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SUMMARY
Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and
models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-
sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs,
and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating
immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative base-
ment-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and
tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were
congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-
sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, vali-
dated by functional analysis, identified collagen modification as a candidate angiogenic pathway.
INTRODUCTION

During vessel sprouting in a retinal vascularizationmodel (Blanco

and Gerhardt, 2013), endothelial cells (ECs) exhibit heterogene-
Significance

Therapeutic targeting of endothelial cells (ECs) to block tumo
Here we surveyed EC phenotypes in human and murine lung
with orthogonal bulk multi-omics approaches to provide a mo
genic tip and proliferating ECs comprised only a minority of T
gene signatures related to basement-membrane breaching, im
sentation. Integrated analysis revealed previously overlooked
proteins, and collagen cross-linking enzymes. Functional ana
the potential of our resource to revisit anti-angiogenic strateg
ity: a navigating tip EC leads, while proliferating stalk ECs

elongate the sprout. Tip and stalk ECs are not genetically prede-

termined fixed states, but dynamically interchangeable pheno-

types (Blanco and Gerhardt, 2013). In tumors and eye diseases,
r angiogenesis is clinically approved but suffers resistance.
cancer using single-cell RNA sequencing in combination

lecular atlas of tumor EC (TEC) phenotypes. Classical angio-
ECs, and we identified distinct subpopulations expressing
mune cell recruitment, and semi-professional antigen pre-

tip cell markers, including transcription factors, matricellular
lysis confirmed novel angiogenic candidates and highlights
ies.
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the vasculature is structurally disorganized and functionally

abnormal (Carmeliet and Jain, 2011a), but the transcriptome het-

erogeneity of tumor ECs (TECs) at the single-cell level across pa-

tients, species (human versus mouse), and models (freshly iso-

lated versus cultured), analyzed in a single study, has not been

inventoried.

In the tumor angiogenesis field, some single-cell RNA (scRNA)

sequencing (scRNA-seq) studies reported a descriptive list of

previously known TEC phenotypes (Lambrechts et al., 2018;

Zhao et al., 2018), but did not identify previously unknown func-

tionally validated angiogenic candidates. It can even be ques-

tioned if a single scRNA-seq study of one tumor type is suffi-

ciently powerful at all to prioritize angiogenic candidates.

Indeed, tip-like TECs in 2 human colon carcinoma xenograft

models in a single study already expressed different markers

(Zhao et al., 2018). Here, we aimed to overcome species- and

model-dependent variability and used an integrated approach,

comprising, in addition to scRNA-seq, validation by orthogonal

multi-omics approaches to identify conserved phenotypes and

markers across patients, tumor types, species, and models,

which are more likely to be of functional relevance.

RESULTS

Single-Cell Atlas of EC Phenotypes in Human Lung
Cancer
Focusing on human non-small cell lung cancer (NSCLC), we pro-

filed freshly isolated human tumor ECs (hTECs) and (paired from

the same patient) human (peritumoral) non-tumor pulmonary

ECs (hPNECs) from 1 large cell carcinoma, 4 squamous cell car-
22 Cancer Cell 37, 21–36, January 13, 2020
cinomas, and 3 adenocarcinoma treatment-naive patients (Table

S1). Single-cell suspensions, magnetic-activated cell sorting

(MACS)-depleted for CD45+ leukocytes and enriched for

CD31+ ECs (Figure 1A), were subjected to scRNA-seq using a

103 genomics-based single-tube protocol. After quality filtering

for the number of detected genes and mitochondrial read

counts, duplicates were assessed and unique transcripts were

normalized for total read depth (STAR Methods; Table S2).

ECs were in silico selected (Figures S1A and S1B), and up to

12,323 hTEC and 8,929 hPNEC transcriptomes from 8 patients

were pooled, batch-corrected, clustered, and visualized using

t-distributed stochastic neighbor embedding (t-SNE) plots (Fig-

ures 1B, 1C, and S1C; Table S3). To ensure that batch correction

did not remove relevant biological features, we also analyzed

each sample separately. Clusters detected in batch-corrected

data were largely similar to those obtained without batch correc-

tion (not shown); any relevant differences are indicated below. To

assess cluster reproducibility (Tasic et al., 2018), we performed

hierarchical clustering and bootstrap analysis (Figure S1D). For

biologically relevant subclusters that were not resolved by boot-

strapping (e.g., lymphatic ECs from tumor and peritumoral tis-

sue), we ascertained that they were statistically separable using

pairwise differential analysis (Innes and Bader, 2018) (Fig-

ure S1D, Table S4). Each of the 13 phenotypes is numbered as

in Figure 1C (H1, H2, etc).

Clusters were biologically annotated based on the relative

abundance of top-ranking marker genes in hPNECs and hTECs,

and differences in marker gene expression levels shown in

display items were statistically quantified to support the qualita-

tive biological annotation (Figures 1D–1G and S1E; Tables S4
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Figure 1. Construction of hTEC and hPNEC Taxonomy

(A) Study design. IF, immunofluorescence; NEC, normal EC; TEC, tumor EC.

(B) t-SNE plot color-coded for ECs from peritumoral non-malignant lung (hPNEC; gray) and tumor tissue (hTEC; red).

(C) t-SNE plot of hTEC and hPNEC transcriptomes, color- and number-coded for the 13 phenotypes identified by graph-based clustering.

(D) t-SNE plots, color-coded for expression of indicated marker genes (red arrowheads).

(E) Gene expression levels of top-rankingmarker genes in different EC phenotypes. In this and all further heatmaps depictingmarker genes, colors represent row-

wise scaled gene expression with a mean of 0 and an SD of 1 (Z scores).

(F) Relative abundance of each phenotype in hTECs and hPNECs.

(legend continued on next page)
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and S5). To obtain a more robust interpretation, we focused on

clusters defined by gene set signatures rather than single genes

(Table S4), and based cluster annotation on the expression of

canonical gene signatures (e.g., arterial, capillary, venous,

lymphatic, tip, and immature stalk phenotypes; listed in Table

S5). To improve the generalizability of our analysis, we discuss

all clusters at least once but focused mainly on clusters that

were reproducible in multiple patients (Table S3). A detailed

description of previously documented roles of the top-ranking

markers, used to infer the putative biological role of each cluster,

is provided in Tables S4 and S5.

Arterial ECs (cluster H1) expressed genes involved in vascular

integrity, homeostasis, and vasotonus (Figure 2A), while postca-

pillary venous ECs (H2) expressed genes implicated in leukocyte

recruitment, tissue perfusion, and pulmonary blood pressure

(Figure 2B). We identified a type I (H3) and type II (H4) alveolar

capillary EC phenotype, characterized by differential expression

of von Willebrand Factor (VWF, upregulated in type II compared

with type I; fold change = 3.63, adjusted p value = 2.363 10�77)

and endomucin (EMCN, upregulated in type I compared with

type II; fold change = 2.89, adjusted p value = 1.22 3 10�68),

which might be involved in, respectively, vasoregulation and

anti-microbial defense (Figures 2C–2E). Compared with all other

clusters, capillary ECs expressed a signature of genes involved

in MHC-II-mediated antigen presentation and processing at

higher levels than other phenotypes (Figure 2F), but the co-stim-

ulatory molecules CD80 and CD86 were not detectable (not

shown), suggesting a function as semi-professional antigen pre-

sentation cells (APCs). We also identified 2 novel capillary phe-

notypes that might be induced by tumor-derived cytokines:

scavenging capillaries (H5) were by bootstrap analysis similar

to type II capillary ECs, but upregulated scavenging receptors

and genes associated with macrophages and antigen process-

ing (Figures 2G, 2H, and S1D), while activated capillaries (H6)

expressed EC activation markers (Figure 2I). An intermediate

capillary EC phenotype (H7) resembled activated capillaries,

but consisted mostly of cells derived from a single patient (Fig-

ure S1D; Table S3).

Traditional angiogenic phenotypes, such as tip and prolifer-

ating ECs (presumed targets of anti-angiogenic therapy [AAT]),

were detectable only in hTECs (Figures 3A, S1E, and S2A; Table

S3). Tip cells (H8), expressing gene signatures associated with

EC migration, matrix remodeling, and vascular endothelial

growth factor (VEGF) signaling (Figure 3B), comprised only a mi-

nority (<10%) of hTECs (Figure S1E; Table S3). Notably, tip

hTECs showed highly restricted expression of the disease-spe-

cific molecule PGF (placental growth factor; PlGF [adjusted p

value = 2.413 10�14]) (Table S4). We also identified an immature

hTEC phenotype (H9), which was similar to tip cells, but upregu-

lated genes involved in the maturation of newly formed vessels,

vessel barrier integrity, and Notch-signaling, possibly resem-

bling stalk-like ECs (Figures 3C and S1D). Proliferating hTECs
(G) Relative contribution of hTECs (red) and hPNEC (gray) to each phenotype. L

numbers in each phenotype were divided by the total number of hTECs and hPN

contribution of hTECs and hPNECs in absolute numbers. Note the underrepresen

presence (black) of the phenotype in hTECs and hPNECs, where presence is defi

respectively.

See also Figure S1 and Tables S1, S2, S3, S4, and S5.
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were only detected in a subset of patients, representing <1%

of hTECs, and were no longer detected as a separate cluster af-

ter batch correction (Figure S2A). In hTECs, an activated postca-

pillary vein phenotype (H10) upregulated immunomodulatory

factors and ribosomal proteins (Figure 3D), features of high

endothelial venules (HEVs) in inflamed tissues (Girard and

Springer, 1995). In contrast to the extensive phenotypic hetero-

geneity of blood vascular ECs, the gene expression signatures of

tumor and peritumoral lymphatic ECs (LEC; H11, H12) were

highly similar, and LEC subpopulations were not detected

(Figures 3E and S1D; Table S4). An ambiguous phenotype, ex-

pressing markers of tip and arterial ECs (Figures 1C and S1D),

predominantly consisted of cells from a single patient (patient

5, H13) and is not discussed.

To explore the generalizability of our NSCLC EC taxonomy, we

used top-ranking marker genes to train a machine-learning algo-

rithm (Kiselev et al., 2018) to automatically annotate 574 hPNECs

and 638 hTECs, in silico selected from a 52,698-cell catalog from

tumors of 5 treatment-naive NSCLC patients (Lambrechts et al.,

2018). The majority of ECs were annotated with high confidence

(similarity threshold >0.5) (Figure 3F), indicating that our taxon-

omy is an externally valid resource that comprises all major EC

phenotypes detectable in 13 lung cancer patients.

We validated the taxonomy using orthogonal techniques. Im-

munostaining combined with quantitative RNAscope to count

transcript numbers confirmed that PGF levels were upregulated

in CD31+/CXCR4high tip hTECs, while triple immunostaining

showed co-localization of CXCR4 and PlGF in TECs (Figures

3G and 3H; S2B). We also confirmed by immunostaining of (1)

SELP the signature of activated postcapillary vein ECs (Figures

S2C and S2D); (2) VWF and EFNB2, respectively, the venous

and arterial phenotype (Figures S2E–S2H); and (3) the HEV-spe-

cific MECA-79 antigen the signature of the HEV phenotype (Fig-

ure S2I). RNAscope, combined with staining for the EC marker

CD31, revealed that arterial (EFNB2) and venous (ACKR1)

marker transcripts did not colocalize in the same hTECs (Figures

S3A and S3B), while activated postcapillary vein hTECs ex-

pressed the marker CCL14 (Figure S3C). Further, transcripts of

the scavenging capillary markers CD52 and CD68, and of the

type I capillary markers EDNRB and IL1RL1 co-localized in the

same hTECs (Figures S3D and S3E).

We used time-of-flight mass cytometry (CyTOF) to quantify

protein levels of marker genes in single cancer, EC, and stromal

cells, freshly isolated from NSCLC samples, using metal-conju-

gated antibodies against 26 preselected markers of these cells.

Unbiased clustering and t-SNE visualization of theCyTOF single-

cell data revealed separate clusters of ECs, stromal, and cancer

cells (Figures 3I and S4A–S4D). Consistent with scRNA-seq, we

detected type I (VWFlow) and type II (VWFhigh) alveolar capillary

ECs, postcapillary vein ECs (ACKR1high/VWFhigh), and lymphatic

hPNEC and hTEC phenotypes (PROX1high) (Figure S4E). A

phenotype expressing the highest CXCR4 levels (tip cell marker)
eft: To correct for differences in absolute numbers of hTECs versus hPNECs,

ECs, respectively. Black vertical line: equal relative contribution (50%). Right:

tation of capillary hTECs. Dots on the left indicate the relative absence (gray) or

ned as a relative contribution of >1% to the total pool of hTECs and hPNECs,
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Figure 2. Quiescent and Activated Normal Pulmonary EC Phenotypes

(A and B) Expression levels of (A) arterial and (B) postcapillary venous EC markers.

(C and D) Expression levels of the indicated genes of (C) capillary EC phenotypes and (D) the type I alveolar capillary EC phenotype. A.U., arbitrary units.

(E–I) Expression levels of markers of (E) type II alveolar capillary ECs, (F) genes involved in MHC-II antigen presentation, (G) scavenging EC markers (scavenging

receptors in red), (H) defense marker genes (complement, cathepsins and cystatins), and (I) genes associated with activated alveolar capillary ECs.

See also Table S4.
but downregulating the expression of capillary markers (CD36,

CA4, HLA-II proteins) likely represented angiogenic hTECs. We

also detected a poorly resolved cluster, putative activated cap-

illaries that, compared with type I and type II capillaries, ex-

pressed reduced capillary markers (CA4, CD36, HLA-II), but

increased levels of the vein TEC marker VWF and the tip hTEC

marker CXCR4 (Figures 3J and S4E). CyTOF confirmed the

increased levels of HLA and CD36 in capillary ECs and their

downregulation in hTECs (Figures 3J and S4F). To validate the

observation that the populations identified using scRNA-seq

and CyTOF coincided, we performed hierarchical clustering us-

ing key surface markers (STAR Methods) (Figure 3K). LECs and

capillary ECs clustered together, while vein ECs clustered with
angiogenic ECs. Notably, multiscale bootstrap analysis revealed

that scRNA-seq resolved type I and type II capillary ECs as most

similar to their CyTOF counterparts, cross-validating the pres-

ence of 2 distinct capillary phenotypes at the mRNA and protein

levels.

Possible Clinical Implications

Despite all patients having early-stage treatment-naive disease,

we observed inter-patient heterogeneity in the relative fraction of

the different EC phenotypes (Figure 4A; Table S3). In hPNECs,

arterial, capillary, venous, and lymphatic ECs were detected at

variable proportions, especially for the capillary hPNEC pheno-

types. In hTECs, the number of capillary ECswas reduced (Table

S3), a finding confirmed by immunohistochemistry (Figure 4B),
Cancer Cell 37, 21–36, January 13, 2020 25
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Figure 3. Pathological Tumor EC Phenotypes and Validation by CyTOF

(A) Relative abundance of EC phenotypes in hTECs and hPNECs, weighted by the number of cells per patient.

(B–E) Expression levels of marker genes of (B) tip, (C) immature, (D) activated postcapillary vein, and (E) lymphatic ECs.

(F) Assignment of hTEC and hPNEC phenotypes (identified in the taxonomy) to hTECs and hPNECs freshly isolated from an independent cohort of 5 NSCLC

patients (publicly available data; Lambrechts et al., 2018).

(G) Number of CXCR4 and PGF mRNA transcripts per cell in NSCLC tumor vessels as determined by RNAscope (n = 3 patients). CXCR4 and PGF positively

correlate (Spearman r = 0.584; two-sided p value <0.0001).

(legend continued on next page)
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Figure 4. Translational and Possible Therapeutic Implications of the NSCLC EC Taxonomy

(A) EC phenotype composition in tumor and normal tissue from individual patients. Left: Relative contribution of each phenotype scaled to 100%. Right:

Contribution of each phenotype in absolute numbers; total number of analyzed ECs on the right. Asterisks indicate the significantly increased fraction of immature

TECs in adenocarcinoma comparedwith squamous cell carcinoma patients (n = 4 squamous and n = 3 adenocarcinoma patients, p < 0.05 by two-tailed unpaired

t test).

(B) Representative micrograph of human peritumoral tissue (upper) and NSCLC tumor (lower) section immunostained for CD31 and CD36. Nuclei are stained with

Hoechst. Images to the right are magnifications of the respective boxed areas. Scale bar, 50 mm. Right: Quantification of the CD36 signal intensity (mean ± SEM;

n = 3 patients, p < 0.05 by two-tailed unpaired t test).

(C) Overall survival of 502 lung squamous cell carcinoma patients selected from the TCGA dataset and stratified by the indicated gene set expression signature

scores.

See also Table S3.
although not to the same extent in each patient. Statistically,

immature hTECs were more abundant in adenocarcinoma than

squamous cell carcinoma patients (Table S3), although larger

cohorts are required for meaningful interpretation (see below).

To correlate expression of EC phenotype-specific gene signa-

tures with NSCLC patient survival, we took advantage of a large
(H) RNAscope images of an NSCLC tumor vessel probed for CXCR4 (white) and

with Hoechst (magenta). Dotted lines denote (part of) the vessel; boxed area is m

mRNA transcripts, respectively. Scale bar, 20 mm.

(I) t-SNE plot of CyTOF data, color-coded for stromal and cancer cell phenotypes

more than the total number of ECs.

(J) Quantification of HLA-II expression by CyTOF in stromal cell subpopulations

regulated compared with type I capillary ECs (mean ± SEM; n = 4, p < 0.05 by o

(K) Dendrogram visualization of hierarchical clustering analysis of EC phenotypes

indicate clusters that were resolved by multiscale bootstrap analysis. Clusters id

See also Figures S2–S4 and Tables S3 and S4.
bulk RNA-seq dataset of 1,024 NSCLC patients of the Cancer

Genome Atlas (TCGA). After identifying EC-specific marker

gene sets for each phenotype utilizing a publicly available

resource (Lambrechts et al., 2018) (STAR Methods), we used

gene set variation analysis (GSVA) to score the enrichment of

these signatures in each of the 1,024 NSCLC patients. Notably,
PGF (green) mRNA. ECs are immunostained for CD31 (red). Nuclei are stained

agnified on the right. Green and white arrowheads indicate PGF and CXCR4

. For visualization, all non-EC types have been randomly down-sampled to no

. Asterisks indicate clusters in which HLA-II expression is significantly down-

ne-way ANOVA with Dunnett’s method).

identified by scRNA-seq and CyTOF analysis. Color differences in dendrogram

entified by CyTOF are indicated in blue.
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Figure 5. Construction of mTEC and mNEC Taxonomy

(A) Experimental design.

(B) t-SNE plot, color-coded for mNECs from healthy lung (gray) and mTECs from tumor-bearing mice (red).

(C) t-SNE plot, color-coded for the pulmonary mNEC and mTEC phenotypes.

(D) t-SNE plots of mNECs and mTECs, color-coded for the expression of indicated marker genes (red arrowheads).

(E and F) Expression levels of (E) tip and (F) breach mTEC marker genes.

(G) Differentially expressed genes in breach cells versus tip cells.

(H) Relative composition ofmTEC phenotypes upon treatment with control immunoglobulin (Ig)G, DC101, or PTK787. *p < 0.05 by Dunnett’smethod; #p < 0.05 by

two-tailed unpaired t test.

(I) Expression level of the 18-gene disorganization signature (mean ± SEM; n = 3, *p < 0.05 by one-tailed unpaired t test).

(legend continued on next page)
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squamous (but not adenocarcinoma [not shown]) NSCLC pa-

tients, who expressed high levels of gene set signatures of

angiogenic tip, immature, activated postcapillary, or lymphatic

TECs, had shorter overall survival, presumably because these

signatures reflect active angiogenesis and lymphatic spread

(Figure 4C).

Lung Tumor EC Phenotypes in Other Species and
Models
To compare lung TEC taxonomies across species and models

for identification of common angiogenic TEC phenotypes and

targets in an integrated congruency analysis, we used a similar

strategy to construct 2 additional lung TEC taxonomies, one of

29,007 murine mNECs and mTECs micro-dissected from Lewis

lung carcinoma (LLC) (another species), treated or not with anti-

VEGF, and another of 6,512 human cultured hcTECs from human

lung tumor (another model) (Tables S2, S3, and S4). We used the

LLC model, since it relies on angiogenic vessel sprouting (the

target of AAT), unlike other preclinical mouse NSCLC tumor

models (Eldridge et al., 2016).

As in human lung, we identified mNEC-enriched phenotypes,

expressing typical markers of arterial (M1), alveolar type I and

II capillary (M2, M3), venous (M4) and lymphatic (M5) ECs (Fig-

ures 5A–5D and S5A–S5G; Tables S4 and S6). Type II alveolar

capillary ECs expressed the highest levels of genes involved in

MHC-II antigen presentation, processing, and loading (Figures

S5B and S5H), but did not express the co-stimulatory genes

Cd80 and Cd86 (not shown). As in NSCLC, the fraction of capil-

lary ECswas underrepresented in tumors (Figure S5A; Table S3),

and mTECs downregulated the typical capillary gene signature,

including MHC-II expression (Figure S5H). mTECs also downre-

gulatedCd36 (a gene involved in fatty acid uptake), except in one

capillary TEC phenotype (adjusted p value = 7.81 3 10�39; M6)

(Figure 5D). Unlike in human lung, the vein EC phenotype in mu-

rine lung expressed resident endothelial stem cell markers

(Cd200, adjusted p value = 4.613 10�26;Bst1, adjusted p value =

2.80 3 10�20), previously identified in large pulmonary vessels

(Wakabayashi et al., 2018) (Figure S5I).

Proliferating (M7) and tip (M8) mTECs were also detected (Fig-

ures 5C and 5E); proliferating mTECs were more abundant than

in human lung tumors, consistent with the faster growth of mu-

rine lung tumors and a possible different type of tumor vascular-

ization in NSCLC (Figures 5D and S5E). An immature mTEC

phenotype (M9), lacking a strong transcriptome signature, was

also recognized (Figure 5C). Consistent with human ECs, we

observed high venous plasticity and detected TEC-enriched

phenotypes including large (M10) and postcapillary (M11) vein

ECs (Figure 5C). The postcapillary vein mTECs upregulated

HEVmarkers (Figures S5J and S5K), confirmed by immunostain-

ing (Figures S6A and S6B).

The remaining murine phenotypes were predominantly de-

tected in mTECs (Figures 5C and S5F; Table S3). A neo-phalanx

mTEC phenotype (M12) expressed capillary and arteriole

markers, while activated artery mTECs (M13) upregulated neo-
(J) Expression levels of the genes in the disorganization signature (18 genes on th

normal signature (28 genes on the right of the black dotted line in the control [IgG

signatures (middle and bottom rows).

See also Figures S5–S7 and Tables S2, S3, S4, and S6.
arteriogenesis markers. Notably, only mTECs, not mNECs, ex-

hibited a phenotype characterized by the expression of an inter-

feron (IFN) response gene signature and chemokines, involved in

immune cell recruitment and angiostasis (M14) (Figure S5C;

Tables S3 and S4). We also identified a previously unrecognized

EC phenotype, which we termed breach cells (M15), and their

putative precursors, pre-breach cells (M16) (Figures 5E–5G).

Breach cells upregulated expression of not only tip TEC

markers, but also of genes previously involved in VEGF-induced

podosome rosette-mediated basement-membrane (BM) and

collagen remodeling (Tables S4 and S6) (Seano et al., 2014). Im-

munostaining confirmed the expression of signature markers of

arterial, capillary, venous, and tip mNEC and mTEC phenotypes

at the protein level (Figures S6C–S6J).

In cultured hcTECs, the in vivo artery, capillary, and vein EC

phenotypes were no longer detectable (Figures S7A and S7B;

Tables S2, S3, and S4). It was therefore surprising that the typical

tip EC phenotype (C1), which is a plastic transient phenotype

(Blanco and Gerhardt, 2013), was detectable in hcTECs. As ex-

pected for propagating ECs in culture, proliferating hcTECs (C2)

were detected. Perhaps related to the culture conditions (pres-

ence of transforming growth factor b, an inducer of endothe-

lial-to-fibroblast transition in serum), a phenotype (C3) exhibiting

a signature of endothelial-to-mesenchymal transition (TAGLN,

SERPINE1, FN1, CD44, adjusted p value < 53 10�4 for all genes)

(Dejana et al., 2017) was identified.We also detected an interme-

diate transitioning phenotype (C4) that upregulated ribosomal

genes, suggesting EC phenotypes on their way to adopting

another phenotype (Figure S7B).

Effect of VEGF Blockade on TEC Phenotypes
Differential Sensitivity of TEC Phenotypes

Using the mTEC taxonomy, we explored if specific EC pheno-

types were differentially sensitive to anti-VEGF AAT (VEGFR2

antibody [DC101], VEGFR tyrosine kinase inhibitor [PTK787])

(Figure 5H). These compounds were tested at doses that inhibit

pathological angiogenesis and reduce EC numbers in tumors

(Liu et al., 2005), and inhibited tumor growth (Figure S7C).

Notably, control- and AAT-treated ECs were composed of the

same clusters (Figure 5H; Table S3), suggesting that AAT did

not alter the global transcriptome signatures of the different EC

phenotypes. However, quantification of individual EC pheno-

types revealed that tip and breach TECs were most sensitive,

consistent with human colon carcinoma xenografts showing tip

cell sensitivity to aflibercept (Zhao et al., 2018). Postcapillary

vein and proliferating TECs were less sensitive to VEGF

blockade, while capillary TECs were less sensitive to PTK787

treatment (Figure 5H). Whether this is due to the tumor switching

from vessel sprouting to vessel cooption is unknown.

Molecular Signature of Tumor Vessel Disorganization

and Effect of VEGF Blockade

Tumor vessels are structurally disorganized and functionally

abnormal (Carmeliet and Jain, 2011b; Jain, 2005, 2014), but a

detailed unbiased molecular footprint is lacking. Traditionally,
e left of the black dotted line in the control [IgG] condition [top row]) and more

] condition [top row]), and effects of DC101 and PTK787 treatments on these
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Figure 6. Congruency Analysis and Transcriptomics Meta-analysis

(A) PCA on the pairwise Jaccard similarity coefficients between the top 50 marker genes of freshly isolated human and murine, and cultured human TEC

phenotypes.

(B) Bar plot visualization depicting the congruency score of conserved tip cell marker genes and their intersection with benchmark datasets (bottom panel) and

the 50 top-ranking marker genes categorized by the indicated biological processes (top panel). A.U., arbitrary units.

(C and D) Mosaic EC spheroid competition of CTRL (red) and (C) LXNKD (green, KD denotes small hairpin RNA [shRNA] knockdown) ECs or (D) siFSCN1 (green, si

denotes siRNA silencing) ECs. Left: Representative micrographs of mosaic EC spheroid. Scale bar, 50 mm. Right: Quantification of the fraction of tip cells with the

indicated genotype. Data are means ± SEM; n = 4 for LXN, n = 5 for FSCN1; *p < 0.05 by unpaired two-tailed t test.

(E and F) Expression levels of genes encoding collagen hydroxylation and cross-linking enzymesmeasured by (E) bulk RNA sequencing or (F) qRT-PCR. Data are

means ± SEM; (E) n = 13 and (F) n = 7; *p < 0.05 by paired two-tailed t test. TMM, trimmed mean of M values.

(G) Gene expression meta-analysis of 6 publicly available NEC versus TEC datasets from 5 different tumor types. The S curve has 12,000 dots, representing

genes that were detected in all 6 datasets. x axis: rank numbers from 1 to 12,000 (consistently overexpressed genes in TECs have a low rank number, consistently

downregulated genes have a high rank number); y axis: the scaled meta-analysis score (consistently overexpressed genes in TECs have a low meta-analysis

score, consistently downregulated genes have a highmeta-analysis score). Genes involved in collagenmodification or encoding collagens are shown as red dots

and listed on the right (p < 0.01 by rank product analysis).

See also Figure S8 and Tables S3 and S4.
AAT is considered to prune angiogenic ECs, although VEGF

blockade can also normalize the abnormal tumor vasculature

(‘‘tumor vessel normalization’’) (Jain, 2005). We explored if

VEGF blockade tuned ECs by inducing more subtle gene

expression changes. We therefore first constructed ‘‘normal’’

and ‘‘tumor vessel disorganization’’ gene signatures by
30 Cancer Cell 37, 21–36, January 13, 2020
comparing angiogenic versus non-angiogenic phenotypes in a

pairwise differential analysis to identify genes that were signifi-

cantly (adjusted p value <0.01) differentially expressed from an

effective fold change threshold of ±1.5. This revealed 18 and

28 genes that were significantly higher expressed in disorga-

nized (amongwhich tip, breach, and immature ECmarker genes)



and normal (including capillary marker genes) phenotypes,

respectively (Figures 5I, 5J, and S7D and Table S4).

GSVA using the 18 disorganization gene signature revealed

that tumor vessel disorganization was partially reversed by

VEGF blockade (Figures 5I and 5J). Gene set enrichment anal-

ysis further showed that both VEGFR inhibitors reduced the

expression of tip EC gene signatures (glycolysis; De Bock et

al., 2013; BM remodeling), while increasing the expression of sig-

natures associated with mature homeostatic functions (antigen

presentation, barrier, and blood vessel development) (Figures

S7E and S7F). Thus, VEGF blockade not only pruned but also

tuned TECs to promote a more quiescent and mature tumor

vasculature with homeostatic functions, suggesting partial mo-

lecular tumor vessel normalization.

Identification of Conserved TEC Phenotypes and Tip
Cell Markers
Anti-VEGF therapy efficacy is limited by resistance due to upre-

gulation of alternative pro-angiogenic signals (Ebos and Kerbel,

2011). To identify alternative angiogenic candidates, we hypoth-

esized that TEC phenotypes, conserved across species and

models, and congruently overexpressed genes might be stron-

ger and more robust angiogenic candidates. We thus performed

an integrated combined single-cell transcriptomics, bulk multi-

omics, and transcriptomicsmeta-analysis to identify such candi-

dates (Figure S8A).

We used the scRNA-seq data to assess similarity of angio-

genic EC phenotypes across species and models using pairwise

Jaccard similarity coefficients of marker gene sets and applied

principal component analysis (PCA) for visualization (Figure 6A

and S8A). The in vivo artery, capillary, and vein phenotypes

were lost in hcTECs in vitro; in contrast, the tip and breach EC

transcriptome signature of in vivo hTECs and mTECs was

conserved in cultured hcTECs. ECs with a proliferation signature

were only detected in cultured and murine TECs, and in hTECs

from some NSCLC patients (see above). Freshly isolated human

vein and murine immature TECs, and intermediate hcTECs

highly expressed ribosomal genes, suggesting plastic pheno-

types, transitioning to other angiogenic EC phenotypes. All other

phenotypes were model- or species-specific. Since tip TECs ex-

pressed a similar marker gene signature across all species and

models tested, we focused on identifying congruent tip TEC

markers.

To construct a ranked list of tip TEC markers, we first selected

296 conserved tip cell-enriched genes that were consistently

highest expressed in tip TECs across species and models.

Second, for each conserved gene, we defined a rank score by

calculating the product of the marker gene rank in each of the

3 datasets (in this list, genes that are consistently among the

most upregulated genes in tip cells rank the highest) (Figure 6B).

For subsequent analyses, we focused on the top-ranking 50 en-

riched markers (adjusted p value < 5 3 10�3). Validating our

approach, we confirmed the inclusion of tip EC markers

(ANGPT2, APLN, FSCN1, PGF, PLXND1, ADM, PDGFB,

CXCR4, others), previously detected in tip ECs but not neces-

sarily further characterized at the expression pattern and func-

tional levels (del Toro et al., 2010; Strasser et al., 2010; Zhao

et al., 2018). Half of the 50 top-ranking genes were not previously

described as tip TEC markers (not detected in transcriptomics
studies of ECs in tumor or physiological angiogenesis).

Congruent tip TEC markers were associated with the migratory

tip EC phenotype, including laminins (LAMA4, LAMC1,

LAMB1), matricellular proteins (SPARC, LXN), cytoskeleton-

associated genes (VIM, MARCKS, MYH9, MYO1B), and

cell adhesion molecules (CD93, MCAM, ITGA5). We also identi-

fied novel tip TEC-enriched transcription factors (TCF4,

SOX4, SMAD1).

The disorganized vascular architecture in tumors impedes/

precludes topographical identification of tip TECs: Figure S6J

shows heterogeneous expression of a tip cell marker, but its

position at the forefront of the tumor vessel sprout and its expres-

sion in morphological tip cells cannot be unambiguously identi-

fied. We, therefore, used the postnatal retinal angiogenesis

model to validate the expression of LXN (Latexin) and FSCN1

(Fascin) in tip ECs at the vascular front (Figure S8B). To document

their functional role, we examined if silencing these tip cell

markers affected tip cell competitivity (De Bock et al., 2013).

We silenced LXN or FSCN1 expression in human umbilical vein

ECs (HUVECs; >70%–80% silencing efficiency; Figure S8C)

and generatedmosaic spheroids containing a 1:1mixture of con-

trol wild-type HUVECs (red) and HUVECs silenced for LXN or

FSCN1 (green). Silenced cells were less often at the tip position,

confirming the tip cell role of these markers (Figures 6C and 6D).

Integrated Analysis Highlights Collagen Modification as
an Angiogenic Pathway
Genes encoding collagens (COL4A1, COL4A2, COL18A1)

ranked in the top 10 most congruent tip cell markers, while other

collagen-modifying (cross-linking) enzymes (PXDN, PLOD1)

ranked in the top 50 (Figure 6B). Bulk RNA-seq analysis of 13 in-

dependent NSCLC patients (Figure S8A; Table S3) and confir-

matory RT-PCR analysis showed that the expression of genes

involved in collagen cross-linking (LOXL2, fold change = 2.5;

p = 5.15 3 10�3) and hydroxylation (PLOD1-3, fold change

1.24–1.74; p < 0.05 for all genes) was higher in TECs than

NECs (Figures 6E and 6F). Procollagen-lysine, 2-oxoglutarate

5-dioxygenase (PLOD) isoenzymes (known as lysyl hydroxy-

lases) intracellularly hydroxylate lysine residues in collagen,

while lysyl oxidase (LOX), or its homologue LOXL2, extracellu-

larly catalyze the first step in collagen crosslink formation (Gilkes

et al., 2014). To explore upregulation of collagen-modifying

enzymes in TECs from other tumor types, we performed a

meta-analysis of 6 publicly available NEC versus TEC bulk tran-

scriptomics datasets, freshly isolated from patients with 5

different tumor types (Table S4). Also in this analysis, transcripts

encoding collagen-modifying enzymes were enriched (p < 0.05

for all genes) and ranked among the top 1%–5% most consis-

tently upregulated genes in TECs (Figure 6G).

To explore upregulation of collagen-modifying enzymes in

TECs at the protein level, we performed proteomics analysis

on an in-house-generated cohort of 144 prospectively collected

TEC and NEC samples from lung, kidney, and colorectal (CRC)

tumors and colorectal liver metastasis (CRCLM) (Figure S8A;

Table S3). In TECs from NSCLC patients (n = 27 patients),

LOXL2 was the highest upregulated protein (>4-fold; p =

6.89 3 10�7), while PLOD1 and PLOD2 were upregulated 1.7-

fold (p = 5.523 10�5) and 1.9-fold (p = 4.393 10�4), respectively

(Figure 7A). Meta-analysis across all 4 tumor types identified 288
Cancer Cell 37, 21–36, January 13, 2020 31
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Figure 7. Proteomics and Gene Ontology Analysis

(A) Volcano plot of differentially expressed proteins in TECs compared with NECs.

(B) Upset plot visualization of the results of a cultured hcNEC versus hcTEC differential protein expression meta-analysis of 144 bulk proteomics samples (n = 93

patients), showing the number of proteins that were higher expressed in TECs than NECs isolated from the indicated tumor type. The bar graph represents the

number of proteins, detected in the tumor type(s) indicated by the dot plot below; 288 proteins were consistently higher expressed in TECs than NECs in all 4

tumor types (red bar graph and intersection). LOXL2 and PLOD2 were ranked in the top 3.

(C) Bar graph representation of significantly enriched gene ontology terms (p < 10�3). See also Figure S8 and Tables S3, S4, and S7.
consistently higher expressed proteins, including upregulated

LOX (p = 7.88 3 10�3), LOXL2 (p = 1.21 3 10�6), PLOD1 (p =

7.19 3 10�3) and PLOD2 (p = 4.52 3 10�5) (Figure 7B; Table

S4). Gene ontology (GO) analysis on the subset of consistently

higher expressed proteins revealed an enrichment of glycolytic

enzymes (p = 4.98 3 10�4), growth (p = 4.80 3 10�4) and actin

cytoskeleton organization (p = 1.16 3 10�4), as well as protein

hydroxylation and cross-linking (p = 7.55 3 10�4) (Figures 7C

and S8D; Table S7). We consistently identified PLOD1, PLOD2,

and LOXL2 and protein hydroxylation as highly ranked targets,

and thus assessed if these genes functionally regulate vessel

sprouting.

In agreement with the above GO analysis, migration, prolifera-

tion, and vessel sprouting were higher in TECs than NECs (Fig-

ures 8A–8C). Silencing of PLOD1, PLOD2, or LOXL2 in HUVECs

(>70%–80% silencing efficiency; Figure S8E) reduced ECmigra-

tion (Figure 8D) and impaired vessel sprouting in HUVEC spher-

oids (Figures 8E and 8F). Minoxidil, a pharmacological PLOD

blocker (Shao et al., 2018), reduced EC migration in vitro (Fig-

ure 8G). Administration of minoxidil or the lysyl oxidase inhibitor

beta-aminopropionitrile (BAPN) (Rodriguez et al., 2010) inhibited

corneal angiogenesis in vivo (Figure 8H). Overall, functional vali-

dation revealed that targeting genes identified by integrated

analysis inhibits vessel sprouting.

DISCUSSION

Previous bulk analysis-based transcriptomics studies revealed

only a limited number of EC phenotypes (Coppiello et al., 2015;

Marcu et al., 2018; Nolan et al., 2013; Sabbagh et al., 2018).

Highly powered single-cell transcriptomics studies now allow

characterization of EC phenotypes in more detail and enable

revision of the traditional outlook on the tumor endothelium.

Our data suggest a possible role for peritumoral (scavenging)

capillary NECs and TECs with a transcriptome signature of

HEVs or semi-professional APCs in tumor immune surveillance.

Notably, TECs represent the first-line defense contact for im-

mune cells in the tumor micro-environment. We also identified

ECs that expressed markers of tip cells and an EC phenotype,
32 Cancer Cell 37, 21–36, January 13, 2020
implicated in the initiation of vessel sprouting by creating an

opening in the basement membrane to assist invasive tip cells

to sprout (Seano et al., 2014), which we coined breach ECs.

We additionally identified vein ECs with a resident endothelial

stem cell signature in mice, which might contribute to lung tumor

vascularization, although this remains to be further studied.

Extending previous findings (Zhao et al., 2018), our data show

that a VEGFR2-selective inhibitor not only affects more sensi-

tively tip but also breach mTECs, while having smaller effects

on vein and capillary mTECs. In addition, this study provides

an unbiased molecular characterization of disorganized TECs

and shows that VEGF blockade induces partial molecular tumor

vessel normalization, including the induction of the activated

postcapillary vein phenotype (resembling HEVs) and other

more quiescent NEC phenotypes. This raises the question if

AAT, in addition to pruning the small number of angiogenic and

proliferating TECs, might benefit from tuning the more abundant

TEC phenotypes contributing to tumor vessel disorganization. A

concern is that tip TECs in human lung tumors make up only

<10% of all TECs, raising the question if targeting such a small

TEC subpopulation suffices to inhibit tumor angiogenesis and if

the paucity of angiogenic tip and proliferating TECs in human

lung tumors contributes to the insufficient efficacy and resis-

tance to VEGF blockade AAT. Regardless, our study provides

initial evidence for a correlation of angiogenic signatures with

NSCLC patient survival.

Our integrated scRNA-seq andmulti-omics approach showed

that only the tip TEC phenotype was conserved across species

andmodels. This was surprising, given that the tip EC phenotype

is not a genetically predetermined state (Blanco and Gerhardt,

2013), butmay be due to the presence of VEGF in the cultureme-

dium, an inducer of the tip EC phenotype (Siemerink et al., 2012).

The identification of the tip TEC phenotype in culture raises the

opportunity to study tip TEC targets in vitro, in contrast to arterial,

venous, capillary, and other in vivo TEC phenotypes that are lost

in culture.

To overcome inter-patient heterogeneity and contextual

differences in marker gene signatures due to differences in spe-

cies (human versus mouse), tumor type (NSCLC versus LLC),
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Figure 8. Inhibition of Collagen Hydroxylation/Cross-linking Impairs Vessel Sprouting

(A) Micrographs (left) and quantification (right) of hcNEC and hcTECmigration in scratch wound assays (mean ± SEM; n = 3; *p < 0.05, unpaired two-tailed t test).

Scale bar, 300 mm.

(B) 3H-thymidine incorporation assay (mean ± SEM, n = 10, *p < 0.05, unpaired two-tailed t test).

(C) Bright field photographs (top) andmorphometric quantification (bottom) of hcNEC and hcTEC spheroid sprouting (mean ± SEM; n = 3; *p < 0.05 versus NECs,

unpaired two-tailed t test). Scale bars, 100 mm.

(D) Scratch wound migration assay with control and PLOD1, PLOD2, or LOXL2 silenced (KD) ECs (mean ± SEM, n = 5, *p < 0.05, one-way ANOVA with

Dunnett’s test).

(E and F) (E) Bright field photographs and (F) morphometric quantification of spheroid sprouting using control and PLOD1, PLOD2, or LOXL2 silenced (KD) ECs.

Scale bars, 100 mm. Data are means ± SEM; n = 3; *p < 0.05 versus control, one-way ANOVA with Dunnett’s test.

(G) Scratch wound migration assay of ECs without or with pharmacological inhibition of PLODs by minoxidil (mean ± SEM, n = 3, *p < 0.05).

(H) Corneal angiogenesis upon corneal cauterization-induced injury in mice treated with vehicle (CTRL), minoxidil, or beta-aminopropionitrile (BAPN). Data are

means ± SEM; n = 3 independent experiments, each of 6 mice per group; *p < 0.05; unpaired, two-tailed t test.

See also Figure S8.
and model (freshly isolated versus cultured TECs), we used

scRNA-seq in combination with orthogonal multi-omics ap-

proaches to identify multiple genes involved in posttranslational

collagen modification, illustrating that the discovery of these

genes as angiogenic candidates was not accidental. We

confirmed LOXL2 as known angiogenic candidate (Baker et al.,
2013; Gilkes et al., 2014; Osawa et al., 2013; Zaffryar-Eilot

et al., 2013), and identified and functionally validated procolla-

gen cross-linking PLOD isoenzymes. Collagens have been impli-

cated in tumor angiogenesis, albeit contextually (Fang et al.,

2014; Sottile, 2004), but PLOD isoenzymes have not been sub-

stantially and consistently involved in angiogenesis yet. Hence,
Cancer Cell 37, 21–36, January 13, 2020 33



an integrated approach, based on orthogonal multi-omics sin-

gle-cell and bulk methods, may offer improved chances to

identify conserved TECmarkers that are biologically and transla-

tionally relevant.

This studyprovidesapublic resource for data exploration, avail-

able at https://www.vibcancer.be/software-tools/lungTumor_

ECTax. While our study shows how this integrated approach

can identify highly relevant angiogenic targets, we acknowledge

limitations of our work. First, the inferred biological role for each

EC phenotype is putative and requires functional validation to

probe their biological role. Second, larger numbers of patients

must beanalyzed to probe inter-patient heterogeneity and identify

all possibleTECphenotypesatdeep resolution.Third, it shouldnot

be surprising that mouse and human TEC taxonomies do not

completely overlap, given that tumors in both species grow differ-

ently, and patients exhibit larger genetic and environmental het-

erogeneity than mice.
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CellTrace CFSE dye Thermo Fisher Scientific C34554

Collagen type I Merck Millipore 08-115

Collagenase I Thermo Fisher Scientific GIBCOTM 17100017

Collagenase II Thermo Fisher Scientific GIBCOTM 17101015

Collagenase type 4 Worthington Biochemical LS004188

Dispase Thermo Fisher Scientific 171055-041

DMEM Thermo Fisher Scientific 11965-084

RPMI Thermo Fisher Scientific 21875-034

DMSO Sigma-Aldrich D2438

DNase I Sigma-Aldrich D4527

ECGS (endothelial cell medium growth supplement

mix)

Bio-Connect PromoCell C-39216

ECGS/H (endothelial cell growth supplement/heparin) Bio-Connect PromoCell C-30140

EDTA VWR Chemicals 20302.293

EGM2 (Endothelial growth medium) Bio-Connect PromoCell C-22011

Fc receptor block TruStain FcX BioLegend 422301

Fetal bovine serum (FBS) Merck - Biochrom S 0415

Gelatin from bovine skin Sigma-Aldrich G9391

Glutamine Thermo Fisher Scientific 25030149

Glycerol Merck Millipore 1.04091.1000

Heparin (bullet of ECGS/H) Bio-Connect PromoCell C-30140

Hoechst 33258 Sigma-Aldrich B2261

Isolectin B4 Thermo Fisher Scientific I21411

(Continued on next page)

e2 Cancer Cell 37, 21–36.e1–e13, January 13, 2020



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ketamine 100 mg/mL Eurovet Animal Health B.V. NIMATEK

Matrigel, growth factor reduced Corning 356230

Medium 199, HEPES Thermo Fisher Scientific 22340020

MEM NEAA Thermo Fisher Scientific 11140035

MEM vitamin solution Thermo Fisher Scientific 11120052

Opti-MEM Thermo Fisher Scientific 11058021

Methylcellulose 4000 cP Sigma-Aldrich M0512

Minoxidil Sigma-Aldrich M4145

beta-aminopropionitrile Sigma-Aldrich A3134

Lipofectamine RNAiMAX Thermo Fisher Scientific 13778150

Paraformaldehyde Merck Millipore 8.18715.1000

Penicillin/Streptomycin Thermo Fisher Scientific 15140122

Penicillin/Streptomycin/Glutamine Thermo Fisher Scientific 10378016

Phosphate buffered saline (PBS) Thermo Fisher Scientific 14190094

PTK787 (VEGFR tyrosine kinase inhibitor) Novartis Pharma N/A

Sodium dodecyl sulfate Acros Organics 230425000

Sodium pyruvate Thermo Fisher Scientific 11360070

TCA (trichloroacetic acid) Sigma-Aldrich T6399

Trypsin-EDTA (0.25%) Thermo Fisher Scientific 25200056

Tween 80 Sigma-Aldrich P1754

Unicaı̈ne 0.4% Théa Pharma So1ha02

Xylazine VMD XYL-M 2%

Ketamine 100 mg/mL Eurovet Animal Health B.V. NIMATEK

Critical Commercial Assays

CD31 MicroBeads, mouse Miltenyi Biotec 130-097-418

CD31 MicroBead Kit, human Miltenyi Biotec 130-091-935

CD45 MicroBeads, mouse Miltenyi Biotec 130-052-301

CD45 MicroBeads, human Miltenyi Biotec 130-045-801

Chromium Single Cell 3’ Library, Gel Bead &

Multiplex Kit and Chip Kit, v2

10x Genomics PN-120237

Chromium Single Cell A Chip Kit 10x Genomics PN-120236

Chromium i7 Multiplex Kit 10x Genomics PN-120262

CyTOF Barcode Perm Buffer Fluidigm 201057

CyTOF Cell-ID Cisplatin Fluidigm 201064

CyTOF Cell-ID Intercalator-Ir Fluidigm 201192A

CyTOF Maxpar Cell Staining Buffer Fluidigm 201068

CyTOF Palladium barcodes Fluidigm 201060

CyTOF MaxPar X8 antibody labeling kits Fluidigm

CyTOF EQ Four Element Calibration beads Fluidigm 201078

Cytotoxicity Detection Kit Roche Applied Science 11644793001

Fix/Perm buffer (eBiosciences intracellular

fixation & permeabilization buffer set)

Thermo Fisher Scientific 88-8824-00

iScript cDNA synthesis kit Bio-Rad 1708891

Pierce ECL Western Blotting Substrate Thermo Fisher Scientific 32106

PureLink RNA Mini Kit Thermo Fisher Scientific 12183018A

RNAscope Multiplex Fluorescent v2 Assay ACDBio 323110

TSA Cyanine 3 (Cy3) System Perkin Elmer NEL704A001KT

TSA Cyanine 5 (Cy5) System Perkin Elmer NEL705A001KT

TSA Fluorescein System Perkin Elmer NEL701A001KT

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

scRNA-sequencing raw and analyzed data human

NSCLC, freshly isolated and cultured

This paper ArrayExpress:

E-MTAB-6308

scRNA-sequencing raw and analyzed data LLC This paper ArrayExpress:

E-MTAB-7458

Bulk RNA-sequencing raw and analyzed data This paper ArrayExpress:

E-MTAB-8031

Proteomics This paper PRIDE: PXD014123

NSCLC scRNA-seq dataset Lambrechts et al., 2018 ArrayExpress:

E-MTAB-6149

Bulk RNA-seq dataset – renal cell carcinoma

and colorectal cancer

EndoDB GEO: GSE77199

Bulk RNA-seq dataset – bladder cancer EndoDB ArrayExpress:

E-GEOD-41614

Bulk RNA-seq dataset – hepatocellular carcinoma EndoDB ArrayExpress:

E-GEOD-51401

Experimental Models: Cell Lines

Human umbilical vein endothelial cells (HUVECs),

primary; Approved by Ethics Committee Research

UZ/KU Leuven; approval number S57123

This paper N/A

293T cells ATCC RRID: CVCL_0063

Lewis Lung Carcinoma cells ATCC RRID: CVCL_4358

Experimental Models: Organisms/Strains

C57BL6/J mice KU Leuven animal facility N/A

C57BL6/J mice Charles River

Oligonucleotides

qRT-PCR primers Table S8

shRNAs Table S8

siRNAs Table S8

RNAscope probe Hs-ACKR1 ACDBio 525131-C2

RNAscope probe Hs-CCL14 ACDBio 490401-C1

RNAscope probe Hs-CXCR4 ACDBio 310511-C2

RNAscope probe Hs-EFNB2 ACDBio 430651-C1

RNAscope probe Hs-PGF ACDBio 311771-C1

RNAscope 3-Plex positive control probe-Hs ACDBio 320861

RNAscope 3-Plex negative control probe ACDBio 320871

RNAscope probe Hs-CD52 ACDBio 519381

RNAscope probe Hs-CD68 ACDBio 560591-C2

RNAscope probe Hs-IL1RL1 ACDBio 437481-C2

RNAscope probe Hs-EDNRB ACDBio 528301

Recombinant DNA

pLKO-shRNA2 vector Sigma-Aldrich N/A

pLVX-shRNA2 vector Clontech PT4052-5

pLKO.1-puro non-mammalian shRNA control Sigma-Aldrich SHC002V

Software and Algorithms

R version 3.4.4 (2018-03-15) system: x86_64,mingw32

ui: RStudio (1.1.456)

language: (EN)

collate: English United States.1252

CRAN (R 3.4.4)

asinh (base R) CRAN (R 3.4.4)

base R (version 3.4.4) local

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cell Ranger 10x Genomics (tenx, RRID: SCR_01695)

clusterProfiler; version 3.6.0 Bioconductor (clusterProfiler, RRID: SCR_016884)

edgeR; version 3.20.9 Bioconductor (edgeR, RRID: SCR_012802)

flashPCA; version 2 https://github.com/gabraham/

flashpca

Gorilla, version April 27, 2019 http://cbl-gorilla.cs.technion.ac.il/ (Gorilla, RRID: SCR_006848)

GSVA; version 1.26.0 Bioconductor

heatmaply; version 0.15.2 CRAN (R 3.4.4)

limma; version 3.34.9 Bioconductor (LIMMA, RRID: SCR_010943)

Pathview; version 1.18.2 Bioconductor

premessa R package https://github.com/ParkerICI/

premessa

pvclust; version 2.0.0 CRAN (R 3.4.4)

qvalue 2.10.0 Bioconductor (Qvalue, RRID: SCR_001073)

Rtsne; version 0.13 CRAN (R 3.4.4)

scmap; version 1.1.5 Bioconductor

scran; version 1.6.9 Bioconductor (scran, RRID: SCR_016944)

Seurat; version 2.3.2 CRAN (R 3.4.4) (Seurat, RRID: SCR_016341)

Survival; version 2.41.3 CRAN (R 3.4.4)

TCGAbiolinks Bioconductor

UpSetR CRAN (R 3.4.4)

GraphPad Prism8, version 8.1.1 (GraphPad Prism, RRID: SCR_002798)

Fiji/ImageJ, 1.52n https://fiji.sc RRID: SCR_002285

FlowJo (version 8.8.6) FlowJo, https://www.flowjo.com (FlowJo, RRID: SCR_008520)

Other

scRNA-seq interactive resource This paper, https://www.vibcancer.

be/software-tools/lungTumor_ECTax
LEAD CONTACT AND MATERIALS AVAILABILITY

Correspondence and requests for materials should be addressed to the Lead Contact, Peter Carmeliet (peter.carmeliet@kuleuven.

vib.be).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
This study was approved by the local ethics committee (Medical Ethics Committee UZ/KU Leuven) under the protocol S57123. Only

treatment-naı̈ve patients were included for the analysis. scRNA-seq and CyTOF were performed on primary, non-metastatic non-

small-cell lung carcinoma (NSCLC) tumors, resected from patients who underwent lung lobe resection with curative intent. For

bulk RNA-seq and proteomics analysis, TEC and NEC samples were prospectively (2015-2019) collected from patients with lung,

kidney, colorectal cancer, and colorectal cancer liver metastasis tumors. No statistical method was used to predetermine sample

size. Details on the gender, age and clinical data of the patients included are shown in Table S1. Sample numbers per dataset are

listed in Table S3.

Mice
Experiments were performed in 7 to 10 week-old immunocompetent C57BL6/J mice (male for tumor experiments; female for corneal

cauterization-induced injury assay) or postnatal P5 neonates (retinal vasculature analysis) (obtained from the KU Leuven animal

facility or purchased from Charles Rivers). They had not been involved in other, previous procedures. Animals were maintained in

individually ventilated cages in a room with controlled temperature and humidity under a 12 hr light/12 hr dark cycle and with

food and drink ad libitum. Animals were closely followed-up by the animal caretakers and the experimenters, with regular inspection

by a veterinarian, as per the standard health and animal welfare procedures of the local animal facility. No statistical methodwas used

to predetermine sample size. Animal housing and all experimental procedures were approved by the Institutional Animal Ethics Com-

mittee of the KU Leuven (Belgium) under protocol number P012/2014 and P156/2015.
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Cell Lines and Primary Cells
Lewis Lung Carcinoma (LLC) Cells

LLC cells were purchased from ATCC and cultured in RPMI (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum

(FBS) (Merck-Biochrom), and 100 IU/ml penicillin and 100 mg/ml streptomycin (Thermo Fisher Scientific).

293T Cells

293T cells were purchased from ATCC and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) (Merck-Biochrom),

2 mM L-glutamine (Thermo Fisher Scientific) and 100 IU/ml penicillin and 100 mg/ml streptomycin (Thermo Fisher Scientific).

Primary Human Umbilical Vein Endothelial Cells (HUVECs)

HUVECswere freshly isolated from umbilical cords obtained frommultiple donors (with approval from theMedical Ethical Committee

KU Leuven / UZ Leuven and informed consent obtained from all subjects) as previously described (Schoors et al., 2015), and cultures

were maintained as described in Method Details.

Primary Human Tumor and Peritumoral Endothelial Cells

Human tumor (hTEC) and peritumoral (hPNEC) ECs from biopsies of an NSCLC patient (Table S1) were isolated and cultured as

described in Method Details. All cultures were maintained at 37�C and 5% CO2, and were regularly tested for mycoplasma.

METHOD DETAILS

Human Tumor and Peritumoral Normal Endothelial Cell Isolation
Following surgical resection, samples from tumor and adjacent tissue (as far away from the tumor border as possible) were taken and

transported to the research facility. Upon arrival, samples were rinsed with PBS, minced into pieces smaller than 1 mm3, and trans-

ferred to 5ml digestion medium consisting of Dulbecco’s Modified Eagle medium (4,500mg/l glucose), supplemented with penicillin/

streptomycin (100 U/ml) (Thermo Fisher Scientific), sodium pyruvate (1 mM), MEMNEAAs (1x), MEM vitamin solution (1x), glutamine

(2 mM), heparin (10 U/ml) (PromoCell), ECGF (bullet kit of EGM2; PromoCell) and containing 0.1% collagenase I, 0.1% collagenase II

(Thermo Fisher Scientific), DNase I (75 U/ml) and dispase (2.5 U/ml). Samples were incubated for 30min at 37�Cwith manual shaking

every 5min. Next, 10ml of cold PBS containing 0.1%bovine serum albumin (BSA) (Sigma-Aldrich) were added and the samples were

filtered using a 100 mm strainer (Corning). Following centrifugation (1,200 rpm) at room temperature (RT) for 5 min, the supernatant

was decanted and discarded. Single-cell suspensions were enriched for ECs using the MACS system (Miltenyi Biotec) by CD45+ cell

depletion and subsequent enrichment for CD31+ cells according to the manufacturer’s instructions. For further processing for

scRNA-seq, the samples were resuspended in PBS containing 0.4%UltraPure BSA (50 mg/ml; Thermo Fisher Scientific) and filtered

over 40 mm cell strainers on ice. The number of cells and fraction of live cells in the suspension was counted using an automated cell

counter (Luna, Logos Biosystems). The volume of suspension containing the required number of live cells was used for scRNA-seq as

described below. Throughout the dissociation procedure, cells were maintained on ice whenever possible.

Primary Endothelial Cell Culture
Human Umbilical Vein Endothelial Cell Isolation and Culture

Human umbilical vein endothelial cells (HUVECs) were maintained on 0.1% gelatin-coated dishes in M199 medium (1 mg/ml

D-glucose) (Thermo Fisher Scientific) supplemented with 20% fetal bovine serum (FBS) (Merck-Biochrom), 2 mM L-glutamine

(Thermo Fisher Scientific), Endothelial Cell Growth Supplement (ECGS)/ Heparin (PromoCell), 100 IU/ml penicillin and 100 mg/ml

streptomycin (Thermo Fisher Scientific) or in endothelial cell basal medium (EGM2) (PromoCell) supplemented with endothelial

cell growth medium supplement pack (PromoCell). In all experiments, HUVECs were always used as single-donor cultures and

were used between passage (p) 1 and 4.

Human Tumor and Peritumoral Endothelial Cell Culture

Human hTEC and hPNECs, isolated as described above, were resuspended in 6 ml of a 1:1 mix of M199 (containing 10% FBS and

sodium pyruvate, MEM NEAAs, MEM vitamin solution, glutamine and heparin as above) and EGM2 medium, further supplemented

with antibiotic/antimycotic (2x) (Thermo Fisher Scientific), and the single cell suspension was plated out in 3 wells of a 6-well plate

pre-coated with 0.1% gelatin. The next day, themediumwas changed to EGM2 supplemented with antibiotic/antimycotic and there-

after changed every other day. When reaching confluency and upon detection of EC cell colonies (patches with cobblestone appear-

ance), ECs were purified using anti-CD31 coated magnetic beads (MACS Technology, Miltenyi Biotec). The resulting MACS-purified

ECs were further cultured in EGM2 medium and used at passage 2-5 for bulk RNA-sequencing and proteomics, and passage 8 for

scRNA-seq. Treatment of EC cultures with the PLOD inhibitor minoxidil (Sigma-Aldrich) was done at 100 and 500 mM for 24 hr in fully

supplemented EGM2 medium.

Mouse Model of Lewis Lung Carcinoma & Tumor and Normal EC Isolation
LLC Model

The syngeneic LLC cells (ATCC) were injected orthotopically into the parenchyma of the right lung through the rib cage using a 30G

needle (1 3 106 cells in 70 ml matrigel (BD Biosciences)). The animals were sacrificed on day 10 of the experiment and lungs were

immediately processed for TEC and NEC isolation. Since both lungs become colonized by cancer cells in this orthotopic LLCmodel,

even upon injection of cancer cells into a single lung, and since cancer cells in a tumor can affect peritumoral ECs, we isolated ECs

from healthy non-tumor-bearing mice as controls (which we termed mNECs).
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AAT Treatment

Mice were treated with rat anti-mouse VEGFR2 antibody DC101 (Bio-Connect) (40-50 mg/kg i.p., 3x per week), the VEGFR tyrosine

kinase inhibitor PTK787 (Novartis Pharma) (100mg/kg by daily gavage) or with, respectively, irrelevant control antibody 1C8 (Schmidt

et al., 2011) (50mg/kg i.p., 3x per week) or 5%DMSO and 1%Tween 80 in water (daily gavage) starting from day 3 after LLC injection

(Liu et al., 2005; Sweeney et al., 2002). Mice were randomly allocated to the treatment condition.

EC Isolation

Micewere anesthetized and once thewithdrawal reflexwas absent in the pelvic limbs, they were perfusedwith 5ml of PBS at a perfu-

sion rate of 1 ml/min. For isolation of TECs, lung tumors were micro-dissected from lung tissue. For isolation of NECs, both lungs of

control (non-tumor bearing) mice were dissected. The dissected tissue was placed into a C-tube (Miltenyi Biotec) containing 5 ml

digestion buffer (0.1% collagenase II (Thermo Fisher Scientific), 0.25% collagenase type 4 (Worthington Biochemical), DNase I

(150 U/ml) in DMEM supplemented with 1x sodium pyruvate, 1x MEM NEAAs, ECGF/Heparin, antibiotic/antimycotic (2x) and 1%

penicillin/streptomycin (Thermo Fisher Scientific)) and processed with the m_lung_01 program of gentleMACS (Miltenyi Biotec).

The samples were then incubated in a water bath at 37�C for 30 min with manual shaking every 5 min. At the end of digestion,

the samples were processed with them_lung_02 program of gentleMACS, and the reaction was stopped by adding 10ml of an isola-

tion buffer containing 1x PBS, 0.1% BSA, 5 mM EDTA. Subsequently, the cell suspension was filtered through a 100 mm cell strainer

(Corning) on ice. Finally, ECs were enriched bymagnetic bead sorting usingMACS system (Miltenyi Biotec) at RT. Immune cells were

depleted using selection with CD45 MicroBeads (Miltenyi Biotec), followed by positive selection of ECs with CD31 MicroBeads (Mil-

tenyi Biotec), according to the manufacturer’s procedures. On average the isolation time was 3 hr, the viability between 60-90%, and

cells were kept on ice whenever possible.

Knock Down Strategy
To silence the expression of PLOD1, PLOD2, LOXL2, gene-specific oligonucleotides (see Key Resources Table and Table S8) were

cloned into the pLKO-shRNA2 vector (Clontech). To silence the expression of LXN, gene-specific oligonucleotides were cloned into

the pLVX-shRNA2 vector (Clontech). All constructs were sequence verified. Lentiviral particles were produced in 293T cells as pre-

viously described (Cantelmo et al., 2016). For lentiviral transduction, aMOI of 20was used. Transductions were performed on day 0 in

the evening, cells were refed with fresh medium on day 1 in the morning and experiments were performed from day 3 or 4 onwards.

Knockdown efficiency was monitored for each experiment either at the mRNA (qRT-PCR) or protein level or both and compared to

expression in cells transduced with a negative control shRNA (see Key Resources Table and Table S8). To silence the expression of

FSCN1with siRNA (Table S8) we used the Lipofectamine RNAiMAX (Thermo Fisher Scientific) as per themanufacturer’s instructions.

Cells were seeded at day 0 in the morning (with 200 K/well using a 6-well plate format) and transfection was performed the same day

in the eveningwith 25 pmol siRNA per well, diluted inOpti-MEM.On day 1 in themorning, mediumwas refreshed, and in the afternoon

cells were collected for use in the mosaic spheroid capillary sprouting assay.

In Vitro Functional Assays
Proliferation

ECproliferation was quantified by incubating cells for 2 hr with 1 mCi/ml [3H]-thymidine (Perkin Elmer). Thereafter, cells were fixedwith

100% ethanol for 15 min at 4�C, precipitated with 10% TCA and lysed with 0.1 N NaOH. The amount of [3H]-thymidine incorporated

into DNA was measured by scintillation counting.

Scratch Wound Migration Assay

A scratch wound was applied on confluent EC monolayers using a 200 ml tip, 24 hr after seeding (100,000 cells per well in 24-well

plates). After scratch wounding and photography (T0), the cultures were further incubated in fully supplemented EGM2 medium

for 18 hr and photographed again (T18). Migration was measured with the fiji/ImageJ software package (Schindelin et al., 2012)

and is expressed as % wound closure (gap area at T0 minus gap area at T18 in % of gap area at T0).

Spheroid Capillary Sprouting Assay

ECs were incubated overnight in hanging drops in EGM2 medium containing methylcellulose (20 vol% of a 1.2% solution of meth-

ylcellulose 4000 cP) (Sigma-Aldrich) to form spheroids. Spheroids were then embedded in collagen gel and cultured for 20 hr to

induce sprouting as described previously (De Bock et al., 2013). Cultures were fixed with 4% paraformaldehyde (PFA) at RT and

imaged under bright field using aMotic AE 31microscope (Motic Electric Group Co Ltd.) or Leica DMI6000microscope (LeicaMicro-

systems). Analysis of the number of sprouts per spheroid and the total sprout length (cumulative length of primary sprouts and

branches per spheroid) was done on phase contrast images using the fiji/ImageJ imaging software package.

Mosaic Spheroid Capillary Sprouting Assay

Control and silenced ECs (lentiviral or siRNA) were collected as described in the knock down strategy section, and fluorescently

labeled with intracellular dyes. Control ECs were stained with the CellTracker Deep Red (Thermo Fisher Scientific) and FSCN1

silenced ECs with the CellTrace CFSE dye (Thermo Fisher Scientific). LXN silenced cells did not need labeling as the shRNA viral

vector contains a ZsGreen1 fluorescent reporter. The staining protocol was done according to the manufacturer’s guideline. Briefly,

suspensions containing 125,000 control and silenced ECs were placed in a separate tube, spun down and the media changed to

EGM2 without growth factors and supplement during the incubation time with the dye (10 mM for CellTracker Deep Red, 50 mM of

the CellTrace CFSE), 30 min, room temperature, protected from the light. Full EGM2 was then added to the staining mix to stop

the reaction, the cells centrifuged and the supernatant removed. Finally, control (Deep Red) and silenced (CFSE or ZsGreen1) cells
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weremixed at equal ratio (1:1, 250,000 cells in total) and used for spheroid formation as described in the section above. Using a Leica

DMI6000microscope (LeicaMicrosystems) at least 10 spheroids were acquired per replicate and per condition. Using the fiji/ImageJ

imaging software package, the contribution to the tip position of each sprout was quantified and is represented as the percentage of

green (CFSE or ZsGreen1) or red (Deep Red) stained ECs occupying the tip position.

In Vivo Functional Assays in Corneal Angiogenesis
Corneal angiogenesis was induced by thermal cauterization as previously described (Garcı́a-Caballero et al., 2019). After anaesthe-

tizing 8-week-old female mice with an intraperitoneal injection of ketamine (100 mg/kg body weight) and xylazine (10 mg/kg body

weight), a local anesthetic (Unicaine 0.4%; Théa Pharma) was applied to the eye and the central cornea was thermally cauterized

using an ophthalmic cautery (Optemp II V; Alcon Surgical). Mice were daily treated with ophthalmic drops of Minoxidil (5% w/w),

3-beta-aminopropionitrile (800 mg/kg body weight), or the vehicle for 6 days, initiated the day after induction of the corneal injury.

Mice were euthanized 7 days after cauterization, eyes were removed and corneas were dissected. Whole-mounted corneas were

fixed in 70%ethanol for 1 hr at room temperature and blockedwith 3%BSA-3%Gloriamilk (Nestlé) for 1 hr. Corneas were incubated

overnight with a rat anti-mouse CD31 antibody (BD Biosciences), subsequently incubated with AlexaFluor 546-conjugated goat anti-

rat secondary antibodies (Molecular Probes) for 2 hr, and flat-mounted on a microscopy slide with ProLong Gold antifade reagent

(Thermo Fisher Scientific). Corneas were imaged using a Leica DMI6000 microscope (Leica Microsystems) and the blood vessel

area was quantified (CD31+ area as a percentage of the total corneal area).

Immunohistochemistry
Lung Tissue

Formalin-fixed paraffin-embedded murine or human lung tumor tissue sections were subjected to immunohistochemistry. For a full

list of primary and secondary antibodies, see Key Resources Table. Briefly, after incubation overnight at 4�C with the primary anti-

bodies, sections were incubated with the appropriate secondary antibodies followed by amplification with the proper tyramide signal

amplification system (Perkin Elmer) (for CD31 staining), or with Alexa Fluor-conjugated secondary antibodies (for all marker stainings,

except MECA-79 and CXCR4/PLGF, no amplification was used to avoid loss of differential signal intensity between vessel/EC types),

also overnight at 4�C. Nuclei were counterstained with Hoechst 33342 (Sigma-Aldrich) and slides weremounted using ProLong Gold

AntifadeMountant (Thermo Fisher Scientific). Imaging was performed using a Zeiss AxioScan Z1 at 20xmagnification, or by confocal

imaging using a Zeiss LSM 780 confocal microscope (Carl Zeiss) at 100x magnification (alpha Plan-Apochromat 100x/1.46 Oil

DIC M27).

Neonatal Retinas

Retinas were isolated at P5 as previously described (De Bock et al., 2013) and fixed in 2% paraformaldehyde for 2 hr. Briefly, after

overnight permeabilization of the retinas, the samples were incubated overnight at 4�Cwith the primary antibody (LXN Abcam 1/100;

Fascin Abcam, 1/100). After incubation with the primary antibodies, retinas were incubated overnight at 4�Cwith the appropriate sec-

ondary antibodies and IsolectinB4-Alexa 488 (Thermo Fisher Scientific, 1/100). Stained retinas were flatmounted and imaged with a

Zeiss LSM 780 confocal microscope (Carl Zeiss) at 20x magnification (Fluar 20x/0.75).

RNA Isolation and Quantitative RT-PCR
RNA was collected and purified with the PureLink RNA Mini Kit (Thermo Fisher Scientific) and converted to cDNA using the iScript

cDNA synthesis kit (Bio-Rad). RNA expression analysis was performed by Taqman quantitative RT-PCR (Thermo Fisher Scientific) as

described using premade primer sets (see Key Resources Table and Table S8). For comparison of gene expression between con-

ditions, mRNA levels (normalized to the housekeeping gene HPRT) were expressed relative to control conditions.

Single-cell Droplet-based RNA Sequencing
The single cell suspensions of freshly isolated TECs and NECs (MACS-bead enriched to 20-30% as described above) or cultured

TECs were converted to barcoded scRNA-seq libraries using the Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit and

Chip Kit (10x Genomics), aiming for 6,000 cells per library. Samples were processed using kits pertaining to V2 barcoding chemistry

of 10x Genomics. Single samples were always processed in a single well of a PCR plate, allowing all cells from a sample to be treated

with the same master mix and in the same reaction vessel. For each experiment, all samples (TEC and NEC) were processed in par-

allel in the same thermal cycler. Libraries were sequenced on an Illumina HiSeq4000, and mapped to the human genome (build

GRCh38) or to the mouse genome (build mm10) using CellRanger software (10x Genomics, version 2.1.1).

Single-Cell Transcriptomics Analysis
Data from MACS-enriched TEC and NEC samples were aggregated using Cell Ranger and data from the raw unfiltered matrix was

further processed using R (version 3.4.4 - Someone to Lean On).

Quality Control and Data Normalization

For the human freshly-isolated ECs, the following quality control steps were applied: (i) genes expressed by <50 cells or with a row

mean of <0.01 were not considered; (ii) cells that had either fewer than 201 (low quality cells) or over 6,000 expressed genes (possible

doublets), or over 5% of unique molecular identifiers (UMIs) derived from the mitochondrial genome were removed. The data of the

remaining 100,512 cells were natural-log transformed using log1p and normalized using the Seurat package (Satija et al., 2015).
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Quality control and normalization of murine and cultured ECs were performed using the same approach. Dataset specific cut-off

values and parameter settings are listed in Table S8.

In Silico EC Selection

After auto-scaling, the normalized data were first summarized by principal component analysis (PCA) using the flashPCA package,

and the first 15 PCAs were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE, Rtsne package) with a perplexity

value of 200 and a learning rate of 100. Graph-based clustering was performed to group cells according to their gene expression

profiles as implemented in Seurat (see Table S8 for parameter settings). Cell clusters were annotated based on canonical markers,

including PECAM1 andCDH5 (ECs), PROX1 (lymphatic ECs),COL1A1 (fibroblasts), PTPRC (leukocytes), and PDGFRB (pericytes) to

discriminate ECs from contaminating cells. All down-stream analyses were performed on ECs only.

Batch Effect Correction

ECs from freshly-isolated human and murine samples were prospectively collected, resulting in several batches of sequencing data.

We first analyzed each patient and / or batch separately, and removed clusters expressing ambiguous marker genes (i.e. represent-

ing low quality cells, red blood cells, possible doublets, etc.), as performed in other scRNA-seq studies (Cao et al., 2019; Smillie et al.,

2019; Young et al., 2018). We then used a recently developed algorithm, mnnCorrect available from the scran package (Haghverdi

et al., 2018), for batch effect correction of: (i) all human samples that were used to reconstruct the NSCLC EC taxonomy; and (ii) all

murine mNECs and mTECs. The optimal neighborhood size, k, was empirically defined as 50 after optimizing over a range of 10-300

for both human and murine datasets. Importantly, differential analysis and GSVA analyses were based on the original expression

data, using additive linearmodels tomodel the batch of origin (for murine samples) or patient (for human samples) as a blocking factor

(limma package) (Haghverdi et al., 2018; Smillie et al., 2019).

Feature Selection and Dimensionality Reduction

After in silico EC selection and batch correction for joint analysis, we identified genes with high variability using the Seurat

FindVariableGenes function. This function calculates the mean expression and dispersion for each gene, then groups genes into

bins (of size 20) by their mean expression and identifies any gene for which the z-score calculated from the dispersion exceeds a

pre-defined cut-off. For most experiments, we used a cut-off of z=0.25 and mean expression in the range 0.00125 to 8, all other pa-

rameters were default (see Table S8 for parameter settings for each analysis). The normalized data were auto-scaled and principal

component analysis was performed on variable genes, followed by t-SNE to construct a two-dimensional representation of the data.

This representation was only used to visualize the data.

EC Cluster Identification

To estimate the number of distinct phenotypes in batch corrected data, we color-coded t-SNE plots for each of the�14,000 detected

genes using an in-house developed R/Shiny-based web tool and identified clusters of cells with discriminating gene expression pat-

terns in all datasets. To unbiasedly group ECs, we performed PCA on highly variable genes, and used graph-based clustering as

implemented in the FindClusters function of the Seurat package (Satija et al., 2015). Cluster results were visualized using t-SNE to

verify that all visually identified clusters were captured and not under-partitioned. Over-partitioned clusters that represent the

same biological phenotype were merged into a single cluster.

We adapted previously described methods to build taxonomic trees (Innes and Bader, 2018; Tasic et al., 2018). We first compiled

the top 10 marker genes of each cluster (see below) into a marker list. We calculated the mean of these marker genes and applied

hierarchical clustering with Euclidean distance and average linkage. The confidence of each branch of the tree was estimated by the

bootstrap resampling approach from the R-package pvclust (Suzuki and Shimodaira, 2006). Second, to ensure that biologically rele-

vant branches that could not be directly resolved by bootstrapping with a confidence score of >0.4 were statistically separable (e.g.

human tumor and peritumoral LECs, postcapillary veins, and tip and immature cells), we performed pair-wise differential analysis and

confirmed that these clusters had at least ten genes that exceed a 0.2 log2fold enrichment with a FDR corrected p value <0.05 (Table

S3). Details of clustering parameters are provided in Table S8.

Pair-Wise Differential Analysis

Differential expression analysis between two specific clusters was performed using limma (Ritchie et al., 2015). As described previ-

ously (Haghverdi et al., 2018), we parameterized the design matrix such that each batch/patient–cluster combination formed a sepa-

rate group in a one-way layout, by using the clusters derived from the batch-corrected data (described above). For each gene, we

used this design to (a) fit a linear model to the normalized uncorrected log expression values, (b) perform an empirical Bayes

shrinkage to stabilize the sample variances, and (c) compute a moderated t test by comparing the two clusters across all batches.

Differentially expressed genes were defined as those for which the log2 fold change exceeds 0.2 at a false discovery rate of 5%

(Table S4).

Marker Gene Analysis

We used a two-step approach to obtain rankedmarker gene lists for each cluster. As a first criterion, marker genes for a given cluster

should have the highest expression in that cluster compared to all other clusters and are therefore uniquely assigned to one cluster.

Second, we ranked marker genes using a product-based meta-analysis (Hong et al., 2006). Briefly, we performed pair-wise differ-

ential analysis of all clusters against all other clusters separately and ranked the results of each pair-wise comparison by log2 fold

change. The most upregulated genes received the lowest rank number (top ranking marker genes) and the most downregulated

genes received the highest rank number. For each cluster, we combined the rank numbers for all genes in all pair-wise comparisons

by calculating their product to obtain a final list of ranked marker genes for each cluster. To assess statistical significance, we used a

recently developed algorithm to determine accurate approximate p values for each marker gene based on the rank product statistic
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(Heskes et al., 2014), and obtained Benjamini-Hochberg adjusted p values using the R package qvalue (Storey and Tibshirani, 2003)

(Table S4). For murine samples, marker gene analysis was performed using gene expression in untreated samples only, to avoid

treatment-induced effects.

Cluster Quantification

The representation of clusters across patients, tumor type, and tumor and peritumoral tissue was quantified using limma, using pa-

tient as a covariate and using a p value cutoff of < 0.05 to call differences in fractional composition.

Cluster Annotation

We annotated clusters based on literature-curated marker genes of canonical artery, capillary, vein, lymphatic, proliferating, high

endothelial venule and tip ECs. In case of an entirely unknown phenotype or previously unrecognized sublineages of a canonical

phenotype, which could not be annotated based on canonical marker genes or gene sets, we used a three-step approach to identify

a putative biological function. First, we searched through the top 50 ranking list of markers for a coherent set of genes involved in

similar biological processes. Second, if we identified a putative signature (e.g. antigen presentation, scavenging, basement remod-

eling, etc.), we determined whether other genes associated with such a signature were also highest expressed in this phenotype.

Third, we integrated insights from additional analysis (e.g. cross-model comparison, color-coded tSNEs, heatmap analysis) into

our assessment. For the murine HEV signature, we used Gene set variation analysis (GSVA) as implemented in theGSVA R-package

(version 1.26.0) to convert the gene-by-cell matrix into a HEV gene set-by-cell matrix using default settings (Hanzelmann et al., 2013).

Enrichment scores for the HEV signature were highest in postcapillary venous mTECs.

Cells that could not be unambiguously assigned to a biologically meaningful phenotype might represent low quality cells or dou-

blets and were excluded from the analysis. In human ECs, we excluded clusters of lowly sequenced cells that expressed recently

identified markers of ambient RNA contamination (Angelidis et al., 2019). In murine ECs, a small fraction of tumor sample-derived

ECs had the same phenotype (gene expression signature) as mNECs (Figure S5E) and were considered peritumoral ECs, given

that micro-dissected tumor samples unavoidably contained some peritumoral ECs; these cells were similar to, and clustered with

mNECs and were not further characterized as a separate population.

Evaluation of Dissociation Artifacts

We performed gene set variation analysis to determine which individual cells strongly expressed a recently published dissociation

gene signature, consisting mainly of immediate-early and other stress response genes (van den Brink et al., 2017). In one murine

NEC sample, we identified a cluster consisting of cells that were strongly enriched for this signature but did not express any other

marker genes that could biologically explain a stress response. Cells in this cluster were therefore removed from all analyses.

Heatmap Analysis

All heatmaps are based on cluster-averaged gene expression to account for cell-to-cell transcriptomic stochastics. Data was auto-

scaled for visualization. Heatmaps were produced using the heatmaply package (version 0.15.2). The datamatrix for each heatmap

can be downloaded from the accompanying web tool (see Data Resources below).

Cross Dataset Validation of the Human EC Taxonomy

We used the scmapCluster algorithm as implemented in the scmap package (version 1.1.5) to project normalized and quality filtered

EC data (Kiselev et al., 2018). scmapCluster carries out a search by cluster, in which each cluster is represented by its centroid, and

measures the similarity between a new cell, c, and each cluster centroid or cell. We used the top tenmarker genes for each EC cluster

in the reference taxonomy and a similarity threshold of 0.5, all other parameters were default. The projection was visualized using a

Sankey plot.

TCGA Analysis

Raw count gene expression data was obtained from the lung squamous cell carcinoma and lung adenocarcinoma NSCLC cohorts

catalogued in The Cancer Genome Atlas (TCGA, accessed through TCGAbiolinks package) (Cancer Genome Atlas Research

Network et al., 2013; Colaprico et al., 2016), and normalized using trimmedmean of M-values (TMM) available from the edgeR pack-

age (Robinson et al., 2010). Marker gene sets of each phenotype in human TECs and NECs were filtered for EC-enriched genes uti-

lizing a publicly available resource (Lambrechts et al., 2018) (EC-enriched genes were defined as all genes that were highest ex-

pressed in human lung TECs compared to all other cell types described in this resource). GSVA scores were only calculated for

EC-enriched marker gene sets with a minimum of five detected genes, all other parameters were default. Analysis was performed

on the output of GSVA to test gene expression signatures. Patients were stratified in high (top 25%) and low (bottom 75%) expression

groups, and survival analysis was performed via the Kaplan-Meier estimator, using the log-rank test to determine significance

(Li, 2003).

Jaccard Similarity Analysis

To assess conservation of cell phenotypes in lung ECs, we calculated similarity of marker gene sets using pair-wise Jaccard similarity

coefficients for all clusters consisting of at least 50% TECs against all other clusters. The Jaccard similarity coefficient is defined as

the size of the intersection divided by the size of the union of sets:

JðA;BÞ = jAXBj
jAWBj=

jAXBj
jAj+ jBj � jAjXjBj

Where J is the Jaccard index and A and B are two sets of marker genes (Levandowsky and Winter, 1971).
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Congruent Tip Cell Marker Analysis

To identify congruent tip cell markers across freshly-isolated human and murine and cultured TECs, we first selected all genes that

were highest expressed in tip and breach cells in all three datasets. Second, we ranked these conserved genes via a rank-product

meta-analysis, by calculating the product of the rank numbers of each gene in each of the three datasets (Heskes et al., 2014; Hong

et al., 2006), and corrected (Benjamini-Hochberg) the associated p values using the R package qvalue (Storey and Tibshirani, 2003).

The results were visualized using bar plots, depicting the top 50 most congruent tip cell marker genes with an adjusted

p value < 0.005.

Gene Set Enrichment Analysis

Weused gene set enrichment analysis (GSEA) as implemented in the clusterProfiler package (version 3.6.0) to compare gene expres-

sion signatures between treated and untreated mTEC samples (Yu et al., 2012). Gene set analysis was performed using a set of

vascular related gene sets selected from the Molecular Signatures Database (MSigDB version 5.2 downloaded from http://bioinf.

wehi.edu.au/software/MSigDB/), a collection of expert annotated gene sets. GSEA scores were calculated for sets with a minimum

of 10 detected genes, all other parameters were default.

Meta-Analysis of Transcriptomics Data

We performed a differential gene expression meta-analysis using previously published human tumor ECs (TEC) versus normal ECs

(NEC) transcriptomics. Briefly, we screened the EndoDB database for relevant studies and identified three studies comprising six

distinct TEC versus NEC datasets of five tumor types (Khan et al., 2019). We performed pair-wise, TEC versus NEC, differential

expression analysis for each dataset independently as described previously (Bruning et al., 2018; Cantelmo et al., 2016). Differentially

expressed genes and their false discovery rate (FDR) corrected p values were identified by the limma package (Ritchie et al., 2015).

We ranked genes in each dataset by fold change; genes upregulated in TECs received the lowest rank, downregulated genes the

highest rank. We combined the rank numbers for all genes using a product-based meta-analysis approach (Heskes et al., 2014;

Hong et al., 2006), and calculated Benjamini-Hochberg adjusted p values using the R package qvalue (Storey and Tibshirani,

2003). For visualization purposes only, we plotted the scaled median ranks.

RNA-Sequencing Analysis

RNA was extracted using TRIzol (Thermo Fisher Scientific). Starting from 1 mg total RNA, poly-adenylated fragments were isolated,

reverse transcribed and converted into indexed sequencing libraries using the KAPA stranded mRNA-seq kit (Sopachem). The first

50 bases of these libraries were sequenced on a HiSeq 2500 system (Illumina). The raw sequenced reads weremapped to the human

reference transcriptome and genome (build GRCh38) using the Bowtie TopHat pipeline (Langmead and Salzberg, 2012). Mapped

reads were assigned to ensemble gene IDs by HTSeq. Differentially expressed genes and their false discovery rate (FDR) corrected

p values were identified by the Limma package (Ritchie et al., 2015) using the patient factor as a covariate.

Proteomics Sample Preparation

Human TEC and NEC were isolated from patients and cultured until passage 1, at which point 37,500 cells were washed twice with

ice cold PBS and scraped in 300 ml of a 50:30:20 (methanol: acetonitrile: 20 mM Tris, pH 9.3) extraction buffer. Samples were then

centrifuged for 5min at 15,000 rcf at 4�Cand the supernatant was discarded. The resulting protein pellet was re-dissolved in 50 ml 8M

urea, 20 mM HEPES pH 8.0 and proteins were reduced by addition of 15 mM DTT and incubation for 30 min at 55�C. Proteins were

then alkylated by addition of 30mM iodoacetamide and incubation for 15min at RT in the dark. The samples were diluted by addition

of 20 mM HEPES pH 8.0 to reach a final urea concentration of 4 M; then, the proteins were digested with 0.125 mg endoLysC (Wako

1/250, w/w) for 4 hr at RT. Next, all samples were further diluted by addition of 20 mM HEPES pH 8.0 to a final urea concentration of

2 M and the proteins were digested with 0.125 mg trypsin (Promega) (1/100, w/w) overnight at 37�C. The resulting peptides were then

purified on OMIX C18 tips (Agilent), dried completely by vacuum drying and stored at -20�C until LC-MS/MS analysis.

Proteomics LC-MS/MS and Data Analysis

Peptides from each sample were re-dissolved in 20 ml loading solvent A (0.1%TFA in water/acetonitrile (98 : 2, v/v)) of which 10 ml was

injected for LC-MS/MS analysis on an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific) in-line connected to a Q Exactive

HF mass spectrometer (Thermo Fisher Scientific) equipped with a Nanospray Flex Ion source (Thermo Fisher Scientific). Trapping

was performed at 10 ml/min for 4 min in solvent A on a home-made 100 mm internal diameter (I.D.) 3 20 mm trapping column

(5 mm beads, C18 Reprosil-HD, Dr Maisch) and peptides were separated on a reverse-phase column (made in-house, 75 mm

I.D. 3 400 mm, 1.9 mm beads C18 Reprosil-HD, Dr Maisch). The peptides were eluted by a non-linear increase from 2% to 56%

MS solvent B (0.1% FA in water/acetonitrile (2 : 8, v/v)) over 140 min at a constant flow rate of 250 nl/min. The column temperature

was kept constant at 50�C (CoControl 3.3.05, Sonation).

The mass spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS acquisition for

the 16most abundant ion peaks per MS spectrum. Full-scan MS spectra (375 to 1500 m/z) were acquired at a resolution of 60,000 in

the Orbitrap analyzer after accumulation to a target value of 3,000,000. The 16 most intense ions above a threshold value of 13,000

were isolated (window of 1.5 Th) for fragmentation at a normalized collision energy of 28% after filling the trap at a target value of

100,000 for maximum 80 ms. MS/MS spectra (200 to 2,000 m/z) were acquired at a resolution of 15,000 in the orbitrap analyzer.

The S-lens RF level was set at 55, and we excluded precursor ions with single and unassigned charge states from fragmentation

selection.

Data analysis was performed with MaxQuant (version 1.6.0.16) (Cox and Mann, 2008) using the Andromeda search engine with

default search settings, including a false discovery rate set at 1% on peptide spectrum match (PSM), peptide and protein level.

The spectra were searched against the human proteins in the UniProt/Swiss-Prot database (database release version of September
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2017 containing 20,237 human protein entries, downloaded fromwww.uniprot.org). The mass tolerances for precursor and fragment

ions were set to 4.5 and 20 ppm, respectively, during themain search. Enzyme specificity was set as carboxy-terminal to arginine and

lysine (trypsin), also allowing cleavage at arginine/lysine–proline bonds with amaximum of twomissed cleavages. Carbamidomethy-

lation of cysteine residues was set as a fixed modification and variable modifications were set to oxidation of methionine (to sulfox-

ides) and acetylation of protein amino-termini. Proteins were quantified by the MaxLFQ algorithm integrated in the MaxQuant

software. Only proteins with at least one unique or razor peptide were retained for identification, while a minimum ratio count of

two was required for quantification. Matching between runs was enabled, with a matching time window of 2 min and an alignment

time window of 20 min.

Further data analysis was performed in R after loading the proteinGroups results files fromMaxQuant. Proteins with less than 20%

valid values were removed, and missing values were imputed using minimum values. Differentially expressed proteins and their false

discovery rate (FDR) corrected p values were identified by the Limma package (Ritchie et al., 2015), non-corrected p values are re-

ported for targeted analysis of collagenmodification enzymes. We used theUpsetR package to visualize proteins consistently higher

expressed across tumor types (Conway et al., 2017), and calculated rank products statistics to assess significance (Heskes et al.,

2014) (Table S4). The subset of 288 proteins that were higher expressed in all four tumor types were further ranked using Fisher’s

combined probability test (as implemented in the metap R-package) to obtain combined p values across datasets. This ranked

list was used for gene ontology analysis using the Gorilla web tool using default settings (Eden et al., 2009).

RNAscope In Situ Hybridization and Quantification
Formalin-fixed paraffin-embedded human NSCLC tissue blocks were sectioned and subjected to RNAscope in situ hybridization us-

ing the RNAscope Multiplex Fluorescent v2 assay (ACDBio) according to the manufacturer’s instructions (Pretreatment and

RNAscope Multiplex Fluorescent v2 Assay according to protocol 323100-USM). Briefly, after deparaffinization, the slides were incu-

bated with hydrogen peroxide for 10 min at RT. After several washing steps, manual target retrieval was performed followed by in-

cubation with Protease Plus before proceeding to the RNAscope Multiplex Fluorescent v2 protocol. Hybridization was performed

with the RNAscope probes Hs-PGF, Hs-CXCR4, Hs-ACKR1, Hs-EFNB2, Hs-CCL14, Hs-CD52, Hs-CD68, Hs-IL1RL1, Hs-EDNRB

and the RNAscope 3-plex Positive (low expression Polr2a, medium expression PPIB, and high expression UBC) and Negative

Control Probes. A negative control probe targeting a bacterial gene was used to assess background. Slides were then processed

according to the RNAscopeMultiplex Fluorescent v2 protocol (Hybridization, Amplification, and Signal Development), prior to immu-

nofluorescent staining for CD31. Images were acquired using a Zeiss LSM 780 confocal microscope (Carl Zeiss). For quantification,

the in situ hybridization images were first converted to a thresholded image and numbers of particles per CD31+ cell were counted

using a circularity of 0.00 – 1.00, and a size pixel between 0 – N. Doublets and triplets were split by considering signal over the

average size of a dot. Results are depicted as number of dots per cell as estimated by counting nuclei (Hoechst signal). Depicted

data are representative tumor sections of n=3 NSCLC patients.

Time-of-Flight Mass Cytometry (CyTOF)
Custom conjugated antibodies were generated using MaxPar X8 antibody labeling kits as per the manufacturer’s instructions (Fluid-

igm). Freshly isolated TEC and NEC single cell suspensions were washed twice in PBS followed by incubation with 0.5 mM Cell-ID

Cisplatin (Fluidigm) for 3 min at RT. Reactions were quenched with 5 ml Cell Staining Buffer (Fluidigm), washed and fixed in 2% para-

formaldehyde for 20 min at RT. Cells were then washed and permeabilized with freshly prepared 1X Barcode Perm Buffer in PBS

(Fluidigm), followed by incubation with Palladium barcodes (Fluidigm) for 20 min at RT. Samples were subsequently washed with

Cell Staining Buffer, resuspended with Fc receptor block for 5 min (TruStain FcX, BioLegend) and stained with a cocktail of surface

staining antibodies for 1 hr at RT under constant rotation. Following washes with Cell Staining Buffer and PBS, samples were fixed for

30 min in Fix/Perm buffer (Thermo Fischer Scientific). After 2 washes with freshly prepared 1X Perm Buffer (Thermo Fischer Scien-

tific), cells were stained with a cocktail of intracellular staining antibodies for 1 hr at RT under constant rotation. Cells were then

washed twice in 1X Perm Buffer and once in PBS, followed by incubation with 1.6% paraformaldehyde and 0.5 mM Intercalator-Ir

(Fluidigm) for 1 hr at RT. After multiple washes with Cell Staining Buffer, PBS and finally ultrapure water, EQ Four Element Calibration

beads (Fluidigm) were added 1:10 to each sample followed by analysis on a Helios instrument (Fluidigm) at an event rate of 150–200

cells per second. CyTOF was performed on human NCSLC tissue samples in four patients independent from those included in the

scRNA-seq analysis (Table S1).

CyTOF Data Analysis
Mass cytometry data were randomized using the Fluidigm acquisition software (version 6.7.1014) and normalized using four element

calibration beads. Bead-normalized samples were debarcoded using the premessa R package (version 0.2.2) using default settings.

The viable fraction (DNA+, Cisplatin–) of debarcoded single cells was then selected using FlowJo software (version 8.8.6), and viable

cells were sequentially gated on CD45–/PDGFRB–/COL1A1–/ACTA2– /PECAM1+/CDH5+ endothelial cells. The data was arcsine-

normalized using the asinh function (base R), and visualized using t-SNE with a perplexity value of 35 and a learning rate of 100.

The data were clustered using the graph-based clustering algorithm as implemented in Seurat (version) using the first 15 principal

components, ten neighbors and a resolution of 1. The differential expression of marker genes in endothelial clusters was assessed

using ANOVA with Dunnett’s post-hoc test to determine which differences between clusters were significant.
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Integration of scRNA-seq and CyTOF Data
We adapted a recently described approach to assess the similarity between the scRNA-seq and the CyTOF derived populations

(Giordani et al., 2019), and obtained average gene expression for each scRNA-seq cluster and average protein expression values

for each CyTOF cluster. We then scaled both the scRNA-seq and CyTOF derived expression matrix using the scale() function avail-

able from base R and merged them. Finally we used the heatmaply package to obtain a heatmap where both markers and clusters

were rearranged based on hierarchical clustering with Euclidean distance and average linkage using CA4, CD36, HLA-DP isoforms,

HLA-DR isoforms, ACKR1, CXCR4, VWF and PROX1 asmarkers. The similarity of each branch of the tree was estimated by the boot-

strap resampling approach from the R-package pvclust (Suzuki and Shimodaira, 2006), branches that could not be resolved by boot-

strapping with a confidence score of >0.4 were considered similar.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNAscope data are representative tumor sections of n=3 NSCLC patients. Spearman correlation and two-sided statistical signifi-

cance were calculated in GraphPad Prism8. A p value <0.05 was considered significant. Statistical significance of differences be-

tween Kaplan Meier survival curves was calculated using a Log Rank (Mantel Cox) test as implemented in the Survival package.

A p value <0.05 was considered significant. A t test was used for all pair-wise comparisons, ANOVA with the appropriate posthoc

test for multiple group comparisons.

DATA AND CODE AVAILABILITY

Data Resources
The accession number for all raw sequencing data are available in ArrayExpress under accession numbers ArrayExpress: E-MTAB-

6308 (human scRNA-seq data), ArrayExpress: E-MTAB-7458 (murine scRNA-seq data), ArrayExpress: E-MTAB-8031 (human bulk

RNA-seq). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE part-

ner repository with the dataset identifier PRIDE: PXD014123. Publicly available single cell transcriptome data from NSCLC was

derived from ArrayExpress: E-MTAB-6149. Processed publicly available endothelial transcriptomics data was derived from the

EndoDB, raw data can be obtained from GEO (accession number GEO: GSE77199) or ArrayExpress (accession numbers

ArrayExpress: E-GEOD-41614, E-GEOD-51401). To ensure data accessibility to non-bioinformaticians, reproducibility, and resource

value, we made our scRNA-seq data available for further exploration via an interactive webtool at https://www.vibcancer.be/

software-tools/lungTumor_ECTax. With this tool users can interactively visualize gene expression and clustering on t-SNE, search

marker genes for all subclusters, and export gene expression data.

Software
All software is freely or commercially available and is listed in the STAR Methods description and Key Resources Table.
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