

This is the author's manuscript

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

UVC-induced degradation of cilastatin in natural water and treated wastewater

Original Citation:		
Availability:		
This version is available http://hdl.handle.net/2318/1789036	since 2021-07-26T10:40:21Z	
Published version:		
DOI:10.1016/j.chemosphere.2021.130668		
Terms of use:		
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.		

(Article begins on next page)

APPENDIX

UVC-induced direct photolysis as an efficient process for the degradation of cilastatin in natural and waste water

Nicoleta Solomou¹, Marco Minella², Davide Vione^{2,*}, Elefteria Psillakis^{1,*}

¹ Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Crete, Greece

² Department of Chemistry, University of Torino, Via P. Giuria 5, 10125 Torino, Italy.

Table A.1. Composition of the water samples used in this work.

	River water	Tap water	ww
Cl ⁻ (mg L ⁻¹)	13	150	13
N-NO ₃ - (mg L-1)	0.54	5.97	0.53
SO ₄ -2 (mg L ⁻¹)	12.4	105.3	1.1
P-PO ₄ -3 (mg L-1)	0.02	1.68	0.02
HCO ₃ - (mg L-1)	103.4	144.6	103.8
N-NH₃(mg L ⁻¹)	0.10	0.24	0.06
N-NO ₂ - (mg L ⁻¹)	0.004	0.320	<0,002
F- (mg L-1)	0.24	0.53	0.12
CaCO ₃ (mg L ⁻¹)	84.4	118.1	84.7
IC (mg ^C L ⁻¹)	22.5	33.1	21.4
TN (mg ^N L ⁻¹)	0.98	11.50	0.64
EC (µS cm ⁻¹)	274.00	932.00	253.00
рН	7.32	7.14	7.68

Table A.2. k and R_0 values for the different UV-irradiated aqueous solutions of cilastatin (CIL). The error values correspond to the standard deviation of replicate experiments rounded to significant digits.

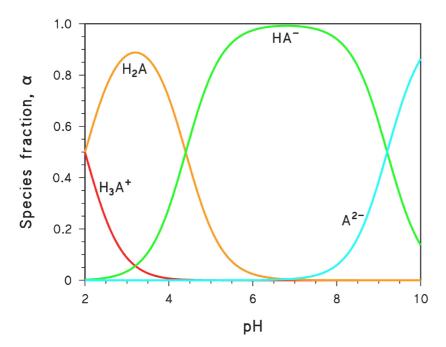
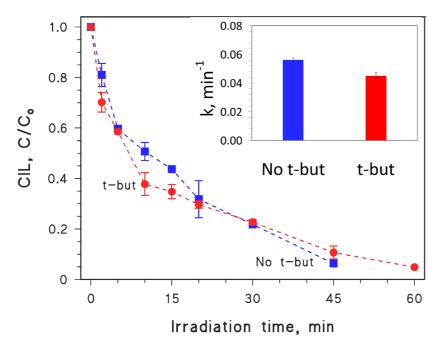

Description of the UV-irradiated water solution	<i>k,</i> (min ⁻¹)	Ro, (× 10 ⁻⁷ mol L ⁻¹ s ⁻¹)
Effect of concentration		
2.5 mg L ⁻¹ CIL H ₂ O solution	0.20 ± 0.02	0.22 ± 0.02
25 mg L ⁻¹ CIL H ₂ O solution	0.11 ± 0.01	1.18 ± 0.10
50 mg L ⁻¹ CIL H ₂ O solution	0.09 ± 0.00	1.89 ± 0.05
100 mg L ⁻¹ CIL H₂O solution	0.06 ± 0.00	2.43 ± 0.06
Effect of pH		
pH=3; 100 mg L ⁻¹ CIL H ₂ O solution	0.16 ± 0.00	6.79 ± 0.12
pH=5; 100 mg L^{-1} CIL H_2 O solution,	0.07 ± 0.01	3.09 ± 0.40
pH=7; 100 mg L^{-1} CIL H_2 O solution	0.05 ± 0.01	2.29 ± 0.27
pH=9; 100 mg L^{-1} CIL H_2 O solution	0.04 ± 0.00	1.71 ± 0.20
Effect of additives		
t-butanol; 100 mg L ⁻¹ CIL H₂O solution	0.05 ± 0.00	1.97 ± 0.10
$2.5~mg~L^{-1}~HA;2.5~mg~L^{-1}~CIL~H_2O$ solution	0.10 ± 0.01	0.11 ± 0.01
Natural and treated water samples		
Tap water spiked at 2.5 mg L ⁻¹ with CIL	0.19 ± 0.04	0.22 ± 0.04
WW effluent spiked at 2.5 mg L^{-1} with CIL	0.07 ± 0.00	0.07 ± 0.00
River water spiked at 2.5 mg L ⁻¹ with CIL	0.11 ± 0.01	0.12 ± 0.01

Table A.3. Analytical characteristics of CIL and of the identified degradation product eluting during the photolysis of CIL.

Product	Retention time (min)	Identification Ions (m/z)	Tentative identification
CIL	4.491	359	
P374	1.648	375/359/315	CIL oxidized to a sulfoxide group


Table A.4. Molar absorption coefficients at 254 nm (ε_x) and direct photolysis quantum yields for 254-nm irradiation (Φ_x) of the different CIL species. Note that $x = H_3A^+$, H_2A , HA^- or A^{2-} .

Species x	εx, L mol ⁻¹ cm ⁻¹	Φ_x , mol E ⁻¹
H ₃ A ⁺	2243±30	0.59±0.03
H_2A	2692±25	(9.3±0.4)×10 ⁻²
HA ⁻	1646±17	(4.6±0.2)×10 ⁻²
A^{2-}	1268±62	(1.3±0.1)×10 ⁻²

Fig. A.1. Relative abundances of the different CIL species, as a function of pH. The species fractions were derived from **Eqs. (1-4)**, using $[H^+] = 10^{-pH}$.

Fig. A.2. Tentative mechanism for the oxidation of the sulfide moiety of CIL to a sulfoxide group.

Fig. A.3. Time trends of 100 mg L⁻¹ CIL upon 254-nm irradiation at near-neutral pH, alone and upon addition of 100 mg L⁻¹ t-butanol. Data points are linked with dashed lines to visualize trends. **Inset:** respective pseudo-first order photodegradation rate constants, together with their sigma-level error bounds. Some error bars are too small to be visible.