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SUMMARY
Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-
expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the
plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes
poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tu-
mor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype
detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates spe-
cific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth.
We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression.
Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor
growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination.
INTRODUCTION

Heme is a high-energy prosthetic group of hemoproteins, whose

functions range from transcription factors (i.e., neuronal PAS

domain protein 2 [NPAS]), gas carriers (i.e., hemoglobin), and cy-

tochromes to redox enzymes (Dutra and Bozza, 2014; Wegiel

et al., 2015). Labile heme traffics between the cytosolic and nu-

clear compartments (Hanna et al., 2016; Yuan et al., 2016;

Soares and Hamza, 2016). The uptake of hemoglobin or labile

heme is provided by myeloid cell receptors CD163 or CD91/

LRP1 by binding hemoglobin:haptoglobin (Hp) or heme:hemo-

pexin (Hx) complexes, respectively (Hvidberg et al., 2005; Kris-

tiansen et al., 2001). Hx has picomolar affinity toward heme;

thus, any changes in its levels lead to abnormalities in heme

clearance. Hx role is critical during hemolysis and heme-associ-
Cel
This is an open access article under the CC BY-N
ated pathologies, such as sepsis, sickle cell disease, or athero-

sclerosis. However, there are no reports, to our knowledge, on

the role of Hx in cancer. Clinically, colon cancer (in which gastro-

intestinal bleeds are common) or other cancers (i.e., endometri-

osis-associated ovarian cancer) are directly exposed to red

blood cell (RBC) lysis because of bleeding and thus to hemoglo-

bin and labile heme. The relevance of hemolysis to any cancer

type is high because of excessive angiogenesis and/or intra-tu-

moral hemorrhage and metastatic spread.

Elevated labile heme is a characteristic of malaria (Ferreira

et al., 2008), sickle cell disease (Ferreira et al., 2011), and por-

phyrias (Straka et al., 1990). Interestingly, individuals with ma-

laria have higher incidence of cancer (Lehrer, 2010), indicating

a possible role of heme in carcinogenesis. Heme induces hyper-

proliferation and the appearance of aberrant atypical and
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mucosa-depleted foci in the large intestine (van der Meer-van

Kraaij et al., 2005). Increased intake of red meat and thus high

levels of heme in the intestinal tract may promote colonic inflam-

mation and damage associated with a higher risk of colon cancer

(Takachi et al., 2011). However, the role of labile heme in cancer

and normal biology beyond its oxidant properties remains un-

clear (Glei et al., 2006).

Previous work suggests that the heme porphyrin ring interca-

lates into G-quadruplex (G4) DNA structures, affecting their sta-

bility and function (Poon et al., 2011; Saito et al., 2012a, 2012b;

Sen and Poon, 2011; Shibata et al., 2016; Yamamoto et al.,

2015). G4s are DNA and RNA non-canonical structures held

together by guanine base quartets and stabilized by specific cat-

ions (Kosman and Juskowiak, 2016; Shumayrikh et al., 2015;

Zhang et al., 2016). Moreover, G4 DNA can sequester labile

heme to form DNA:heme complexes, which act as DNAzymes,

exhibiting robust peroxidase and peroxygenase activities (Sen

and Poon, 2011; Travascio et al., 1999). These enzymatic activ-

ities of G4:heme complexes because of their high reactivity of

the iron have been studied in vitro, but no functional studies on

the these complexes have, to our knowledge, been reported

(Gray et al., 2019). G4 DNA motifs accumulate within transcrip-

tionally active euchromatin regions (Hänsel-Hertsch et al.,

2016) and coincide with critical regulatory regions of the

genome, including telomeres and oncogene promoters (i.e.,

c-MYC) (Brooks and Hurley, 2010; Brooks et al., 2010). As

such, these structures are known to have a role in many cellular

processes regulating DNA replication and controlling gene

expression (Biffi et al., 2014a; Eddy et al., 2011; Gray et al.,

2014; Guo and Bartel, 2016; Hänsel-Hertsch et al., 2016;

McLuckie et al., 2013; Murat and Balasubramanian, 2014; Rodri-

guez et al., 2012; Siddiqui-Jain et al., 2002). As an example, the

nuclease hypersensitive element III1 (NHE III1), located up-

stream of the c-MYC promoter, contains G4 DNA motifs that

act as transcription repressors regulating �80% of c-MYC

expression (Ambrus et al., 2005; Siddiqui-Jain et al., 2002).

Therefore, G4s are considered to be ideal targets for anti-tumor

drug development, and several ligands are being developed and

tested for therapeutic approaches (Balasubramanian et al.,

2011; Biffi et al., 2014a; Drygin et al., 2009; Guo and Bartel,

2016; Hänsel-Hertsch et al., 2016; McLuckie et al., 2013; Murat

and Balasubramanian, 2014; Rodriguez et al., 2012). Notably,

binding of small molecules and/or ligands to the G4 structures

can activate an R-loop-dependent DNA damage response,

which will ultimately lead to different cellular consequences

commensurate with the concentration and chemical nature of

the ligands as well as their binding mode and selectivity for spe-

cific G4 motifs (Hampel et al., 2013; Hu et al., 2019; Paul et al.,

2020; Amato et al., 2018).

In this study, we provide direct evidences of Hx and heme

functions in the tumor microenvironment using in vivo prostate

cancer murine models in Hx�/� mice as well as a large cohort

of human cancer biopsies and plasma samples. Our findings

demonstrate a previously unknown role and mechanism for

labile heme in cancer growth and metastatic progression via

G4:heme interaction and regulation of key G4-driven oncogenes

thus suggest potential innovative therapeutic targets for cancer

treatment.
2 Cell Reports 32, 108181, September 22, 2020
RESULTS

Plasma Levels of Heme and Hx in Patients with PCa: Hx
Associates with Clinical Outcome
To investigate whether retention of labile heme in the circulation

and tumor microenvironment could be a marker for cancer pro-

gression, wemeasured the plasma levels of heme and Hx in a set

of 26 patients with prostate cancer (PCa) and 7 healthy volun-

teers. We detected significantly higher levels of labile heme (Fig-

ure 1A) and lower levels of its scavenger Hx (Figure 1B) in the

plasma of patients with cancer (low- or high-grade tumors)

compared with healthy controls. Second, we validated the rele-

vance of these findings in a larger cohort of PCa, including ma-

lignant and benign prostatectomy specimens from 341 patients

(Mulvaney et al., 2016) and analyzed Hx expression in a tissue

microarray (TMA) by immunohistochemistry. The Hx staining in

the stroma was significantly weaker in moderately (Gleason

score [GS] % 7) and poorly differentiated (GS > 7) tumors as

compared with benign tissues (Figures 1C and 1D), similar to

what we observed in the plasma samples (Figure 1B).

Next, we assessed whether Hx in the tumor stroma could be

used as predictive marker for cancer progression. Remarkably,

low Hx levels in the stroma correlated with poor prognosis and

earlier disease relapse based on the rising prostate-specific an-

tigen (PSA) levels (biochemical recurrence [BCR]) (Figure 1E),

whereas no major differences in the Kaplan-Meier progression-

free survival curves based on the levels of Hx in cancer epithelial

cells or stroma from benign tissues was observed (Figures 1F,

S1A, and S1B). Interestingly, high Hx levels (based on the me-

dian H score cutoff) in the benign epithelium correlated with a

better prognosis (Figure S1A).

Because labile heme is derived in large part from hemoglobin,

we evaluated whether hemoglobin and Hx mRNA expression is

altered in metastases of PCa. Interestingly, we found higher

levels of hemoglobin subunit alpha 2 (HBA2) andHx inmetastatic

tumors (Figures S1C and S1D) from the same Geo-profile-sam-

ple set previously used to show upregulation of heme oxygen-

ase-1 (HO-1, encoded by Hmox1) expression in metastatic

PCa (Nemeth et al., 2015).

Heme Increases Metastatic Outgrowth of Cancer
To assess whether changes of labile heme could promote tumor

growth and progression in a mouse model in vivo, we injected

PC3 cells subcutaneously in immuno-compromised animals,

and we treated established tumors with Fe (III) heme (35 mg/

kg, intraperitoneally [i.p.] daily, for 2 weeks) (hemin; referred as

‘‘heme’’ in prior research [Hedblom et al., 2019; Larsen et al.,

2010] and throughout the text here for consistency) daily for

the following 2 weeks. This dose of heme neither affected

body weight nor survival of mice (data not shown). In agreement

with previously published results using the same in vivo model

but less frequent and slightly lower doses of heme (Leonardi

et al., 2019), we did not observe a significant difference in the

overall tumor volume in mice treated with heme compared with

untreated mice (Figure S2A). However, we showed increased

local invasion (Figure 2A) and detected higher numbers of lymph

node (LN) metastases after heme treatment (Figure 2B). Consis-

tently, the significant proliferation of cancerous cells in the tumor



Figure 1. Hx Levels Correlate with a Better Outcome for Patients with PCa

(A and B) Measurements of heme and Hx levels in plasma samples obtained from patients with PCa. Low grade, patients with Gleason scores (GSs) of 6 or 7; high

grade, patients with GSs of 8 or higher; healthy volunteers, donors with unknown cancer diagnoses. Scatter plot represents each measurments and median.

ANOVA, *p < 0.05, **p < 0.01.

(C) Representative staining with an antibody against Hx in benign and cancer (well-differentiated, GSs < 7;moderately differentiated, GS = 7; poorly differentiated,

GS > 7) tissues from 341 patients with PCa using tissue microarrays (TMAs). Scale bar 100 mm.

(D) Relative H score (= Intensity3 Percentage of positive cells) of stromal Hx staining in the 341 patients with PCa and corresponding benign tissues. Number of

cores used for each group is shown. Bar chart represents mean ± SEM. ANOVA, *p < 0.05, ***p < 0.001.

(E and F) Progression-free survival curves based on the BCR are shown in a follow-up for 200months from initial prostatectomy. H scores for Hx in stroma (E) and

in cancer cells (F) were analyzed with themedian value as a cutoff for the survival analysis. Hazard ratio (95%confidence interval [95%CI]) for (E), 3.25 (1.50–7.08),

**p = 0.002. Hazard ratio (95% CI) for (F), 1.13 (0.71–1.79), p = 0.619.
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periphery upon heme treatment (Figures 2C and 2D) was accom-

panied by an upregulation of c-Myc, increased levels of Rb phos-

phorylation, and heme oxygenase-1 (HO-1) expression (Fig-

ure 2D). No changes in the expression levels of total Rb or HO-

2 were detected (Figure 2D). Importantly, the increase of c-

MYC at themRNA levels suggested increased gene transcription

(Figure S2B). We did not observe a difference in Hmox1 mRNA

expression levels in the mouse stroma cells (Figure S2C), sug-

gesting that HO-1 is induced by heme primarily in cancer cells

in the tumor microenvironment (Figure 2D).

To validate our findings in a clinically more relevant model, we

implanted transgenic adenocarcinoma of the mouse prostate

(TRAMP-C1; murine PCa cells) orthotopically into immunocom-

petent C57Bl6 mice (Figures 2E–2M) and treated those mice

bearing established tumors in the prostate with heme. We

observed enlarged tumors and increased numbers of LN metas-

tases in mice treated with heme compared with control mice

(Figure 2E–2H). Ki67 levels in both tumors and LN metastases

were significantly higher in mice treated with heme than they

were in control mice (Figures 2H and 2I). Further, tumors of ani-

mals treated with heme expressed higher levels of c-MYC and

markers of invasion, such as matrix metalloproteinase-2
(MMP2) and �9 (MMP9) and urokinase-type plasminogen acti-

vator (uPA) (Figures 2J–2M).

Heme Sequestration by Hx in the Tumor Niche Blocks
Aggressive Cancer Phenotype In Vivo

To assess the role of Hx in heme sequestration and inmodulation

of tumor growth, we used Hx knockout mice (Hx�/�) in the ortho-

topic prostatemodels described above (Figure 2E).We reasoned

that if heme is not scavengedbyHx in the tumor stromaor plasma

via heme:Hx:CD91 receptor complexes, it should become

directly available for cancer cells via cell membranes and/or

heme transporters. PCa cells possess multiple known heme

transporters, including Abcg2, Flvcr1, and Hrg1, which are all

highly expressed relative to CD91 or Flvcr2 (data not shown).

TRAMP-C1cells implantedorthotopically into theprostatedevel-

oped bigger tumors in Hx�/� mice compared with Hx+/+ mice

(Figure 2E). Further, Hx�/� mice with established TRAMP-C1 tu-

mors and treated with heme developed significantly larger tu-

mors and more LN metastases compared with untreated mice

(Figures 2E–2I). Of note, increased expression levels of c-MYC

and markers of invasion (MMP9, MMP2, and uPA) in Hx�/� tu-

mors were observed upon heme treatment (Figures 2J–2M).
Cell Reports 32, 108181, September 22, 2020 3



Figure 2. Role of Heme and Heme-Associated Proteins in Cancer Progression In Vivo

(A–C) PC3 xenografts were established in nu/numice for 2 weeks, and animals were treated with heme (35mg/kg, i.p., daily) for the following 2 weeks. n = 3mice/

group with two tumors/mouse. Representative images and number of Ki67-positive cells infiltrating the local tumor stroma (A) or the LN (B) evaluated as a

percentage of the control (n = 8–12 LNs/group). Scale bar 50 mm. Quantification of Ki67-positive cells is shown in (C). Scatter plot represents mean ± SEM.

ANOVA, **p < 0.01.

(D) Immunoblot analysis of tumor lysates from PC3 xenografts as in (A)–(C).

(E) TRAMP-C1 tumors were established in Hx+/+ and Hx�/� mice for 1 week, and animals were treated with heme (35 mg/kg, i.p., daily) for the following 4 weeks.

Tumor size was measured with caliper at the time of sacrifice. n = 8 (Hx+/+, control), n = 15 (Hx+/+ , heme), n = 5 (Hx�/�, control), n = 8 (Hx�/�, heme). ANOVA,

*p < 0.05, **p < 0.01.

(F and G) Representative images (F) and number of Ki67-positive cells (G) infiltrating the local tumor stroma evaluated as number of stained cells per field of view

(FOV). Scale bar 50 mm. ANOVA, **p < 0.01, ***p < 0.001.

(H and I) Representative images (H) and number of Ki67-positive cells (I) infiltrating the LNs evaluated as the number of stained cells per FOV. Scale bar 50 mm. Bar

charts represent mean ± SEM. ANOVA, *p < 0.05, ***p < 0.001.

(J–M) qPCR analyses of c-MYC (J), MMP-2 (K), MMP-9 (L), and uPA (M) in TRAMP-C1 tumors established in Hx+/+ and Hx�/� mice and treated as described

above. Bar charts represent mean ± SEM. ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.

4 Cell Reports 32, 108181, September 22, 2020

Article
ll

OPEN ACCESS



Figure 3. Heme Accelerates Tumor Growth

and Accumulates in the Nucleus of Cancer

Cells

(A) Anchorage-independent growth in soft agar of

PC3 cells treated with hemoglobin (10 mM) for

3 weeks. Scatter plot represents mean ± SEM.

n = 3 experiments performed in triplicate. Stu-

dent’s t test, **p < 0.01.

(B) Anchorage-independent growth in soft agar of

PC3 cells treated with heme (1–50 mM) for

3 weeks. Scatter plot represents mean ± SEM.

n = 4–5 experiments performed in triplicate.

ANOVA, **p < 0.01, ***p < 0.001.

(C) Immunoblot analysis of cyclin B1, HO-1, and

HO-2 levels in PC3 cells treated with heme (50 mM)

over a 24-h time course. n = 4–5 independent

experiments.

(D–G) Cell cycle analysis of PC3 cells treated with

heme (50 mM) for 8 h and 24 h. Representative

graphs are shown in (D) and (E), and quantifica-

tions are presented in (F) and (G). Bar charts

represent mean ± SEM. n = 3 independent

experiments performed in duplicate. ANOVA,

*p < 0.05.

(H) Representative images of the nuclear heme

measured by the nuclear heme sensor (ascorbate

peroxidase containing a nuclear localization signal

[APX-NLS]) in PC3 cells treated with heme (50 mM)

for 24 h. Two examples of cells (strongly and

medium positive) with APX-NLS staining are

shown. Scale bar 25 mm. n = 3 independent

experiments.

(I) Detection of heme levels in the subcellular

fractions of PC3 cells at 30 min and 1, 2, 4, and

24 h after addition of exogenous heme. Scatter

plot represents mean ± SEM. n = 3 independent

experiments. ANOVA, ***p < 0.001.

(J) Detection of heme basal levels in the subcellular fractions of BJ fibroblasts (EHZ, ELT, and ELR) as measured by benzidine staining. Scatter plot represents

mean ± SEM. n = 3 independent experiments. ANOVA, *p < 0.05, ***p < 0.001.

(K) Detection of heme basal levels in subcellular nuclear and cytoplasmic fractionations of PNT1A, LNCaP, PC3, DU145, and TRAMP-C1 cells. n = 3 independent

experiments performed in triplicate. Bar charts represent mean ± SEM. Student’s t test, **p < 0.01, ***p < 0.001.
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To expand our understanding of the role of heme and Hx

across multiple tumor types, we tested a similar approach using

a lung cancer model (Figures S2D–S2F). In response to heme

treatment, mice bearing subcutaneously implanted murine

Lewis lung carcinoma (LLC) tumors showed increases in Ki67

staining at the edge of the tumor with invasive behavior (Figures

S2E and S2F). Consistently, LLC cells inoculated intoHx�/�mice

also displayed an invasive behavior at the edge of the tumors

(Figures S2E and S2F). The increase in c-Myc levels was accom-

panied by both elevated total and phosphorylated Rb in LLC tu-

mors (Figure S2D).

Heme Promotes Growth of Colonies in Soft Agar and
Affects Cell Cycle
Because both hemoglobin and Hx are associated with more

aggressive phenotypes, we evaluated whether heme derived

from hemoglobin could similarly affect the growth of the human

prostatic carcinoma cell line. Hemoglobin promoted colony

growth of PC3 in soft agar in vitro (Figure 3A); similarly, heme

treatment of PC3 cancer cells led to larger and more-numerous

colonies in soft agar in a dose-dependent manner (Figures 3B
and S3A). Moreover, addition of heme to cancer cells activated

cell-cycle-related pathways by inducing cyclin B1 and HO-1

expression levels (Figure 3C) and promoting the transition of

PC3 cells through the G1-S and G2-M cell cycle phases (Figures

3D–3G, S3B, and S3C). In the presence of labile heme, fewer

cells accumulated in the G1 phase at 8, 24, and 48 h, whereas

the number of cells in G2/M phases was significantly higher at

24 and 48 h (Figures 3D–3G, S3B, and S3C), suggesting prolifer-

ative advantage in response to heme.

Labile Heme Accumulates in the Nucleus of Cancer
Cells
Because we observed a strong induction of cell-cycle regulatory

molecules by heme, we measured the intracellular heme levels.

Using a nuclear-targeted heme sensor (Yuan et al., 2016) (Fig-

ure 3H) and colorimetric measurements (Figure 3I), we demon-

strated the uptake and accumulation of heme in the nucleus

upon treatment with exogenous heme in PC3 cells or fibroblasts

(Figures 3I, S3D, and S3E). Nuclear heme levels were increased

upon the addition of exogenous heme, reaching a plateau levels

at 2–4 h after treatment of PC3 cells and returning to the baseline
Cell Reports 32, 108181, September 22, 2020 5



Article
ll

OPEN ACCESS
after 24 h presumably because of increased activity of HO-1 (Fig-

ures 3I and 3C). The successful fractionations and HO-1 induc-

tion in the samples were confirmed (Figures S4A–S4D). We

then assessed the basal levels of labile heme in the nuclear

and cytoplasmic compartments of several normal (BE [human

bronchial epithelial cells] and PNT1A [normal human prostate

epithelium]) and cancer cell lines: PCa (LNCaP, DU145, PC3,

and TRAMP-C1), lung cancer (A549 and LLC), as well as in the

transformed BJ fibroblasts (Figures 3J–3K and S3E). Interest-

ingly, basal labile heme levels were markedly higher in the nu-

clear fractions of cancer cell lines compared with normal epithe-

lial cells (Figures 3K and S3E). Remarkably, the basal level of

heme accumulation in the nucleus of fibroblasts was propor-

tional to the degree of cellular transformation determined by

the number of oncogenes introduced into the BJ fibroblasts

(EHZ [hTERT], ELT [hTERT, large T antigen], and ELR [hTERT,

large and small T antigen, HRas]) (Boehm et al., 2005) (Figure 3J).

Moreover, the accumulation of nuclear labile heme levels was

more pronounced in metastatic cancer cells (Figure 3K), indi-

cating a possible correlation between nuclear labile heme and

aggressiveness.

Heme Modulates a Subset of Genes Related to Cell
Cycle and Cancer Progression
Because heme accumulates in the nuclear compartment in can-

cer cell lines, we asked whether heme could affect gene expres-

sion. We performed RNA sequencing (RNA-seq) analysis on PC3

cells treated with heme. To analyze the effect of heme on gene

expression, we decided to collect cells at early time points (2

and 4 h upon treatment with heme), when the expression of

HO-1 protein is still not detectable and thus the levels of heme

are higher (Figures 3C and 3I). As expected, the top genes

induced or repressed by heme after 4 h treatment were Hmox1

and 50-aminolevulinate synthase 1 (ALAS1), which are both key

enzymes involved in the degradation or de novo synthesis of

heme, respectively (Table S1). Hmox1 mRNA was upregulated

as early as 2 h after treatment and remained elevated at 4 h (Fig-

ure 4A); however, the protein was not detectable before 4 to 6 h

after heme treatment (Figure 3C). In our RNA-seq analysis,

ALAS1 expression was initially upregulated at 2 h (�6-fold) and

then suppressed by heme at 4 h as a negative feedback loop

(Furuyama et al., 2007) (Tables S1 and S2). Consistent with our

other findings (Figures 3C–3G), heme treatment significantly

perturbed genes involved in cell-cycle progression leading to

downregulation of CCNE1, CCNA2, CCNE2, E2F2, and TGFB3

or upregulation of others, i.e., CCNA1, MYC, and CDKN1A at

2 h (Figure 4A). Similarly, genes associated with cell-cycle

checkpoint, estrogen-mediated S-phase entry and cancer me-

tastases (WNT, transforming growth factor beta [TGF-b], and

MAPK/Erk1/2 pathways) were also altered by the addition of

heme as assessed by pathway analysis (Figures 4B–4D). Impor-

tantly, gene enrichment analysis showed early induction of Ap-1

pathway genes, such as c-MYC, FOSB, MMP9, or ERG1 (Fig-

ures 4E and 4F) and reduction of genes associated with rRNA

processing (UTP15, DKC1, and UTP6). The top genes altered

by heme are included in Figures 4E and 4F. The pattern of

gene enrichment in response to heme was reversed after 4 h

(Figure 4F).
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By performing real-time PCR (Figures 4G–4P), we confirmed

that Hmox1 was strongly induced by heme in PC3 cells at 2

and 4 h (Figure 4G), and it was highly elevated in the tumors im-

planted into Hx+/+ or Hx�/� mice and treated with heme (Fig-

ure 4I). ALAS1 mRNA was induced by heme in PC3 cells after

2 h, but its expression returned to the baseline levels at 4 h af-

ter heme treatment (Figure 4H). There was no significant effect

of heme on ALAS1 mRNA in tumors in vivo (Figure 4M). A

similar mRNA pattern of gene-expression change to Hmox1

was detected for the zinc finger 469 (ZNF469) gene (Figures

4I and 4N). Furthermore, heme treatment led to higher and tran-

sient expression of genes controlling autophagy and metasta-

ses, AMIGO2 (amphoterin-induced gene and open reading

frame 2), and ULK1 (Unc-51 like autophagy activating kinase

1) in PC3 cells after 2 h (Figures 4J and 4K). Those genes

were also elevated in tumors isolated from mice treated with

heme on the wild-type and Hx�/� background (Figures 4O

and 4P).

Heme Induces c-MYC-Dependent uPA Expression
To assess the contribution of one of the top heme-regulated

genes, c-MYC, in heme-mediated cellular effects, we stably

transduced PC3 cells with short hairpin (sh) RNAs targeting

c-MYC and achieved�50%knockdown of themRNA (Figure 5A)

and protein (Figure 5B) suppressing heme-induced c-MYC

expression without affecting their survival. Although induction

of both MMP2 and uPA was observed in control non-targeting

shRNA PC3 cell upon heme treatment, only uPA displayed a c-

MYC-dependent expression (Figures 5C and 5D). Indeed,

knockdown of c-MYC blocked basal and heme-induced uPA

levels (Figure 5D). Importantly, shRNA-mediated c-MYC down-

regulation was able to limit the heme-induced colony growth

(Figure 5E).

More than 75% of c-MYC transcriptional activity is controlled

byG4 sequences embedded in the gene promoter (Siddiqui-Jain

et al., 2002). Interestingly, we found that the effect of heme on

colony growth was blocked in cells concurrently treated with

the well-established c-MYC G4 stabilizing molecule, GQC-05

(Figure 5F), suggesting the requirements of c-MYC expression

for heme-induced cancer growth. Notably, GQC-05 completely

suppressed c-MYC expression (Figure 5G), in striking contrast

to heme (Figure 5G), but at the dose of 10 mM used in this study

did not affect cell survival/growth as measured by crystal violet

staining (Figure 5H). Consistently, GQC-05 strongly inhibited

c-myc protein expression in a dose-dependent manner (Brown

et al., 2011), whereas no changes in vascular endothelial growth

factor (VEGF) levels were observed (Figure 5G). On the contrary,

heme treatment was associated with increased c-myc protein

expression (Figure 5G).

These findings indicate that heme promotes uPA expression in

a c-MYC-dependent manner and demonstrate a heme-medi-

ated control of c-MYC expression, potentially by altering

c-MYC G4 structures stability (Figure 5G).

Heme:G4 Complexes Regulate Cancer Growth
Heme is able to stabilize the G4-containing sequence (also

known as Pu27) within the c-MYC promoter (Siddiqui-Jain

et al., 2002) (Figures 5I and 5J). We detected little changes in



Figure 4. Heme Induces Selective Genes Controlling Metastases and Cell Cycle Progression

(A–F) Analysis of RNA-seq data from PC3 cells treated with heme (50 mM) for 2 h or 4 h and control cells. Heatmap is shown in (A). n = 2 per group. (B)–(D) Pathway

analysis of the gene expression profiles as in (A). (E and F) Gene set enrichment analysis based on the functional annotation of the differentially expressed genes

identified two key pathways: AP-1 and rRNA modification pathways in response to heme. The genes enriched within the pathways are labeled in red if they

contain G4 in their regulatory elements.

(G–K) qPCR analysis of Hmox1 (HO-1) (G), ALAS1 (H), ZNF469 (I), AMIGO2 (J), and ULK1 (K) in PC3 cells treated with heme (50 mM) for 2 h or 4 h. Bar charts

represent mean ± SEM. ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.

(L–P) qPCR analysis of Hmox1 (HO-1) (L), ALAS1 (M), ZNF469 (N), AMIGO2 (O), and ULK1 (P) in TRAMP-C1 tumors established in Hx+/+ and Hx�/� mice and

treated with heme as above. Bar charts represent mean ± SEM. ANOVA, *p < 0.05, **p < 0.01.
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Figure 5. Heme Activates c-MYC Expression in Part via Binding to DNA G4 Structure in Its Promoter

(A and B) qPCR (A) andwestern blot (B) analysis of c-MYC in PC3-sh-control and PC3-sh-c-myc cells treatedwith heme (50 mM) for 2 h or 4 h. Bar charts represent

mean ± SEM. ANOVA, *p < 0.05, ***p < 0.001.

(C and D) qPCR analysis ofMMP2 (C) and uPA (D) in PC3-sh-control and PC3-sh-c-myc cells treatedwith heme (50 mM) for 2 h or 4 h. Bar charts represent mean ±

SEM. ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001.

(E) Anchorage-independent growth in soft agar of PC3-sh-control and PC3-sh-c-myc treated with heme (50 mM) for 3 weeks. Scatter plot represents mean ±

SEM. n = 3 independent experiments. ANOVA, *p < 0.05. n.s., not significant.

(F) Anchorage-independent growth in soft agar of PC3 cells cultured in the presence or absence of GQC-05 (10 mM) or vehicle (DMSO) with or without heme

(50 mM) for 3 weeks. Bar chart represents mean ± SEM. n = 3 experiments performed in triplicate. ANOVA, ***p < 0.001.

(G) Western blot analysis of c-myc, VEGF, and lamin A/C in cell lysates from PC3 cells treated with heme (50 mM) or GQC-05 (10 mM) for 0.5–8 h. A representative

blot of three independent experiments is shown.

(H) Crystal violet staining of PC3 cells treated for 48 h with GQC-05 (10 mM). Bar chart represents mean ± SEM. n = 3 independent experiments.

(I) CD spectra with 1:1 heme:Pu27 ratio demonstrating molecular ellipticity at 262 nm. The peak is maintained upon addition of heme, indicating a parallel G4

structure.

(J) Melting temperature of the heme:Pu27 complexes evaluated at 262 nm by CD. Melting temperature for pu27 oligonucleotide was 72.36�C, for Pu27:heme, 1:1

was 78.27�C, and for Pu27:heme, 1:2 was 84.15�C.
(K) EMSAwas performed using the wild-type G4-Pu27 (p27) or the mutated G4-Pu27 (mp27) sequence found in the c-MYC promoter region in the presence of an

antibody against G4 (BG4). Results are representative of three experiments.

(legend continued on next page)
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the circular dichroism (CD) spectrum upon addition of heme,

supporting the idea that G4 structures are likely being main-

tained or slightly distorted, as confirmed by a measurement of

the melting temperature upon the addition of heme to G4 DNA

sequence in vitro (Figure 5J).

To address the heme:G4 interaction, we used an anti-G4 anti-

body (the BG4 immunoglobulin G [IgG]) that recognizes G4

structures (Biffi et al., 2014b) and IgG control. We observed spe-

cific binding between the BG4 antibody and the Pu27 c-MYC

promoter sequence forming G4 structures (Figure 5K), whereas

no binding occurred between Pu27 c-MYC and IgG control (Fig-

ure 5K). Such complexes were lost when a mutated Pu27 (pu27-

M) sequence, which is unable to form G4 in vitro, was used (Fig-

ure 5K). These results led us to test whether heme could complex

directly with G4 structures (Figure 5L). A strong interaction be-

tween heme and G4 was confirmed with the Pu27 c-MYC pro-

moter sequence as a model (Figure 5L). Chromatin immunopre-

cipitation (ChIP) with anti-BG4 antibody in the PC3 cells showed

suppression of G4 structures in the c-MYC promoter 0.5–2 h af-

ter heme treatment and enrichment to baseline levels at 4 h (Fig-

ure 5M). The G-quadruplex recognition, stabilization, and un-

winding at Pu27 is controlled by four major proteins: (1)

nucleolin (involved in the formation and stabilization of G4 in

c-MYC promoter [González et al., 2009]), (2) non-metastatic

23-H2 (NM23-H2, a transactivator of c-MYC) (Berberich and

Postel, 1995), (3) cellular nucleic-acid-binding protein (CNBP,

an activator of parallel G4 structure) (Borgognone et al., 2010;

Chen et al., 2013; Michelotti et al., 1995), and (4) heterogenous

nuclear ribonucleoprotein K (hnRNPK, an activator of c-MYC

expression by binding to single-stranded DNA) (Tomonaga and

Levens, 1995). Therefore, we examined by ChIP whether recruit-

ment of these four factors to the G4-rich region of c-MYC pro-

moter was impaired in PC3 cells treated with heme. We

confirmed the effective immunoprecipitation with the specific

antibodies by western blot (Figures S5A and 5B). We detected

CNBP and NM23-H2 in immunoprecipitates from control or

heme-treated cells with anti-CNBP or anti-NM23-H2 antibodies,

respectively (Figure S5A). We also confirmed the same efficiency

of pull-down with antibodies against hnRNPK and nucleolin in

the ChIP samples (Figure S5B). We found that the interaction

of all four proteins with the c-MYC promoter was hampered at

2 h after heme treatment (Figures 5N, S5A, and S5B) with the

most significant decreased enrichment of NM23-H2. Interest-

ingly, the enrichment of CNBP at Pu27 was only slightly but

not significantly decreased in cells treated with heme compared

with untreated cells (Figure 5N).

Immunofluorescence staining of heme-treated cells using the

BG4 antibody revealed increased G4 content in both the nu-

cleus and cytoplasm of PC3 cells at 24 h after treatment with

heme (Figure 5O), which aligns with our findings of dynamic
(L) EMSA was performed using p27 and mp27 G4 sequences incubated for 20 m

independent experiments.

(M) ChIP analysis with anti-BG4 antibody in PC3 cells treated with heme (50 mM)

Bar chart represents mean ± SEM. ANOVA, **p < 0.01, ***p < 0.001.

(N) ChIP analyses with anti-nucleolin, anti-NM23-H2, anti-CNBP, and anti-hnRNP

experiments performed in duplicates. Bar chart represents mean ± SEM. ANOVA

(O) Immunofluorescence staining for BG4 in PC3 cells treated with 50 mM heme
changes in G4 content in response to heme. Because the

pattern of G4 enrichment in the c-MYC promoter corresponded

to the expression pattern of c-MYC observed by RNA-seq (low

G4 at 2 h corresponds to high c-MYC expression and baseline

G4 at 4 h to baseline level of c-MYC levels in heme-treated

cells), we sought to determine whether the genes responsive

to heme treatment detected by RNA-seq exhibited G4 regions

in their promoter. Not surprisingly, as many as �60% of the top

heme-regulated genes were enriched in G4 sequences (Fig-

ure 4E; Table S3).

Presence of G4 Structure Correlates Inversely with
Patient Outcome
To assess the clinical significance of G4, we used the TMA of 341

patients with PCa as above (Figure 1) and analyzed nuclear stain-

ing of G4 in epithelial and stroma cells (Figures 6A and 6B).

Advanced PCa biopsies were associated with lowG4 levels (Fig-

ure 6C). Interestingly, low G4 levels correlated with poor prog-

nosis and earlier relapse similarly to Hx (Figure 6D). Strikingly,

three patients with BG4 score <1 displayed very poor prognosis

(Figure 6E). No association with G4 levels was observed for the

cancer stroma component and the stroma or epithelial benign

counterparts (Figures S6A–S6C).

DISCUSSION

In this study, we addressed the question of whether high levels of

labile heme could have a role in cancer progression and how al-

terations of its scavenger Hx might contribute to the aggressive-

ness of the tumor behavior (Figure 6F). The role of heme, beyond

the function of heme present in the cores of proteins, either as

co-factors or regulatory element (i.e., in hemoproteins), is poorly

understood. Heme is part of several nuclear transcription fac-

tors, including Rev-Erba, NPAS2, Bach1, and Drosha (Burris,

2008; Carter et al., 2016; Dioum et al., 2002; Faller et al., 2007;

Yin et al., 2007). Only recently, the identification of multiple

heme transporters and the use of the heme sensors in the nu-

cleus (Hanna et al., 2016; Yuan et al., 2016) have allowed moni-

toring of the trafficking of heme to the nucleus. In this study, we

showed that heme accumulates in the nucleus of cancer cells

and controls expression of key target genes, such as c-MYC,

containing G4 structures in the promoters. Although previous

work suggested that porphyrins interact with G4s and can affect

G4 stability and function (Saito et al., 2012b), the in vivo rele-

vance has never, to our knowledge, been investigated.

Repeated exposures of normal or cancer cells to heme may

occur during hemolysis or cell death as well as upon administra-

tion of heme-arginate, a compound used to treat porphyrias.

Severe hemolysis and premature death in mice lacking the

peroxiredoxin-1 (Prdx1) gene correlate with higher incidence of
in with 50 mM heme before loading in the presence of the BG4 antibody. n = 3

for 0.5, 1, 2, and 4 h. n = 3–4 independent experiments performed in duplicate.

K antibodies in PC3 cells treated with heme (50 mM) for 2 h. n = 2 independent

, **p < 0.01, ***p < 0.001.

for 24 h. Scale bar 20 mm. n = 3 independent experiments.
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Figure 6. BG4 Levels Correlate with Cancer Progression and Progression-free Survival of Patients with Prostate Cancer

(A and B) Representative staining with an antibody against G4 in benign and cancer (well-differentiated, GS < 7; moderately differentiated GS = 7; or poorly

differentiated, GS > 7) tissues from 341 patients with PCa as in Figure 1C. Scale bars 100 mm (A) and 50 mm (B).

(C) Relative H score (= Intensity 3 Percentage of positive cells) of BG4 staining as in Figure 1C. *p < 0.05, ***p < 0.001.

(D and E) Progression-free survival curves based on the BCR are shown in a follow-up for 200 months from initial prostatectomy. Bar chart represents mean ±

SEM. H score for BG4 in cancer cells (D) was analyzed with themedian value as a cutoff for the survival analysis. Hazard ratio (95%CI) for (D), 2.86 (1.38–5.91), p =

0.006. Hazard ratio (95% CI) for (E), 18.84 (5.11–69.39), p = 0.0001. Note: Three patients with negative H score for BG4 were compared with remaining patients

with H score > 1 in (E) to emphasize the role of BG4 in cancer progression.

(F) Scheme illustrating the role of heme and heme-associated proteins in cancer progression. Hemoglobin and heme can be scavenged by Hp or Hx and taken up

by macrophages via binding to CD169 or CD91, respectively. If Hx is not present, heme accumulates in the nucleus of cancer cells and binds to G4 DNA in the

regulatory regions of specific genes to facilitate their expression and progression of cancer.
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malignancies, such as sarcomas, lymphomas, and carcinomas

(Neumann et al., 2003). Based on our findings, this phenotype

could be ascribed to the heme-induced cancer cell colony

growth and formation ofmetastases in vivo. Interestingly, several

cases of hemolytic uremic syndrome have been described in

advanced PCa patients (Mungall and Mathieson, 2002; Ramos

et al., 2013). We established a strong predictive value of Hx

levels in the stroma of a cohort of 341 patients with PCa and pri-

mary tumors. With plasma from a smaller cohort of patients (n =

26), we discovered an inverse correlation between heme and Hx

levels. Remarkably, higher Hx levels in the stroma, with presum-

ably lower labile heme levels in the tumor, are associated with a

better survival of patients with PCa. A larger cohort of plasma
10 Cell Reports 32, 108181, September 22, 2020
and urine samples should be tested to assess the role of heme

as a PCa biomarker in the future.We propose that Hx binds labile

hemewith strong affinity allowing its uptake by LPR1/CD91-pos-

itive cells. LPR1/CD91 is expressed at low levels in the stroma of

PCa according to the Human Atlas. Presence of Hx/CD91 in

healthy tissues might be a mechanism that prevents entering

of heme into pre-malignant or cancer cells and promoting their

growth. Interestingly, we found that mRNA levels of Hmox1,

Hx, and HBA2 are highly expressed in metastatic samples of

PCa. The increase in HBA2 could be associated with increase

load of labile heme coming from erythrocytes as well as dying

cancer cells or healthy cells (inflammatory cells) at the tumor

niche. However, we have no direct evidence for the elevated
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heme levels in themetastatic niche, and the levels of HBA2 or Hx

mRNA obtained from Geo Profiles using metastatic samples do

not directly suggest how much free versus protein-bound heme

is present in the niche. Importantly, the biochemical responses

to heme are different from that of heme:Hx complexes and range

from activation of cell growth to apoptosis (Eskew et al., 1999)

but are poorly understood. Prior work indicated that decreased

Hx levels in patients with acute respiratory distress syndrome

(ARDS) or burns and in premature infants may lead to insufficient

clearance of heme and, therefore, administration of Hx may

benefit those patients (Lin et al., 2015).

Metastatic phenotype of tumors exposed to labile heme in the

absence of Hx indicates the essential role of this heme scav-

enger protein in tumor progression. We demonstrated an

increased anchorage-independent growth of cancer cells in

response to heme that correlates with changes in expression

of cell cycle regulators and metastatic genes, such as c-MYC

and metalloproteinases. Several other studies have reported

the importance of MMPs in PCa cell proliferation, invasion, and

metastasis (Quigley et al., 2018; Wegiel et al., 2008) (Wyganow-

ska-�Swiątkowska et al., 2019). Of note, we found that heme-

induced c-MYC levels control the expression of uPA, similar to

hypoxia-induced uPA expression (Hou et al., 2007). Because

of its role in the process of extracellular matrix degradation,

uPA is a poor prognostic marker for PCa, and its expression

levels have been associated with distant metastasis and tumor

progression (Duffy, 2002; Nassir, 2020; Shariat et al., 2007). Pre-

vious studies, applying higher doses of heme (70 mM versus the

50 mM dose used in our study) and opposite of pharmacological

kinetics (preconditioning with heme before injection of tumor

cells and not after the tumor is established, as described herein),

reported suppression of PCa cell migration/invasion, MMP9, and

uPA expression upon heme treatment (Gueron et al., 2009; Ja-

worski et al., 2017), in contrast to our results. However, the

reason for that apparent discrepancy is 2-fold. First, the higher

doses of heme may be toxic to cancer cells, whereas the lower

dose may be permissive for invasive growth; second, condition-

ing the mice before the tumor is established and not after, eval-

uates the effect of heme on the immune cell phenotype rather

than in cancer progression.

c-MYC is a potent oncogene aberrantly expressed in approx-

imately 80% of human malignancies (Dejure and Eilers, 2017). In

PCa, c-MYC drives tumor proliferation and the expression of

androgen receptor (AR) gene splice variants, and its levels are

associated with biochemical recurrence after radical prostatec-

tomy (Cui et al., 2020) (Bai et al., 2019; Hawksworth et al., 2010).

However, knockdown of c-MYC in fibroblasts was associated

with reduced levels of c-MYC in the prostate tumor stroma and

led to increased PCa cell invasion (Valencia et al., 2014).

Although these findings may indicate that c-myc could be a tu-

mor suppressor in the cancer stroma, our data clearly show

that heme-induced c-MYC promotes tumor growth. c-MYC

expression is tightly controlled by the presence of G4 within

the promoter (Siddiqui-Jain et al., 2002). The cationic porphyrin,

TMPyP4 can bind to the G4 within c-MYC gene promoter

thereby repressing its transcription (Siddiqui-Jain et al., 2002).

Unlike TMPyP4, TMPyP2 binds less efficiently to the G4 within

the c-MYC promoter. Although TMPyP4 and labile heme share
the same porphyrin ring structure and cationic center capable

of binding G4 structures, our studies show that, in contrast to

TMPyP4-mediated repression of transcription (Siddiqui-Jain

et al., 2002), heme promotes c-MYC expression. Recent data

show that the G4-stabilizing molecule GQC-05 efficiently in-

creases the CD spectra peak at 262 nm, resulting in a decreased

expression of c-MYC (Brown et al., 2011). We show that GQC-05

blocks heme-mediated colony growth, suggesting that heme

may drive cancer colony formation specifically through c-MYC

promoter engagement and that both molecules may compete

with each other for binding to the G4 structures. We demon-

strated that heme blunts the interaction between c-MYC pro-

moter and G4-interacting proteins nucleolin, NM23-H2, and

hnRNPK at the time when c-MYC mRNA expression peaks.

The early and transient destabilization and unwinding of G4 com-

plexes upon heme treatment (0.5–2 h) is associated with

impaired binding of NM23-H2:G4 and a decreased interaction

of hnRNPK and nucleolin with the pu27 promoter element at 2

h. The presence of CNBP was only slightly, but not significantly,

reduced at the c-MYC promoter in response to heme. CNBP

might contribute to stabilization of parallel G4 structure and

enhanced c-MYC transcription (Borgognone et al., 2010; Chen

et al., 2013). It was shown that CNBP promotes a transient

reduction of c-MYC expression, which is later reversed by inter-

action by CNBP with NM23-H2 (Chen et al., 2013). However,

CNBP was also reported to bind and stabilize the G4 in the pro-

moter of hnRNPK, resulting in suppression of transcription (Qiu

et al., 2014; Qiu et al., 2015). In contrast, CNBP promotes K-

ras expression by unwinding the G4 structure (David et al.,

2019). The dynamic changes in c-MYC promoter occupancy

by those proteins and thus alterations of heme:G4 structures

are likely responsible for the transient but robust induction of

c-MYC expression in response to heme.

Sixty percent of the heme-targeted genes display G4-rich pro-

moters supporting the hypothesis of heme direct binding to

those structures. Our data show that key genes driving cell cycle

(growth factor signaling, cyclins and cell cycle regulators of

S-phase), epithelial to mesenchymal transition (EMT; TGF-b

and Wnt pathways), and inflammation are transiently upregu-

lated by heme before HO-1 protein induction, and many of

them have been previously associated with increased invasive-

ness andmetastases. Most G4-driven geneswithin the identified

AP-1 and rRNA processing pathways return to the baseline 4 h

after heme treatment, which might be due to accelerated

entrance of PC3 cells into the S phase in the presence of

heme. The highly dynamic changes in gene expression are likely

due to a direct interaction of hemewith DNA and transient desta-

bilization of G4 structure in the promoters. In contrast to previous

studies (Biffi et al., 2014b), but in accordancewith the hypothesis

that decreased G4 formation enables gene expression to be

turned on, we demonstrated lower levels of G4 in the nucleus

of patients with poor survival and advanced disease. A compre-

hensive analysis of disease progression was missing in the prior

work. Interestingly, unlike Hx expression, the intenstity of G4

structure staining in the stroma was not correlated with a clinical

outcome. Likely, the heme:G4 quadruplex formation in healthy

cells occurs at low frequency, given the limited ability of healthy

cells to accumulate nuclear heme. By contrast, we showed that
Cell Reports 32, 108181, September 22, 2020 11
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cancer cells can tolerate accumulation of labile heme in the nu-

cleus, which may explain the modulatory effect on G4 in the can-

cer compartment rather than in the stroma.

In summary, we uncovered the functional role of nuclear labile

heme accumulation as a driver of metastasis via interaction with

G4 structures embedded in the promoter regions of critical

genes such as c-MYC. We described the antitumor function of

Hx and connected scavenging of heme to patient outcome.

Numerous implications that arise from this study include (1) the

potential use of heme levels as a biomarker for patients with

PCa, (2) the reclassification of heme (i.e., red meat or treatment

with heme arginate) as a DNA intercalating agent able to turn on

oncogene expression andmetastatic gene expression profile via

interaction with G4, and (3) the use of Hx and BG4 as clinical bio-

markers associated with cancer dissemination in prostate

malignancies.
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zaira, G., Meiss, R.P., Nuñez, M., Nemirovsky, S.I., Giudice, J., et al. (2019).

Heme oxygenase 1 impairs glucocorticoid receptor activity in prostate cancer.

Int. J. Mol. Sci. 20, 1006.

Lin, T., Maita, D., Thundivalappil, S.R., Riley, F.E., Hambsch, J., Van Marter,

L.J., Christou, H.A., Berra, L., Fagan, S., Christiani, D.C., and Warren, H.S.

(2015). Hemopexin in severe inflammation and infection: mouse models and

human diseases. Crit. Care 19, 166.

McLuckie, K.I., Di Antonio, M., Zecchini, H., Xian, J., Caldas, C., Krippendorff,

B.F., Tannahill, D., Lowe, C., and Balasubramanian, S. (2013). G-quadruplex

DNA as a molecular target for induced synthetic lethality in cancer cells.

J. Am. Chem. Soc. 135, 9640–9643.

Michelotti, E.F., Tomonaga, T., Krutzsch, H., and Levens, D. (1995). Cellular

nucleic acid binding protein regulates the CT element of the human c-myc pro-

tooncogene. J. Biol. Chem. 270, 9494–9499.

Mulvaney, E.P., Shilling, C., Eivers, S.B., Perry, A.S., Bjartell, A., Kay, E.W.,

Watson, R.W., and Kinsella, B.T. (2016). Expression of the TPa and TPb iso-

forms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical

significance and diagnostic potential. Oncotarget 7, 73171–73187.

Mungall, S., andMathieson, P. (2002). Hemolytic uremic syndrome inmetasta-

tic adenocarcinoma of the prostate. Am. J. Kidney Dis. 40, 1334–1336.

Murat, P., and Balasubramanian, S. (2014). Existence and consequences of G-

quadruplex structures in DNA. Curr. Opin. Genet. Dev. 25, 22–29.

Nassir, A.M. (2020). A piece in prostate cancer puzzle: Future perspective of

novel molecular signatures. Saudi J. Biol. Sci. 27, 1148–1154.

Nemeth, Z., Li, M., Csizmadia, E., Döme, B., Johansson, M., Persson, J.L.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-BG4 Millipore-Sigma Cat#: MABE1126

Rabbit polyclonal anti-HO1 Enzo Life Sciences Cat#: ADI-OSA-110; RRID:AB_10617276

Rabbit monoclonal anti-Hemopexin Abcam Cat#: ab124935; RRID:AB_10975463

Mouse monoclonal anti-p63 DAKO Cat#: M7317

Rabbit monoclonal anti-AMACR DAKO Cat#: M3616; RRID:AB_2305454

Rabbit anti-P(Ser780)-Rb Cell Signaling Cat#: 9307S; RRID:AB_330015

Mouse monoclonal anti-Rb Cell Signaling Cat#: 9309; RRID:AB_823629

Mouse monoclonal anti-HO-1 Enzo Laboratories Cat#: ADI-OSA-110; RRID:AB_10617276

Rabbit monoclonal anti-P(Ser139)-H2AX (gH2AX) Cell Signaling Cat#: 9178; RRID:AB_2072132

anti-cyclin B1 Cell Signaling Cat#: 4138

Mouse monoclonal anti-P(Ser1981)-ATM Cell Signaling Cat#: 4526S; RRID:AB_2072132

Mouse monoclonal anti-c-myc Santa Cruz Biotechnology Cat#: sc-40; RRID:AB_2857941

Rabbit anti-P-(Ser10)Histone H3 Cell Signaling Cat#: 9711S; RRID:AB_331536

Mouse monoclonal anti-b-Actin Sigma Aldrich Cat#: A2228; RRID:AB_476697

Rabbit anti-lamin A/C Cell Signaling Cat#: 2032S; RRID:AB_2136278

Rabbit monoclonal anti- GAPDH Cell Signaling Cat#: 2118; RRID:AB_561053

anti-Nucleolin Abcam Cat#: AB13541; RRID:AB_300442

anti-NM23H2 Santa Cruz Biotechnology Cat#: SC-100400; RRID:AB_1126689

anti-CNBP Santa Cruz Biotechnology Cat#: SC-515387 X

anti-hnRNPK Abcam Cat#: AB39975; RRID:AB_732981

Biological Samples

TMA from radical prostatectomies of prostate cancer patients Skåne University Hospital,

Malmö, Sweden

N/A

Plasma from patients undergoing a PSA test Skåne University Hospital,

Malmö, Sweden

N/A

Chemicals, Peptides, and Recombinant Proteins

Hemin Sigma-Aldrich Cat# 51280

GQC-05 Dr. Hurley’s laboratory

Brown et al., 2011

Brooks and Hurley, 2009

N/A

o-dianisidine dihydrochloride Sigma-Aldrich Cat# D3252

Critical Commercial Assays

Nuclear/cytoplasmic fractionation kit BioVision Cat# K270

BCA Protein Kit Pierce Cat# 23227

Hemin Colorimetric Assay Kit BioVision Cat# K672

Human Hemopexin ELISA Kit Abcam Cat# ab108859

Deposited Data

RNA sequencing data from PC3 cells untreated or treated with

heme (50 mM) for 2 or 4 hours

Gene Expression Omnibus GSE139091

Experimental Models: Cell Lines

Prostate cancer PC3 cells Dr. Steven Balk (BIDMC,

Boston)

N/A

Prostate cancer TRAMP-C1 cells ATCC CRL-2730

Prostate cancer LnCaP cells ATCC CRL-1740

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Prostate epithelial cells PNT1A Dr. Nishtman Dizeyi (Lund

University, Malmo, Sweden)

N/A

Lung carcinoma A549 cells ATCC CCL-185

Human bronchial epithelial cells NHBE Lonza CC-2540S

Lewis lung carcinoma LLC cells ATCC CRL-1642

BJ fibroblasts (ELR, ELT and EHZ cells) Dr. Weinberg

Boehm et al., 2005

N/A

Experimental Models: Organisms/Strains

Nude nu/nu mice Jackson Laboratories Stock No: 002019

C57Bl6/J Wild Type Jackson Laboratories Stock No: 000664

C57Bl6 Hx�/� Dr. Tolosano’s laboratory

Tolosano et al., 1999

N/A

Oligonucleotides

C-MYC promoter FW: GCTGGAAACCTTGCACCTC This paper N/A

C-MYC promoter RV: CGTTCAGGTTTGCGAAAGTA This paper N/A

WT Pu27 for EMSA: TGGGGAGGGTGGGGAGGGTGGGGAAGG Siddiqui-Jain et al., 2002 N/A

Mutated Pu27 for EMSA: TGAGTAGCGTGAGCAGAGTG

CGTAACG

Siddiqui-Jain et al., 2002 N/A

Hmox1, mouse FW: CTCACTATGCAACTCTGTTGGAGG This paper N/A

Hmox1, mouse RV: GTCTGTAATCCTAGCTCGAA This paper N/A

ALAS1 FW: TCTTCCGCAAGGCCAGTCT This paper N/A

ALAS1 RV: TGGGCTTGAGCAGCCTCTT This paper N/A

ZNF469 FW: CGCGAAGACCTTCCTGTTAG This paper N/A

ZNF469 RV: CTCTGTGATGAGGCTGTCCA This paper N/A

Hmox1, human/mouse FW:

CAGGATTTGTCAGAGGCCCTGAAGG

This paper N/A

Hmox1, human/mouse RV: TGTGGTACAGGGAGGCCATCACC This paper N/A

c-MYC human FW: 5’ATGAAAAGGCCCCCAAGGTAGTTATCC This paper N/A

c-MYC human RV: 5’GTCGTTTCCGCAACAAGTCCTCTTC This paper N/A

c-MYC, mouse FW: GCCCAGTGAGGATATCTGGA This paper N/A

c-MYC, mouse RV: ATCGCAGATGAAGCTCTGGT This paper N/A

MMP2, human FW: CGGCCGCAGTGACGGAAA This paper N/A

MMP2, human RV: CATCCTGGGACAGACGGAAG This paper N/A

MMP2, mouse FW: GTCGCCCCTAAAACAGACAA This paper N/A

MMP2, mouse RV: GGTCTCGATGGTGTTCTGGT This paper N/A

MMP9, human FW: TTGACAGCGACAAGAAGTGG This paper N/A

MMP9, human RV: GCCATTCACGTCGTCCTTAT This paper N/A

MMP9, mouse FW: CGTCGTGATCCCCACTTACT This paper N/A

MMP9, mouse RV: AACACACAGGGTTTGCCTTC This paper N/A

uPA, human FW: CAGGGCATCTCCTGTGCATG This paper N/A

uPA, human RV: AGCCCTGCCCTGAAGTCGTTA This paper N/A

uPA, mouse FW: GCCTGCTGTCCTTCAGAAAC This paper N/A

uPA, mouse RV: TAGAGCCTTCTGGCCACACT This paper N/A

AMIGO2, human FW: TCGTTTGCAAAGCTGAACAC This paper N/A

AMIGO2, human RV: GCAGAAGCACTTCCAGAACC This paper N/A

AMIGO2, mouse FW: TCACGGGAACCCATTTGTAT This paper N/A

AMIGO2, mouse RV: CTGAGCCTCGTGGATAAAGC This paper N/A

ULK1, human FW: CAGAACTACCAGCGCATTGA This paper N/A

ULK1, human RV: TCCACCCAGAGACATCTTCC This paper N/A

(Continued on next page)
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ULK1, mouse FW: CCCAGAGTACCCGTACCAGA This paper N/A

ULK1, mouse RV: GTGTAGGGTTTCCGTGTGCT This paper N/A

Software and Algorithms

Differential gene expression analysis This paper https://combine-australia.github.

io/RNAseq-R/06-rnaseq-day1.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Bar-

baraWegiel (Department of Surgery, Beth Israel DeaconessMedical Center, HarvardMedical School, bwegiel@bidmc.harvard.edu).

Materials Availability
This study did not generate any unique reagents.

Data and Code Availability
RNaseq data generated in this study were deposited on Gene Expression Omnibus under the accession number: GSE139091 (a pri-

vate access token is ubmlmigqzlkrdiv, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139091).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Prostate cancer PC3 cells were a gift from Dr. Steven Balk (BIDMC, Boston, MA) and were maintained in RPMI medium (GIBCO, Life

Technologies) supplemented with 10% Fetal Bovine Serum (Atlanta Biologicals). TRAMP-C1 cells were purchased from ATCC and

maintained in DMEM supplemented with 10% Fetal Bovine Serum (Atlanta Biologicals). PC3 Control shRNA or PC3 shRNA c-myc

(Addgene), LNCaP, A549 and PNT1A were previously described (Wegiel et al., 2013). BJ fibroblasts transformed with oncogenes

(ELR, ELT, EHZ) were kindly provided by Dr. Weinberg (MIT, Cambridge, MA) (Boehm et al., 2005) and were cultured in DMEM

high glucose supplemented with 10% FBS. Human bronchial epithelial cells (NHBE) were from Lonza and were maintained in Bron-

chial Epithelial Cell Growth Medium with Supplements as specified by manufacturer’s protocol (Lonza). Cells were maintained in a

37�C humidified incubator with 5% CO2 and 21% O2.

Patients samples
Tissues from radical prostatectomies of 341 prostate cancer patients, operated between 1998 and 2006 at SkåneUniversity Hospital,

Malmö, Sweden was used to construct a tissue microarray (TMA) as previously described in (Tassidis et al., 2013). Clinical follow-up

data of minimum 10 years and pathological staging was available for most of the patients and the clinical characteristics have been

previously described in Mulvaney et al. (2016). Plasma samples were from patients undergoing a PSA test at the Malmö University

Hospital between 2004 and 2010 (ethical permit number 2016/1030). The patients were followed up for a minimum of 8 years. All

patients included in this study received a prostate cancer diagnosis after the PSA test, based on positive biopsies. Patients who

received a diagnosis of Gleason score 6 or 7 were defined as ‘‘low grade’’ (n = 16, mean age 72.7) and those with a diagnosis of

Gleason score 8 or higher were defined as ‘‘high grade’’ (n = 10, mean age 70.8). Healthy donors were men with no known cancer

diagnosis (n = 7, mean age 57,1) who volunteered to donate blood at the Malmö University Hospital (ethical permit 2019/02234). The

blood was collected in EDTA tubes and centrifuged for 10minutes at 2000 x g. Plasma was extracted, aliquoted and stored at�80�C
until further use.

Animal models
Nude nu/numice and C57Bl6 mice were from Jackson Laboratories. Hx�/�mice were from Tolosano et al. 1999, (2002). For prostate

studies onlymalemicewere used. All animals were kept in ventilated cages (up to fivemice per cage) in a 12-hour light-dark cycle and

were provided water and food ad libitum at all times. The procedures were approved by the Institutional Animal Care and Use Com-

mittees at Beth Israel Deaconess Medical Center.

METHOD DETAILS

Reagents
Fe (III) heme (hemin; referred as ‘heme’ throughout the text) (Sigma-Aldrich) was prepared by dissolving powder in 0.1 N NaOH and

then titrated with 0.1 N HCl to biological pH 7.4, followed by adjustment to the final concentration (10 mM) with saline. Heme stock
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was then aliquoted and frozen at�80�C until use; each aliquot was thawed only once. Experiments utilizing heme were carried out in

the dark at various concentration of 1-50 mM. GQC-05 (Dr. Hurley’s laboratory) was previously described (Brooks and Hurley, 2009;

Brown et al., 2011) and used at 10 mM concentration for treatment in vitro.

Soft agar colony assay
1x104 PC3 cells were suspended in 0.35%biotechnology grade agarose (Amresco) in RPMI supplemented with 10%FBS and plated

before solidifying on a solid 0.5% agarose with RPMI medium supplemented with 10% FBS. Medium was replaced every third day.

Colonies were maintained for 2-3 weeks in a humidified incubator at 37�C, followed by staining with methylene blue (Sigma-Aldrich)

and counting individually.

Cell cycle analysis
For cell cycle analysis, cells were serum starved for 48 h and then treated with 50 mMheme for additional 8-48 h. Cells were harvested

and washed in PBS and then fixed in 70% cold ethanol while vortexing. Cells were fixed for at least 30 min at 4�C. After fixation, cells
were washed twice in PBS and resuspended in PBSwith RNase (100 mg /ml). Cells were stained with propidium iodide (50 mg/ml) and

analyzed by flow cytometry.

Tumor models
Nude nu/nu mice (Jackson Laboratories, Stock No: 002019) were injected subcutaneously with 5x106 PC3 prostate cancer cells in

each of two flanks per animal. Once tumors were established, mice were injected with heme (35 mg/kg, i.p.) once daily for an addi-

tional two weeks. Tumor sizes were monitored by caliper. LLC tumors were established in C57Bl6/J mice (Jackson Laboratories,

Stock No: 000664) by injecting of 0.5x106 Lewis lung carcinoma cells subcutaneously. Tumors were established in 10-14 days

and mice were treated with heme (35 mg/kg, i.p.) once daily for an additional week. TRAMP-C1 tumors were established by injecting

of 2x106 cells in the prostate of the animals. Tumors were established for 1 week and mice were treated with heme (35 mg/kg, i.p.)

once daily for 4 additional weeks. Tumors were isolated and their sizes were measured by caliper.

BG4 antibody generation
BG4 antibody encoding plasmid (Biffi et al., 2013) was a kind gift of Dr. Balasubramanian Lab (Cambridge University, UK). The single

chain antibody was modified at the Creative Biolabs to generate a human IgG encoding plasmid and transfected into HEK293 cells,

after which the product was purified by HiTrap rProteinG FF and filtered by 0.2 mm. The antibody was aliquoted and frozen at�20�C
or �80�C until use.

IHC and immunostaining
For IHC on TMA, deparaffinized 4-mm sections from the TMA blocks were subjected to antigen retrieval using a PT-Link module

(Dako, Glostrup, Denmark) at 95–99�C for 20 min in citric acid buffer (0.01 M, pH 6.0). Immunostaining for BG4 (1:300, Millipore),

HO-1 (1:400, Stressgen) and hemopexin (1:500, Abcam) was performed using EnVision Flex high-pH reagent (Dako) in an Autostainer

Plus system according tomanufacturer’s protocol. In order to distinguish benign from tumor areas, consecutive sections of the TMAs

were also stained for p63 (M7001, 1:50 DAKO) and AMACR (alpha-methyl acyl-CoA racemase; M3616, 1:100 DAKO) respectively.

Gleason score was assigned to each TMA core by a senior National Board certified pathologist with help of hematoxylin & eosin (H&E)

stained tissue sections. The slides were digitized on an Aperio Scanscope scanner and visualized on the Aperio ImageScope soft-

ware (Leica Biosystems, Wetzlar, Germany). Immunostained sections were scored considering the intensity of the staining and also

the percentage of stained cells. Samples were given an intensity score between 0 and 3 (0 = negative, 1 = low, 2 =moderate, 3 = high)

and a positivity score based on the percentage of stained cells (< 10% = 1, 11%–75% = 2, > 75% = 3). These two scores (intensity

score and fraction of positively stained cells) were then multiplied to give a final expression score (H-score, 0-9). Two benign and two

cancer cores from each patient were available and results are based on the average value for the two cores. The total number of cores

analyzed is reported in Table S4.

Immunohistochemistry of paraffin embedded formalin fixed tissues was performed as previously described (Wegiel et al., 2013).

Slides containing either FFPE sections or cells underwent a rehydration procedure, followed by high pressure-cooking antigen

retrieval method in citrate buffer, blocking with 7% horse serum (Vector Laboratories) and overnight incubation with primary anti-

bodies at 4�C. After washing with PBS, slides were blocked with H2O2 followed by incubation with either Alexa Fluor conjugated sec-

ondary antibodies (Thermo Scientific) or biotin-labeled secondary antibodies (Vector Laboratories) for 1 h at RT. For immunofluores-

cence, slides were then contrast stained with Hoechst, dried, and mounted with gelvatol. For light microscopy, Vectastain Elite ABC

System was used to enhance the signals (Vector Laboratories) for 30 minutes followed by reaction development with DAB Substrate

(Vector Laboratories).

Nuclear/Cytoplasmic Fractionation
Fractions were isolated using the nuclear/cytoplasmic fractionation kit (BioVision) according tomanufacturer’s protocol. Briefly, cells

were trypsinized, washed once with PBS, and incubated on ice for 10 minutes with cytosolic extraction buffer A after which cytosolic

extraction buffer Bwas added, vortexed, and then placed on ice for 1minute. After centrifugation, the clear supernatant was removed
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as the cytoplasmic fraction, while the pellet waswashed oncewith PBS and then resuspended in Nuclear Extraction buffer A followed

by sonication to ensure nuclear fraction lysis.

Immunoblotting
Proteins were harvested in lysis buffer (25 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 100 mM NaF, 1 Complete Mini Protease Inhibitor

Cocktail Tablet (Roche)). After sonication, lysates were centrifuged at 12,000 x g at 4� for 10 minutes. Protein concentrations were

measured using the BCA Protein Kit (Pierce). 15-35 mg proteins were applied on 4%–12%NuPAGE Bis-Tris SDS polyacrylamide gel

electrophoresis in MES SDS running system (Novex by Life Technologies) followed by transfer to PVDF membrane (Amersham and

Biorad). Following transfer, membranes were blocked in 5% nonfat milk for one hour. The following antibodies were applied rotating

overnight at 4�C: P-(Ser780)-Rb (Cell Signaling), Rb (Cell Signaling), HO-1 (Enzo Laboratories), HO-1 rabbit monoclonal (Abcam),

P-(Ser139)-H2AX (gH2AX) (Cell Signaling), cyclin B1 (Santa Cruz Biotechnology), P-(Ser1981)-ATM (Cell Signaling), c-myc (Santa

Cruz Biotechnology), and P-(Ser10)Histone H3 (Cell Signaling). b-Actin (Sigma Aldrich) was used for total lysates while lamin A/C

and GAPDH (Cell Signaling Technologies) were used for nuclear and cytoplasmic loading controls, respectively. The following

day, after brief washing with Tris-buffered saline, membranes were incubated with HRP conjugated secondary antibodies (Cell

Signaling Technologies), followed by chemiluminescent (ECL, Thermo Fisher) detection on film (Bioexpress) or by Chemi Chemi-

Doc� Touch Imaging System (Bio-Rad).

Chromatin immunoprecipitation (ChIP):
ChIP was performed as previously described by Zhang et al. (2013). Briefly, treated and untreated PC3 cells were washed twice

with PBS and then crosslinked with 1% formaldehyde. Cell pellets were washed twice with ice-cold 1X PBS (freshly supplemented

with 1 mM PMSF). Pellets of 3 x106 cells were used for immunoprecipitation and lysed for 10 minutes on ice and chromatin frag-

mented using a Bioruptor Model 300, Diagenode (20 cycles, 30 s on, 60 s off, high power). Each ChIP was performed with 1 to 8 mg

of the following antibodies: anti-Nucleolin (Abcam), anti-NM23H2 (Santa Cruz Biotechnology), anti-hnRNPK (Abcam), anti-CNBP

(Santa Cruz Biotechnology), normal mouse IgG (Millipore 12-371b), and then incubated overnight at 4�C. A slurry of protein G mag-

netic beads (NEB) was used to capture enriched chromatin, which was then washed before reverse-crosslinking and proteinase K

digestion at 65�C. Beads were then removed in the magnetic field and RNase treatment (5mg/ml Epicenter MRNA092) performed for

30 minutes at 37�C. ChIP DNA was extracted with Phenol:chloroform:isoamyl Alcohol 25:24:1, pH:8 (Sigma) and then precipitated

with equal volume of isopropanol in presence of glycogen. DNA pellet was dissolved in 30ml of TE buffer for following qPCR

analyses.

ChIP with flagged BG4 antibody (Millipore), was performed in the same conditions of lysis buffer and shering chromatin. 2 to 10 mg

of antibody were initially incubated with the lysate at 4�C, O/N and then Anti-FLAGM2Magnetic Beads (Sigma) were used to capture

the fragmeted chromatin as previously described (Zhang et al., 2013). DNA isolated samples were all analyzed by quantitative real

time PCR using the following primers: (c-MYC promoter) F: 50 GCTGGAAACCTTGCACCTC, R: 50 CGTTCAGGTTTGCGAAAGTA.

Fold enrichment was calculated using the formula 2 (-DDCt (ChIP/non-immune serum)).

RNA-sequencing
RNA was isolated from PC3 cells lysed in TRIzol reagent after treatment with heme for 2 or 4 hours. Biological duplicates were pre-

pared. RNA quality was assessed using Bioanlyzer. Libraries were prepared using Illumina Truseq stranded Kit and sequenced on a

BGI-SEQ, PE100 resulting in libraries with 40M reads per sample.

Oligonucleotides, EMSA and Circular Dichroism
Oligonucleotides (Life Technologies) were purified by 15%denaturing polyacrylamide gel electrophoresis followed by elution inwater

and ethanol precipitation overnight. Oligonucleotides were then end labeled with [g-32P] ATP (Perkin Elmer) and T4 polynucleotide

kinase (Roche/Sigma) and then passed through G-25 columns to remove unlabeled oligonucleotides. Labeled oligos were folded in

10 mM Tris-HCl pH 7.4 with or without 100 mM KCl in a PCR machine (BioRad) according to the following protocol: 95�C for

5 minutes, followed by slow cooling to 26�C over 1.5 hours. Binding reactions with or without IgG or BG4 antibodies were carried

out using the Active Motif GelShift system of binding, stabilizing and dilution buffers (Active Motif) and run on 6% polyacrylamide

gel. The gel was then dried and exposed to X-ray film and/or PhosphorImager screens. Oligonuclotides sequences used are as

follows: Pu27 50TGG GGA GGG TGG GGA GGG TGG GGA AGG 30, Mutated Pu27 50 TGA GTA GCG TGA GCA GAG TGC GTA

ACG 30 (Siddiqui-Jain et al., 2002). Circular dichroism and characterization of the melting temperature of the G4:heme complexes

were performed as previously described (Siddiqui-Jain et al., 2002).

Real time PCR
RNA was isolated from snap-frozen tissues or cells (QIAGEN) according to manufacturer’s protocol and eluted with water. 1 mg of

isolated RNA, measured using Nanodrop, was then used to make cDNA using the iScript Reverse Transcription Supermix (BioRad)

in 20 ml reaction. 1 ml of the undiluted cDNA was then used with SYBR green PCRMaster Mix (Bio-Rad). Primer used were as follows:
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Hmox1, mouse FW: CTCACTATGCAACTCTGTTGGAGG; RV: GTCTGTAATCCTAGCTCGAA; Hmox1, human/mouse FW: CAGG

ATTTGTCAGAGGCCCTGAAGG; RV: TGTGGTACAGGGAGGCCATCACC; c-MYC human FW: 50ATGAAAAGGCCCCCAAG

GTAGTTATCC; RV: 50GTCGTTTCCGCAACAAGTCCTCTTC; c-MYC, mouse FW: GCCCAGTGAGGATATCTGGA, RV: ATCGCAGAT

GAAGCTCTGGT; MMP2, human FW: CGGCCGCAGTGACGGAAA, RV: CATCCTGGGACAGACGGAAG; MMP2, mouse FW:

GTCGCCCCTAAAACAGACAA, RV: GGTCTCGATGGTGTTCTGGT; MMP9, human FW: TTGACAGCGACAAGAAGTGG, RV:

GCCATTCACGTCGTCCTTAT; MMP9, mouse FW: CGTCGTGATCCCCACTTACT, RV: AACACACAGGGTTTGCCTTC; uPA, human

FW: CAGGGCATCTCCTGTGCATG, RV: AGCCCTGCCCTGAAGTCGTTA; uPA, mouse FW: GCCTGCTGTCCTTCAGAAAC, RV:

TAGAGCCTTCTGGCCACACT; AMIGO2, human FW: TCGTTTGCAAAGCTGAACAC, RV: GCAGAAGCACTTCCAGAACC; AMIGO2,

mouse FW: TCACGGGAACCCATTTGTAT, RV: CTGAGCCTCGTGGATAAAGC; ULK1, human FW: CAGAACTACCAGCGCATTGA,

RV: TCCACCCAGAGACATCTTCC; ULK1, mouse FW: CCCAGAGTACCCGTACCAGA, RV: GTGTAGGGTTTCCGTGTGCT;

ZNF469, human/mouse FW: CGCGAAGACCTTCCTGTTAG, RV: CTCTGTGATGAGGCTGTCCA; ALAS1, FW: TCTTCCGCAAGGC

CAGTCT, RV: TGGGCTTGAGCAGCCTCTT.

Viability assay
Cell viability was measured as previously described (Hedblom et al., 2019). Briefly, 2000 cells were plated in a 96 well plate and

treated with increasing concentrations of GQC-05. After incubation, cells were stained with Crystal Violet solution (Sigma-Aldrich)

for 20 min at room temperature and then extensively washed in double-distilled water. Wells were dried and 10% acetic acid was

added to each well to dissolve the staining. The absorbance was measured at 560 nm using an ELISA plate reader.

Geo Profiles
GEOprofiles from 18 normal prostatic tissues (without any pathological alterations), 62 tissues adjacent to tumors, 64 primary tumors

and 24 metastatic samples were obtained from patients with prostate cancer as described in previously published data (Chandran

et al., 2007; Nemeth et al., 2015). Metastatic biopsies were derived from patients with prostate cancer metastases to the liver, lymph

nodes, kidney, lung and adrenal glands.

Heme and hemopexin measurement
Heme levels were measured using colorimetric kit following manufacturer protocol (Biovision). All experiments were also repeated

using benzidine staining. The o-dianisidine stock solution was prepared (o-dianisidine: 60mg and 0.3 mL glacial acetic acid,

29.7 mL water) and used for staining immediately after mixing with 30% hydrogen peroxide. This working solution was added to

the lysate in a proportion of 1:10. The absorbance of the colorimetric reaction was read by ELISA plate reader at 570 nm. In alternative

method, cells seeded on the glass coverslips were stained with working solution followed by extensive washing and fixation with PFA

and staining of the nuclei with hematoxylin. Hemopexin levels were measured using a colorimetric ELISA kit (Abcam ab108859)

following manufacturer’s protocol.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq bioinformatics analyses
Raw fastq files first had optical duplicates removed using clumpify from the BBTools suite using the flag ‘‘dedupe spany addcount.’’

Next, adaptor trimming was performed using bbduk, also from the BBTools suite using the flag ‘‘ktrim=l hdist=2.’’ Next, reads were

quality trimmed with Trimmomatic in paired end mode with the flags ‘‘ILLUMINACLIP: <adapter_path> Truseq3.PE.fa:2:15:4:4:true

LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15 MINLEN:25.’’ Alignment was performed using STAR with the flags ‘‘–outFilter-

ScoreMinOverLread 0.1–outFilterMatchNminOverLread 0.1–outFilterMultimapNmax 1’’ with the resultant bam files sorted and in-

dexed using samtools. BamCoverage was used to generate coverage maps using default parameters. HTSeqCount was used to

generate gene counts values using the flags ‘‘–stranded=no–mode=intersection-nonempty.

Differential Gene Expression, Pathway and Gene Set Enrichment Analysis
Differential gene expression analysis was performed following an available tutorial (https://combine-australia.github.io/RNAseq-R/

06-rnaseq-day1.html). Briefly, cpm counts were calculated and genes with cpm values < 0.5 were excluded. Normalization factors

were then calculated for TMM normalization. Differential expression was calculated using limma-voom using appropriate design

matrices. Finally, appropriate contrasts were applied, and differential gene expression tables generated for the appropriate test con-

ditions. Differential gene expression lists were then uploaded to QIAGEN’s Ingenuity Pathway Analysis suite and analyzed online.

Ranked gene lists based on the differential gene expression lists were used for Gene Set Enrichment Analysis using the Broad Insti-

tute tool.
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Statistics
All data are presented as mean ± standard error of the mean (SEM) unless otherwise indicated. Statistical analysis was performed

using one-way or two-way analysis of variance (ANOVA) followed by the post hoc Tukey or Bonferroni test or using unpaired T stu-

dent test using PrismGraphpad and Excel software. Differences between groups were rated significant at values of p < 0.05. Kaplan-

Meier survival curve analysis was performed in SPSS (IBM, USA). Median value was used to dichotomize the data into ‘‘low’’ and

‘‘high.’’ Cox regression was used to determine hazard ratios, confidence intervals and p value. Details on the statistical method

used are reported in each figure legend.
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