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Abstract

An accurate measure of the complexity of patterns of cortical folding or gyrification is
necessary for understanding normal brain development and neurodevelopmental disorders.
Conventional gyrification indices (Gls) are calculated based on surface curvature (curvature-
based GI) or an outer hull surface of the cortex (outer surface-based Gl). The latter is
dependent on the definition of the outer hull surface and a corresponding function between
surfaces. In the present study, we propose the Laplace Beltrami-based gyrification index (LB-
GI). This is a new curvature-based local GI computed using the first three Laplace Beltrami
eigenfunction level sets. As with outer surface-based GI methods, this method is based on the
hypothesis that gyrification stems from a flat surface during development. However, instead
of quantifying gyrification with reference to corresponding points on an outer hull surface,
LB-GI quantifies the gyrification at each point on the cortical surface with reference to their
surrounding gyral points, overcoming several shortcomings of existing methods. The LB-GI
was applied to investigate the cortical maturation profile of the human brain from preschool
to early adulthood using the PING database. The results revealed more detail in patterns of
cortical folding than conventional curvature-based methods, especially on frontal and
posterior tips of the brain, such as the frontal pole, lateral occipital, lateral cuneus, and
lingual. Negative associations of cortical folding with age were observed at cortical regions,
including bilateral lingual, lateral occipital, precentral gyrus, postcentral gyrus, and superior
frontal gyrus. The results also indicated positive significant associations between age and the
LB-GI of bilateral insula, the medial orbitofrontal, frontal pole and rostral anterior cingulate
regions. It is anticipated that the LB-GI will be advantageous in providing further insights in
the understanding of brain development and degeneration in large clinical neuroimaging

studies.
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Introduction

Accurate and robust methods for tracking and quantifying cortical folding complexity are
critical in the study of both normal brain development and neurodevelopmental disorders
(Lebed et al. 2013). A gyrification index (Gl) is a metric encapsulating the degree of folded-
ness of the cortex. The first such measure, proposed by Zilles et al. (1988), computed the
ratio of the length of the cortical surface to the perimeter of the exposed outer surface of the
brain. The length of the cortical surface was computed on manually delineated 2D sections.
This method did not consider the intrinsic 3D structure of the brain, and therefore, the Gl
values could vary depending on the orientation and thickness of the slicing. As the spatial
resolution of MRI improved, new Gls were proposed to automatically quantify the degree of
cortical folding using the reconstructed 3D surface of the brain (Lebed et al. 2013; Schaer et
al. 2008; Luders et al. 2006a; Kao et al. 2007; Batchelor et al. 2002; Su et al. 2013; Rabiei et
al. 2017; Lyu et al. 2018).

There are two main categories of automated 3D Gl methods. The first category uses an outer
hull surface of the brain, which bridges the sulcal regions and tightly wraps the gyral surface
of the brain. These methods hypothesize that the cortical surface is convoluted from a flat
surface during development. We refer to these methods as outer surface-based Gl since the
GI values are dependent on the definition of the outer hull surface and the correspondence
function between the cortex and its hull surfaces. An example of a local outer surface-based
Gl is that proposed by Schaer et al. (2008). In this approach, after computing the outer hull
surface, for each point on the hull a region of interest is defined as the intersected patch of the
hull surface and a sphere of a fixed radius centered at that point. By finding the closest points
on the cortical surface to each point on the selected patch on the hull, the corresponding
region of interest is characterised. They defined localized Gl as the ratio of the perimeter of
the corresponding region of the interest to the perimeter of the region of the interest on the
hull surface. Other studies, such as (Lebed et al. 2013), extended Schaer’s GI by proposing a
new mathematical definition for computation of the outer hull surface. They noted that
computing the outer surface using a surface smoothing approach would automatically find
the correspondence points on the cortical surface. Lyu et al. (2018) recently proposed

computing surface-based local gyrification within an anisotropic patch (kernel) instead of the
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traditional disc patch (Schaer et al. 2008) and used a Laplace-based method to find the
correspondence between points on the cortical surface and the outer hull surface. The
proposed anisotropic patch was created by performing wavefront propagation over a tensor
field computed from a travel-time map. Travel-time maps were computed as the geodesic
distances between the sulcal and gyral regions. These regions were segmented using sulcal
and gyral curves automatically extracted from the cortex (Lyu et al. 2017; Lyu, Kim, and
Styner 2015). Sulcal and gyral points forming the curve were detected from candidate sulcal
points (the vertices with positive maximum curvatures) using a line simplification method
based on two dimensional cutting planes creating contours at a given candidate point (Lyu et
al. 2017; Lyu, Kim, and Styner 2015). The results presented by Lyu et al. (2018) rendered a
more localized measure of gyrification along sulcal fundi compared to Schaer’s method
(Schaer et al. 2008). However, Gl values computed by both the Lebed and Lyu techniques
still depend on the construction of an outer surface, and the values are ratios between the
surface area of the cortical surface and that of the cuter surface. Another disadvantage of
outer surface-based methods is that they assign equal Gl values to two cortical regions with
equal surface areas, one formed by highly curved gyral and sulcal points and the other one
with smoother curvature at sulcal and gyral points. Moreover, these methods are unable to
distinguish between deep and complex folds (with a high variation of cortical mean
curvature) with equal surface area (Rabiei et al. 2017). Therefore, there is a need for Gl
methods that are independent of any outer surface reconstruction and that are sensitive to

geometric characterizations of cortical morphology such as depth and curvature.

The second category of Gls is based on cortical surface curvature, namely curvature-based
GI. The curvature of a 2D surface is an important geometrical feature that quantifies its
variation from a flat surface. The methods in this class of Gl capture the local geometry of
each point on the cortical surface, independent of any outer hull surface construction.
Unfortunately, this very localized measure of the surface can be very sensitive to image
acquisition and surface reconstruction artefacts. To tackle this problem, (Luders et al. 2006a)
proposed a method which computes mean 3D curvature at each point on the surface and then
smooths the absolute values using a heat kernel. The method was applied to show cortical
gyrification associations with mindfulness practices (Luders et al. 2012) and intelligence
(Luders et al. 2009). However, as pointed out in (Lyu et al. 2018), the smoothing of the
curvature values have a blurring effect and reduces the ability to identify fine folding details

of sulcal and gyral shape.
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In this paper, we propose the use of mean curvature and the Laplace Beltrami (LB) operator
for extracting intrinsic geometric features of the cortical surface. Rather than computing a
local GI for each point on a triangulated cortical surface using corresponding points on the
constructed outer hull, as in (Lebed et al. 2013; Schaer et al. 2008), we propose computation
of a local Laplace Beltrami-based Gl, hereafter termed the LB-GI, using the positions of gyri
on the level sets of LB eigenfunction of the brain surface. The method inherits the biological
intuition of outer surface-based Gl that quantifies cortical gyrification as the degree of
convolution from a flat surface, however, the LB-GI values at each point on the cortex are
calculated with reference to their surrounding gyral points instead of the corresponding points

on an outer hull surface.

We extend our previous work (Shishegar et al. 2015) using a new gyrification index derived
from level sets of the first Laplace Beltrami eigenfunction. Previously the approach was
applied to the study of cortical folding development on fetal sheep brains. However, this
approach would not be able to fully capture the complex patterns of convoluted adult human
cortex, as some level sets may lie parallel to the sulcal lines of the cortex. Consequently, the
LB-GI values computed using these particular level sets would not necessarily reflect the
neighboring geometry (Lombaert, Sporring, and Siddigi 2013). Moreover, irrespective of the
chosen eigenfunction or the number of level sets used for the LB-GI computation, the level
sets of a single eigenfunction could not follow the highly convoluted patterns of the human
cortex near the Laplace Beltrami eigenfunction extrema points. Our current work overcomes
these limitations by using level sets of the first three Laplace Beltrami eigenfunctions instead
of only the first (Shishegar et al. 2015). Although using three level sets increases the
computational cost, the new approach reflects the 3D nature of the folded cortical surface
more accurately. In the current paper, the utility of the Laplace Beltrami gyrification index in
application to highly convoluted brains was investigated in human brain development from

preschool into young adulthood and compared against conventional curvature-based indices.

Methods

LB eigenspectrum
The Laplace Beltrami (LB) operator and its eigenspectrum are isometric invariant and the

values are independent of the Euclidean space embedding the shape (Reuter et al. 2009)
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which allows for image analysis with minimal required pre-processing. The operator has
recently become popular in neuroimaging studies. It has been applied in several applications,
such as shape registration (Lefévre and Auzias 2015), surface matching (Lombaert, Sporring,
and Siddigi 2013; Lombaert et al. 2012), analysis of gyrification (Germanaud et al. 2012;
Rabiei et al. 2017, 2019), shape classification (Lai et al. 2009; Wachinger et al. 2015), and
segmentation of cortical surfaces (Lefévre et al. 2018). Lombaert et al. (2012) proposed an
LB spectral embedding approach that learns fast and accurate mappings between surfaces and
showed that using additional geometric information such as sulcal depth and cortical

curvature in the spectral embedding improves the brain surface matching precision.

The LB operator of a smooth function f on a Riemannian manifold M is given by
Auf = divy(Vuf) 1)
where div,, and V,are divergence and gradient operators on the Riemannian manifold M,

respectively.

In local coordinates, such as a local surface parametrisation, y : R> — R® if the metric is

given by g;;, then the LB operator of a function is computed by

Af = —%i;0:(g,W3;f) )
where

9ij = (aﬂ/), aflp)’ G= (gij)r W = m, (gl]) = G~1 (3)

The LB operator has a discrete non-negative spectrum diverging to infinity, 0 <A <X; < ... 1,
and the multiplicity of each eigenvalue is finite. The Laplacian eigenvalue problem is
Ayf = —af (4)

Solving (4) on each brain’s triangulated surface generates eigenvalues and corresponding
eigenfunctions. This processing can be achieved using the software ShapeDNA-tria
(http://reuter.mit.edu/software/shapedna), which implements the cubic finite element (FE)
approximations as proposed in (Reuter et al. 2009). Computational details can be found in
(Reuter, Wolter, and Peinecke 2006; Reuter et al. 2009).

After computing the eigenfunctions of the triangular surface mesh of the brain, the LB-GlI is
calculated by the following steps: a) computing the level sets of the first, second and third
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non-constant Laplace Beltrami eigenfunction; b) estimating mean curvature of the cortical
surface; c) automatically detecting gyral points on each level set; d) computing LB-GI on
each point on each level set as the relative curvature with reference to the neighboring gyri
points, and e) mapping the values to the triangulated surface.

Computation of level sets

LB eigenfunctions are real-valued functions calculated for each vertex on a triangular mesh.
As shown in (Reuter et al. 2009), LB eigenfunctions with lower frequencies are stable across
the surfaces and provide an “indirect registration” between the cortical surfaces. However
due to the high dimension of LB eigenfunctions, topological methods, such as the extraction
of level sets of eigenfunctions, are performed to compute simpler local shape descriptors
(Reuter et al. 2009). Reuter et al. (2009) showed that these shape descriptors, e.g. level sets,

are localized at similar locations for heterogeneous shapes.

Here, we expand the original idea of gyrification index proposed by Zilles et al. (1988) by
obtaining curved slices of the brain following LB eigenfunctions level set. Instead of slicing
the brain in Cartesian coordinates along the anterior/posterior axis, the LB-GI computations
employ the level sets of the first, second and third LB eigenfunctions to provide an intrinsic
topological shape descriptor. As we illustrate in Fig.1, these three level sets provide us with
the anterior/posterior, superior/inferior and medial/lateral structure of the cortical surface
(Shi, Dinov, and Toga 2009).

For the real valued function f : M — R, level set Ly is defined as the set of points with similar
eigenfunction values (Reuter 2010). In order for the number of level sets for each shape to be
consistent, the eigenfunctions are normalized by their maximum and minimum. The N level

sets are defined as
Lk = x € M: fx) = foo+ k(fu—f)/N}, kK =1, 2, . . . , N

(5)

where f3, and f,,, are maximum and minimum values respectively. The automated procedure
for level set curve construction starts at the intersection of an edge and a desired
eigenfunction level set line and continues by finding the two other edges in the triangle and
choosing the one which the level set passes through. The procedure continues until returning
to the initial point. The constructed level sets are closed polyhedral (i.e. discrete) curves in

3D space. Fig. 1 depicts the first three LB eigenfunctions and their corresponding level sets
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for an adult human brain extracted from MRI. We calculated N=199 level sets for each
eigenfunction which provides 200 slices in each direction (anterior/posterior,

superior/inferior and medial/lateral). The

Figure 1: First row: The cortical surface of an exemplar human brain is color coded by the first (a), the
second (b) and the third (c) LB eigenfunctions. Second row: Black curves represent the corresponding

level sets of the three LB eigenfunctions.

number of level sets was chosen to provide a dense mesh structure, formed from closed level
set curves, which fully covers and accurately follows the complex cortical folding pattern of
the cortical surface. In our previous study of cortical development in fetal sheep brains
(Shishegar 2017), we showed that 99 level sets provided a dense mesh and accurate
measurement of cortical folding in fetal sheep brains with a relatively smaller size and less
complexity comipared to human brains. For the adult human brain data considered in this
paper, the new mesh structure has edge length varying from 0.1mm to 1mm, comparable with

the original triangulated mesh with edge length between 0.05mm to 3.5mm.

The application of level sets of multiple Laplace Beltrami eigenfunctions has been previously
reported for remeshing algorithms in the computer graphics literature (Dong et al. 2005; Lévy
2006) and spherical parameterization of the brain surface (Lefévre and Auzias 2015). Shi,
Dinov, and Toga (2009) proposed a new feature space using the first three eigenfunctions.

They showed that this feature space characterizes the cortical geometry, and provides
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meaningful anatomical features of the cortex (e.g. applicable to automatically extract primary
sulcal paths). We have previously shown that by using the level sets of the first three Laplace
Beltrami eigenfunctions instead of only the first eigenfunction, higher robustness is achieved
in the presence of segmentation and slice artefact (Shishegar 2017).

Gyri detection on level sets

Estimation of the mean curvature (MC) at each point on a discrete 2D surface, defined as in
(Luders et al. 2006a; MacDonald 1997), is computed as the angular deviation from a flat
surface. As proposed by Luders et al. (2006a), the computed mean curvature values are
averaged within a distance of 3mm on the surface in order to increase the signal to noise ratio
for the curvature. Note that the definition of curvature used in this method is one way to
calculate the mean curvature on a discrete surface, but there are different estimation
approaches in the literature (Meyer et al. 2003; Magid, Soldea, and Rivlin 2007). To make
the computational steps comparable with MC and the Luders’ GI values calculated with CAT
toolbox, which have been widely used in neurcimage analysis applications (Luders et al.
2006b; Luders et al. 2012; Gaser et al. 2006; Spalthotf, Gaser, and Nenadi¢ 2018; Hedderich
et al. 2019; Evermann et al. 2020), a similar definition was used in our analysis. The MC
metric can be expressed in degrees (Luders et al. 2006b; MacDonald 1997; Luders et al.
2012; Gaser et al. 2006), ranging between -180 and 180 degrees, which is positive for gyri
and negative for sulci. While Luders et al. (2006a) smoothed the MC values with a heat
kernel filter of 25mm full width at half maximum (FWHM) to have a less spatially detailed
index, hereafter termed Luders’ Gl, we take a different approach explained below. They
choose the FWHM based on the sulcus—gyrus pattern (20-30 mm distance between sulci and
gyri). The computation of MC values and Luders’ GI can be achieved using the

Computational Anatomy Toolbox (CAT; http://dbm.neuro.uni-jena.de/cat/).

After the computation of MC, as depicted in Fig. 2 (recreated from (Shishegar et al. 2016),
using a fetal sheep brain at 90 day of gestational age (dga) which has less convoluted cortical
folding patterns compared to adult human brain, gyral ridge points are detected along each
constructed LB eigenfunction level sets. For this purpose, the surface MC is mapped to each
point x;, on k™ level set, Cy.. Then, using C, local maxima and minima of the curvature

along the level set are detected. The indices of local maxima of the curvature of the k™ level
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set, [81k, €2k, ---], form the sequence of gyri locations for that level set. Similarly, the local

minima of mean curvature form the sulci index sequence on the k™ level set, [s;x, Sak, --.]-

a b C

Figure 2: Computation of LB-GI on an exemplar level set of a fetal sheep brain at 90 days gestational age:
(a) First LB eigenfunction color encoded on triangulated cortical surface, depicting level sets (closed black
curves), with a level set highlighted in white. (b) Measure of mean curvature, C, along the selected level
set. Automatically detected gyri (sulci) positions are represented by red (black) bullets. (c) Hlustration of
LB-GI based on mean curvature at each point on the level set (Figure recreated from (Shishegar et al.
2016)).

To suppress local optima we use the concepts from persistent homology (Biasotti et al. 2008;
Edelsbrunner and Harer 2010) as suggested in (Reuter 2010; Reuter et al. 2009). We define
two concepts of topological persistence to apply to potential sulcal fundus and gyral ridge

points: firstly, the absolute difference in curvature, ng_k - st_k, and secondly, the distance

between points on the level set, dist(x,,, , x, ). This introduces two tuning parameters, Cip,
and d,,, chosen to be C.p, = 10° and dyp,- = 20mm for human brain. Pairs with a small
persistence are cancelled, and a global set of gyral ridge and sulcal fundus points remains.
We repeated this step by finding the new pairs in the remaining set and iterated until all pairs
with small persistence are cancelled. The selection of the tuning parameters was driven by
human cortical morphology, and defined to cancel local minimum-maximum pairs caused by
segmentation error and topological artifacts. Human gyral ridge-sulcal fundus pairs have
distance between 20-30mm (Im et al. 2008; Luders et al. 2006b) and show changes in
curvature more than 10° compared to maximum-minimum pairs caused by topological
artifacts. A manual quality check confirmed the appropriate detection of gyral and sulcal
points for the experimental data. Note that the tuning parameters directly impact the detected
gyral and sulcal points and should be chosen to cancel local minimum-maximum pairs caused
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by topological artifacts but select the gyral ridge-sulcal fundus pairs (Fig. 2). Shishegar et al.
(2016) used a similar procedure to detect sulcal fundus positions to extract sulcal lines using

minima and maxima of the surface mean curvature along the LB level sets.

Computation of LB-GlI

The positions of the gyri, [xg, , x4, , ..., x4, ], are used to define the LB-GI value at each
point on a level set curve. Each point x; lies between two gyral index locations, Xg; and
Xgi+1- The localized LB-GI is computed as the mean curvature, C,,, with reference to the
mean curvature of the neighboring gyri, XgirXg iy This results in assignation of the minimal

value (zero) to gyral positions (ridge points) and maximal LB-GI values to sulcal positions.
In order to render the LB-GI dependent on sulcal geometry, not just curvature, the signed
curvature values are normalized by the distance of position x; to the neighboring gyri

positions along the level set curve. Let relative distance, w(x;), be such a weighting function,

dist (xi,xgj)

dist (xi,xgj)+ dist (xi,xng)

w(x;) =

(6)

where dist(x;, xg,-) is the distance between points x; and Xg; ON level set.

Note the difference between curvatures is computed as relative MC: ¢ (x;, x;) = Cy, — Cx;.

The LB-GlI is then defined by
LB-GI(x;) = (1- () (1, xg,)) + 0 ()P (x5, %) ()

To avoid the aforementioned limitations of calculating LB-GI measure as originally proposed
by (Shishegar et al. 2015), we use the first three Laplace Beltrami eigenfunctions instead of
only the first eigenfunction. As illustrated in Fig. 3, where one set of level sets is parallel to a
sulcal line, we observe that additional level sets are oblique or perpendicular to the sulcal
lines, thus allowing calculation of the relative curvature at each vertex with reference to its
surrounding gyral points. Moreover, the use of three level sets creates a new, dense mesh at

all regions of the cortical surface in particular at each eigenfunction extrema. Fig. 1 and Fig.

10
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3 show that around the extrema of each eigenfunction, the level sets of the other two
eigenfunctions form a mesh that provides a well-sampled coverage of the region. For
instance, an extremum of the second LB eigenfunction is positioned on the temporal pole,
and the first and the third level sets form the mesh around this extremum (Fig. 3).

L
l’l

27,

S
1
H
L
U

L7

Figure 3: Illustration of the first three LB eigenfunctions level sets overlaid on an exemplar cortical pial
surface. The zoomed in view of three boxed areas of the pial surface show a dense mesh structure which

fully covers and accurately follows the complex cortical folding pattern of the pial surface.

Finally, the LB-GI of each level set is mapped to the triangulated surface by averaging
between the LB-Gls of the ten closest neighboring points calculated from different level sets.
The number of closest neighboring points was chosen as a trade-off to have at least one or
two points of each level set while having minimal computational cost. The LB-GI can be
calculated on either the pial or white matter cortical surface. Note that the LB-GI calculates
changes in the curvature weighted by distance between the position of each point to the
neighboring gyri positions along the level set and therefore the values are weighted by the
relative distance. The aforementioned characteristic of the LB-GI values calculated along the
level sets and the dense mesh structure formed by the level sets (Fig. 3) makes the method

less sensitive to the number of closest neighboring points selected for averaging.

Synthetic data
In order to compare LB-GI, Luders’ GI and mean curvature maps, we calculated the Gl
values on simple synthetic surfaces of the brains at different stages of development. The

11
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simulation of the brain folding process was performed using a brain longitudinal growth
model proposed by Wang et al. (2019). Synthetic cortical surfaces at different stages of
development (34, 38 and 42 weeks gestation) were generated from a sphere. Details about
analysis and generation of the synthetic data are presented in the supplementary materials.

Experimental data and pre-processing

The applicability of the LB-GI to investigate the cortical development of the human brain
from preschool to early adulthood was examined. Subjects were part of the Pediatric
Imaging, Neurocognition, and Genetics (PING) Study. The study scanned approximately
1400 typically developing individuals between the ages of 3-21 years to estimate trajectories
of normal brain development. A subset of the PING data was used in this study (n = 791, age
= 14.2 + 4.3 [3-21], 48% female). The 3T, T1l-weighted structural images were collected
across multiple sites in a multi-modal brain imaging, behavioural and genetics study (for
further information on the dataset see (Jernigan et al. 2016)). Participants were excluded from
our study due to missing neuroimaging and demographic data, and segmentation errors
caused by imaging artefacts (n=18). The latter was automatically detected by LB-GI
algorithm. Preprocessed data, including the pial and white matter cortical surfaces and
vertex-wise maps of cortical thickness, was made available as part of the publicly available
dataset and used in this study (http://ping.chd.ucsd.edu/).

Statistical analysis

In order to find vertex-to-vertex correspondence between cortical surfaces of all subjects, the
multimodal surface matching (MSM) toolbox was used (Robinson et al. 2014). The surfaces
registrations were driven by sulc which is a measure calculated by FreeSurfer and is a
measure of sulcal depth. The target surface was the FreeSurfer’s spherical atlas namely
fsaverage (Fischl, Sereno, and Dale 1999; Yeo et al. 2010). To increase the signal to noise
ratio in group comparison tests, the GI maps were smoothed on the cortical surface using a
heat kernel smoothing method based on Laplace Beltrami operator (Chung et al. 2005). To
have comparable levels of smoothing with Luders’ GlI, the kernel bandwidth and iterations
were chosen to be §= 1 and iter = 144 respectively, equivalent to Gaussian kernel
smoothing of 26mm FWHM.

12
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A linear model was employed at each vertex to analyse the effects of age on the degree of
cortical folding. Multiple comparisons were corrected using random field theory. Vertex level
p values (statistical threshold p<0.05 corrected) were used to extract clusters of statistically
significant age dependent gyrification. These analyses were performed using SurfStat toolbox

(www.math.mcgill.ca/keith/surfstat/).

We further examined the efficiency of the GI techniques for tracking cortical surface
maturation. Firstly, the regions showing significant association with age were extracted and
assigned to each gyral-based Desikan-Killiany parcel. The regional GI were then calculated
as the mean Gl across all vertices within each parcel with significant association with age.
Lastly, partial correlations between age and regional Gl were performed. Both vertex-wise
and regional analyses were corrected for gender.

Results: Application to study gyrification maturation with age

Gyrification maps: synthetic data

Supplementary Fig. S1 illustrates the gyrification maps of simple synthetic surfaces of the
brains at age 34, 38 and 42 weeks gestation. Gl maps are calculated using three different
curvature-based gyrification indices, namely LB-GI, Luders’ GI and MC. Supplementary
Figs. S2 and S3 present the quantitative comparison between these three Gl measures.

Gyrification maps: experimental data

The gyrification maps of the white matter surface of a randomly selected 20 year old subject
from the PING dataset are presented in Fig 4. The maps are calculated using curvature-based
gyrification indices, LB-GI, Luders’ GI and MC.

Fig. 4a illustrates LB-GI values of the white matter surface. The high values (warm colors)
highlight the walls of sulcal regions reaching the maximum value at the deep highly curved
sulcal basins, while low values reveal ridges of gyral regions. LB-GI is a measure of relative
curvature weighted by relative distance ranging from 0 to 180 degrees and represents both
depth and curvature, resulting in a consistent assignment of minimal values (cool colors) to
all gyral ridge points, not just sharply curved gyri. Fig. 4b depicts Luders’ GI values, ranging
from O to 180 degrees. The gyrification maps estimated by Luders’ GI are heavily smoothed

and the fine details of cortical folding are absent from individual sulcal regions. Fig. 4c

13
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highlights the MC values ranging from -1 to 1 (mm™), as calculated by FreeSurfer. MC
assigns minimal values (cool colors) to highly curved gyral points and the maximal values
(warm colors) to highly curved sulcal points. As shown by the several jagged points on the
white matter surface of the brain in Fig. 4c, MC also assigns minimal values to highly curved
topological defects, which may be caused by segmentation error (Reuter 2010). This is due to

the sensitivity of the

Low High

Figure 4. Local gyrification maps of the white matter surface of a randomly selected, 20 year old subject
from the PING dataset, projected on left lateral view, medial view of left hemisphere, medial view of right
hemisphere, and right lateral view respectively from left to right. (a) LB-GI values color coded on the
white matter surface of both hemispheres. Note that LB-GI is a measure of weighted curvature in degrees.
(b) Luders’ GI values calculated on the white matter surface values, calculated by the CAT toolbox in
degrees. (c) Mean curvature of the white matter surface values, calculated by FreeSurfer in mm™. The cool

and warm colors encode low and high degrees of folding respectively.

measure to local curvature. In summary, the LB-GI method enables greater detection of
regional cortical folding and differences along and between sulci on each individual brain

compared to Luders’ and MC method.
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Fig. 5 illustrates the smoothed and averaged Gl values of white mater surface across all 791
subjects rendered on an average atlas (fsaverage). Smoothing the results and averaging across
all subjects presents the general features of cortical folding of the cortical surface highlighted
by these three methods. Fig. 5a illustrates that even after smoothing and averaging across the
subject, LB-GI highlights distinct sulcal and gyral regions. The averaged measurements of
the

Low High

Figure 5. Average of local gyrification values of the white matter surface of all 791 subjects rendered on of
an averaged atlas (fsaverage): (a) LB-Gl, (b) Luders’ GI, and (c) Mean curvature. The cool and warm

colors encode low and high degrees of folding respectively.

LB-GI method also indicates the most consistent gyral points across all ages and across all
subjects, which are the postcentral and precentral gyri. Fig. 5b shows regions with a high
degree of cortical folding based solely on curvature (Luders’ GI) but missing details at the
sulcal and gyral level. Notably, some cortical regions (e.g. temporal and frontal lobes) have a
higher degree of curvature compared to other cortical regions, however, these differences are
not captured along the sulcal and gyral regions (e.g. the parieto occipital fissure and the
occipitotemporal lateral sulcus). Fig. 5c depicts that as a result of MC measuring only
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curvature, the GI values may be sensitive to segmentation discrepancies. This is evidenced by
high curvature around parts of hypothalamus and pituitary gland forming a sharp corner on

the medial side of the brain.

Brain maturation with age from preschool to early adulthood

Fig. 6. illustrates the significance of cortical folding association with age for LB-GI across
the cortex. There were bilateral significant negative associations with age in the precentral
gyrus, the postcentral gyrus, the paracentral lobule, the cuneus, the lateral occipital sulcus,
the isthmus cingulate and the lingual regions and portions of the superior frontal gyrus, the
superior parietal gyrus, the precuneus, the superior temporal gyrus, the pars opercularis, the
caudal anterior cingulate, the caudal middle frontal, the inferior parietal and temporal pole
regions as visualized in Fig. 6b. Bilateral significant positive associations were observed in
the insula, the medial orbitofrontal, frontal pole and rostral anterior cingulate regions (Fig.
6C).

Fig. 7 shows the significance of cortical folding association with age for Luders’ GI.
Bilaterally, regions with significant negafive associations with age included the paracentral
lobule, the entorhinal, the parahippocampal, the pars opercularis and the temporal pole
regions and portions of the precentral gyrus, the postcentral gyrus, the superior frontal gyrus,
the superior parietal gyrus, the precuneus, the superior temporal gyrus, the caudal middle
frontal, the middle temporal gyrus and the inferior temporal (Fig. 7b). Lateral significant
negative associations with age were shown in the right cuneus and portions of the right lateral
occipital sulcus, the right lateral orbito-frontal, the right pericalcarine and the left pars
orbitalis regions (Fig. 7b). Also, a significant positive association with age was present
bilaterally in portions of the lingual, portions of the pre-cuneus, the medial orbitofrontal
regions, and intraparietal gyrus, and laterally in the left insula and portions of right middle

temporal gyrus (Fig. 7c).

While Fig. 6 and Fig. 7 demonstrate a large proportion of overlap between age-dependent
LB-GI and Luders’ GI significant maps, there are nonetheless areas of variability between the
maps. This is illustrated in the Luders’ GI results which present more lateralized significant

age-dependent findings compared to the LB-GI results.
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For further comparison between GI techniques, we examined the correlation between age and
the regional LB-GI and Luders’ GI for selected regions. The LB-GI and Luders’ Gl
significance maps were mapped to a gyral-based regional parcellation, resulting in 30 regions
identified that showed significant associations with age. Table 1 lists the aforementioned
significant parcels and shows their association with age. Fig. S2 in Supplementary Material
plots the relationship between age and regional Gl for the right hemisphere of each subject at
each selected region. Significant correlations between age and regional LB-GlI, but not with

regional Luders” GI measures, were found for a number of the selected regions.
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t-stat LB-Gl

18



Journal Pre-proof

Figure 6. Statistical maps of gyrification values for LB-GI, projected on different views of the brain. Left
panel: left lateral view (top), medial view of left hemisphere (middle), anterior view (bottom). Middle
panel: superior view (top), inferior view (bottom). Right panel: right lateral view (top), medial view of
right hemisphere (middle), posterior view (bottom). a) T-statistic maps for an age effect on decrease in
gyrification. b) Illustration of the regions of significantly decreased gyrification with age (warm colors). c)
The regions of significantly increased gyrification with age (cool colors). Vertex level p-values (p<0.05)
are corrected for multiple comparisons using random field theory; vertices surviving correction are

highlighted. Non-cortical regions are colored black.
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t-stat Luders’ GI
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Figure 7. Statistical maps of gyrification values for Luders’ GI, projected on different views of the brain.
Left panel: left lateral view (top), medial view of left hemisphere (middle), anterior view (bottom). Middle
panel: superior view (top), inferior view (bottom). Right panel: right lateral view (top), medial view of
right hemisphere (middle), posterior view (bottom). a) T-statistic maps for an age effect on decrease in
gyrification. b) llustration of the regions of significantly decreased gyrification with age (warm colors). c)
The regions of significantly increased gyrification with age (cool colors). Vertex level p-values (p<0.05)
are corrected for multiple comparisons using random field theory. Non-cortical regions are represented
black.

Table 1. Regional GI correlations with age. Reported cortical parcels were found to have
significant vertex-wise association with age.
Region of Interest

Left Hemisphere Right Hemisphere

LB-GI Luders’ G LB-GI Luders’ Gl
Banks of the superior -3.29** -2.46* “4.57**F* -1.89
temporal sulcus
Caudal Anterior -4.27*** -0.87 -2.83** -0.33
Cingulate
Caudal Middle Frontal -10.65*** -1.46%** -8.21*** -5.50***
Cuneus -11.84*** -1.09 -12.73*%** -4.02%**
Entorhinal -3.32** -6.25%** -4.51%** -7.82%**
Inferior Parietal -2.04* -0.09 -3.00** 1.18
Inferior Temporal -1.92 -3.47** -2.18* -1.65
Isthmus -9.34%** 1.52 -8.20*** 1.80
Lateral Occipitai -14.62*** -2.59* -12.62***  -1.84
Lateral Orbitofrontal 1.65 -1.85 1.17 -2.74%*
Lingual -13.43*** 0.92 -11.25%** -0.50
Medial orbitofrontal 5.86*** 1.86 7.30%** 1.16
Middle Temporal -2.28* -3.28** -3.99*** -2.55*
Parahippocampal -4 41%** -4 7T7F** -4.00%** -4.96%**
Paracentral -16.83*** -11.66***  -16.55***  -11.94***
Pars Opercularis -6.28*** -5.04*** -3.37** -3.68***
Pars Orbitalis -1.67 -3.20** -2.91** 0.06
Pericalcarine -3.02** 0.61 -4.68*** -3.13**
Postcentral -12.77F** -9.03*** -11.44%** -8.41%**
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Posterior Cingulate -8.90*** -1.48 -7.03*** -0.79
Precentral -17.11%** -10.40*** -16.18*** -0.25%**
Precuneus -5.91%** -0.55 -6.72*** -1.08
Rostral Anterior 6.57*** 5.87*** 7.980*** 5.45*%**
Cingulate

Superior Frontal -11.21%** -11.13*** -1.67**F* -9.17%**
Superior Parietal -6.45%** -3.39** -5.52*** -5.03***
Superior Temporal -4, 71%** -1.590 -5.13%** -2.85**
Supramarginal -4.61%** -1.89 -3.88*** -2.40
Frontal Pole 3.66*** 1.94 4.21%** 0.89
Temporal Pole -2.62** -5.37*%** -4.00%** -6.11%**
Insula 3.26** 3.18** 3.91%** 1.08

*T-statistics with p<0.05.
**T-statistics with p<0.01.
**T-statistics with p<0.001.

Discussion

The present work introduces a new gyrification index, the Laplace Beltrami gyrification
index (LB-GI), which combines the advantages of outer surface-based and curvature-based
measures. The index employs a measurement of curvature along the level sets of the first,
second and third Laplace Beltrami eigenfunctions. The method, like outer surface-based
methods, provides a Gl that is reflective of features of the neighboring cortical surface
morphology. The LB-GI method computes weighted curvature relative to the geometry of
neighboring gyral ridge points without the need to define a hull outer surface, which is a

characteristic previously attributed only to curvature-based methods.

By using points exclusively on the brain surface, rather than using corresponding points on
the constructed outer hull, as in (Schaer et al. 2008; Lebed et al. 2013), the LB-GI values are
independent of any outer surface reconstruction. A further advantage of the approach
compared to the outer surface-based GI methods (Kao et al. 2007; Lebed et al. 2013; Schaer
et al. 2008; Su et al. 2013) is that the LB-GI method more accurately reflects subtle aspects of

sulcal geometry. In particular, the outer surface-based Gls, which compute sulcal depth (Kao
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et al. 2007), do not readily differentiate between narrow and wide sulci of similar depth,
which is a desired feature of a metric to distinguish between highly folded and less folded
brains. Moreover, outer surface-based methods that are defined as a ratio between the area of
a region of interest of the cortical surface and an outer hull surface of the cortex, are unable to
distinguish between deep and complex folds (with a high variation of cortical mean
curvature) as they have the same surface area (Rabiei et al. 2017). These methods are also
unable to distinguish between two cortical regions with equal surface area, one containing
sulcal and gyral regions with larger curvature and the other one containing regions with
smaller curvature. Such geometrical characteristics of the cortical surface are important for
the study of cortical morphology in neurodevelopmental and neurogenerative diseases. For
instance, Nopoulos et al. (2007) reported significant lower curvature at gyral ridge and sulcal
fundus points in individuals with preclinical Huntington’s disecase compared to controls. The
study by Im et al. (2008) reported significant decreases in mean curvature and sulcal depth in

subjects with Alzheimer’s disease and Mild Cognitive Impairment compared to controls.

In contrast to our method, a number of curvature-based GI’s such as MC or derivatives of
MC (Shimony et al. 2016) only provide localized measures of cortical folding (Rabiei et al.
2017). The mean curvature methods assign minimal and maximal values to highly curved
gyral and sulcal points, respectively, independent of their neighboring geometry. This
limitation has been overcome by proposing a local Gl based on Laplace Beltrami
eigenfunction level sets that provides a measure reflective of features of the neighboring
environment. Other studies (e.g. Luders et al. (2006a) have circumvented this drawback by
smoothing absolute values of the MC using a heat kernel function. However, analysis of the
experimental data revealed that the LB-GI method provides more detailed results than
Luders’ GI which excessively smooths the cortical folding details at the subject level. Rabiei
et al. (2017) proposed two interesting and novel mathematical measures to compute local Gl
using curvature. Rabiei’s approach defines a mesh windowed Fourier transform using LB
eigenfunctions and calculates the surface complexity by applying the mesh windowed Fourier
transform to the surface mean curvature. This approach shares a common idea with the LB-
GI method, i.e. to use cortical curvature as a strong geometrical measure of cortical folding,
and the Laplace Beltrami eigenfunctions to model the intrinsic topology and geometry of the
cortical surface (Lévy 2006). However, as the LB-GI method calculates weighted curvature
relative to the geometry of neighboring gyral ridge points, based on the hypothesis that
cortical surfaces are deformed from a flat form, compared to Rabiei’s approach, the LB-GI
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method has the advantage of being intuitive and biologically interpretable which, in our

opinion, is important when applied to neuroscience studies.

The proposed LB-GI measure was shown to be effective in characterizing associations
between cortical gyrification and age. Overall, region-specific local gyrification associations
with age demonstrated consistent results with other studies on human cortical development
(Gogtay et al. 2004; Klein et al. 2014; Li et al. 2014; Lyu et al. 2018; Remer et al. 2017). The
majority of these studies show an overall age-related increase in cortical folding and cortical
thickness, during gestation and early childhood, and then a decrease from childhood to
adolescence (Gogtay et al. 2004; Klein et al. 2014; Li et al. 2014). However, recent studies
have revealed subtle variability between brain regions, reporting both negative and positive
associations between age and both cortical folding and thickness from childhood to
adolescence. In a detailed analysis of cortical folding, Lyu et al. (2018) observed decreases in
the cortical folding of several regions of the cortex (e.g. cingulate sulci and central motor
regions) during early childhood (0 to 2 years). In contrast, Remer et al. (2017) showed a

significant increase in curvature in the insula between 1 and 5 years of age.

Cumulatively, our findings illustrate more areas of the brain showing negative than positive
significant associations between age and cortical folding while the brain is developing from
preschool to early adulthood. The observed bilateral positive significant association between
age and the LB-GI of the insula, the medial orbitofrontal, frontal pole and rostral anterior
cingulate regions may relate to the known maturation of higher-order cognitive areas in early
adulthood. The lack of consistency in this pattern over the whole frontal cortex is not wholly
surprising. Higher-order cognitive regions process information from lower-order
sensorimotor-areas and the time course of maturation between higher and lower-order areas
may differ (Gogtay et al. 2004), which is consistent with our observations of both negative
and positive associations between gyrification and age. We observed slight differences in
results between our method and Luders’ GI, which appear to be driven by methodological
differences. For instance, both Schaer’s outer surface-based GI and Luders’ curvature-based
Gl fail to distinguish some fine details of the cortical folding due to computing the GI values
at the subject level within a disc patch or using a heat kernel smoothing function,

respectively.
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Although the regions where age and gyrification are significantly correlated are comparable
for both LB-GI and Luders” GI measures, analysis in using the average Gl maps from cortical
regions derived from FreeSurfer reveal higher reliability to detect associations between age
and cortical folding of developing brains for LB-GI compared to Luders’ MC-based GlI. This
is due to the ability of Luders’ GI measure to capture the overall patterns of folding, but not
the detailed gyral cortical folding caused by the impact of smoothing. Losing detailed
information of folding due to smoothing is more highlighted on frontal and posterior tips of
the brain such as frontal pole, lateral orbitofrontal, lateral occipital, lateral cuneus, and lingual
(Fig. 5, Table 1). The associations between age and gyrification in these regions has been
reported in a number of studies (Lamballais et al. 2020; Kelly et al. 2013; Mallela et al.
2020). Due to the smoothing, Luders’ GI at each point quantifies the gyrification in a
neighboring cortical region. Thus the average Luders’ Gi across a gyral-based parcel
(Desikan-Killiany atlas) also reflects the gyrification in surrounding parcels. Consequently,
the proposed method also works better in the smaller Desikan-Killiany parcelles, especially

regions hidden and further away from the scalp such as insula and Pericalcarine.

The main limitation of the proposed local Gl is high computational complexity. The
algorithm run-time per hemisphere for a convoluted adult human brain is about 10 hours on a
standard desktop computer. The largest computation proportion of the proposed analysis
belongs to the detection of gyral points on each level set. As this step is independent for each
level set, simultaneously running the iterations using array jobs on separate allocated CPU
cores can reduce the computation time. For instance, splitting the iterations into a 10-element
array requires 10 CPU cores, with 8 GB RAM, and reduces the running time to less than 2
hours. While our method is advantageous over other more geometrically simple methods,
because it incorporates curvature and depth along both sulcal and gyral regions, the utility of
the measure is dependent on the research question. For example, if one was only interested in
depth, the use of such a computationally complex approach may be unnecessary. Further
analyses of the nonlinear effects of ageing using the LB-GI method would be beneficial for

the investigation of brain maturation trajectories from early childhood to adolescence.

Conclusion

In this study, we proposed a new gyrification index derived from the level sets of Laplace

Beltrami eigenfunctions and mean curvature, referred to as LB-GI. The proposed index
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requires neither definition of an outer hull surface nor correspondence between the cortical
surface and outer hull, both of which are required by outer surface-based methods. The use of
change in curvature along the LB eigenfunction level sets embodies traditional sulcal
geometry characterizations such as depth together with a measure of sulcal curvature. The
LB-GI method demonstrates more localized details of cortical folding along sulcal and gyral
regions compared to Luders’ mean curvature-based index. The LB-GI method can track age-
related brain development and adolescent brain maturation. Future applications of the method
will be to investigate the patterns of cortical folding changes over time in neurodegenerative

diseases (e.g., Huntington’s disease) using large clinical neuroimaging datasets.
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