantage of this study is 632 

that it does not require the prior definition of a displacement direction (as required in the 633 

analytical calculation), meaning the results of the other methods can be confirmed in cases 634 

where there is any doubt about the displacement direction, such as for models with a 635 

displaced cog (PM-5 and PM-6), or the model with the irregular, complex shape (PM-7).  636 

The same tilt tests performed with the physical models were simulated in 3DEC (Fig. 18).  637 



 638 

Fig. 18. Results for the numerical simulation of the tilt tests performed. 639 

 640 

In these models, both the tilt table and the specimens were modelled as rigid blocks. The 641 

contact stiffnesses were set to kn 650 GPa/m and ks 150 GPa/m. The tilting rate was set 642 

slow enough to ensure that no inertial effect was produced so the test could be considered 643 

quasi-static. The results of these models are presented in Table 3, where the maximum 644 

difference observed between results obtained using various methods is displayed. 645 

 646 



Table 3. Angles of critical toppling calculated by different methods and absolute maximum 647 

difference between results. Involved methods indicated in brackets. 648 

Model Angle of critical toppling (º) Absolute max. difference (º) 

Experimental (E) Analytical (A) DEM (D) 

PM-1 20.3 20.32 20.1 0.22 (E-A) 

PM-2 29.1 28.66 28.6 0.5 (E-N) 

PM-3 10.6 10.01 10.0 0.6 (E-N) 

PM-4 48.0 48.19 48.1 0.19 (E-A) 

PM-5 12.1 11.88 11.9 0.22 (E-A) 

PM-6 16.2 17.29 17.3 1.1 (E-N) 

PM-7 30.6 31.39 31.3 0.79 (E-A) 

 649 

The results obtained using the DEM models agree with those obtained by both the 650 

physical models and the analytical method, even in the cases where the centre of gravity 651 

is not located in the plane of symmetry, or the toppling involves complex movement not 652 

parallel to the tilting direction, as in the case of PM-6 (Fig. 19a).  653 

 654 

 655 

Fig. 19. (a) 3DEC results of the tilt simulation on a rock + steel set with and upper cylinder 656 

uncentered r/2 to the left (PM-6). After the block starts to topple, its movement does not follow 657 

the tilting direction because the cog is not located in the symmetry plane as assumed in section 658 

3.2.6. (b) Displacement magnitude after tilt-test of PM-7 calculated by 3DEC. 659 

 660 

It is relevant to note that the DEM and the analytical approach match so closely here (and 661 

in fact in general). This suggests that the errors observed in the experimental results are 662 

largely a function of limitations in the “manufacturing” processes used to build the 663 

various physical models.  664 

The critical angle in models with complex geometries (PM-7) measured by the three 665 

methods were also similar, confirming the validity of both the experimental and the 666 

analytical approaches. This model (Fig. 19b) presents both an asymmetrical geometry and 667 

an irregular base shape, resulting in complex movement after destabilization. 668 

 669 

 670 



5. Discussion 671 

It is not difficult to find in Nature rock blocks or groups of blocks that could potentially 672 

become unstable due to toppling. In some case, these blocks are irregular enough so as to 673 

be considered heritage or part of natural parks, so they are preserved (Fig. 20). On the 674 

other hand, the instability of some other less aesthetically appealing rock blocks may 675 

jeopardize infrastructure or even people, lives and properties. In any of these cases, it is 676 

important to be able to analyze the stability of these blocks under different conditions 677 

such that appropriate protective measures can be defined. 678 

 679 

Fig. 20. Balanced stones in Natural Parks. (a) ‘The Three Sisters’ balancing rocks, Matopos 680 

National Park, Matabeleland, Zimbabwe (b) Roque de García, basaltic horn at Teide National 681 

Park, Tenerife, Canary Islands, Spain (c) 3,500 t balanced rock, Arches National Park, Utah, USA 682 

and (d) 700 t balanced rock, ‘The Garden of Gods’, Colorado Springs, USA. Photos by the 683 

authors. 684 

 685 

 686 



Although some approaches were developed in the past to compute the stability of blocks 687 

against toppling, in many cases, and specifically those corresponding to complex 688 

geometry blocks, it was indeed difficult to accurately compute stability against toppling. 689 

Recent advances in theoretical stability analysis based on idealized geometries (rounded 690 

corners, concave or convex surfaces) have contributed to a better understanding of 691 

toppling phenomena. The approaches presented here based on modern block geometry 692 

reconstruction methods, 3D printing of a block replica and testing of this replica using a 693 

tilt table, help to reproduce the potential instability phenomena of these blocks and to 694 

assess their ‘degree of stability’ or instability, i.e., how far from toppling they are. 695 

 696 

One notable limitation of the approach demonstrated in this study is the lack of knowledge 697 

of the geometry (concavity or concaveness and roughness) of the contact between the 698 

block and the surface where it rests, as well as its actual frictional behavior. However, the 699 

proposed approach, in combination with detailed in-situ characterization and the 700 

application of analytical and numerical calculation techniques as illustrated in this 701 

document, has the potential to contribute to improved assessments of the stability of 702 

irregular rock blocks or boulders.  703 

 704 

6. Concluding remarks 705 

 706 

All over the world, and particularly in mountainous terrain in hot and temperate regions, 707 

rock blocks or boulders occur, and may exist in a state of marginal stability. In most of 708 

these cases, the potential instability of these blocks does not represent a hazard to human 709 

life or property. In some cases, however, it may be important to quantify block stability 710 

either due to an associated hazard, or due to its significance to the community or its natural 711 

landscape value. 712 

 713 

Analyzing the stability of these blocks is not an easy task, primarily due to their complex 714 

geometry and because it is also difficult to characterize in sufficient detail all the features 715 

actually affecting their stability, including block geometry, geometry of the contact with 716 

the base surface, strength and deformability characteristics of this contact —of particular 717 

relevance when considering rough joints and infill material with non-negligible tensile 718 

strength—, and potential triggers such as water pressure or earthquake loading. 719 

 720 



Recently developed remote-sensing tools, such as photogrammetry or LiDAR can be used 721 

in order to recover a rather accurate geometry of a block of interest as well as an 722 

approximate representation of the contact area (typically hidden). Based on the recovered 723 

3D point cloud, a scaled physical model of the rock block or boulder can be 3D-printed, 724 

and its toppling behavior physically analyzed using a tilting platform, since toppling is 725 

exclusively dependent on the geometry of the potentially overturning object and the 726 

concavity of the base. This approach can be applied in combination with analytical or 727 

numerical techniques to study the mechanisms involved and to check physical testing 728 

results. 729 
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 Physical modelling represents an effective method for toppling-stability assessment 
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 3D point clouds of rock structures can be obtained from TLR and UAV photos 

 3D Distinct Element methods allow stability calculations of odd-shaped rocks 
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ABSTRACT 15 

In this paper we introduce a physical modelling approach where the stability of rock 16 

blocks against toppling in the field can be estimated using a tilt table, engineered rock 17 

models and 3D-printed small-scale versions of a natural rock boulder. To achieve this 18 

goal, first, simple geometry rock elements are tilted and results interpreted according to 19 

analytical formulations. Then, more complex geometry engineered rock blocks, including 20 

some where its center of gravity does not project on the center of the base element, are 21 

tested and results properly interpreted. Eventually, the 3D-printed version of the rock 22 

boulder is produced from 3D point clouds recovered in the field by means of a 23 

combination of photogrammetry and laser scanner techniques. Analytical formulations 24 

and numerical calculations have been used in order to validate the proposed approach, to 25 

explain the physical phenomena involved, and to allow for possible extension of the 26 

physical modelling observations to different scenarios, such as those considering the 27 

influence of water or seismic loading on stability. 28 

  29 
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List of symbols 30 

α base plane inclination angle 31 

αcr critical angle of toppling 32 

b width of the block 33 

cog center of gravity 34 

ɸ friction angle 35 

FS factor of safety 36 

g acceleration of gravity (9.81 m/s2) 37 

h height of the block or model 38 

P rotation pivot of a given block or model and origin of the (xi, yi) coordinates 39 

r radius 40 

rc roundness of the block corners (expressed as the radius of curvature) 41 

xi distance from P to the cog of the i-th sub-section along the x-axis for a given 42 
block or model 43 

yi distance from P to the cog of the i-th sub-section along the y-axis for a given 44 
block or model 45 

w width of the block (out of plane) 46 

W weight 47 

Wi weight of the i-th section  48 



1. Introduction 49 

Analysing the stability of natural or man-made slopes in rock masses is a complex task. 50 

The principles of the discipline addressing this problem (typically known as rock slope 51 

engineering) were established in the seminal works developed during the 1960s and 1970s 52 

at Imperial College in London and by Richard Goodman in Berkeley and summarized in 53 

the book entitled “Rock Slope Engineering” (Hoek and Bray, 1974; Wyllie and Mah, 54 

2004). In this book, it was clearly stated that, unlike in the case of soils, where all the 55 

failure mechanisms involve sliding along a rotational or planar sliding surface, for rocks, 56 

a variety of failure mechanisms could occur according to the number, continuity, spacing, 57 

orientation and geomechanical characteristics of existing discontinuity sets. 58 

 59 

Four typical types of failure mechanisms were identified at the time as the most common 60 

possibilities in rock slopes: planar, wedge, (block) toppling and circular failure. This 61 

classification combined with the simple mathematical tools provided to analyse their 62 

stability, represented a significant step forward in the rock engineering field, leading to 63 

improved rock slope stability analyses and designs. However, as wisely noted in the 64 

preface of Hoek and Bray’s (1974) book, ‘Because the rock mass behind every slope is 65 

unique, there are no standard recipes or routine solutions which are guaranteed to produce 66 

the right answer each time they are applied’. This is why it is important to bear in mind 67 

that rock slope instability phenomena do not necessarily occur according to simple failure 68 

mechanisms as those described in these early works. 69 

 70 

Whereas three of these basic mechanisms refer to sliding phenomena, only one of them 71 

involves toppling. Toppling corresponds to rotation of relatively slender rock columns or 72 

blocks about a fixed base. There are two distinct types of toppling failure mechanisms 73 

named block and flexural toppling (Goodman and Bray, 1976). In the first case, the 74 

toppling block is already fully detached from the rest of the rock mass. The second implies 75 

flexural or tensile failure, where the block is not completely detached of the rock mass 76 

such that new tensile failure cracks need to occur to fully detach the block from the 77 

surrounding ones for toppling instability to occur. In this study we focus on the analysis 78 

of block toppling.  79 

 80 



The simplest toppling case as considered by this study is that of a single toppling block. 81 

The first analyses of the stability against toppling of a single block were performed by 82 

Ashby (1971) and then extended and formalized by other authors (Hoek and Bray, 1974; 83 

Sagaseta, 1986). All these analyses start with stringent geometrical assumptions 84 

considering perfectly rectangular blocks with sharp corners resting on a tilted plane 85 

striking in the same direction as the block face in contact with the plane. 86 

 87 

Some studies have recently begun to address the influence of more realistic shapes of 88 

blocks on block stability against toppling. Alejano et al. (2015) studied the influence of 89 

the rounding of block corners on the stability of a block. This geometric condition 90 

observed in some rock masses and associated with spheroidal weathering erosive 91 

processes was shown to significantly affect stability of blocks. The authors proposed a 92 

formulation to compute the stability of a round-cornered block to account for this effect. 93 

This formulation relies on the position of the potential rotation axis and was verified using 94 

physical models and field observations. While such a contribution is interesting and 95 

extends the type of toppling instability that can be analyzed, when one visits certain 96 

natural rock environments, it can be observed that many more complex irregular block 97 

geometries exist for which no analysis methods exist. 98 

 99 

As an example, Fig. 1 illustrates three zones in two different mountain environments, 100 

where a number of toppled and stable blocks are observed. In most of the cases and based 101 

on our current capabilities to analyze stability of blocks, it would be indeed difficult to 102 

rigorously perform a back analysis of the instability or stability of these blocks to explain 103 

why are they stable or unstable. For the stable blocks, it would also be difficult to assess 104 

their stability after a potential change in loading conditions, such as in the case of a 105 

seismic event. Accordingly, the main goal of this study is to develop a methodology 106 

through which the stability of complex blocks (such as those illustrated in Fig. 1) can be 107 

rigorously analyzed. 108 

 109 

Since the early studies, the authors have considered cases involving increasingly complex 110 

estimates of the toppling stability of individual rock blocks taking into account the 111 

occurrence of rounded corners on the toppling blocks (Alejano et al., 2017) or rock 112 

boulders (Alejano et al., 2010b; Pérez-Rey et al., 2019) and considered other studies 113 

available from literature focusing on the potential destabilizing effects of earthquakes on 114 



rock blocks or groups of rock blocks (Christianson et al., 1995; Shi et al., 1996; Vann et 115 

al., 2019) where it was necessary to extend available methodologies to reflect the nature 116 

of these structures in a more realistic manner. 117 

 118 

In the process of developing the above-mentioned studies, tilting simple geometry rock 119 

elements has revealed as an interesting technique that, in combination with analytical 120 

formulations can help to understand a number of issues associated to toppling 121 

phenomena. Therefore, a number of simple and a little bit more complex geometry 122 

engineered rock blocks have been tilted and results explained in this document to illustrate 123 

the potential interest of extending this technique to more realistic forms. 124 

 125 

 126 
Fig. 1. Different geological environments where toppled and stable rock blocks are observed. 127 

 128 

The study is an extension of basic toppling equilibrium calculations and was developed 129 

in parallel with particular rock slope stability studies. The initial concepts associated with 130 

the proposed methodology developed while studying the stability of wall slopes (Alejano 131 

et al., 2011) and of masonry retaining walls (Alejano et al., 2012). In both these cases it 132 

was possible to resort to physical models subjected to tilt tests in order to carry out simple 133 

analyses with the aim of confirming particular failure mechanisms and the validity of 134 



some formulations (Fig. 2). This previously developed approach is valid if the only type 135 

of strength involved is friction and if geometry of the blocks can be easily reproduced 136 

using common rock cutting approaches (typically with saw-blades). 137 

 138 

 139 
Fig. 2. Physical models of dry masonry retaining walls used to understand the failure mechanism 140 

of these structures and check limit equilibrium calculations.  141 

 142 

Since the turn of the century, photogrammetric and laser scanning techniques for point 143 

cloud acquisition have become widely available, such that a very good representation of 144 

a given rock slope geometry can be achieved (Alejano et al., 2013; Armesto et al., 2009; 145 

Ferrero et al., 2011, 2009; Riquelme et al., 2014). Most recently, relatively large and 146 

accurate 3D point clouds have become available at a very reasonable cost (Girardeau-147 

Montaut, 2018). It is therefore possible to obtain 3D point clouds representing the 148 

complex block geometries observed in nature (such as in Fig. 1). Based on such geometric 149 

data, the center of gravity (cog), which is critical for toppling stability analyses, can be 150 

precisely located. Other relevant geometrical aspects of the rock blocks or boulders such 151 

as the position of the contact base between the block and basal plane can be also computed 152 

rigorously. This geometrical information largely facilitates computing the factor of safety 153 

of these boulders against toppling, as the ratio of stabilizing moments to overturning 154 

moments. 155 

 156 

Additionally, in the last five years, 3D printing has been improved so rapidly that it is 157 

relatively easy to produce a scaled 3D printed version of any rock block based on the 158 

point cloud representing its outer surface  (Bader et al., 2018; Virtanen et al., 2014). This 159 

therefore allows for the possibility of using tilt testing as a methodology to analyze the 160 

stability of blocks with complex geometry against toppling.  161 

 162 



Accordingly, in this paper we introduce a new physical modelling approach, where a tilt 163 

table, classic limit equilibrium computations, and rock physical models using a 3D-164 

printed version of a real boulder are used to estimate the factor of safety against toppling 165 

of rock blocks in the field. It is recommended that analytical formulations or numerical 166 

models should be used in parallel with this approach to allow for a complete 167 

understanding of the relevant phenomena to be developed and to allow for possible 168 

extension of the physical modeling results to different scenarios, just as those considering 169 

the influence of water pressure or seismic loading. 170 

 171 

 172 

2. The mechanics of toppling 173 

 174 

Despite the fact that some authors consider the occurrence of pure toppling as an 175 

uncommon failure mechanism, and that toppling is typically associated with larger 176 

failures occurs or as a consequence of other mechanisms like slope undercutting or 177 

weakening at the toe (Hencher, 2015), toppling has been extensively reported as the origin 178 

of several rock-mass failures experienced in different fields such as open-pit mining 179 

(Alejano et al., 2010a; Al Mandalawi et al., 2019; Amini and Ardestani, 2019), civil 180 

engineering ( Tu et al., 2007; Akbarpour et al., 2012; Cai et al., 2019) and natural rock 181 

slopes (Guo et al., 2017). 182 

 183 

The mechanism of toppling had been partially identified in the field by some authors 184 

(Müller, 1968; Terzaghi, 1962), though it was not until the late 1960’s (Bray, 1969) that 185 

it began to be considered as a mode of failure unto itself. A few years later, some authors 186 

started the study of toppling in a more rigorous way, through both laboratory models 187 

(Ashby, 1971; Barton, 1971) and early applications of numerical methods (Cundall, 1971; 188 

St. John, 1972). 189 

 190 

Ashby (1971) developed a seminal study on different sliding and toppling modes of 191 

failure based on laboratory physical models and rock slopes. This author derived a 192 

simplified analytical 2-D toppling model for an isolated straight block of height h and 193 

width b, resting on a plane dipping α degrees with a friction angle between contacts, ɸ 194 

(Fig. 3). 195 



Considering the base plane angle,  𝛼 < 𝜙 and the x and y components of the weight (W) 196 

of the block, a factor of safety against toppling can be estimated by relating the stabilizing 197 

and overturning moments with respect to the rotation pivot, P (Fig. 3a), as presented in a 198 

general form in Eq. 1. 199 

𝐹𝑆 =
∑𝑀)*+,-.-/-01

∑𝑀2345*650-01
 (1) 

 200 

 201 

 202 
Fig. 3. (a) 2D sketch of a single block placed on an inclined plane for toppling stability analysis; 203 

(b) conditions for sliding and toppling according to Ashby (1971). 204 

 205 

It is therefore easy to derive that the toppling condition (represented as FS ≤ 1 in Eq. 1) 206 

solely depends on the slenderness of the block and the plane dip (α) (Ashby, 1971) and is 207 

driven by the geometrical relationship presented in Eq. 2: 208 

 209 

𝑏
ℎ ≤ tan𝛼 (2) 

 210 

According to Fig. 3b and depending on the considered kinematic conditions stablished by 211 

Eq. 1 and the line 𝛼 = 𝜙, four potential conditions can be identified: stability, sliding, 212 

toppling and sliding and toppling simultaneously occurring. Even though this model laid 213 

the groundwork for subsequently reproduced studies on toppling (Hoek and Bray, 1974), 214 

some errors were detected in the conditions presented in Fig. 3b, as corrected by other 215 



authors (Bray and Goodman, 1981; Sagaseta, 1986). The “corrected” solution for a single 216 

block toppling condition, as proposed by Sagaseta (1986), is given by Eq. 3: 217 

4 · tan𝛼 · ?1 + B𝑏ℎC
D
E − 3 · Btan 𝛼 − 𝑏ℎC

4 · ?1 + B𝑏ℎC
D
E + 3 · 𝑏ℎ · Btan𝛼 −

𝑏
ℎC

≤ tan 𝜙 (3) 

 218 

To consider the commonly observed case of rounding on the block edges caused by 219 

weathering, the single 2D straight block model was reevaluated several years later 220 

(Alejano et al., 2015). Starting from Eq. 2, the authors proposed a new equation by 221 

considering a radius of curvature (rc) representative of the edge rounding in such a way 222 

that toppling condition is given by the geometrical relationship presented in Eq. 4: 223 

 224 

𝑏 − 2𝑟J
ℎ < tan 𝛼 (4) 

 225 

It must be noted that the approaches presented above should only be applied to 2D 226 

problems or to simplifications of 3D bodies presenting the following features: constant 227 

cross-section, one dimension smaller than the other two (‘thin plate’ assumption), and the 228 

driving force (in this case, that corresponding to the weight of the block only) contained 229 

in the mean plane of the structure, as illustrated in Fig. 4. Additionally, the rotating pivot 230 

is already known, and defined by an identifiable edge. 231 

 232 

 233 
Fig. 4. (a) 3D body resting on an inclined plane with constant cross-section along the x-direction; 234 
(b) 2D simplification of the problem on the z–y plane. 235 
 236 



Nevertheless, this situation is not commonly found in natural blocks (particularly, in rock 237 

boulders) that usually present irregular shapes and poorly defined contact planes, such 238 

that 2D analysis is unrealistic. In these cases, the third dimension cannot be disregarded 239 

and other approaches are needed for a correct assessment of the toppling mechanism 240 

(Domokos et al., 2012; Yeung and Wong, 2007; Zábranová et al., 2020).  241 

 242 

 243 

3. Analytical assessment and laboratory physical modelling 244 

 245 

An experimental program was designed in order to study the critical angle of toppling of 246 

single engineered models subjected to tilt tests under laboratory conditions. The idea was 247 

to test different blocks or assemblies presenting features that determine their kinematic 248 

behavior with respect to toppling: the symmetry of the block section, the edge rounding, 249 

the concavity of the contact base and the position of the center of gravity with respect to 250 

a central cross-section of the block. A sketch showing these features and the models used 251 

is presented in Fig. 5. 252 

 253 

 254 
Fig. 5. Sketch showing the specimens used for 2D and 3D toppling analyses according to the type 255 
of contact base (planar or non-planar), edge rounding (straight or rounded), symmetry of the 256 
cross-section and position of the cog. 257 
 258 
 259 
 260 
 261 



3.1. Physical models and laboratory testing 262 

 263 

The models presented in Fig. 5 were selected to perform the laboratory tilt tests. The 264 

majority of them (Fig. 5 a–e) consisted of some saw-cut pieces of two igneous rocks 265 

(granite and orthogneiss) assembled by gluing them together to form the physical model 266 

(Fig. 6). A photo of each model is presented in Fig. 7. In mode case PM-6 (Fig. 5f and 267 

Fig. 7e), steel (with a density of 7900 kg/m3) was used to fabricate the upper cylinder; as 268 

can be appreciated, this part of the model was intended to displace the center of gravity 269 

of the corresponding assembly. The replica of a real boulder was 3D-printed with PLA 270 

(polylactide) plastic based on a 3D point cloud recovered from the original geological 271 

structure (Pérez-Rey et al., 2019).  272 

 273 

The density of the plastic is lower than that of the rock. Additionally, the printed version 274 

presents an internal plastic pattern with regular hollow zones. Since toppling stability 275 

depends in both the stabilizing and overturning moments and they are both proportional 276 

to the block weight, density does not influence stability in uniform bodies. The friction in 277 

the base is also proportional to the weight in case the contact is considered planar, though 278 

it may affect results for rough joints, as the Barton’s formula suggest. Since the contacts 279 

of the studied elements are typically planar, the weight does not significantly affects the 280 

frictional response. When we want to avoid the sliding mechanism, in cases where it can 281 

take place at lower tilt angles than toppling, a piece of sand paper can be glued to the base 282 

of the element. In conclusion, density, when constant, and friction angle are considered 283 

to have a negligible impact on the presented results. 284 

 285 
Fig. 6. Process of fabrication of the rock models (1, 2) dimensioning and parts of a model; (3) 286 
gluing of parts to create the complete model and (4) model being tested. 287 



 288 
Fig. 7. Photos of the physical models used in this study (a. symmetric section; b. asymmetric 289 
section; c. rounded edges; d. concave base; e. displaced cog (rectangular base); f. displaced cog 290 
(circular base); g. 3D printed replica of a real boulder). The name assigned to each model is also 291 
provided. 292 
 293 

Regarding the tilt tests, they were carried out with a custom testing frame designed at the 294 

University of Vigo that consists of a metallic platform able to rotate about a fixed axis 295 

and driven by an asynchronous motor that constant angular lifting velocities (from 296 

0.1º/min to 26º/min) to be maintained. The ‘start’ and ‘stop’ orders can be given to the 297 

machine by a manual control. A constant record of the tilting angle is kept using an 298 

inclinometer (Leica DISTO D5) with an accuracy of 0.1º attached to the platform (Fig. 299 

8). The critical angle of toppling for each tested model could be registered by simply 300 

stopping the rotation of the platform when the onset of instability was observed. For that 301 

purpose, the lifting velocity was set at 12º/min for all tests in order to balance precision 302 

in determination of the critical angle with testing time. Each model was tested three times 303 

until toppling occurred, and results were collected for purposes of comparison with 304 

analytical and numerical predictions. 305 

 306 



 307 
Fig. 8. Tilting platform used for carrying out tilt tests with the physical models (1. rotating 308 
platform; 2. connection box and velocity control; 3. ‘start and stop’ control; 4. digital 309 
inclinometer). 310 
 311 
 312 
3.2. Analytical assessment of toppling 313 

 314 

With the models PM-1 to PM-4 presented in Fig. 5, it is possible to develop simple 2D 315 

analytical predictions of the critical angle of toppling. To do that, some cross-sections 316 

were divided into simpler shapes (like squares, rectangles and triangles). The driving 317 

forces were located at the centroid of each subsection and the stabilizing and overturning 318 

moments were calculated by considering the rotation pivot as the lower corner of the 319 

model in contact with the tilting table, which was also set as the origin of the coordinate 320 

system for calculations. The critical angle of toppling, αcr, can easily be estimated by 321 

imposing a factor of safety, FS = 1 in Eq. 1.  322 

 323 

Other scenarios like those presented for models PM-5 to PM-7 require a more detailed 324 

analysis on the positioning of the cog as well as the rotation pivot. 325 

 326 

It is relevant to note that the relative stability of any of the blocks under scrutiny for any 327 

position can be both computed in terms of factor of safety and in terms of critical stability 328 

angle. Obviously, these two approaches are related to one another, so they can be 329 



computed for different scenarios. For test interpretation purposes where no additional 330 

forces exist (water, earthquakes), the authors have selected the critical angle approach, 331 

thinking it could be more illustrative for output comparison purposes. However, a factor 332 

of safety approach could also be developed.  333 

 334 

3.2.1. Symmetric model with straight edges and planar base 335 

The simplest model studied (PM-1), in terms of geometry, consists of a symmetric block 336 

with a constant cross-section that can be divided in two triangles and a rectangle. The 337 

model is defined in terms of the central block breadth, b. A sketch of this model is 338 

presented in Fig. 9, where the relevant force components and the rotation pivot are also 339 

indicated for a given inclination of the base (α).  340 

 341 

 342 
Fig. 9. Sketch of the symmetric model with constant cross-section, where the centroid of each 343 
sub-element is shown as well as the rotation pivot and origin of x-y coordinates. 344 
 345 

For demonstrative purposes, we present the derivation of the critical angle formulation, 346 

based on the computation of the factor of safety for the rock block illustrated in Fig. 9. If 347 

one considers the rotation pivot (P) as the origin, the expression for estimating the factor 348 

of safety (FS) dividing the block in its three basic elements is as follows: 349 

 350 



𝐹𝑆 =
∑𝑀)*+,-.-/-01

∑𝑀2345*650-01
=
𝑊L cos α	

𝑏
2 −𝑊D cos α	

𝑥𝑏
3 +𝑊S cosα	

(3 + 𝑥)𝑏
3

𝑊L sin α	
𝑥𝑏
2 +𝑊D sin α	

𝑥𝑏
2 +𝑊S sin α	

𝑥𝑏
2

	 (5) 

 351 

In this case, all forces acting parallel to the x-axis correspond strictly to destabilizing 352 

moments, while those acting parallel to the y-axis contribute to both the stabilization (sub-353 

sections 1 and 3) and destabilization (sub-section 2) of the block shown in Fig. 9.  354 

 355 

Accounting for the fact that W2 = W3, and that W=W1+W2+W3, Eq. 5 can be simplified to:  356 

𝐹𝑆 =
∑𝑀)*+,-.-/-01

∑𝑀2345*650-01
=
𝑊 cosα	𝑏2	

𝑊 sin α 𝑥𝑏2
	=

1
𝑥 · tan𝛼 (6) 

 357 

Equating the FS to 1, the point at which instability initiates, the critical angle for toppling 358 

in Fig. 9 can be derived as Eq. 7: 359 

𝛼J5 = atan W
1
𝑥X 

(7) 

 360 

This implies that, as mentioned above, the size of the sample does not influence results, 361 

so the physical model represents the behavior of any smaller or larger homothetic block. 362 

For the analyzed case and taking into account that x = 2.7, the critical angle in this case 363 

will be acr = 20.32º as derived from Eq. 7. The influence of the acuteness of the lateral 364 

triangle parts could be easily computed by testing different values of x in Eq. 7. This kind 365 

of analytical solution is therefore quite favorable for evaluation of the influence of some 366 

geometrical parameters of the blocks under scrutiny.   367 

 368 

Alternatively, the FS can be computed for the case the cog is known from the beginning 369 

accounting for the stabilizing and overturning moments of the weight as presented in Eq. 370 

1. For blocks with more complex geometry, it therefore tends to be most convenient to 371 

compute the position of the cog to simplify subsequent computations.  372 

 373 

 374 

 375 

 376 

 377 



3.2.2. Asymmetric model with straight edges and planar base 378 

 379 

This model (named as PM-2) presents an asymmetric cross-section that can be divided 380 

into simpler shapes (i.e. two rectangles and two triangles) to simplify calculations, as 381 

presented in Fig. 10. 382 

 383 

 384 
Fig. 10. Sketch of an asymmetric model with constant cross section and straight edges. All the 385 
possible testing positions for toppling analyses are presented (a-h). The sub-sections (1-4) 386 
indicated in the enlarged sketch (i) on the left are kept for all models. 387 
 388 
 389 
For the model sketched in Fig. 10i (equivalent to that in Fig. 10b), the angle of critical 390 

toppling can be estimated with Eq. 8, in which the cross section was divided in four 391 

simpler subsections. 392 

𝛼J5 = arctan Z
𝑊L

𝑎
3 +𝑊D

𝑎
4 +𝑊S

3𝑎
4 +𝑊\

2𝑎
3

𝑊L
4𝑎
3 +𝑊D

𝑎
2 +𝑊S

5𝑎
4 +𝑊\

𝑎
3
^ (8) 

 393 

By modifying the position of the PM-2 block as presented in Fig. 10i, it is possible to get 394 

different scenarios that will change the cross section to be analyzed, as shown in Fig. 10a-395 

h and, consequently, the critical angle of toppling. This procedure is valuable when 396 

performing the experimental part of the present work, since it will allow testing a single 397 

model in eight different positions.  398 

 399 

To illustrate how the stability against toppling and, ultimately, the critical angle of this 400 

relatively complex geometry block could be computed, the complete set of equations (Eq. 401 



9-16) for calculating the analytical critical angle of toppling for each position of the block 402 

is presented in Table 1. Again, in this case, as in any other, the stability against toppling 403 

will be completely independent of the block size. 404 

 405 

Table 1. Equations for estimating the FS against toppling and angles of critical toppling for all 406 
the positions presented in Fig. 10 (a-h). 407 
Block 
position 

Equation  

(a) 𝛼J5 = arctan Z
𝑊1 ·

5𝑎
6 +𝑊3 ·

3𝑎
4 − 𝑊4 ·

𝑎
6

𝑊1 ·
2𝑎
3 + 𝑊2 ·

3𝑎
4 +𝑊3 ·

𝑎
4 +𝑊4 ·

𝑎
3

^ (9) 

(b) 𝛼J5 = arctan Z
𝑊1 ·

𝑎
3 +𝑊2 ·

𝑎
4 +𝑊3 ·

3𝑎
4 +𝑊4 ·

2𝑎
3

𝑊1 ·
4𝑎
3 + 𝑊2 ·

𝑎
2 + 𝑊3 ·

5𝑎
4 +𝑊4 ·

𝑎
3

^ (10) 

(c) 𝛼J5 = arctanZ
−𝑊1 ·

𝑎
3 +𝑊2 ·

𝑎
2 −𝑊3 ·

𝑎
4 +𝑊4 ·

2𝑎
3

𝑊1 ·
𝑎
3 +𝑊2 ·

𝑎
4 +𝑊3 ·

3𝑎
4 +𝑊4 ·

2𝑎
3

^ (11) 

(d) 𝛼J5 = arctanZ
𝑊1 ·

2𝑎
3 + 𝑊2 ·

3𝑎
4 +𝑊3 ·

𝑎
4 +𝑊4 ·

𝑎
3

𝑊1 ·
2𝑎
3 +𝑊2 ·

3𝑎
2 + 𝑊3 ·

3𝑎
4 +𝑊4 ·

5𝑎
3

^ (12) 

(e) 𝛼J5 = arctanZ
𝑊1 ·

2𝑎
3 +𝑊2 ·

3𝑎
2 + 𝑊3 ·

3𝑎
4 +𝑊4 ·

5𝑎
3

𝑊1 ·
2𝑎
3 + 𝑊2 ·

3𝑎
4 +𝑊3 ·

𝑎
4 +𝑊4 ·

𝑎
3

^ (13) 

(f) 𝛼J5 = arctanZ
−𝑊1 ·

𝑎
6 − 𝑊2 ·

𝑎
4 +𝑊3 ·

𝑎
4 +𝑊4 ·

𝑎
6

𝑊1 ·
2𝑎
3 +𝑊2 ·

3𝑎
2 + 𝑊3 ·

3𝑎
4 +𝑊4 ·

5𝑎
3

^ (14) 

(g) 𝛼J5 = arctan Z
𝑊1 ·

4𝑎
3 + 𝑊2 ·

𝑎
2 + 𝑊3 ·

3𝑎
4 +𝑊4 ·

𝑎
3

𝑊1 ·
𝑎
3 +𝑊2 ·

𝑎
4 +𝑊3 ·

3𝑎
4 +𝑊4 ·

2𝑎
3

^ (15) 

(h) 𝛼J5 = arctan Z
𝑊1 ·

𝑎
6 + 𝑊2 ·

𝑎
4 − 𝑊3 ·

𝑎
4 −𝑊4 ·

𝑎
6

𝑊1 ·
4𝑎
3 + 𝑊2 ·

𝑎
2 + 𝑊3 ·

5𝑎
4 +𝑊4 ·

𝑎
3

^ (16) 

 408 
 409 
3.2.3. Symmetric model with rounded edges and planar base 410 

Another model presenting a symmetric cross-section is that corresponding to a 411 

rectangular prism with rounded corners (PM-3), as originally analyzed by Alejano et al. 412 

(2015). The cross-section of the model is shown in Fig. 11 and, due to the simplicity of 413 

this section, only the cog of the entire model was considered.  414 



If the moment equilibrium calculation is performed for the model presented in Fig. 11, 415 

the angle of critical toppling can be estimated (Eq. 17) as rearranged from Eq. 4. Note 416 

that the addition of a non-zero radius of curvature (r) reduces the critical angle of toppling, 417 

since it diminishes the actual contact width by 2rc. 418 

 419 

𝛼J5 = arctan W
𝑏 − 2𝑟J
ℎ X (17) 

 420 

 421 
Fig. 11. Sketch of the symmetric model with rounded edges (for the studied model: h/b = 2.125 422 
and rc/h = 0.147). 423 
 424 
 425 
3.2.4. Model with non-planar (concave) base 426 

The present model is intended to illustrate the effect of a non-planar (concave) base, as a 427 

potentially stabilizing factor. The idea was to study a circular cross-section in which part 428 

of it is embedded in the inclined plane, resting on a concave base that coincides with the 429 

curvature of the cross section (see Fig. 7b and Fig. 12). 430 

 431 

It can be demonstrated that the angle of critical toppling, αcr, of the model presented in 432 

Fig. 12 solely depends on the depth of the slot (s) relative to the radius of the circular 433 

cross-section (r), n, where n = s/r for and n ∈ (0, 1). The angle of critical toppling can 434 

therefore be calculated from Eq. 18. 435 

 436 

𝛼J5 = atan `
sin[acos(1 − 𝑛)]

1 − 𝑛 d (18) 



With the aim of illustrating the effect of a concave contact on the angle of critical toppling 437 

of such a circular section of radius r, the critical angle is plotted against the depth of the 438 

slot expressed as a proportion of the radius (n) in Fig. 13. 439 

 440 

 441 
Fig. 12. Sketch of the model with non-planar (concave) base. 442 

 443 

 444 
Fig. 13. Dependence of the angle of critical toppling (y-axis) with the relative depth of the slot, n 445 
(x-axis), for the model depicted in Fig. 12. 446 
 447 

As is shown in Fig. 13, the effect of a concave contact clearly influences the angle of 448 

critical toppling of a block with a circular section. This effect is most significant for low 449 

values of n, where the derivative dαcr/dn is maximized; while almost no blocks are 450 

expected to match the geometry shown in Fig. 12 perfectly, in practice, this means that 451 

even relative small degree of concavity in the basal plane for a block of more general 452 

shape has the potential to increase the angle of critical toppling by a few degrees. 453 



3.2.5. Model with the cog not contained in a symmetry plane: squared/rectangular 454 

base 455 

The position of the center of gravity (cog) or centroid clearly influences the toppling 456 

behavior of an element as in the case of the blocks already analyzed in this study. If a 457 

block is positioned onto a flat surface and the vertical projection of its cog falls inside the 458 

contact area, the block will remain stable against toppling. Consider the situation 459 

illustrated in Fig. 14a for a squared-based, symmetric and homogeneous block. In this 460 

case, if the cog is projected onto the planar base, that projection will fall on the center of 461 

the square section. If the block is progressively tilted, it will topple once the projection of 462 

the cog falls out the base. 463 

 464 

 465 
Fig. 14. Different 3D elements (a, b, c and d) to be subjected to a tilt test to illustrate the role of 466 
geometry on toppling. On the upper row, 3D view of the elements resting on a horizontal base to 467 
be tilted. On the second row, initial top view with the projection including the cog. On the third 468 
row, top view of the surface after tilting and in the moment of toppling and, on the last row, side 469 
view of platform and element when toppling. 470 
 471 
 472 



Fig. 14b shows a similar prism with a cube stuck to its upper back face, a more complex 473 

geometry. The cog of this model, when placed on a flat surface, will not project on the 474 

center of the base but will instead project somewhere behind the center of the base due to 475 

the added mass. Because of this, when tilting the plane where this element stands, it will 476 

topple at a higher angle than the previous case; in other words, the angle of critical 477 

toppling in this case (α) will be higher than the one observed for the element shown in 478 

Fig.14a (β). 479 

 480 

The third element (Fig. 14c) is similar to element ‘b’, but the added cube is now stacked 481 

on the upper part of a lateral face. Its cog will be at the same height as for element b (since 482 

it is the same element in the same position), but its projection onto a horizontal plane will 483 

be moved to the left in relation to element ‘a’ (Fig. 14c, second row). When tilting the 484 

platform where element ‘c’ rests, it will topple at a lower angle than α, because its cog is 485 

located higher than in case ‘a’, meaning its projection will fall outside its base at a lower 486 

angle ɣ, which will be also less steep than β. 487 

 488 

Element ‘d’ is a rectangular prism with a square cross-section where two cubes are 489 

attached on the upper part of its lateral backward and leftward faces. In this case, the cog 490 

of the element will be even more displaced upwards than in the case of elements ‘b’ and 491 

‘c’ and the cog projection on its base will be slightly moved backwards and a little bit to 492 

the left in relation to the case of element ‘a’ in Fig 14. This will clearly be less stable than 493 

‘b’ (since the side-stuck cubes displace the cog upwards) but more stable than ‘c’ (since 494 

the back-stuck cube will increase its stability by moving the projection of its cog 495 

backwards). According to the previous analyses, a hierarchy on the angle of critical 496 

toppling can be stablished for the studied models shown in Fig. 14 as: β > δ >α > ɣ. 497 

 498 

With the goal of assessing the effect of a displaced cog on the toppling behavior in a more 499 

detailed way and following the ideas described in the previous paragraph, the model 500 

presented in Fig. 15 has been considered. It consists of a rectangular-based block with a 501 

small prismatic slab stuck on the upper part of a lateral face (see Fig. 15b.1). 502 



 503 
Fig. 15. (a) 3D view of the model with the axis of rotation and origin of coordinates for positioning 504 
the cog marked; (b) levelled front view of the assembly and (c) levelled lateral view of the 505 
assembly. 506 
 507 

As previously mentioned, the effect of adding such a piece to a rectangular-based block 508 

as shown in Fig. 15 implies a displacement of the cog, which will move towards the added 509 

mass. This positioning of the cog can be easily determined by resorting to Eqs.19, 20 and 510 

21 for each coordinate, respectively, when considering mi = Wi / g. 511 

 512 

𝑥f,h =
∑(𝑚- · 𝑥-)
∑𝑚-

 (19) 

𝑦f,h =
∑(𝑚- · 𝑦-)
∑𝑚-

 (20) 

𝑧f,h =
∑(𝑚- · 𝑧-)
∑𝑚-

 (21) 

 513 

 514 



Once the 3D coordinates of the displaced cog are set (xG,d, yG,d, zG,d), the angle of critical 515 

toppling for the model sketched in Fig. 13b.1 can be estimated using Eq. 22: 516 

 517 

𝛼J5 = atan l
𝑦f,h
𝑧f,h

m (22) 

 518 

It has to be highlighted that all the models with a rectangular or squared-base such as 519 

those shown in the previous sections and particularly the last shown in Fig. 15 will always 520 

have a pre-defined axis of rotation, which coincides with an edge of the block in contact 521 

with the rotating base. This is not the case for circular or irregular-based specimens, as 522 

considered in Section 3.2.6. 523 

 524 

 525 

3.2.6. Model with the cog not contained in a symmetry plane: circular base 526 

Real rock blocks and boulders as found in the field rarely have a cogs that project onto 527 

the centers of their bases when resting on horizontal surfaces, nor do they have well-528 

defined axes of rotation against toppling mechanism due to their typically irregular 529 

shapes. As already noted, for a precise assessment of their stability against toppling, it 530 

will be necessary to correctly position the cog as well as the pivot or axis around which 531 

the toppling mechanism will take place. 532 

 533 

The study of these features has been carried out using a laboratory physical model (as 534 

shown in Fig. 7f) consisting of two cylinders composed of different materials (rock and 535 

steel with densities of ρr = 2700 kg/m3 and ρs = 7800 kg/m3, respectively). Both cylinders 536 

have the same radius (r = 27 mm) but different heights, with the rock cylinder measuring 537 

100 mm in height and the steel cylinder measuring 35 mm in height. The assembly is 538 

sketched in Fig. 16b.1. 539 

 540 

This test consisted of placing the two specimens as shown in Fig. 16b.1, with the top piece 541 

moved outwards a distance of r/2. This position of the top steel specimen moves the center 542 

of gravity out of the plane of symmetry of the lower specimen, as can be seen in the front 543 

view shown in Fig. 7b. Then, the specimen was progressively tilted (being the platform 544 

rotation around the x-axis) until toppling of the entire set occurred, when the tilting angle 545 

(angle of critical toppling) was achieved. 546 



 547 
Fig. 16. Different views of the model containing the cog out of a symmetry axis (model PM-6). 548 

 549 

By considering the origin of the coordinate system at the center of the base of the lower 550 

cylinder (Fig. 16a.4) the angle of critical toppling for the model presented in Fig. 16b.1 551 

when tilted around the x-axis can be calculated using Eq. 23: 552 

𝛼J5 = atan l
𝑑
𝑧f,h

m (23) 

 553 

Unlike the other examples considered in this study, this model will behave differently 554 

once the limit equilibrium for toppling has been reached. Specifically, although the 555 

critical angle of toppling can be calculated in a similar way to that of the other models 556 

(Eq. 12), the reduction of the cross-section (plane) containing the cog of the assembly 557 

(shown in green in Fig. 16b.3 and Fig. 16b.4) has to be considered, as it influences the 558 

axis of rotation.  559 

 560 

As shown in Fig. 17, the axis (pivot) of rotation will not coincide with that of the rotating 561 

platform and will move laterally due to the displacement of the cog and the circular base 562 

in such a way that the new axis of rotation corresponds to the tangent at the intersection 563 

point between the plane containing the new cog (shown in green color in Fig. 17) and the 564 

base of the model. The displacement angle, 𝛿,	as shown in Figure 17 can be calculated 565 

using Eq. 24. 566 



 567 
Fig. 17. Different views of the model PM-6 at the equilibrium limit state, where the axis of rotation 568 
does not coincide with that of the rotating platform. 569 
 570 

𝛿 = asin B
𝑥f,h
𝑟 C (24) 

 571 

3.2.7. 3D-printed model representative of a real boulder 572 

The last model (PM-7) considered in this study corresponds to a plastic (PLA) replica of 573 

a real granitic boulder located in the NW of Spain, as studied by Pérez-Rey et al. (2019). 574 

The replica, made at a scale of approximately 1:50, was created from an 3D point cloud 575 

of the real boulder collected in the field, which was afterwards processed with the 576 

software CloudCompare (Girardeau-Montaut, 2018) and Meshlab (Cignoni et al., 2008) 577 

in order to develop the 3D printing stage with a BCN Sigma 3D printer (see Fig. 18). 578 

 579 
Fig. 18 (a, b) Two views of the 3D point cloud of the studied boulder; (c) isolation of the boulder 580 
from the rest of the structure and (d) 3D-printed replica on the testing platform. 581 
 582 

By taking advantage of such a precise 3D point cloud and with the assistance of 583 

CloudCompare software, it is possible to approximate, in a reasonable manner, the 584 

contact area between the boulder and the base and to position the cog.  585 



Using the relationship presented by Eq. 23 and the geometrical parameters presented in 586 

Fig. 19, it is possible to estimate the approximate angle of critical toppling of the boulder 587 

to be αcr = 31.4°. 588 

 589 

 590 
Fig. 19. Detailed view of the position of the cog projected onto the contact plane, showing the 591 
distance d necessary for estimating the critical angle of toppling. 592 
 593 
 594 

4. Results 595 

4.1. Comparison of analytical and experimental results 596 

After carrying out all calculations of the angle of critical toppling of each of the models 597 

considered for this study, as presented in Section 3, all analytical results are shown in 598 

Table 1. Together with these results, the experimental angles of toppling obtained for 599 

each series of three tests carried out with the seven models are also provided with an 600 

averaged result. As it can observed in this table, the discrepancy of the analytical and 601 

average laboratory results is always less than 1.3º, and the median error is 0.66o. 602 

 603 

It must be noted that some models did not achieve toppling failure in the laboratory tests 604 

(in particular, the PM-2 model in some positions). This occurs when the theoretical 605 

toppling angle is greater than the basic friction angle of the base contact surface, so the 606 

block slides before reaching its toppling angle. These results are indicated in Table 2 with 607 

an ‘s’. It has also been observed that PM-2 model in position (h) was not self-stable in a 608 

horizontal position (αcr < 0). 609 



Table 2. Analytical and experimental results for the angle of critical toppling as obtained 610 
for the seven studied models. 611 

Model Position Analytical Experimental (s = slide) 

αcr (°) α1 α2 α3 αmean 

PM-1 — 20.32 20.2 20.3 20.5 20.3 

PM-2 (a) 44.22 30.4 (s) 27.2 (s) 30.1 (s) 29.2 (s) 

(b) 28.66 29.1 29.0 29.2 29.1 

(c) 4.18 3.2 3.2 3.1 3.2 

(d) 24.55 25.4 25.3 25.6 25.4 

(e) 65.45 33.5 (s) 30.9 (s) 27.0 (s) 30.5 (s) 

(f) 1.41 2.6 2.7 2.7 2.7 

(g) 61.34 29.0 (s) 25.6 (s) 26.5 (s) 27.0 (s) 

(h) < 0 — — — — 

PM-3 — 10.01 11.0 11.0 9.67 10.6 

PM-4 (a) (n =1/6) 33.56  33.3 32.5 32.8 32.9 

(b) (n=1/3) 48.19  47.3 48.3 48.4 48.0 

PM-5 — 11.88 11.6 12.3 12.4 12.1 

PM-6 — 17.29 16.5 15.9 16.2 16.2 

PM-7 — 31.39 30.8 30.4 30.7 30.6 

 612 

 613 

4.2. 3D discrete numerical modelling 614 

Another way to validate the results of the physical models is by comparing these results 615 

with those obtained by numerical analysis. For this part of the study, we have utilized the 616 

Distinct Element Method (DEM), which applies an explicit finite difference method for 617 

modelling large displacements and rotations of block systems (Cundall, 1971). This 618 

method has been used in numerous studies of toppling (Brideau and Stead, 2010; Lanaro 619 

et al., 1997; Pritchard and Savigny, 1990). In this case, we use the DEM as implemented 620 

in the software 3DEC v5.20 (Itasca Consulting Group, 2019). 621 

Discrete Element Methods can deal with geological structures of any size and shape, and 622 

with a great variety of constitutive models for both the intact rock and the discontinuities. 623 

They also allow for simulation of complex hydrogeological environments or time-624 

dependant phenomena like rock-dynamics or creep. In this study, this approach was used 625 

because it does not require the prior definition of a displacement direction (as required in 626 

the analytical calculation), meaning the results of the other methods can be confirmed in 627 



cases where there is any doubt about the displacement direction, such as for models with 628 

a displaced cog (PM-5 and PM-6), or the model with an irregular and complex shape 629 

(PM-7).  The same tilt tests performed with the physical models were simulated in 3DEC 630 

(Fig. 20).  631 

 632 

Fig. 20. Results for the numerical simulation of the tilt tests performed. 633 
 634 

 635 



In these models, both the tilt table and the specimens were modelled as rigid blocks. The 636 

contact stiffnesses were set to kn 650 GPa/s and ks 150 GPa/s. The tilting rate was set 637 

slow enough to ensure that no inertial effect was produced so the test could be considered 638 

static. The results of these models are presented in Table 3, where the maximum 639 

difference observed between results obtained using various methods is indicated. 640 

 641 

Table 3. Angles of critical toppling calculated by different methods and absolute maximum 642 
difference between results. Involved methods indicated in brackets. 643 

Model Angle of critical toppling (º) Absolute max. difference (º) 
Experimental (E) Analytical (A) DEM (D) 

PM-1 20.3 20.32 20.1 0.22 (E-A) 
PM-2 29.1 28.66 28.6 0.5 (E-N) 
PM-3 10.6 10.01 10.0 0.6 (E-N) 
PM-4 48.0 48.19 48.1 0.19 (E-A) 
PM-5 12.1 11.88 11.9 0.22 (E-A) 
PM-6 16.2 17.29 17.3 1.1 (E-N) 
PM-7 30.6 31.39 31.3 0.79 (E-A) 

 644 

The results obtained using the DEM models agree with those obtained by both the 645 

physical models and the analytical method, even in the cases where the centre of gravity 646 

is not located in the plane of symmetry, and the toppling involves complex movement not 647 

parallel to the tilting direction, as in the case of PM-6 (Fig. 21).  648 

 649 

 650 

Fig. 21. 3DEC results of the tilt simulation on a rock + steel set with and upper cylinder uncentered 651 
r/2 to the left (PM-6). After the block starts to topple, its movement does not follow the tilting 652 
direction because the cog is not located in the symmetry plane as assumed in section 3.2.6 653 



It is relevant to note that the DEM and the analytical approach match so closely here (and 654 

in fact in general). This suggests that the errors observed in the experimental results are a 655 

largely a function of limitations in the “manufacturing” processes used to make the 656 

various specimens.  657 

The critical angle in models with complex geometries (PM-7) measured by the three 658 

methods were also similar, confirming the validity of both the experimental and the 659 

analytical approaches. This model (Fig. 22) presents both an asymmetrical geometry and 660 

an irregular base shape, resulting in complex movement after destabilization. 661 

 662 

 663 

Fig. 22. Displacement magnitude after tilt-test of PM-7 calculated by 3DEC. 664 

 665 

5. Discussion 666 

 667 

It is not difficult in nature to find rock blocks or groups of blocks that could potentially 668 

become unstable due to toppling. In some case, these blocks are irregular enough so as to 669 

be considered heritage or part of natural parks, so they are protected (Fig. 23). On the 670 

other hand, the instability of some other less aesthetically appealing rock blocks may 671 

jeopardize infrastructure or even people, lives and properties. In any of these cases, it is 672 

important to be able to analyze the stability of these blocks under different conditions 673 

such that appropriate protective measures can be defined. 674 

 675 



Although some approaches were developed in the past to compute the stability of blocks 676 

against toppling, in many cases, and specifically those corresponding to complex 677 

geometry blocks, it was indeed difficult to accurately compute stability against toppling. 678 

Recent advances in theoretical stability analysis based on idealized geometries (rounded 679 

corners, concave or convex surfaces) have contributed to a better understanding of 680 

toppling phenomena. The methodology or group of approaches presented here based on 681 

modern block geometry reconstruction methods, 3D printing of a block replica and testing 682 

of this replica using a tilt table, help to reproduce the potential instability phenomena of 683 

these blocks and to assess their degree of stability or instability. 684 

 685 

 686 
Figure 23. Balanced stones in different Natural Parks. (a) The three sisters balancing rocks, 687 
Matopos National Park, Matabeleland, Zimbabwe (b) Roque de García, basaltic horn at Teide 688 
National Park, Tenerife, Canary Islands, Spain (c) 3,500 t balanced rock, Arches National Park, 689 
Utah, USA and (d) 700 t balanced rock, the garden of gods, Colorado Springs, USA. Photos by 690 
the authors. 691 



One notable limitation of the approach demonstrated in this study is the lack of knowledge 692 

of the geometry (concavity or concaveness and roughness) of the contact between the 693 

block and the surface where it rests and its actual frictional behavior. However, the 694 

proposed approach, in combination with detailed in-situ characterization and the 695 

application of analytical and numerical calculation techniques as illustrated in this 696 

document, has the potential to contribute to improved assessments of the stability of 697 

irregular rock blocks or boulders.  698 

 699 

6. Conclusions 700 

 701 

All over the world, and particularly in mountainous terrain in hot and temperate regions, 702 

rock blocks or boulders occur, and may exist in a state of marginal stability. In most of 703 

these cases, the potential instability of these blocks does not represent a hazard to human 704 

life or property. In some cases, however, it may be important to quantify block stability 705 

either due to an associated hazard, or due to its significance to the community or its natural 706 

landscape value. 707 

 708 

Analyzing the stability of these blocks is not an easy task, primarily due to their complex 709 

geometry and because it is also difficult to characterize in sufficient detail all the features 710 

actually affecting their stability, including block geometry, geometry of the contact with 711 

the base surface, strength and deformability characteristics of this contact —of particular 712 

relevance when considering rough joints and infill material with non-negligible tensile 713 

strength—, and potential triggers such as water pressure and earthquake loading. 714 

 715 

Recently developed remote-sensing tools, such as photogrammetry or LiDAR can be used 716 

in order to recover a rather accurate geometry of a block of interest as well as an 717 

approximate representation of the contact area (typically hidden). Based on the recovered 718 

3D point cloud, a scaled version of the rock block or boulder can be 3D-printed, and its 719 

toppling behavior physically observed using a tilting platform, since toppling is 720 

exclusively dependent on the geometry of the potentially overturning object and the 721 

concavity of the base. This approach can be applied in combination with analytical or 722 

numerical techniques to study the mechanisms involved and to check physical testing 723 

results. 724 

 725 
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