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Abstract: In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate

1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions.

In the case of minimal supergravity, solutions are given by fibrations of a two-torus T 2

specified by two harmonic functions. For a rectangular torus the two functions are related

by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-

center string. “Bubbling”, i.e. superpositions of droplets, is accommodated by allowing the

complex structure of the T 2 to vary over the base. The analysis is repeated in the presence

of a tensor multiplet and similar conclusions are reached, with generic solutions describing

D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile

of the dual fundamental string-momentum system is identified with the boundaries of the

droplets in a two-dimensional plane.
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1. Introduction

The AdS/CFT correspondence [1] relates deformations of AdS geometries to states in the

boundary CFT. A concrete realization of this idea was recently proposed by Lin, Lunin,

Maldacena (LLM) in [2], where classical geometries of Type IIB supergravity corresponding

to 1/2-BPS states in N = 4 SYM were constructed. On the gauge theory side the solutions

correspond to chiral primary operators with conformal weight ∆ = J and are dual to defor-

mations of AdS5 × S5 (or the pp-wave) backgrounds preserving half supersymmetry. The

field theory states were previously found to have a description in terms of free fermions [3, 4].

In a semiclassical limit these states can be depicted as “droplets”, or “bubbles”, on a two-

dimensional plane, which is the phase space of these fermions. The remarkable result of [2]

was to show that to droplet configurations correspond supersymmetric solutions of Type

IIB supergravity, with SO(4) × SO(4) isometry. The geometries are completely specified

by a distribution of charge z = ±1/2 on a two dimensional plane non-trivially embedded

in space-time. In the geometry the “bubbles” define islands in space where one of the two

S3 shrinks to zero size and only for z = ±1/2 the corresponding geometries are regular.

The results in [2] provide the most general supersymmetric solutions of Type IIB

supergravity, in the presence of a five-form flux admitting an SO(4) × SO(4) group of

isometries.1 This analysis was done using the techniques first introduced in [6] (and sub-

sequently exploited in [7]–[10] and many others) and is greatly simplified by the large

amount of isometry. The field theory duals are given by SYM states satisfying ∆ = J built

as multi-trace products of J scalar fields of a single specie.

1In [2] a similar analysis was applied to M-Theory geometries, and constituted an extension of the results

of [5].
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The scope of this note is to investigate, from the supergravity point of view, the similar

story in D = 6. Solutions will correspond to 1/2-BPS deformations of AdS3×S3 (or its pp-
wave limit) and are dual to chiral primaries in the boundary CFT. The existence of a free

fermion description of primaries in the two-dimensional CFT [11] suggests that bubbling

solutions should find room in six-dimensional supergravity. Here we show that this is indeed

the case. Much is already known about the supergravity description of chiral primaries of

the two-dimensional CFT [12, 13, 14], and we will ask ourselves whether these results can

be reinterpreted in terms of bubblings of AdS3.

Half BPS geometries associated to excitations around AdS3 × S3 are dual to chiral

primaries in the two-dimensional D1D5 (or FNS) CFT. The spectrum of chiral primaries

and its dual KK descendants in supergravity have been worked out in [15]–[18]. States

in the CFT are classified by four charges h, h̄, j, j̄ describing the quantum numbers under

the isometry group SO(2, 2) × SO(4) ∼ SL(2, R)L × SL(2, R)R × SU(2)L × SU(2)R. h, h̄

describe the conformal dimension of the two-dimensional CFT and j, j̄ the R-symmetry

charges. In the case of minimal N = (1, 0) supergravity in D = 6, the CFT has N = (4, 0)

supersymmetry. This sector is universal to any supergravity in D = 6 and solutions are

shared by supergravities following from reductions on T 4, K3 and orientifolds.

In analogy with the ten-dimensional case we start by decomposing the isometry group

as SO(2)2 × SO(2)2θ1 ,θ2 and consider states with zero SO(2)2θi charges i.e. h = h̄ and j = j̄.

1/2-BPS states correspond to chiral primaries h = j and therefore we look for states with

h = h̄ = j = j̄ = m/2. There is a single state of this type for each m in the spectrum of

KK descendants of the gravity multiplet and one for each tensor multiplet.2 We therefore

look for solutions in the pure N = (1, 0) supergravity and its minimal extension by adding

a tensor multiplet.

Notice that, contrary to the ten-dimensional case studied in [2], requiring the solution

to admit an SO(2) × SO(2) group of isometries does not fix uniquely the form of the

internal space. In particular, on the two-torus T 2 we could have a non-diagonal metric,

and generically a non-trivial fibration structure. We start our analysis being conservative,

working in the minimal supergravity, and mimicking the ansatz used in [2] with T 2 =

S1 × S1. Rather surprisingly, we find an almost identical set of equations describing our

solutions. In particular, it turns out that a function z obeys the same equation as in [2].

However, unlike in the LLM case, the Bianchi identity translates into a further harmonic

condition on the function h2, related via a non-linear equation to z. The important property

of linearity of the equations is in this way lost and solutions are rare: AdS3×S3, the pp-wave
and the multi-center string.

It turns out that the resolution of this problem arises from relaxing the initial metric

ansatz, namely, considering a torus which is not any more rectangular. Indeed, using the

more general form of 1/2-BPS solutions of minimal supergravity given in [10], we show then

how bubbling can be accommodated by allowing for a tilted T 2. In this case, the non-linear

relation between z and h2 is lifted, and one is able to freely superpose different solutions in

2This can be easily seen from the list (3.1) in [17, 18] for KK descendants of the various N = (1, 0)

supermultiplets.
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a fashion similar to [2]. The resulting geometries are given in terms of harmonics generated

by lines of charges distributed along the boundary of droplets in a two-dimensional plane.

The cycles of the torus degenerate along this plane, while crossing the charged strings the

corresponding pinching cycles get flipped.

Finally we extend our analysis by adding a tensor multiplet to the minimal theory,

namely an anti-self-dual three-form, and a scalar field. This theory includes a wider class

of D1D5 classical geometries like for instance giant gravitons, and have been systematically

studied in [13]. The familiar string profiles describing these solutions are reinterpreted here

as the boundaries of the droplet configurations in the two-dimensional plane.

The paper is organized as follows: In section 2 we describe the solutions for minimal

supergravity in D = 6. We start by considering a simple metric ansatz where the torus

of isometries is rectangular. In section 2.3 the solutions are written in the canonical form

of [10] and the ansatz for the metric is relaxed to accommodate bubblings. In section 2.4

we discuss the general features of bubbling solutions. In section 3 we add a tensor multiplet

and discuss bubblings in this extended framework. Finally, in 4 we draw some conclusions.

Note added: while this work was being completed, the paper [19] appeared, which

overlaps with the results in our section 2.2.

2. 1/2-BPS solutions in minimal supergravity

2.1 The supersymmetry conditions

In this section we make use of the results of [10] to find 1/2-supersymmetric solutions of

minimal N = (1, 0) supergravity in 6 dimensions of the type recently constructed in [2].3

We use the six-dimensional conventions of [10], and adhere to the notation of [2].

Minimal supergravity in 6 dimensions comprises a graviton gmn, a two-form B+mn with

self-dual field strength, and a symplectic Majorana-Weyl gravitino ψA
µ . The Killing spinor

equation reads:

∇mε−
1

4
Gmnpγ

np ε = 0 (2.1)

where G = dB+ is self-dual and ε is symplectic-Majorana-Weyl, i.e. it has 8 real degrees

of freedom.

All supersymmetric solutions of minimal supergravity were characterized in [10] in

terms of a vector V and a triplet of self-dual three-forms X i constructed in terms of spinor

bi-linears. These objects satisfy some algebraic constraints, following from Fierz identities,

and some differential conditions which are equivalent to the supersymmetry equation (2.1).

For instance, one of the algebraic constraints implies that the vector V is null

VmV
m = 0 . (2.2)

The Killing spinor equation (2.1) is then equivalent to the following differential conditions

∇mVn = V pGpmn (2.3)

3The results in this section were derived in collaboration with G. Dall’Agata.
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∇mX
i
npq = Gmp

rXi
rqn +Gmq

rXi
rnp +Gmq

rXi
rpn . (2.4)

Notice that (2.3) implies that V is a Killing vector. We refer to [10] for further details

concerning the algebraic and differential conditions.

In analogy with [2], we now introduce ansatze for the metric and the self-dual 3-form

that admit a U(1)θ1 ×U(1)θ2 group of isometries

ds2 = gµν dx
µdxν − eH+G dθ21 − eH−G dθ22

G = F ∧ dθ1 + F̃ ∧ dθ2 (2.5)

with µ = 0, 1, 2, 3. Self-duality of the three-form4 field strength G yields the following

relations:

F ≡ dB = eG ∗4 F̃ F̃ ≡ dB = −e−G ∗4 F (2.6)

where ∗4 is the Hodge star operator with respect to the metric gµν . We would like now to

use the constraints imposed by supersymmetry in order to determine the functions entering

in the metric as well as the two-form F in (2.5). This can be easily achieved using the

results of [10]. Although in this latter reference it was introduced a null orthonormal frame

adapted to the Killing vector V , we find it more convenient to adapt the conditions in [10]

to our metric ansatz. In particular, we will first extract from the six-dimensional bi-linears

a set of four-dimensional forms.

The null Killing vector V m can be always chosen of the form V m = (Kµ, f1, f2). Since

∇(mVn) = 0, we also have that Kµ is a Killing vector, as well as that ∂µf1 = ∂µf2 = 0. We

can therefore normalize our vector so that

V m = (Kµ, 1, 1) , Vm = (Kµ,−eH+G,−eH−G) . (2.7)

As V is null, it follows that the vector K is timelike, and its norm is given by

K ·K = eH+G + eH−G ≡ h−2 , (2.8)

hence we can choose a time coordinate t such that the metric takes the form

ds2 = h−2(dt+ C)2 − g3ijdxidxj − eH+G dθ21 − eH−G dθ22 (2.9)

whence

K =
∂

∂t
as a vector (2.10)

K = h−2(dt+ C) as a one− form (2.11)

C = Ci dx
i, i = 1, 2, 3 and of course nothing depends on t, θ1 or θ2. To proceed, we define

a set of forms by decomposing the 3-forms X i

Xi
µθ1θ2

= Li
µ , Xi

µνθ1
= Y i

µν , Xi
µνθ2

= Ỹ i
µν , Xi

µνρ = L̃i
µνρ . (2.12)

Due to the self-duality of X i, these are not all independent (see appendix A for details).

It turns out that the differential equations that these forms satisfy determine the complete

form of the metric and self-dual three-form G. We have relegated the detailed derivation

in the appendix A.

4Hopefully it should be clear when G denotes the three-form and when it denotes a function.
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2.2 General solution for a rectangular torus

The final result is the following. The metric is specified by a single function G and is

given by:

ds2 = h−2(dt+ C)2 − h2(dy2 + dx21 + dx22)− yeG dθ21 − ye−G dθ22 (2.13)

h−2 = 2y coshG (2.14)

dC =
1

y
∗3 dz z =

1

2
tanhG (2.15)

where ∗3 is the Hodge star in the flat metric ds23 = dy2 + dx21 + dx22. Notice that z and h2

are defined exactly as in [2]. The three-form is given by

F = dBt ∧ (dt+C) +BtdC + dB̂

F = dB̃t ∧ (dt+C) + B̃tdC + d ˆ̃B

Bt =
1

2
yeG B̃t =

1

2
ye−G

dB̂ = −d ˆ̃B =
1

2
y ∗3 dh2 . (2.16)

Consistency of equations (2.15) and (2.16) requires that d(dC) = 0 and d(dB̂) = 0. These

impose two second order equations to be satisfied by h2 and z:

∆3z −
1

y
∂yz = 0 (2.17)

∆3h
2 +

1

y
∂yh

2 = 0 (2.18)

with ∆3 = ∂2y + ∂21 + ∂22 . Recalling that h and z are related by the equation

h2 =
1

y

√

1

4
− z2 (2.19)

we see that eqs. (2.17) and (2.18) are two differential equations on a single function z.

This is substantially different from [2] where the equations dB̂ = 0 and d ˆ̃B = 0 were

automatically satisfied for a function z obeying (2.17).

Notice that like in [2], solutions are regular for z = ±1/2 on the two dimensional plane

y = 0. Indeed, only for these values of z, the shrinking S1 at y = 0 combine with y to

reconstruct a regular (i.e. free of conical singularities) R2 × S1. Therefore, exactly like for

LLM, non-singular solutions are completely specified by two-dimensional figures (on the

y = 0 plane) representing regions where z = ± 1
2 . However, solutions to (2.17)–(2.19) are

now sporadic. Remarkably, we find that AdS3 × S3, the pp-wave and the multi-center

string do satisfy these equations. They correspond to the simplest figures: the disk, the

upper half-plane and points (or small far away droplets). We will refer to the filled figures

as droplets. The functions z and h2 specifying these solutions were given in [2] and will be

displayed below momentarily.

– 5 –
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Equations (2.17) and (2.18) can be expressed as laplacian equations in d = 6 and d = 4

∆6

(

z

y2

)

= 0 (2.20)

∆4 h
2 = 0 (2.21)

where y is interpreted as the radius of the extra S3 and S1 auxiliary spheres respectively.

The function z and the one-form C can be written in terms of integrals over the boundary

of the corresponding droplets in the y = 0 plane [2]:

z(x1, x2, y) =
y2

π

∫

D

z(x′1, x
′
2, 0) dx

′
1dx
′
2

(|x− x′|2 + y2)2
= σ − 1

2π

∫

∂D

dv|∂vx′|
n · (x− x′(v))

|x− x′(v)|2 + y2
(2.22)

Ci(x1, x2, y) =
εij
π

∫

D

z(x′1, x
′
2, 0) (xi − x′i) dx′1dx′2

(|x− x′|2 + y2)2
=
εij
2π

∫

∂D

dv
∂vx

′
j(v)

|x− x′(v)|2 + y2
.(2.23)

In the right hand side of the equations we have introduced a parametrization of the one-

dimensional boundary ∂D of the droplets in the y ′ = 0 plane. From (2.23) we see that

Ci are harmonic functions in d = 4 generated by a one-dimensional charge distribution

along the line (x′1(v), x
′
2(v)) parametrized by v, with charge density ∂vx

′
j(v). σ = ± 1

2 is

a contribution coming from infinity arising for solutions for which z = ± 1
2 outside some

circle of large radius [2].

Let us now consider the function h2. Since this is a harmonic function in d = 4, the

general solution is specified by some source distribution ρ, and can be written as

h2(x1, x2, y) =

∫

D

ρ(x′1, x
′
2) dx

′
1dx
′
2

|x− x′|2 + y2
. (2.24)

Note that this expression takes into account the fact that h2 must be invariant along the

auxiliary S1, so that the density ρ(x′1, x
′
2) should sit on the y′ = 0 plane. The physical rea-

son for this will become clearer later. Interestingly, this density can be computed explicitly

in the three cases at hand where h2 is related to z via the non-linear relation (2.19). It

turns out that in all these cases we can write h2 as the following boundary integral

h2(x1, x2, y) =
1

2π

∫

∂D

dv

|x− x′(v)|2 + y2
. (2.25)

This will be shown explicitly below for the basic figures: the circle, half-plane and points.

One can wonder whether formulas (2.22), (2.25) can be extended to more complicated

figures. The problem is that, if one tries to do so, the resulting solutions will fail to

obey (2.19). In the next section we will show how this can be solved by relaxing the metric

ansatz.

Finally, it is interesting to notice that it is also possible to trade the linear equation

for h2 in favor of a non-linear one for z, which reads

(∇z)2 = 4

y2

(

1

4
− z2

)2

. (2.26)

– 6 –
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(b)(a) (c)

Figure 1: The basic figures in minimal supergravity. (a) The pp-wave. (b) AdS3 × S3. (c)

Multi-center string.

Examples: here we collect the form of z and h2 for the simplest solutions (the only

known to us) to the system (2.17)–(2.19).

pp-wave:

z =
1

2

x2
√

x22 + y2

h2 =
1

2

1
√

x22 + y2
. (2.27)

This corresponds to dividing the y = 0 plane in two regions (filled and empty), separated

by the x1 axis [2]. The functions z and h2 can be written as the integrals (2.22), (2.25)

over the x1-axis dividing the two regions:

x′(v) = (v, 0) −∞ < v <∞ . (2.28)

AdS3 × S3:

z =
1

2

x2 + y2 − a2
√

(x2 + y2 + a2)2 − 4 a2 x2

h2 =
a

√

(x2 + y2)2 − 2a2(x2 − y2) + a4
. (2.29)

This corresponds to a round disk of radius a centered in the origin [2]. The functions z

and h2 can be written as the integrals over the droplet boundary (a circle of radius a)

parametrized by v:

x′(v) = (a cos v, a sin v) 0 < v < 2π . (2.30)

Multi-center string:

h2 =
1

λ2
H H =

∑

i

Qi

(~x− ~x0,i)2 + y2

z = ±
√

1

4
− 1

λ4
H2y2 λ→∞ . (2.31)

– 7 –
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In this case the equation for z is satisfied in the limit λ → ∞. Suppose we take the plus

sign in (2.31), then in the limit, e−G ∼ yH/λ2. Substituting these into the metric one finds

C ≈ 0 and

ds2 = H−1(dt̃2 − dw2)−H(d~̃x2 + dỹ2 + ỹ2dθ22) (2.32)

where we have rescaled t̃ = λ t, w = λ θ1, ỹ = λ−1 y, ~̃x = λ−1 ~x. The resulting solution

corresponds to a multi-center string in D = 6. Obviously, the same solution is obtained

choosing the minus sign in (2.31), upon exchanging θ1 and θ2.

Notice that also in this case, the harmonic function h2 can be thought of as arising

from a profile, but now the boundary of the droplets are points ∂D = {x0,i}. The profile

function reads:

x′(vi) = x0,i 0 < vi < Qi .

2.3 Solutions in GMR form

Given that our geometries are supersymmetric solutions of minimal supergravity in six

dimensions, there must be a change of coordinates that cast them in the general form

presented in [10]. In the present section we give the map between the solutions in 2.2 and

the canonical form of [10]. As a bonus, we will show how the condition (2.19) can be lifted

by relaxing the metric ansatz for the torus of isometries allowing for an off-diagonal term.

Recall that the full six-dimensional metric can be always written [10] as

ds2 = 2H−1 (du+ βmdx
m)

(

dv + ωmdx
m +

F
2
(du+ βmdx

m)

)

−Hhmndx
mdxn (2.33)

with the functions H,F , the one-forms β, ω, and the four-metric hmn obeying certain

coupled differential equations. It turns out that the solutions of the previous section fall

into the u-independent class of that considered in [10]. More precisely, out of the two null

directions, we can define a time coordinate t and a coordinate α via

u =
1√
2
(t− α) v =

1√
2
(t+ α) . (2.34)

In addition we take:

F = 0 H = h2

β =
1√
2
(C − zdφ) ω =

1√
2
(C + zdφ) . (2.35)

The four-metric hmn has to be hyper-Kähler [10], and we take this to be flat, of the form

hmndx
mdxn = dx21 + dx22 + dy2 + y2dφ2 . (2.36)

This is rather natural, given that we are interested in geometries dual to D1D5 systems

(without momentum) moving in a flat transverse space. More general hyper-Kähler spaces

are relevant for D1 states on a curved manifold (K3) or D1D5 systems with momentum [20,

21]. Note that the definition of φ, has been chosen such that it has periodicity 2π. In the

new coordinates the metric can be written in the following form

ds2 = h−2
[

(dt+ C)2 − (dα+ zdφ)2
]

− h2(dx21 + dx22 + dy2 + y2dφ2) (2.37)

– 8 –
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= h−2(dt+ C)2 − h2(dy2 + dx21 + dx22)−
[

h2y2 + h−2(z +
1

2
)2
]

dθ21

−
[

h2y2 + h−2(z − 1

2
)2
]

dθ21 − 2

[

h−2(
1

4
− z2)− h2y2

]

dθ1 dθ2 (2.38)

where in the second line we performed the change of variables

θ1 = α+
1

2
φ θ2 = α− 1

2
φ . (2.39)

Note that the gθ1θ2 term in (2.38) precisely cancels using the fact that z and h2 are related

via (2.19), and the remaining terms recombine to reconstruct the metric (2.13).

It is easy to check that the equations of [10] are satisfied. Note in fact that

dβ =
1√
2
(dC − dz ∧ dφ) (2.40)

dω =
1√
2
(dC + dz ∧ dφ) (2.41)

and that

(dβ)− = (dω)+ = 0 (2.42)

is equivalent to equations (5.27), (5.30) of that paper. In particular these equations imply

dC =
1

y
∗3 dz ⇒ ∆6

(

z

y2

)

= 0 .

Here ( )± indicates (anti)-self-dual part with respect to the four dimensional met-

ric (2.36). The condition (dω)+ = 0 of course implies that G+ = 0 as required by F = 0.

The Bianchi identity and Einstein equation reduce correctly to

∆4h
2 = 0 . (2.43)

This constitutes a check on our solutions, as well as a proof that they indeed satisfy the

Einstein equations. Moreover, this explains the reason why h2 was previously found to be

harmonic in four dimensions.

Finally, it can be checked that the expression for the flux in [10] (in the u-independent

class):

G =
1

2
∗4 dh2 − e+ ∧

1

2
dω +

1

2
h−2e− ∧ dβ − 1

2
e+ ∧ e− ∧ h−2dh2 . (2.44)

agrees precisely with the expression for the flux in (2.16). For this, it is useful to note

e− =
h2√
2

[

h−2(dt+ C) + eH+Gdθ1 + eH−Gdθ2
]

(2.45)

e+ =
1√
2

[

h−2(dt+ C)− eH+Gdθ1 − eH−Gdθ2
]

. (2.46)

To summarize, we have found that our solutions comprise a restricted sub-class of

the u-independent solutions of [10]. This analysis is useful to understand how one can

generalize the starting ansatz, in order to obtain more interesting solutions.
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2.4 Minimal bubbling

The point to notice is that the metric (2.38) and 3-flux (2.44) are 1/2-BPS solution of

minimal supergravity for any choice of the functions h2 and z satisfying

dC =
1

y
∗3 dz

∆4h
2 = 0

∆6

(

z

y2

)

= 0 , (2.47)

however, crucially, one can now relax the requirement that z and h2 be related as in (2.19).

This suggests how to recover linearity: we lift the non-linear relation (2.19) and consider

h2 as an independent function with respect to z. According to (2.38), this results into a

non-trivial gθ1θ2 component in the metric. Note that in the case studied in [2], requiring

the solution to posses an SO(4)×SO(4) isometry, uniquely fixed the factorized form of the

metric in the internal six dimensional space. In the case at hand, the presence of an abelian

SO(2)×SO(2) isometry allows us to retain the same isometry for a generic tilted T 2-torus.5

Motivated by the way of writing Ci and h
2 for the basic figures as the integrals (2.22)

and (2.25), it is tempting to define “bubbling” of AdS3 by extending these integrals to

the boundary of a generic droplet distribution in the y = 0 plane. This intuition will be

confirmed in the next section where we will show that solutions derived in this way agree

with those found in [13, 14] for D1D5 classical geometries. These are clearly supersymmetric

solutions, and as shown in [14], they are also non-singular.

We thus define a “minimal bubbling” as superposition of solutions of minimal su-

pergravity, with basic building blocks the circular droplets (AdS3) and the half planes

(pp-wave) and z = ±1/2 over the plane.6 Notice that these figures satisfy the condition

|∂vx′(v)|2 =const. that ensures that we stay in minimal supergravity [20].7

Resuming, a bubbling solution of minimal supergravity is specified by a droplet distri-

bution in the y = 0 plane. A generic droplet distribution in the y = 0 plane is represented

in figure 2. The functions z and h2 are given via the line integrals (2.22) and (2.25) over

the boundary ∂D of the filled regions. The harmonic conditions are then automatically

satisfied, and the solutions are non-singular.

As an illustration let us consider the annulus diagram8 in figure 3.

The corresponding profile reads

x′i(vi) =

(

ai cos
vi
ξi
, ai sin

vi
ξi

)

0 < vi < 2π ξi (2.48)

5One could consider the case in which this torus is non-trivially fibered over the external four-dimensional

space, and allow more general terms like gxiθj
, but this goes beyond the scope of this note.

6The study of solutions with conical singularities is also interesting in D = 6 since they correspond

to supergravity duals of chiral primaries in the twisted sector of the orbifold CFT [14]. They can be

accommodated in the bubbling picture by taking a string profile covering m times the circle.
7Here we are using our identification of the D1D5 profiles with the boundary of the droplet configuration.
8An equally simple example is provided by the strip in figure 3.
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Figure 2: A generic distribution of droplets in minimal supergravity.

Figure 3: The annulus (or ring) and the strip.

with i = 1, 2, and ξ1 + ξ2 = 1. To stay in minimal supergravity we require |∂vx′(v)|2 = a2,

with a constant, i.e.
a1
ξ1

=
a2
ξ2

= a .

Then the integrals (2.22), (2.23) and (2.25) result into:

zring(x, y) = z(x, y; a1)− z(x, y; a2) +
1

2
Ci,ring(x, y) = Ci(x, y; a1)− Ci(x, y; a2)

h2ring(x, y) = ξ1 h
2(x, y; a1) + ξ2 h

2(x, y; a2) (2.49)

with ai the radii of the two circles. Notice that by construction zring is still ±1/2 over

the y = 0 plane. The different signs in z arise from the different orientations of the

two boundaries. The integral h2 is instead independent of the boundary orientation in

agreement with the fact that it must be a positive-definite quantity.

The bubbling prescription adopted here is minimal and we don’t exclude other in-

teresting choices. However, as we will see in the next section, we reproduce all (to our

knowledge) 1/2-BPS D1D5 solutions previously known in the literature. Specifically, we

are proposing that the string profile specifying the solution in the so-called FP represen-

tation, gets identified with the boundary of a droplet distribution in the dual D1D5 sys-

tem.

– 11 –



J
H
E
P
0
2
(
2
0
0
5
)
0
4
8

3. Adding a tensor multiplet

As we mentioned in the introduction chiral primaries with h = h̄ = j = j̄ appear only in the

KK towers descending from the gravity and tensor multiplets of N = (1, 0) supergravity. In

this section we consider 1/2-BPS geometries involving a non-trivial scalar and anti-self-dual

three-form in a tensor multiplet dressing the minimal supergravity. They are associated to

D1D5 geometries (or any of its dual descriptions).

Instead of starting from some ansatz and apply the logic of section 2.1 to non-minimal

supergravity, we jump at the final result, i.e. we adopt our bubbling prescription, and check

that the results reproduce regular solutions. In fact, as it was realized in section 2.3, the

1/2-BPS solutions we are interested in, will lie within the general class of solutions for

a regular distribution of D1D5 branes [13, 14]. These solutions are specified by a profile

function F(v) determining six harmonic functions9 f1, f5 and Ci in R4 [14]

f5 =

∫

∂D

dv

|x− x′|2 + y2
, f1 =

∫

∂D

|∂vx′|2 dv
|x− x′|2 + y2

, Ci =
εij
2π

∫

∂D

∂vx
′
i(v) dv

|x− x′|2 + y2
.

(3.1)

The metric, three-form flux and scalar profiles are given in terms of f1, f5 and Ci via
10

ds2 = h−2
[

(dt+ C)2 − (dα +B)2
]

− h2(dx21 + dx22 + dy2 + y2dφ2) (3.2)

G = d
[

f−11 (dt+ C) ∧ (dα+B)
]

+ ∗4df5 (3.3)

dB = − ∗4 dC (3.4)

e2Φ = f1f
−1
5 h2 = (f1f5)

1
2 . (3.5)

Recall that we are interested in solutions with J12 = j + j̄ = 2j, J34 = j − j̄ = 0, which

correspond to having an additional U(1) isometry — the Killing vector being ∂/∂φ. We

have used this fact to write the φ-independent harmonic functions (3.1) in terms of the

profile F(v) = (x′(v), 0, 0). It then follows from (3.4) that dB is proportional to dφ and

hence we can always write

B = zdφ . (3.6)

Now, inserting this into (3.4) we reproduce the equation (2.15), namely

dC =
1

y
∗3 dz (3.7)

as well as (2.20). After the change of variables (2.39) the metric can be cast in the usual

form (2.38) with a (in general) tilted torus fibration.

The supersymmetric solutions are now specified by two harmonic functions in d = 4

and one in d = 6 ,namely

∆6

(

z

y2

)

= 0 (3.8)

9Here we drop “1”s from the harmonic functions, as we are interested in near-horizon geometries. Note

that for pure multi-string solutions, with constant profiles, the “1” should be restored.
10Notice that the expression for the flux (3.3) corrects a minus sign in the A ∧ B term of the flux given

in (2.1) of [14]. We thank O. Lunin for clarifying this point. Then the map is simply Athem = −Cus, and

an orientation reversal on the 4d base, ∗4 them = −∗4 us.
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Figure 4: A generic distribution of droplets.

∆4fi = 0 i = 1, 5 . (3.9)

Note that in [14] the authors show that if the harmonic functions f1, f5, Ci are chosen as

in (3.1), with a generic profile, the solution is non-singular. This can be used to turn

the logic around, and show, using (3.8) and the left hand side of (2.22), that for all non-

singular profiles specified by (3.1) the function z must indeed be patch-wise z = ±1/2
on the y = 0 plane. It would be interesting to derive this directly from an analysis of

the metric singularities like in [2], and and particular to check whether here more general

values of z are allowed.

One can also check that the self-dual three-form eΦG+ can be written as in (2.44) and

the anti-self-dual three-form is given by

eΦG− = h2 ∗4 dΦ+ e+ ∧ e− ∧ dΦ (3.10)

in agreement with the result of [22]. Note that G = G+ +G− is of the form

G = F1 ∧ dθ1 + F2 ∧ dθ2 . (3.11)

Notice that in the extended supergravity, figures with non-constant velocity

|∂vx′|2 6=const. are allowed. This corresponds to ripplings and irregular droplets that

are not guaranteed to be regular solutions in the minimal supergravity. More precisely, the

domain D in (3.1) specifying the solutions is given by a generic distribution of droplets of

any shape, see figure 4.

As a simple illustration, let us consider giant gravitons in d = 6 dimensions [14]. The

corresponding droplet configurations are depicted in 5. They arise from superposing a filled

circle (AdS) and a point (a string). The corresponding profile of the constituent solutions

are [13]

x′(v) =

(

a cos
v

ξ
, a sin

v

ξ

)

0 < v < 2πξ

x′(v) = b 0 < v < 2π(1 − ξ) (3.12)

with b a constant vector describing the position of the point. The point represents a giant

graviton extending in AdS3 or S
3 depending on whether |b| is larger or smaller than a [14]

— see figure 5.
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Figure 5: The giant gravitons in [13].

Let us conclude with a final comment. One could wonder whether in the non-minimal

supergravity there exist interesting “bubbling” solutions in the case of a rectangular torus.

Although this is not expected, we have explicitly checked that this does not happen. All

supersymmetric solutions of six dimensional supergravity with a tensor multiplet were

analysed11 in [22], thus extending the results of [10]. Using the results of [22] it is straight-

forward to repeat the analysis of section 2.1 in the case of non-zero scalar field Φ and an

unconstrained flux of the generic form (3.11). The analysis of the supersymmetry con-

ditions then goes through, essentially because the self-dual and anti-self-dual parts of G

do not mix [22]. In particular it follows that the metric is exactly as in (2.13). Moreover,

equations (2.14), (2.15), (2.15), still hold true, so that z obeys again (2.20). The only differ-

ence arises from the flux and its Bianchi identity reproduces the harmonic equations (3.9).

However, h2 is again related to z by (2.19), demonstrating that simply adding a tensors

multiplet, but retaining a rectangular torus, does not restore linearity of the equations.

4. Concluding remarks

In this note we investigated 1/2-BPS classical geometries arising from bubblings of AdS3×
S3 and its pp-wave. This is the supergravity dual of the CFT arising in the IR on the

D1D5 system, and 1/2-BPS deformations of AdS3 × S3 correspond to chiral primaries in

the CFT. We have shown that if one naively mimics the logic of LLM, the resulting set of

solutions share most of the properties of their higher dimensional analogs. In particular,

rather surprisingly, they are again uniquely specified by a function z which takes values

±12 on a two-dimensional plane. However, linearity is lost, due to the fact that the Bianchi

identity is not any more automatically satisfied. This leaves room for few possibilities:

AdS3 × S3, pp-wave and the multi-string solution.

By mapping these solutions to the general form of [10], it becomes clear how one can

generalize the ansatz, in order to restore linearity. This is accomplished by allowing for a

generically tilted torus with SO(2)×SO(2) isometries. The upshot of this is that 1/2-BPS

solutions dual to chiral primaries operators with h = h̄ = j = j̄ are now specified by z and

an additional function h2 harmonic in R4. The functions z and h2 are written in terms

11Note that the authors of [22] considered the more general case of gauged supergravities. However, for

our purposes the gauge fields are set to zero.
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of integrals over the one-dimensional boundary of a droplet distribution with z = ±1/2 in

the y = 0 plane, i.e. harmonics generated by lines of charges. The geometries display an

interesting fibration of the symmetry torus over a four-dimensional base, with a special two-

dimensional plane where one-cycles shrink to zero size, while keeping the whole geometry

regular.

After adding a tensor multiplet a wide variety of previously known D1D5 classical

geometries are reproduced. For instance, giant gravitons are reinterpreted as superposition

of points over AdS disks. Resuming, bubbling works much as in the ten-dimensional case,

but droplet boundaries reveal to be more fundamental than the droplets themselves.

Perhaps this is not very surprising. In fact, the supergravity duals of chiral primaries

of the D1D5 system were constructed in [13, 14], in terms of a profile function x ′(v) arising

via a chain of dualities from fundamental string-momentum solutions [23, 24, 25]. Here we

identified the profile with the boundary of the droplets. The results are consistent with

a free fermion description of the chiral primaries in the two-dimensional CFT [11] and it

would be nice to make this correspondence precise. Notice that our analysis showed that

the Killing spinors are charged under the two U(1)×U(1) isometry and therefore fermions

can get masses even if the internal space is flat.

Acknowledgments

We thank Luis Alvarez-Gaume for useful comments and encouragement. We are grate-

ful to Rodolfo Russo and in particular Gianguido Dall’Agata, for useful discussions and

collaboration at various stages of this work. We also thank Oleg Lunin for e-mail exchange.

A. Derivation of the solutions for a rectangular torus

In this appendix we present the detailed derivation of the solution summarized in 2.2. We

start with the following ansatz for the six-dimensional metric and the three-form:

ds2 = gµν dx
µdxν − e2A dθ21 − e2D dθ22

G = F ∧ dθ1 + F̃ ∧ dθ2 . (A.1)

We utilize the standard technique of analysing the supersymmetry conditions encoded in a

set of form bi-linears [6]. The tensors we consider are the timelike vector K and the forms

defined in (2.12), which are related to each other (using self–duality of X i) as:

Ỹ i = −e−A+D ∗4 Y i , Y i = eA−D ∗4 Ỹ i

L̃i = e−A−D ∗4 Li , Li = −eA+D ∗4 L̃i .
(A.2)

Using the algebraic relations (2.2) and equation (2.12) of [10], we obtain the following

relations:

K ·K = e2A + e2D (A.3)

Li · Lj = −δijeA+DK ·K , (A.4)
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K · Li = 0 (A.5)

LiµY j
µν = −εijke2ALk

ν − δijKνe
2(A+D) . (A.6)

It follows that we can use (K,Li), appropriately normalized, as a privileged orthonormal

frame in four dimensions. Moreover, using (A.4) with (A.6) one can get explicit expressions

for Y i and Ỹ i, in terms of K and Li:

Y i = −1

2
e−2D (K ·K)−1 εijkLj ∧ Lk − (K ·K)−1K ∧ Li (A.7)

Ỹ i = −1

2
e−2A (K ·K)−1 εijkLj ∧ Lk + (K ·K)−1K ∧ Li . (A.8)

A.1 Analysis of the supersymmetry conditions

We now turn to the differential conditions. The antisymmetric part of (2.3) gives

dK = 2(F + F̃ ) (A.9)

de2A = −2iKF (A.10)

de2D = −2iKF̃ . (A.11)

The differential conditions on X i read

dL̃i = 0

dLi = ∂θ2Y
i − ∂θ1 Ỹ i

dY i = ∂θ1L̃
i

dỸ i = ∂θ2L̃
i . (A.12)

Notice that the forms generically depend on θ1, θ2, reflecting the fact that the Killing

spinors are “charged” under the corresponding U(1) isometries. Indeed, it can be shown

that if one assumes that the forms do not depend on the angular variables on S 1×S1, the
system does not have non-trivial solutions.

We now solve this set of equations and find the general supersymmetric background

preserving (2.5). After some algebra, the system (A.12) is shown to be equivalent to the

following set of conditions

dLi =
1

2
e−2(A+D)∂θ1

(

εijkLj ∧ Lk
)

(A.13)

d
(

∗3Li
)

= −eA+Dhd
(

1

heA+D

)

∧ ∗3Li (A.14)

∗3 ∂θ1Li = h eA+DdLi , (A.15)

∗3 ∂θ2Li = −h eA+DdLi (A.16)

dC ∧ Li =
1

2
d
(

e−2Ah2εijkLj ∧ Lk
)

(A.17)

dC ∧ Li = −1

2
d
(

e−2Dh2εijkLj ∧ Lk
)

. (A.18)
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Compatibility of (A.15) and (A.16) shows that ∂θ1L
i = −∂θ2Li. The equations (A.17)

and (A.18) instead imply that

d
(

e−2(A+D)εijkLj ∧ Lk
)

= 0 . (A.19)

A more useful expression which we will use to solve the above conditions follows from

the (µνθ1θ2) component of (2.4):

∇µL
i
ν = ∂µ(A+D)Li

ν + Fµ
ρY i

ρν + Fν
ρY i

ρν +
1

2
gµνFρλY

i ρλ . (A.20)

The antisymmetric part of (A.20) gives

d(e−(A+D)Li) = 0 , (A.21)

whose general solution is given by

Li = e(A+D)Ri
j(θ1, θ2)dx

j . (A.22)

It can be shown that the matrix R must be an SO(3) rotation, and using this, together

with the relation (A.4) allows us to read off the complete form of the metric, which we

write below:

ds2 = h−2(dt+C)2 − h2
(

dx21 + dx22 + dx23
)

− e2A dθ21 − e2D dθ22 . (A.23)

This now tells us that

∗3 Li =
1

2
e−(A+D)h εijkLj ∧ Lk , (A.24)

and we can solve the constraints (A.14)–(A.13). The first condition (A.14) is identically

satisfied. Eq. (A.15) determines now the θi dependence of Li. After some algebra we get

∂θ1R
i
j = Ri

lεjkl∂le
A+D . (A.25)

Since R is an SO(3) matrix, it follows that one of the three xi coordinates is

x3 = y = eA+D (A.26)

and we define eG = eA−D. In this way, R must be a rotation in the other two coordinates

by an angle θ1− θ2, so that we also solve (A.16). (A.13) is now trivially satisfied. Next we

solve (A.9) and (A.10)–(A.11). Using the explicit form of K as a form, (A.9) reads

d(h−2(dt+ C)) = 2(F + F̃ ) . (A.27)

Following [2], we pose

B = Bt(dt+ C) + B̂ (A.28)

B̃ = B̃t(dt+ C) + ˆ̃B , (A.29)
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hence (A.10) and (A.11) give

dBt =
1

2
d(y eG) , dB̃t =

1

2
d(y e−G) , (A.30)

which can be integrated to

Bt =
y

2
eG , B̃t =

y

2
e−G , (A.31)

and we have set to zero irrelevant integration constants. Inserting these values into (A.27),

one component is identically satisfied using (2.8) while the non–trivial part implies

dB̂ + d ˆ̃B = 0 . (A.32)

Now consider the 3–form flux. Self-duality implies:

dB̂ +BtdC = h2eG ∗3 dB̃t (A.33)

d ˆ̃B + B̃tdC = −h2e−G ∗3 dBt . (A.34)

Summing the two equations (A.33) and (A.34) one finds

dC = 2h4 y ∗3 dG =
1

y
∗3 dz z =

1

2
tanhG . (A.35)

Notice that this also solves equations (A.17), (A.18). Finally, dB̂ can be read off from

either of (A.33), (A.34) and reads

dB̂ = −d ˆ̃B =
1

2
y ∗3 dh2 . (A.36)
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