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Abstract 

 Sunlight-mediated inactivation of microorganisms is a low-cost approach to disinfect 

drinking water and wastewater. The reactions involved are affected by a wide range of factors, 

and a lack of knowledge about their relative importance make it challenging to optimize 

treatment systems. To characterize the relative importance of environmental conditions, 

photoreactivity, water quality, and engineering design in the sunlight inactivation of viruses, we 

modeled the inactivation of three – human adenovirus and two bacteriophages – MS2 and 

phiX174 – in surface waters and waste stabilization ponds by integrating solar irradiance and 

aquatic photochemistry models under uncertainty. Through global sensitivity analyses, we 

quantitatively apportioned the variability of predicted sunlight inactivation rate constants to 

different factors. Most variance was associated with the variability in and interactions among 

time, location, non-purgeable organic carbon (NPOC) concentration, and pond depth. Photolysis 

quantum yield of the virus outweighed seasonal solar motion in the impact on inactivation rates. 

Further, comparison of simulated sunlight inactivation efficacy in maturation ponds under 

different design decisions showed reducing pond depth can increase the log inactivation at the 

cost of larger land area, but increasing hydraulic retention time by adding ponds-in-series 

yielded greater improvements in inactivation. 

 

Keywords:  solar inactivation, log removal, disinfection, uncertainty, APEX, SMARTS, lagoon
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Introduction 

Sunlight-mediated inactivation of bacteria and viruses has been widely studied in natural 

surface waters,1–3 and has been leveraged as a low-cost approach to disinfection for drinking 

water (solar water disinfection, SODIS4) and wastewater (such as in waste stabilization ponds  

[WSPs]5 and constructed wetlands6,7). WSPs have gained popularity in recent decades, 

especially in developing communities and rural settings,8,9 and have been promoted as strategy 

to mitigate human health risks caused by waterborne viruses. However, the efficacy of virus 

inactivation in these systems has been observed to be highly variable and often not optimized.10 

Virus removal in WSP systems has been reported to vary from 1-log to 4-log removal.6 A 

number of factors contribute to inactivation variability within and across sites, including 

environmental conditions determining the incident sunlight irradiance, water constituents 

absorbing sunlight, and water depth affecting the level of sunlight attenuation. However, the 

relative importance of each factor, their interactions with each other, and the resulting 

implications for the design of optimized WSPs, have not been characterized.  

Efforts have been made to characterize the individual factors that affect disinfection 

within solar-driven treatment systems.11 The effects of a wide range of variables on sunlight 

disinfection rates have been investigated. These variables include water matrix characteristics 

(e.g., pH,12–14 dissolved oxygen [DO] concentration,12,14 salinity,15 the concentration and type of 

natural organic matter,13,16,17 the presence of other light absorbing water constituents,12,18 

temperature12,17,19), water depth,7,20 sunlight irradiation spectrum,21,22 and virus 

charateristics.1,10,21 The results have been used by researchers to develop semi-mechanistic 

model equations that describe the sunlight inactivation rate constants of viruses as a function of 

the most influential inputs.7,22–25 These equations have been able to predict inactivation rates in 

good agreement with measurements in a few experimental settings but are yet to be examined 

across wide ranges of spatial-temporal locations or physiochemical conditions of water.7,24–26 
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Existing sunlight inactivation rate models for viruses assume first-order inactivation 

kinetics and estimate decay rates as a sum of the endogenous and exogenous inactivation rate 

constants.11 Endogenous inactivation is caused by damage to viruses resulting from direct 

absorption of photons by the virion. Therefore, most inactivation rate models are based on 

biological weighting functions (also known as photoaction spectra), which describe the 

wavelength-dependent sensitivity of viruses to endogenous sunlight damage,22,26,27 although 

different approaches take into account the separate effects of virion absorption and photon 

action.23,24 Exogenous inactivation, on the other hand, results from damage by exogenous 

photo-produced reactive intermediates (PPRIs) – formed by external photosensitizers upon their 

absorption of sunlight photons – and can be described by second-order reaction kinetics as a 

function of steady-state PPRI concentrations18. Singlet oxygen (1O2) has been found to be the 

most important PPRI contributing to exogenous inactivation of the MS2 bacteriophage,3,7,13,21,25 

which was considered suitable as surrogate for monitoring virus reduction in wastewater 

reclamation.28 Some studies have modeled exogenous inactivation rates as a function of 

steady-state concentration of 1O2 alone,7,25 while others have also included the triplet-state 

chromophoric dissolved organic matter (3CDOM*), hydroxyl radical (•OH), and carbonate radical 

(CO3
•-) in the modeling of exogenous decay rate.23,24 The latter adapted a series of previously-

developed equations for aqueous photochemical reactions29–32 and experimentally derived the 

photoreactivity parameters for several virus species.23–25  Despite progress in the quantification 

of individual parameters and relationships driving sunlight inactivation of viruses, a systematic 

comparison to determine the relative importance of virus-specific parameters and their 

interactions with other scenario-specific factors (e.g., location, treatment system design) is still 

missing. 

The objective of this work was to elucidate the environmental, water quality, 

photoreactivity, and engineering design parameters governing the efficacy and variability of 
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sunlight virus inactivation to reduce the uncertainty of model predictions and support the design 

of more reliable sunlight-driven disinfection systems. The variability of nine parameters of 

environmental conditions, water quality, and engineering design, and the uncertainty of five viral 

photoreactivity parameters were characterized based on existing knowledge and experimental 

data. Given the susceptibility to endogenous and exogenous inactivation and the general 

resistance to sunlight irradiation differ among virus species,1,10,28 we ran Monte Carlo 

simulations of the integrated model by simultaneously varying the parameters for one human 

enteric virus and two bacteriophages (surrogates for enteric viruses) across two types of water 

(natural surface water, WSP water). Simulation output  (the first-order rate constant of virus 

inactivation) was used to compare the relative importance of the fifteen parameters and quantify 

the interactions among them through robust global sensitivity analyses (i.e., the Morris One-at-

A-Time screening technique and subsequently Sobol’s variance-based sensitivity indices). 

Finally, to illustrate the influence of pond design on virus inactivation performance, we predicted 

the disinfection of bacteriophage MS2 in a maturation pond system with different designs by 

modeling continuous stirred-tank reactors (CSTRs) in series. 

Methods 

Photochemical modeling of sunlight virus inactivation. Sunlight inactivation rate constants 

were modeled for three viruses: human adenovirus (dsDNA), and bacteriophages MS2 (ssRNA) 

and phiX174 (ssDNA). The sunlight inactivation rate through a well-mixed water column  

was modeled as the sum of two mechanisms – endogenous and exogenous – following the 

photochemical model and the algorithm used by the APEX software.29 Adenovirus and MS2 are 

among the most resistant viruses to UV disinfection, while phiX174 exhibits the opposite relative 

susceptibilities to endogenous and exogenous inactivation.11 

  (1)  
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, in h−1, was predicted as the first-order reaction rate constant of the direct photoinactivation 

of the virion.  [h−1], on the other hand, was predicted as the pseudo first-order rate constant 

of a series of parallel photooxidation reactions between the virion and exogenous PPRIs (1O2, 

•OH, CO3
•−, and 3CDOM*).  

 

 (2) 

 
 

(3) 

 depends on the susceptibility of virion to sunlight inactivation ( ) and the 

virion’s exposure to sunlight in the water ( ), as shown in eq. (2). A 

virion’s exposure to sunlight in water depends simultaneously on the incident sunlight irradiance 

and the attenuation by water constituents as sunlight transmits through the water body.  

[cm−1], the specific water absorbance over a 1-cm optical path, was predicted as an exponential 

function of the concentration of non-purgeable organic carbon (NPOC, in mg-C∙L−1) and 

wavelength:29 

  (4) 

 (eq. (3)) depends on the viral susceptibilities to PPRIs ( ) and the steady-state 

concentrations of these PPRIs ( ) that are determined by the steady-state conditions 

that encompass formations sensitized by CDOM, nitrate, and nitrite upon sunlight absorption 

and loss through scavenging reactions with water constituents (e.g., DOM, inorganic carbon, 

O2), or simply energy loss.29 So, the APEX model predicts  as functions of water 

chemistry, water depth, and incident sunlight spectrum.29 All viral photoreactivity parameters for 

adenovirus, MS2, and phiX174, including quantum yield [mol virus inactivated ∙ (mol 
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photon absorbed) −1], molar absorption coefficient  [(mol virus) −1
∙L∙cm−1], and second-order 

reaction rate constants  [L∙(mol virus) −1
∙s−1], have been estimated in previous studies 

using the observed inactivation rates in controlled experiments.23,27 

Since  is an average value over the well-mixed water column, the model considered 

sunlight penetration and attenuation through a water body by including the optical path length,  

[cm], in the prediction of  and , assuming Lambert-Beer’s Law.  is derived from the 

depth,  [cm], of the well-mixed water column and the zenith angle,  [°], of the sunlight incident 

on the water surface.33  

 

 
(5) 

 [Einstein∙cm−2
∙s−1
∙nm−1], the photon flux density of the incident sunlight, was used 

to model both  and . As important inputs to the photochemical model,   and  

were modeled by the SMARTS program (Simple Model of the Atmospheric Radiative Transfer 

of Sunshine, version 2.9.5) as a function of environmental conditions.34 To automate simulation 

of  under varying sunlight conditions, the APEX model and the SMARTS program were 

connected and run through Python. 

Variability of input parameters. To identify the influential factors responsible for 

variability in the sunlight inactivation rates of viruses, this work compared the relative 

importance of fourteen parameters in the sunlight inactivation model (Table S3), which 

characterize environmental conditions, virus photoreactivity, water quality, and engineering 

design of the reaction system. Geographic location, elevation, and seasonal and diurnal motions 

of the sun affect the sunlight inactivation rate by determining the solar position and, 

subsequently, the sunlight incident on water surface. Therefore, in the modeling of  and , 
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we considered the variability of latitude, longitude and elevation of geographical locations 

exposed to perennial sunlight, i.e., between 60° S and 60° N. Values of these parameters were 

sampled from the Shuttle Radar Topography Mission (SRTM) elevation data (1-km resolution) 

to represent the empirical distribution.35 The influence of seasonal and diurnal motions of the 

sun was captured by running simulations on the 22nd day of each month across twelve months, 

and between the sunrise and sunset times specific to the location and the date. Other 

parameters in the SMARTS program either were assumed constant (in which case the default 

values provided by SMARTS were used) or were estimated as functions of the geographic and 

temporal parameters (Tables S1, S2). 

Uncertainties have been reported around measurements of most parameters 

characterizing viral photoreactivity in existing studies (Table S3).23,24 Estimations of  from 

two different studies differed by an order of magnitude.23,27 To investigate to what degree such 

uncertainty around  would affect the prediction of , we assumed a uniform distribution 

within 10~100% of the values reported by Mattle et al.23 As for , the lower (1.2×108 

M−1
∙s−1) and upper (1.97×109 M−1

∙s−1) bounds were estimated from the experimental data 

reported by Silverman et al.21 and Rosado-Lausell et al.18 respectively, based on the observed 

correlations between  of MS2 and [1O2]ss. Several values within this range were also 

obtained in other studies.3,13  

Analyses were conducted for two water typologies with different water quality – one 

more typical of a natural surface water and one more typical of a WSP. According to the 

sources of water chemistry parameters in the model, the natural water was defined as lake 

water.36–38 The WSP was defined as the WSP in Vuiteboeuf, Switzerland.24 

CDOM, nitrate, and nitrite are important photosensitizers for the formation of PPRI.11,29 

As the main sunlight absorber in natural surface water and WSP water,5,24,29 CDOM, which can 
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be estimated from DOC (dissolved organic carbon) or NPOC concentrations (eq. (4)), is highly 

variable in different water bodies. Low levels, such as 0.54±0.03 mg∙L−1 NPOC, have been 

observed in lake water.39 Other studies suggested freshwater lakes can have up to 60 mg∙L−1 

DOC16 and, on average, DOC ≈ 1.33 NPOC.39 Concentrations between these values have been 

measured in a variety of waters (WSP, treatment wetland, clear coastal water, rivers, 

lakes).2,7,19,23,24,40 Therefore, a uniform distribution within [1, 40] mg-C∙L−1 was assumed for the 

concentration of NPOC in this study. Similarly, a wide range of nitrate concentrations in natural 

surface waters have been reported, ranging from 0.7 mg∙L−1 for the intake water to the Wilson 

water treatment plant (Durham NC, USA)40 to about 61 mg∙L−1 from the upper River Derwent 

(due to agricultural land use in the vicinity of the catchment).41 Nitrite concentrations are usually 

low in natural surface water (<0.1 mg-N∙L−1) and WSP water (1.2×10−5 M)23,24. Regulations on 

the maximum nitrite concentration during wastewater treatment processes in Switzerland is 0.3 

mg-N∙L−1.42So, we assumed uniform distributions within [1.13×10−5, 9.84×10−4] mol∙L−1 and [0, 

3.57×10−5] mol∙L-1 for nitrate and nitrite in simulations, respectively. To account for the variability 

in the absorbance spectra of natural surface water and WSP water, uniform distributions within 

the confidence intervals (Table S3) were assumed for the parameters  and  in eq. (4).24,37  

Water depth is a key design parameter in the model equations, as it determines the 

optical path length and sunlight attenuation. The depth of a typical maturation pond for 

disinfection is usually 0.8~1.5m.9,20,43–45 0.4 m is often considered a minimum depth in practice, 

and ponds deeper than 1.8 m are rarely dedicated for disinfection.46 Therefore, a uniform 

distribution in [0.2, 2] m was assigned to water depth in simulations. 

Uncertainty analysis. Uncertainty analysis of the sunlight inactivation model allowed 

quantifying the variability in  due to the simultaneous variations of fourteen input 

parameters. Assuming the input parameters are independent of each other, we generated 



 10

100,000 Latin-hypercube samples from the 14 parameter distributions (Table S3) for each virus-

water combination and propagated the parameter variabilities through Monte Carlo simulations 

of the sunlight virus inactivation model.  

Global sensitivity analysis. Sensitivity analysis (SA) of the sunlight inactivation model 

allowed evaluation of how the uncertainty in  can be apportioned to variabilities in each of 

the parameters. Compared to local methods (i.e., evaluating the impact of each parameter 

individually), results of global SA are more robust and can reveal how one parameter can affect 

the impact of another parameter on  because samples are generated across the entire 

parameter space. The Morris one-at-a-time screening technique was first used in this study to 

rank the parameters according to their influences on the value of .47 Morris method 

produces two sensitivity indices  and . Index  of a parameter indicates its overall influence 

on  across its range of variation, while  detects whether it is interacting with other input 

parameters to influence  (e.g., the variability in  caused by the fluctuation of NPOC 

concentration depends on pond depth).48,49 A larger  of a parameter implies stronger 

interactions between this parameter and other parameters. The ratio is an indicator of 

linearity and monotonicity of the model. With most  greater than 1, one can conclude the 

model is non-linear and/or non-monotonic. 17,000 simulations were performed to calculate  

and  for each combination of virus species and water type, following an economical sampling 

technique designed by Morris.47,50 

Sobol’s variance-based sensitivity analysis was performed to quantitatively attribute the 

variance of  to the uncertainties or variabilities of different input parameters (Table S3). 

Sobol’s method offers three sensitivity indices: the main effect , the second-order interaction 

effect , and the total effect . For a parameter ,  indicates the proportion of output 
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uncertainty removed by fixing .  equals to the proportion of output variance caused by 

interaction between  and .  is the proportion of output uncertainty associated with ’s 

variability and all its interactions with other parameters in the model. It can be interpreted as the 

expected output variance when only  is left undetermined.51,52 In this study, 300,000 

simulations were performed for each combination of virus species and water type to estimate , 

, and  of the 14 parameters with acceptable uncertainty.51,53 Python module SALib was 

used for the execution of sampling and computation of sensitivity indices54.  

Modeling of MS2 inactivation of a maturation pond. To investigate the influence of 

engineering design on the virus disinfection efficacy of a typical WSP system, sunlight 

inactivation of MS2 in a fictitious maturation pond located at 90°W, 42°N over 24-hour cycles 

during the summer solstice (June 22nd) and the winter solstice (Dec. 22nd) was simulated by 

coupling the sunlight virus inactivation model with a 3-D CSTR model (details of the model are 

provided in the SI). MS2 was chosen because it had been most thoroughly investigated as a 

reference organism in existing studies of sunlight virus inactivation. Pair-wise comparisons of 

MS2 log10 removal by sunlight inactivation were performed to illustrate the impact and the cost 

of individual design decisions on hydraulic retention time (HRT), system configuration, pond 

depth, and pond length-to-width ratio under uncertainties of the photoreactivity and water quality 

parameters (Table S3).  
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Results and Discussion 

Simulated inactivation rates. Considerable variability of simulated  was observed 

due to simultaneous variation of the 14 parameters. Simulated  had a right-tail distribution 

across a wide range for all three viruses, and the maximal simulated  were 24~56 times 

greater than the mean values, depending on the virus species and the water type (Figure 1). In 

natural water, the middle 50% of simulated  ranged from 0.005 h−1 to 0.05 h−1 for 

adenovirus and from 0.01 h−1 to 0.09 h−1 for MS2. In WSP water, the middle 50% of simulated 

 ranged in 0.01~0.08 h−1 for adenovirus and in 0.03~0.19 h−1 for MS2. The greatest 

variability in simulated  was observed in phiX174 inactivation, whose coefficient of variation 

was 3.33 in natural water and 2.20 in WSP water (Table S6). Its middle 50% fell in 0.02~0.29 

h−1 and 0.02~0.38 h−1 in natural water and WSP water, respectively. The greater variability of 

phiX174’s  was largely attributed to the greater contribution of endogenous inactivation in 

relation to other mechanisms. When all parameters were varied simultaneously, inactivation 

rates by CO3
•−, direct photolysis (i.e., endogenous mechanism), and •OH had the greatest 

variabilities (measured by the coefficient of variation) among all mechanisms, but neither CO3
•− 

nor •OH dominated inactivation (< 20%  in most cases) for any of the three viruses. 

Therefore, the virus with higher relative susceptibility to endogenous inactivation is subject to 

greater variability in the overall inactivation rate when environment and water conditions change.  
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Figure 1. Simulated  and . The box indicates 1st, 2nd and 3rd quartiles. The lower 

whisker shows the minimum, and the upper whisker = 3rd quartile + 1.5×interquartile range. 

Mean values are indicated by the diamonds (♦). Outliers were spread out horizontally for better 

visualization. 

 

While simulation results generally agreed with current estimation or measurements of 

the sunlight inactivation of MS2 and phiX1741,23,24, simulations across the parameter space were 

able to reveal different trends of inactivation rates under extreme conditions. Given greater 

photochemical reactivity of ssDNA compared to ssRNA, phiX174 is expected to have higher 

 than MS2. However, in approximately 27% of all simulated cases, which had relatively 

larger zenith angle, higher latitude, higher NPOC concentration, higher water absorbance of 

long wavelengths and were at a time further away from noon (p < 2.2×10−16; Table S8), phiX174 
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had lower  than MS2 under identical environmental conditions, water quality, and water 

depth (Fig S8). It means MS2 inactivation was less negatively impacted by the conditions that 

are unfavorable to endogenous mechanism, because MS2 is more susceptible to reaction with 

PPRIs than phiX174. Indeed, PPRIs can be formed by light at wavelengths greater than 320 nm 

that can penetrate deeper into the water column, while nucleic acids and capsid proteins – 

chromophores in endogenous virus inactivation – have minimal absorption beyond 320 nm.55  

Similar to the model prediction by Mattle et al.,23 adenovirus constantly had lower  

than MS2 in simulation regardless of water quality or environmental conditions (Fig S8). Yet 

some studies have found adenovirus and MS2 to have similar resistance to sunlight inactivation 

in clear water and some natural waters,1,21,56. while others have observed adenovirus to be more 

susceptible to sunlight inactivation than MS2 in WSP water and other natural waters21,23,56.  

Under identical environmental and water conditions, sunlight inactivation in WSP water 

was estimated to be faster than in natural water for all three virus species in most cases (Table 

S9, Fig S9), mainly because the absorbance spectra of the simulated WSP water tended to be 

more favorable for both direct photolysis and inactivation by 1O2. Values of  and  in eq. (4) 

determined that the simulated WSP water should have higher absorbance of visible light than 

natural water given the same NPOC concentration, which tends to increase [1O2]ss and thus 

. On the contrary, natural water was predicted to have higher absorbance of UV light, 

resulting in fewer UV photons available to cause endogenous sunlight inactivation. This effect 

increases with the depth of water column and creates larger difference between inactivation 

rates in WSP water and natural water.  

The influence of water quality on inactivation by reactive species. Consistent to 

previous estimation,23 direct photolysis had greater contribution to phiX174 inactivation than any 

reactive species in almost all cases, accounting for 60~100% of  across different 
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environmental and water conditions. For adenovirus, contribution of direct photolysis to  

varied across a wider range but was mostly greater than 40%. Silverman et al. measured the 

contribution by UVB irradiation to range from 85% to 96% in five coastal water samples.21 In 

WSP water, 1O2 and 3CDOM* became a greater contributor to phiX174’s  than direct 

photolysis in a small number of cases, which tended to be at a time close to sunrise or sunset 

(Fig S11) and have high NPOC concentration (> 30 mg-C∙L−1). The greatest variation of relative 

contribution by different mechanisms was observed for MS2 inactivation, especially in natural 

water (Figure 2). Different studies also reported very different measurements or estimations of 

the share of  for MS2. Love et al. measured 13% in seawater.1 The model estimation by 

Silverman et al. was roughly 86% in treatment wetlands.7 Mattle et al. estimated the contribution 

of exogenous inactivation to be 41%,23 and the estimation by Kohn et al. suggested 20~56% 

depending on water depth.24 

Figure 2 showed a strong correlation between NPOC concentration and the relative 

contributions of PPRIs to exogenous inactivation. A significantly positive sample Pearson 

correlation coefficient (r = 0.69, p < 2.2×10−16) was estimated between NPOC concentration and 

the share of 1O2 and 3CDOM*. Unlike 3CDOM* or 1O2, which are produced by CDOM as the 

dominant photosensitizer, •OH can also be produced from NO3
− and NO2

−; both •OH itself and 

3CDOM* can sensitize the formation of CO3
•−. When NPOC concentration was below 5 mg-

C∙L−1, the formation of 3CDOM* and 1O2 became limited, while the formation of  
•OH and CO3

•− 

could still be sensitized by NO3
− and NO2

−. Moreover, at low NPOC there is limited scavenging 

of •OH and CO3
•− by DOM.37 This suggests 1O2 is not always the most important PPRI for the 

exogenous inactivation. More specifically, 16% of the simulated cases had higher inactivation 

rates by •OH and CO3
•− than that by 3CDOM* and 1O2 (Table S10). 
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Figure 2. Ternary plot of contributions of inactivation by different mechanisms (“Photolysis [%]” 

refers to endogenous inactivation) vs. NPOC concentration in simulation. For example, the 

green dot in the top-right ternary plot indicates that 50% of  is contributed by 3CDOM* and 

1O2, 30% by •OH and CO3
•−, and 20% by direct photolysis. 3CDOM* and 1O2 were grouped as 

reactive species whose formation is dominantly sensitized by CDOM. •OH and CO3
•− were 

grouped, for their formation can also be sensitized, directly or indirectly, by NO3
− and NO2

− 

besides CDOM. Moreover, both radicals are efficiently scavenged by DOM. 

 

 

The linear correlation often observed between the apparent MS2 inactivation rate 

constant and [1O2]ss in previous studies3,13,18 did not hold across the various environmental 
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conditions or water matrix in simulations. In cases where •OH and CO3
•− outweighed 3CDOM* 

and 1O2, the simulated water had significantly lower [NPOC], higher [NO3
-] and [NO2

−], as well 

as lower absorbance of sunlight at long wavelengths (p < 2.2×10−16). This can be explained by 

the difference in the absorption spectra of the photosensitizers – UVA and visible lights can be 

absorbed by CDOM but barely by NO3
− or NO2

−.55  

Relative importance of environmental, photoreactivity, water quality, and 

engineering design parameters to . Among the 16 parameters (location was analyzed as 

three independent variables – latitude, longitude, and altitude), time of the day was ranked the 

most influential parameter (measured by ) in the Morris analysis  (Figure 3), followed by 

latitude. They determined the spectral irradiance and the zenith angle of incident sunlight, which 

greatly impact endogenous inactivation. They also had the largest  among all parameters, 

meaning they had the strongest interactions with other parameters. For example, the change in 

 resulting from the reduction of NPOC concentration depends on the location of the water 

body and the local time. Depth of the water column, NPOC concentration, and quantum yield 

 were the next most important parameters to , with similar values of  and . Water 

depth determined the length of the optical path and thereby the attenuation of sunlight. CDOM, 

as the major photosensitizer in water that occurs in higher amounts at high NPOC,29 affects not 

only the steady-state concentrations of reactive species but also  through competition 

with virion in absorbing sunlight photons.  
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Figure 3. Morris sensitivity indices of  against 16 parameters: 1 – month, 2 – time, 3 – 

altitude, 4 – longitude, 5 – latitude; 6 – , 7 – , 8 – , 9 – , 

10 – ; 11 – , 12 – , 13 – [NPOC], 14 – [NO3
−], 15 – [NO2

−]; 16 – water depth. Whiskers 

indicate the 95% confidence intervals of . 

 

Seasonal motion of the sun, as indicated by “month”, was outweighed by the viral 

susceptibility to direct photolysis  in prediction of . This is largely attributed to the 

considerable uncertainty of  around its “true” value in simulations. Estimation of  

have been a challenging task limited by the accuracy of radiometers in measuring light output 

over the UVB range, which are the most relevant wavelengths for endogenous inactivation. 

Different radiometers yielded estimations of  that differed by an order of magnitude.23,27 
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Therefore, using an estimated  in modeling without an irradiance spectrum measured by 

the corresponding radiometer would likely lead to biased prediction. The inactivation rate 

constant of MS2 by 1O2 was also among the influential parameters, since MS2 is relatively 

susceptible to exogenous inactivation and the uncertainty around  was greater than other 

inactivation rate constants. Other environmental parameters (longitude and altitude), water 

quality parameters ( , , [NO3
−] and [NO2

−]) and most virus photoreactivity parameters had 

relatively small impacts on .  

The  ratios of all parameters varied in the model were greater than 1, implying 

nonlinear and/or nonmonotonic effects of different parameters on . For example, the 

marginal improvement in  by reducing water depth is greater at 0.2 m than at 1.2 m, since 

sunlight, especially at short wavelengths, attenuates drastically at the first 20 cm of the optical 

path. Increasing latitude from the south to the north hemisphere would firstly increase and then 

decrease , which most local SA methods would fail to detect. The non-linearity and non-

monotonicity of the model makes Sobol’s method a valid choice for the quantification of relative 

importance of parameters in the model, because it does not rely on any assumption of the 

model structure. 

In general, results of Morris and Sobol’s analyses agreed well with each other. Despite 

the difference in the relative susceptibilities to sunlight inactivation mechanisms among different 

virus species, the largest values of main effect  were invariably obtained for time of the day 

(12.8~24.4%), NPOC concentration (4.5~15.9%), and water depth (8.0~14.4%), meaning these 

parameters are the most important sources of variance in  regardless of virus species or 

water type (Figure 4). Second to them were location and quantum yield , whose main 

effects were 4.0~4.9% and 3.0~4.3%, respectively. It implies that eliminating the uncertainty of 
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 can reduce the variance of  by at least 3.0%. The importance of location was less 

significant in Sobol’s analysis than in Morris analysis. However, we believe the result of Sobol’s 

analysis was more accurate, since location was sampled from empirical land-area elevation 

dataset. Specific to MS2 inactivation in WSP water, the uncertainty of  alone accounted 

for 2.4% of the variance of .  was approximately 55% for MS2 in WSP water and less 

than 50% for other virus-water combinations, i.e., approximately half of the variance of  

was contributed by interaction among parameters. Therefore, examining each factor individually 

would likely lead to underestimation of its impact on the sunlight inactivation rates. 

Parameters with large main effects to  tended to also have strong interaction effects 

between each other (Figure 4). About 15~23% of the variance of  were caused by the 

interactions between the top 6 pairs of parameters among time of the day, water depth, NPOC 

concentration, location, and . Although 70% of the variance in  prediction can be 

attributed to only five parameters, the variability in these parameters (e.g., variability in local 

time due to diurnal motion of the sun, fluctuation of NPOC concentration in water) cannot 

always be reduced or eliminated, i.e., a proportion of  variance is inevitable. Therefore, the 

uncertainty in most photoreactivity parameters and water quality parameters would most likely 

stay uninfluential to the  of a treatment system within the range evaluated. Total effect  is 

a valid indicator of how much variation in  is expected if one cannot reduce the variability of 

a single parameter. For example, if the uncertainty in  and  had been greatly 

reduced, and the concentrations of photosensitizers remained constant, the prediction of  

between sunrise and sunset on a certain day for a certain treatment system would still be 

subject to approximately 50% of the total variance, given the  of “hour” was 46.9~52.5% 

(Table S11). 
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Figure 4. Decomposition of the variance of  into variances introduced by different 

parameters. Filled dots represent interaction effects ( ) between two parameters. Hollow dots 

indicate main effects ( ) of individual parameters. Only sensitivity indices larger than 2% are 

presented. Other parameters include , , , , , [NO3
-] and [NO2

-]. 

 

The impact of individual maturation pond design decisions on disinfection 

efficacy. Among the most influential parameters identified above, water depth can be fixed and 

optimized in treatment system design. Starting from a 1.5 m-deep maturation system operating 

at HRT = 5 days, reducing its pond depth to 0.5 m was estimated to improve the inactivation 

efficacy on average by 0.7 log during the summer solstice and by 0.4 log during the winter 

solstice (Figure 5). However, to maintain its treatment capacity (i.e., constant influent flow rate), 

it required a 200% increase in pond area. In comparison, increasing the HRT to 9 days by 
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adding 4 identical 1.5 m-deep ponds to the system was estimated to yield greater improvements 

in log inactivation in both summer (1 log) and winter (0.4 log), while required pond area only 

increased by 80%. Therefore, adding ponds to increase HRT is a more cost-effective design 

decision than reducing pond depth within the range evaluated. Figure 5 also showed both 

required pond area and improvement in log inactivation increased linearly with HRT, while 

reducing depth had increasing marginal improvement in log inactivation. That is to say, further 

reduction of pond depth may yield equal or higher improvement than increasing HRT, albeit with 

even larger required pond area. It should also be noted each pond was assumed to be an ideal 

CSTR, which may not model an actual treatment system where stratification can occur in deep 

ponds.  

Provided sunlight inactivation of viruses follows first-order kinetics, increasing the 

number of ponds in series while fixing HRT was expected to improve the inactivation efficacy of 

the system, assuming the water quality parameters were not affected (Fig S12). However, 

improvement of log inactivation by changing the pond configuration would still be negligible in 

winter when the incident spectral irradiance is the main limiting factor to inactivation. Besides, a 

less-mix system may experience greater diurnal fluctuations of effluent virus concentration due 

to the absence of sunlight inactivation during the night, if the HRT is not long enough. Although 

length-to-width ratio of the maturation pond had negligible impact on the inactivation efficacy of 

the system in simulations (Fig S13), it may affect the hydraulic efficiency and the level of mixing 

in an actual system.  

Seasonal motion of the sun and the uncertainty in water quality still induced high 

uncertainty in the prediction of log inactivation regardless of design decisions, which should be 

fully considered in the engineering design of treatment systems relying on sunlight inactivation 

for disinfection for safe discharge or reuse of effluents.  
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Figure 5. Simulated daily-average improvement in MS2 log inactivation of maturation pond 

system by increasing HRT or reducing pond depth compared to the baseline scenario (HRT = 5 

days, depth = 1.5 m, configuration varies as described in detail in Fig S12), with corresponding 

percent increase in required pond area. Variations of the improvements in log inactivation were 

caused by the uncertainty in water quality and photo-reactivity parameters. Left: HRT was 

increased by adding ponds (HRT = 1 d) in series, and depth was fixed at 1.5 m; Right: depth 

was reduced with HRT fixed at 5 days, but configuration of the system varied. The box indicates 

1st, 2nd and 3rd quartiles. The lower whisker shows the minimum, and the upper whisker = 3rd 

quartile + 1.5 × interquartile range.  
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Advancing sunlight inactivation modeling in natural and engineered systems. This 

work quantified the relative importance of different parameters to virus inactivation through 

global sensitivity analyses of a mechanistic sunlight virus inactivation model. Simultaneous 

variation of 14 parameters induced a considerable amount of variance in the prediction of  

for all virus species and both water types. Investigation of “abnormal” cases in the simulations 

helped gain insight into how the important factors impact each inactivation mechanism.  

Analysis results suggested that using MS2 as the single surrogate of sunlight virus 

inactivation may cause overestimation of the disinfection efficacy of a treatment system under 

certain conditions that suppress endogenous inactivation rates or enhance exogenous rates, 

most notably high NPOC concentration ( > 30 mg-C∙L−1 and low sunlight exposure around 

sunrise or sunset (zenith angle > 70°), because MS2 inactivation dominated by exogenous 

mechanism that is less sensitive to changes of sunlight exposure. The contribution of 1O2 and 

3CDOM* to  was strongly correlated with NPOC concentration in the water and significantly 

affected by water absorbance as well as concentrations of NO3
- and NO2

- for all viruses. When 

NPOC concentration is lower than 5 mg-C∙L−1, 1O2 and 3CDOM* together likely account for less 

than 50% of exogenous inactivation. Therefore, 1O2 is not a valid surrogate for exogenous 

inactivation across the full range of physicochemical conditions of water.  

Global sensitivity analyses showed a few environmental and design parameters 

significantly outweigh most water quality and virus photoreactivity parameters in determining 

virus inactivation rate constants. Diurnal motion of the sun is the most important single source of 

variability of , followed by depth and NPOC concentration of the water column. However, 

seasonable solar motion was not as impactful as . Reducing the uncertainty in  can 

most effectively improve the prediction accuracy of the sunlight inactivation model. If the 

variability of environmental, water quality or design parameters were not reduced, uncertainty in 



 25

, , and would remain uninfluential to the prediction of  within 

the ranges evaluated. Since one cannot eliminate the variability in sunlight irradiance introduced 

by diurnal or seasonal solar motions and has little control over the variability of physiochemical 

conditions in influent waters, the evaluated uncertainty in , , and 

 would remain relatively unimportant to the prediction of the inactivation efficacy.  

Using an ideal CSTR model, this work estimated and compared the improvement in 

virus inactivation efficacy resulting from different design decisions of a hypothetical treatment 

system. Increasing HRT by adding maturation ponds in series was estimated to be the most 

cost-effective strategy in this model. However, one should be aware of the boundary and the 

assumptions of the model while attempting to apply the model to the prediction of the virus 

disinfection of an actual treatment system. The model in this study does not consider the 

variability or effects of pH, dissolved oxygen, or temperature in sunlight inactivation because 

they were shown to have insignificant inactivation effects within the relevant ranges20,43,46 and 

thus had yet been explicitly incorporated in existing verified mechanistic aquatic photochemistry 

models. Microbial grazing of viruses was not considered but would likely differ across HRTs 

(longer HRT would allow for more grazing). Absorbance by algae and cyanobacteria in the 

wavelength range relevant for virus inactivation was assumed to be minimal compared to 

CDOM, and the water bodies were assumed well mixed without stratification. Parameter values 

for WSP were estimated based on a single WSP water. Therefore, results regarding WSP water 

may not be representative for all WSP water. 

Moving forward in sunlight virus inactivation modeling, we suggest focusing effort to 

reduce the uncertainty in the prediction of endogenous inactivation resulted from . This 

can be approached by calibrating  against commonly used sunlight irradiance models for 

the purpose of model integration. While damage to viral components in sunlight inactivation is 



 26

mainly caused by photochemical reactions, sunlight irradiation can also increase pathogen die-

offs by rising water temperature, facilitating algal growth, and increasing DO and pH, which 

could become significant factors in solar disinfection of drinking water (SODIS).4,17,19 

Incorporating the synergies among different sunlight-mediated inactivation mechanisms into the 

mechanistic modeling of sunlight inactivation allows more extensive application in different 

treatment systems. Experiments with virus species relevant for public health in wider ranges of 

environmental and physiochemical conditions, especially in treatment systems relying on 

sunlight for low-cost disinfection, can offer better coverage of the entire ranges of variations of 

relevant parameters, which will improve prediction accuracy of the models.   
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