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Abstract

Unraveling the many facets of coherent and incoherent exciton motion in an ensem-

ble of chromophores is an inherently complex quantum mechanical problem that has

triggered a vivid debate on the role of quantum e�ects in molecular materials and bio-

physical systems. Here the dynamics of a statistical ensemble of molecular aggregates

consisting of identical chromophores is investigated within a new theoretical framework.

Taking account of intrinsic properties of the system, the Hamiltonian of the aggregate

is partitioned into two mutually commuting vibrational and vibronic operators. This

representation paves the way for an analysis which reveals the role of the static disorder

in ensembles of aggregates. Using analytical methods, it is demonstrated that after a

critical time τD ≃ 2π/σ (σ being the dispersion of the disorder) any dynamic variable

of the aggregate exhibits purely vibrational dynamics. This result is illustrated by

exact numerical calculations of the time-dependent site populations of the aggregate.

These �ndings may be useful for the interpretation of recent femtosecond spectroscopic

experiments on molecular aggregates.
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Photoinduced dynamical phenomena in molecular aggregates are topics at the forefront

of contemporary research which extends from the uncovering of mechanisms of photosyn-

thetic light harvesting in living organisms to the design of e�cient optoelectronic materials

and devices.1�3 The basic paradigm for the understanding of photophysical properties of

molecular aggregates is the notion of the exciton, a quasiparticle generated by optical exci-

tation of electronically coupled chemically identical chromophores. In the simplest picture,

the chromophores are treated as electronic two-level systems. In reality, they are polyatomic

molecules with a large number of nuclear degrees of freedom. Upon aggregation, these

molecules form complexes revealing highly nontrivial photoinduced vibronic dynamics.

In 2007, it was suggested that long-lived coherent electronic dynamics in the excitonic

states of antenna complexes at room temperature may have functional signi�cance for light

harvesting.4 In the following years this paradigm became widely accepted in the photosyn-

thetic community and beyond.5 At the beginning of the 2010s, this paradigm underwent

modi�cation owing to a growing body of evidence that exciton-vibrational coupling is in-

strumental for the explanation of the observed excited-state coherent responses.6 Recently,

the signi�cance of electronic coherent e�ects for photosynthesis at room temperature was

questioned.7 The latest experimental data8,9 as well as numerical simulations10�12 indicate

that the oscillatory responses in spectroscopic signals may predominantly reveal vibrational

wave-packet dynamics in the electronic ground state of the aggregate.

These �ndings indicate that the elucidation of the mechanistic role of exciton-vibrational

couplings in the photophysics of molecular aggregates is of fundamental signi�cance. This

topic has been the subject of numerous theoretical studies which, due to the complexity of

the problem, were mostly based on numerical simulations of speci�c systems at various levels

of accuracy.13�16 In this communication, we present analytical results and results of accurate

numerical simulations which explain the emergence of purely vibrational signatures in the

excited-state dynamics of molecular aggregates in the presence of static disorder.

First, exploiting the structure of the excitonic Hamiltonian, we demonstrate that this
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Hamiltonian can be written as the sum of two commuting operators, one of which generates

pure vibrational dynamics. Second, we show that static disorder causes a "melting" of

exciton-vibrational dynamics into pure vibrational dynamics. We provide evidence that the

expectation value of any dynamical variable in the excited states of a molecular aggregate

exhibits purely vibrational dynamics after a critical time τD ≃ 2π/σ, where σ is the dispersion

of the static disorder.

Consider a molecular aggregate consisting of Ne identical chromophores placed in a dissi-

pative environment (solvent). Each chromophore is approximated as an electronic two-level

system with Nv vibrational intramolecular and intermolecular modes. The Hamiltonian of

this aggregate can be represented as a sum of the excitonic Hamiltonian He, vibrational

Hamiltonian Hv, and their coupling Hev:13,14

H = He +Hv +Hev, (1)

He =
Ne∑
k=1

εkB
†
kBk +

Ne∑
k ̸=k′

Jkk′B
†
kBk′ , (2)

Hv =
Ne∑
k=1

Nv∑
α=1

Ωα

2

(
P 2
kα +X2

kα

)
, (3)

Hev =
Ne∑
k=1

Nv∑
α=1

ΩακαB
†
kBkXkα. (4)

Here, B†
k and Bk are exciton creation and annihilation operators at site k obeying the Pauli

commutation rules [Bk, B
†
k′ ] = δkk′(1− 2B†

kBk′), εk are the electronic site energies, and Jkk′

(k ̸= k′) are the inter-site electronic couplings; Xkα, Pkα and Ωα denote the dimensionless

positions, dimensionless momenta, and frequencies of the harmonic mode α of chromophore

k, and the parameters κα control the strength of the intra-site electron-vibrational coupling.

Since the chromophores are identical, the Ωα and κα are k-independent. The Hamiltonian

(1) commutes with the exciton number operator N̂ and therefore conserves the number of
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excitations:

[H, N̂ ] = 0, N̂ ≡
Ne∑
k=1

B†
kBk. (5)

In order to partially disentangle the coupled exciton-vibrational dynamics of the aggre-

gate, we introduce Nv totally symmetric vibrational coordinates and conjugated momenta

qα =
1√
Ne

Ne∑
k=1

Xkα, pα =
1√
Ne

Ne∑
k=1

Pkα (6)

and (Ne − 1) × Nv internal vibrational coordinates skα and momenta pkα (cf. Refs.17,18).

As detailed in the Supplementary Material, this transformation of vibrational coordinates

results in the expression

H = Hq +Hs. (7)

Here

Hq =
Nv∑
α=1

Ωα

2

(
p2α + q2α + 2καqα

N̂√
Ne

)
. (8)

The explicit form of Hs, which depends on skα, pkα and Bk, is given in the Supplementary

Material. In the special case of a dimer (Ne = 2) with two vibrational modes (Nv = 2) the

partitioning (7) is well known in the literature.10,19,20

It can be readily veri�ed that

[Hq, Hs] = 0. (9)

Since the number of excitons is a constant of motion (N̂ = N), the HamiltonianHq represents

Nv uncoupled oscillators with displacements καN/
√
Ne. Hs, on the other hand, describes the

excitonic system coupled to the internal vibrational modes skα. The dynamics in variables

qα is therefore separable from the dynamics in variables skα.

Let us now evaluate the expectation value of a dynamical variable A

⟨A(t)⟩ = Tr {ρ(t)A} , ρ(t) = e−iHt/h̄ρ(0)eiHt/h̄, (10)
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ρ(0) being the initial density matrix. We formally introduce the eigenstate representations:

Hq |q⟩ = Eq |q⟩, Hs |s⟩ = Es |s⟩, and the corresponding vibrational transition frequencies

ωqq′ = (Eq − Eq′)/h̄ (11)

and vibronic transition frequencies

ωss′ = (Es − Es′)/h̄. (12)

Since Hq describes a set of Nv uncoupled shifted harmonic oscillators with frequencies Ωα,

its eigenfunctions |q⟩ and eigenvalues Eq are known analytically. After changing to the

eigenstate representation, Eq. (10) becomes

⟨A(t)⟩ =
∑

q,q′,s,s′

Vqsq′s′e
−iωqq′ te−iωss′ t (13)

where Vqs,q′s′ = ρqs,q′s′(0)Aq′s′,qs.

In reality, the aggregates are usually embedded in a polymer matrix or protein sca�old

which produces static disorder in site energies εk and couplings Jkk′ (hereafter, these param-

eters are collectively denoted as yj, j = 1, 2, ...,K), while inhomogeneities in the vibrational

parameters Ωα and κα are likely much smaller and can be neglected. The macroscopic en-

semble of aggregates is thus a realization of a large number of microscopic systems with the

parameters

yj = ȳj + zj, (14)

where ȳj are mean values and zj are random numbers with a certain distribution g(z). The

latter is typically given by a product of Gaussians with zero mean and variances (dispersions)

σj, j = 1, 2, ...,K. Hence the ensemble average of the expectation value of the dynamical
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variable A is given by

⟨A(t)⟩ =
∫ ∞

−∞
dy g(y − ȳ)Tr {ρ(y, t)A} (15)

where ρ(y, t) is given by Eq. (10) with H → H(y). The matrix elements Vqs,q′s′(y) and

vibronic transition frequencies ωss′(y) also become y-dependent, while the vibrational tran-

sition frequencies ωqq′ are y-independent.

If |σ| ≪ |ȳ|, then ⟨A(t)⟩ ≈ Tr {ρ(ȳ, t)A}. For pigment-protein complexes, however,

|σ| ∼ |ȳ|.3 In this case, the e�ect of static disorder is nontrivial, but the averaging in Eq.

(15) can be evaluated asymptotically, for t → ∞, by using the stationary phase method.

The detailed treatment and discussion, as well as the explicit expressions are given in the

Supplementary Material. Here we present the �nal result. Let

τD ≃ 2π/σ (16)

be a characteristic time at which the asymptotic description becomes valid (σ ≈ minσj).

Then for t > τD the expectation value of the dynamical variable exhibits purely vibrational

oscillations and can be represented as

⟨A(t)⟩ ≈ a

td
+ b+

Nv∑
α=1

M∑
m=1

( aαm
tdαm

+ bαm

)
cos(mΩαt− φαm). (17)

Here the parameters a, b, d and aαm, bαm, φαm, dα can, in principle, be expressed in terms

of Vqs,q′s′(y), g(y) and ωss′(y), but their explicit evaluation is very tedious. Fortunately,

this is not necessary. For practical use, Eq. (17) can merely be considered as an Ansatz for

�tting ⟨A(t)⟩ (vide infra). The Ωα in Eq. (17) are the fundamental vibrational frequencies

which are una�ected by static disorder, and the summation over m accounts for vibrational

overtones. The term b yields the stationary contribution (q = q′, s = s′ in Eq. (10)). The

terms ∼ bαm are generated by the vibrational Hamiltonian Hq (q ̸= q′, s = s′ in Eq. (10)) or

by vibrational modes which accidentally are decoupled from the excitonic degrees of freedom.
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The algebraically decaying terms ∼ a and ∼ aαm originate from the averaging over static

disorder. The crucial role of static disorder is thus to melt the time evolution governed by the

vibronic frequencies ωss′(y) into the algebraically-decaying oscillatory contributions governed

by multiples of the vibrational frequencies Ωα. For t → ∞, these algebraic contributions

vanish and, if bαm ̸= 0, ⟨A(t)⟩ exhibits long-lived vibrational beatings.

To illustrate the validity and signi�cance of the analytical results of Eq. (17), we per-

formed numerical simulations of the time evolution of the population of site k = 1,

P1(t) = Tr {ρ(t)|1⟩⟨1|} , ρ(0) = |1⟩⟨1|ρB. (18)

Here |1⟩ = B†
1|0⟩ describes an excitation on site 1, and ρB = Z−1

B exp{−Hv/(kBT )} is the

vibrational Boltzmann distribution in the electronic ground state of the aggregate (ZB is the

partition function, kB is the Boltzmann constant, and T is the temperature). P1(t) is an

observable which as such is not measurable, but is of broad interest in theoretical studies of

the nonequilibrium dynamics of excitonic systems.15,16 Note that the time evolution of P1(t)

is determined solely by the Hamiltonian Hs, since Hq commutes with |1⟩⟨1|.

The numerical simulations of P1(t) are performed by employing the Thermo-Field-Dynamics

Tensor-Train method21�24 which allows a numerically accurate evaluation of P1(t) at �nite

temperature (in the present case, T = 300K). P 1(t) is obtained by the averaging of individual

populations P1(t) over Nz realizations of z.

The short-time evolution of P1(t) can be cast in the form

P1(t) = exp{−(t/τZ)
2}+O(t3), (19)

where τZ is the so-called Zeno time.25 For the Hamiltonian of Eq. (1), it can be evaluated

analytically with the result

τ−2
Z =

Ne∑
k=1

J2
1k. (20)
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Hence the short-time evolution is independent of the nuclear degrees of freedom and is ex-

clusively determined by the excitonic couplings. For t > τD, on the other hand, P 1(t) should

be reproduced by Eq. (17). We found a posteriori that the overtones of the fundamental

vibrational frequencies do not contribute to the time evolution of P1(t). We thus set M = 1,

drop the subscripts m in Eq. (17), and treat a, b and aα, bα, φα as �tting parameters.

In model I, we consider a linear chain of Ne = 7 sites with identical site energies and

nearest-neighbor couplings Jk,k+1 = 80 cm−1. Each site has a single vibrational mode with

frequency Ω1 = 200 cm−1 (corresponding to a vibrational period τ1 = 2π/Ω1 = 167 fs), and

an electron-vibrational coupling parameter κ1 = 100 cm−1. Static disorder in εk and Jk,k+1 is

described by Eq. (14) in which zj are K = 13 uncorrelated Gaussian variables with variance

σj = σ = 100 cm−1. P 1(t) evaluated with Nz = 100 is found to be numerically converged.

The results of the simulations are displayed in Fig. 1. The green line shows the P1(t)

obtained by Eq. (19) with the Zeno time τZ = 66 fs evaluated according to Eq. (20). The

black line shows the numerically converged population P 1(t), while the blue line depicts

P 1(t) averaged over just Nz = 5 realizations of zj. The red line shows the least square �t

of P (t) by Eq. (17). It provides an a posteriori estimate of τD which can be de�ned as

the shortest time at which Eq. (17) becomes accurate. The matching of the black, blue,

and green curves for t < τZ reveals that the short-time dynamics is purely electronic and is

independent of static disorder. According to Eq. (16), the characteristic time is τD = 334

fs, which is close to the a posteriori estimate of τD = 420 fs (beginning of the red curve).

In the interval [τZ , τD], static disorder a�ects P 1(t) only marginally, hence the blue (Nz =

5) and black (Nz = 100) curves have similar shapes. For t > τD, the blue curve shows

partially irregular oscillations, while the black curve exhibits regular vibrational oscillations

with the period τ1. The agreement between the numerically exact P 1(t) (black) and �t by

Eq. (17) (red) is almost perfect. It should be stressed that neither the blue curve nor any

individual P1(t) simulated for a speci�c realization of z can be adequately �tted by Eq. (17).

The latter reproduces the average population P 1(t) only.
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Model II mimics the Fenna�Matthews�Olson (FMO) complex. It describes 7 identical

chromophores (Ne = 7), each of which possesses two vibrational modes (Nv = 2): Ω1 = 200

cm−1 (τ1 = 2π/Ω1 = 167 fs) and Ω2 = 160 cm−1 (τ2 = 2π/Ω2 = 208 fs). These are the

modes which were recently detected experimentally.8,9 The electron-vibrational couplings

are κ1 = 0.289 and κ2 = 0.175. The values of εk and Jkk′ are the same as in Ref.22 Static

disorder in εk and Jkk′ is accounted for by K = 29 uncorrelated Gaussian variables zj with

variance σj = σ = 100 cm−1.3 P (t) evaluated for Nz = 500 is numerically converged.

Frequently, it is su�cient to account for static disorder in site energies only.3,26 This case is

considered in the Supplementary Material.

0 500 1000 1500 2000
t (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
(t
)

vibronic
evolution

vibrational
beatings

τZ

τD

1000 1500 2000
0.20

0.21

0.22

0.23

Figure 1: P1(t) for model I and T = 300 K. Black: Numerical evaluation for Nz = 100.
Blue: Numerical evaluation for Nz = 5. Red: Fit via Eq. (17) with the parameters a = 1.46,
b = 0.21, a1 = −7.16, b1 = 0, φ1 = 1.17 and d = d1 = 0.5. The inset shows the exact (black)
and �tted (red) curves on an enlarged scale. Green: Eq. (19).

Fig. 2 provides an illustration of how individual realizations of static disorder a�ect the

population dynamics. From bottom to top, it shows P1(t) for 9 individual realizations of
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zj. The uppermost graph (black) depicts the fully converged P 1(t) for Nz = 500. The P1(t)

obtained for 9 realizations of zj di�er from each other by the periods, phases, and amplitudes

of the oscillations. Hence the average population P 1(t) is the result of the superposition of

a large number of di�erent oscillatory contributions.

Fig. 3 shows the numerically exact average population P 1(t) (black) in comparison with

the short-time approximation by Eq. (20) with the Zeno time τZ = 53 fs (green) and the

least square �t via Eq. (17) (red). The critical time τD is a posteriori estimated to be

∼ 500 fs. In the time interval [τZ , τD], the evolution of P 1(t) is characterized by a strong

mixture of the excitonic and vibrational degrees of freedom. For t > τD, P 1(t) exhibits

oscillations revealing the vibrational frequencies Ω1 and Ω2. In view of the complexity of

the time evolution of P 1(t), the agreement between the exact simulation (black) and the �t

(red) is quite impressive. The exact P 1(t) (black line in Fig. 3) exhibits a revival around

t ∼ 1300 fs. This e�ect is caused by the accidental commensurability of the vibrational

frequencies: 4Ω1 = 5Ω2. The vibrational beatings thus fully rephase at 5τ1 = 4τ2 ≈ 830

fs. The revival occurs ∼ 830 fs after the asymptotic description starts to be valid, e.g. at

t ≈ τD + 830 ≈ 1300 fs, and is fairly well reproduced by the �t.

In summary, we have developed a generic picture of the time evolution of expectation

values of dynamical variables in aggregates consisting of identical chromophores in the pres-

ence of static disorder. For t < τZ (τZ being the Zeno time) the time evolution is purely

electronic. For τZ ≤ t ≤ τD (τD being the critical time determined by the dispersion of the

disorder) the time evolution is vibronic. For t > τD the observables exhibit purely vibrational

behavior (cf. Ref.27).

The results of the present work may have profound implications for the interpretation of

spectroscopic responses of chromophore aggregates. For example, the beatings with a period

around ∼ 200 fs detected in the recent experiments on FMO8,9 may reveal vibrational dy-

namics not only due to the wave packet motion in the electronic ground state (ground state

bleach contribution), but also owing to the disorder-induced melting of vibronic frequencies
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Figure 2: P1(t) for model II and T = 300 K. Colored curves: P1(t) for 9 realizations of
zj. Uppermost graph (black): converged P 1(t) evaluated for Nz = 500. For clarity, the
populations are vertically displaced from each other by 0.4.
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Figure 3: P1(t) for model II and T = 300 K. Black: Numerical evaluation for Nz = 500. Red:
Fit via Eq. (17) with the parameters a = 1.81, b = 0.23, a1 = 3.69, b1 = −0.12, φ1 = 1.99,
a2 = −1.01, b2 = 0.04, φ2 = 1.05 and d = d1 = d2 = 0.5. The inset shows the exact (black)
and �tted (red) curves on an enlarged scale. Green: Eq. (19).
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into vibrational frequencies in the excited electronic state (stimulated emission contribution).

More generally, any pump-probe or photon-echo signal as a function of population time will

always be dominated by vibrational oscillations at t > tD.
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