Detection of U-87 tumor cells by RGD-functionalized/ Gd-containing Giant Unilamellar Vesicles (Gd-GUVs) in Magnetization Transfer Contrast (MTC)-MR images

Giuseppe Ferrauto1,*, Martina Tripepi1, Enza Di Gregorio1, Valeria Bitonto1, Silvio Aime1 and Daniela Delli Castelli1

1Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino (IT)

* Corresponding author: Ferrauto Giuseppe, PhD
Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences
University of Torino.
Via Nizza 52, 10126, Torino (It)

Abstract

Objectives: The targeting of tumor cells and their visualization with MRI is an important task in biomedicine. The low sensitivity of this technique is a significant drawback, and one that may hamper the detection of the imaging reporters used.

To overcome this sensitivity issue, this work explores the synergy between two strategies: i) RGD-functionalized Giant Unilamellar Vesicles (GUVs) loaded with Gd-complexes to accumulate large amounts of MRI contrast agent at the targeting site; and ii) the use of Magnetization Transfer Contrast (MTC), which is a sensitive MRI technique for the detection of Gd-complexes in the tumor region.

Materials and Methods: GUVs were prepared using the gentle swelling method, and the cyclic RGD targeting moiety was introduced onto the external membrane. Paramagnetic Gd-containing complexes were both part of the vesicle membranes and were the payload within the inner aqueous cavity together with the fluorescent probe, rhodamine. GUVs that were loaded with the imaging reporters, but devoid of the RGD targeting moiety, were used as controls. U-87 MG human glioblastoma cells, which are known to overexpress the targets for RGD moieties, were used. In the in-vivo experiments, U-87 MG cells were subcutaneously injected into nu/nu mice and the generated tumors were imaged using MRI, 15 days after cell administration. MRI was carried out at 7 T, and
\(T_{2w}, T_{1w} \) and MTC/Z-spectra were acquired. Confocal microscopy images and ICP-MS were used for result validation.

Results: In-vitro results show that RGD GUVs specifically bind to U-87 MG cells. Microscopy demonstrates that: *i)* RGD GUVs were anchored onto the external surface of the tumor cells without any internalization; *ii)* a low number of GUVs per cell were clustered at specific regions; *iii)* there is no evidence for macrophage uptake or cell toxicity. The MRI of cell pellets after incubation with RGD GUVs and untargeted ctrl-GUVs was performed. No difference in \(T_1 \) signal was detected, whereas a 15\% difference in MT contrast is present between the RGD-GUV-treated cells and the ctrl-GUV-treated cells.

MR images of tumor-bearing mice were acquired before and after \((t=0, \ 4 \text{ h and } 24 \text{ h})\) the administration of RGD GUVs and ctrl-GUVs. A roughly 16\% MTC difference between the two groups was observed after 4 h. Immunofluorescence analyses and ICP-MS analyses (for Gd-detection) of the explanted tumors confirmed the specific accumulation of RGD GUVs in the tumor region.

Conclusions: RGD GUVs appear to be interesting carriers that can facilitate the specific accumulation of MRI contrast agents at the tumor region. However, the concentration achieved is still below the threshold needed for \(T_{1w} \)-MRI visualization. Conversely, MTC proved to be sufficiently sensitive for the visualization of detectable contrast between pre- and post-targeting images.

Keywords

Gd-contrast agents; Giant liposomes; Imaging agents; Magnetization Transfer Contrast (MTC); Magnetic Resonance Imaging (MRI); \(T_1 \) agents; RGD tumor targeting.
Introduction

Cancer is currently considered to be one of the most dangerous threats to human health, with more than 18 million new cases and 9 million deaths per year worldwide.1 Early diagnosis and personalized medicine are currently considered to be the main tools for oncologists in the battle to fight cancer. Magnetic Resonance Imaging (MRI) is one of the most powerful of the available diagnostic techniques for the in-vivo imaging of cancer because of its high spatial resolution (in the order of μm), the possibility of visualizing soft deep tissues and the absence of ionizing radiation.2 The use of exogenous Gd-based contrast agents (GBCAs) often enhances the potential of the technique as it adds physio-pathological information to the superb spatial resolution that can be obtained from MR images.3-7 Unfortunately, the intrinsically low sensitivity of MRI requires the presence of relatively high amounts of GBCAs, making their use in molecular-imaging protocols problematic. It was established quite early in the technique’s lifetime that the accumulation of ca. 10⁸ gadolinium atoms per cell is required to reach the MRI detection threshold.8 Caution in the use of GBCAs has recently been advised. Although they are highly water soluble complexes that have been chemically designed for complete elimination from the body after intravenous administration, it has been widely demonstrated that the metal can accumulate in many organs (e.g. brain, kidney, liver, muscles, etc.).9-14

One of the most important goals, that of early diagnosis, can therefore be achieved by developing GBCAs that can specifically accumulate at the pathological tissue, via binding to epitopes that identify the tumor cells, even when the disease is at the preliminary stages. This can reduce the dose of GBCAs and improve the diagnostic potential of MRI. However, this task is often hampered by the small number of targeting sites that allow differentiation between healthy and tumor tissues.15 The issue of overcoming the sensitivity threshold that is associated with the presence of a limited number of targeted epitopes may be tackled using the synergic combination of two approaches: i) the
use of targeted nano- or micro-sized systems that carry a high number of GBCAs;16-20 and ii) the use of highly sensitive MRI procedures/sequences for detecting those same GBCAs.21

A large portfolio of targeted nano- or micro-sized systems that can carry MRI CAs is available.16-20 In general, such systems have to display: i) high biocompatibility; ii) a long \textit{in-vivo} half-life so that as many targets as possible can be reached; and iii) the capacity to carry a high payload of GBCAs.

Of the available nano-/micro-systems, liposomes are largely considered to be the candidates of choice, as seen in several successful cases reported in pre-clinical studies.16-20 The use of micro-sized liposomes (Giant Unilamellar Vesicles, GUVs, mean diameter in the micrometric range) appears to represent a further step forward, both in terms of the delivery of higher amounts of GBCAs and their particular binding to extracellular epitopes, as their large size hampers cell internalization and uptake by macrophages.22,23 GUVs can be easily prepared and characterized and, recently, have been formulated with Ln-complexes either loaded into their inner cavity (hydrophilic complexes) or incorporated into the phospholipidic membrane (hydrophobic or amphiphilic systems).22-24

Both linear and macrocyclic Gd-complexes are currently being used as CAs in clinical MRI applications. Their presence is detected by acquiring T_1\textsubscript{w}-MR images, \textit{i.e.} by exploiting the relaxation enhancement they yield on bulk water protons (longitudinal relaxation time, T_1). The detection of GBCAs via T_1 contrast requires the accumulation of high amounts of Gd-complexes in the voxels of interest (of the order of 5-50 μM). This concentration is not easily attainable in targeting MRI experiments.25

Some years ago, we reported the use of Magnetization Transfer Contrast (MTC) as a means of improving the MRI detection of T_1 relaxation agents.20

The method is based on the T_1 dependence of MT contrast, and we discovered that tiny amounts of GBCAs, not enough to affect the T_{1w} images, are sufficient to affect the MTC readout.

Magnetization Transfer Contrast (MTC) is a MRI procedure that has been shown to be particularly useful in several clinical applications.26-29
It is based on the radiofrequency saturation of resonances of protons that belong to immobilized, semi-solid macromolecules (e.g. proteins in the cytoskeleton or bound to biomembranes) and of the water molecules that are tightly bound to them, which are not detectable in NMR spectra because of their very short T_2 relaxation times. Upon radiofrequency irradiation (at a chemical shift that is far from bulk water resonance), the saturated protons may enter the free bulk water proton pool, and thus transfer their saturated magnetization to the free water protons.

The magnetization transfer lead to a decrease of the MR signal and consequently to the generation of contrast due to the difference between the signal acquired with and without the saturation pulse. The MT amount is directly proportional to the longitudinal relaxation time (T_1) of the bulk water protons (i.e. the longer the T_1 the higher is the associated MTC effect) (Chart S1). Thus, it is expected that the presence of paramagnetic GBCAs (causing a reduction of T_1) would result in a decrease of the MT amount. The herein reported contrast relies in the difference between MR signals acquired with a MT based protocol before and after GBCAS administration. In particular, the MR signal increases after GBCAs administration. This behavior was earlier reported in cells and the sensitivity showed to be higher with respect to conventional T_{1w} contrast. Starting from the above reported considerations, herein we investigated the synergic advantage of using Gd-containing-GUVs and MTC-MRI methodology for targeting tumor cells.

RGD GUVs loaded with Gd complexes, both in the membranes and in the inner cavity, able to bind integrins, were synthesized for this purpose. This study deals with in-vitro and in-vivo investigations, using U-87 MG human glioblastoma cells, which are known to overexpress beta-integrins.

Materials and Methods

Chemicals

ProHance (Gadoteridol, Gd-HPDO3A) was a gift provided by Bracco Imaging S.p.A. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (DSPE-
mPEG2000), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Liss Rhod PE) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (ammonium salt) were purchased from Avanti Polar Lipids Inc. (Chemical structures in Fig.S1).

A Gd-amphiphilic complex, Gd(III)-DOTAMA (C18)$_2$,31 was synthesized as previously reported (Chemical structures in Fig.S2). The presence of free Gd-ions was checked using the Orange xylenol procedure and was lower than 0.3% mol/mol.32 The exact Gd-complex concentration was checked using a relaxometric approach, as previously reported.

Cyclo(-Arg-Gly-Asp-D-Phe-Cys) acetate salt, hereinafter indicated as c(RGDfC), was purchased from Bachem AG (Bubendorf, De) (Chemical structures in Fig.S3).

Fluorescein-Isothiocyanate-labelled Phalloidin, from Amanita phalloides, hereinafter indicated as Phalloidin-FITC, was purchased from Sigma-Aldrich Co. LLC and used without further purification.

Sodium chloride, sodium acetate, HEPES (4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid), sodium hydroxide, hydrochloric acid, nitric acid, chloroform and all other chemicals were acquired from Sigma-Aldrich Co. LLC and used without further purification.

Giant liposome (GUVs) preparation

Giant liposomes were prepared according to a procedure reported in the literature with modifications.23,33 Membranes were prepared using the following formulations:

- **RGD-Gd GUVs:** DPPC (86.95%), Gd-amphiphilic complex (10%), DSPE-PEG2000Malemide (3%), 18:1 Liss Rhod PE (0.05%) (moles %);
- **ctrl-Gd GUVs:** DPPC (86.95%), Gd-amphiphilic complex (10%), DSPE-mPEG2000 (3%) 18:1 Liss Rhod (0.05%) (moles %).

Briefly, the desired blend of phospholipids is dried until a film is formed at the bottom of a flask. The hydration solution was then added. 40 mM Gd-HPDO3A in HEPES/NaCl buffer (3.8 mM HEPES,
0.15 M NaCl, pH 7.2±0.1) was used for both GUV formulations. The system was left for 2 h at 60°C without any mechanical stress to allow the vesicles to close and internalize the hydration solution within the inner cavity. The GUVs were then pelleted by centrifugation, washed with fresh HEPES/NaCl buffer and purified from any non-internalized hydration solution, impurities or (if present) small liposome populations that may have remained in the supematant.

GUV size was determined using confocal fluorescence microscopy on a fluorescent formulation (0.05% Liss Rhod PE in the membrane and 20 μM 5(6)-carboxyfluorescein in the cavity). Z-stack images were acquired in order to center every vesicle in its main diameter in order to be suitably manually measured. Dynamic Light Scattering (DLS) measurements confirmed the absence of liposome populations of between 50 nm and 800 nm.

The molar concentration of small and giant vesicles was evaluated using the reported formula, with modifications (1,2).\(^\text{34}\)

\[
[Liposomes] = \frac{[Gd]_i \times 1L}{V_i \times [Gd]_{intra\text{lipo}}} = \frac{[Gd]_i \times 1L}{\frac{4}{3} \pi r^3 \times [Gd]_{intra\text{lipo}}}
\]

(1)

where

\[[Gd]_i = [Gd]_{TOT} - [Gd]_m \]

(2)

\([Gd]_{TOT}\) is determined via the acidic digestion of the sample and quantification of Gd\(^{3+}\) by ICP-MS, \([Gd]_m\) is the amount of Gd present in the membrane,

\(r\) is the radius of the vesicle,

\([Gd]_{intra\text{lipo}}\) is assumed to be the same as that of the hydration solution.

c(RGDfC) was attached by chemical ligation.\(^\text{35}\) Briefly, GUVs were suspended in HEPES/NaCl buffer and centrifuged to obtain pellets. They were then suspended in 0.15 M sodium acetate buffer (pH=6.8). An excess of c(RGDfC) was then slowly added to the GUVs suspension, which was gently agitated for 4 h, under a N\(_2\) atmosphere. Finally, GUVs were centrifuged and washed two times with fresh HEPES/NaCl buffer.
Cell cultures

Human glioblastoma U-87 MG cells were used for experiments (ATCC n° HTB-14). They were cultured in Eagle Minimum Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin. Cells were seeded in 75-cm² flasks at a density of ca. 2×10⁴ cells/cm² in a humidified 5% CO₂ incubator at 37 °C. At confluence, they were detached by adding 1 mL of a Trypsin-EDTA solution (0.25 % (w/v) Trypsin-0.53 mM EDTA).

Cells were negative for mycoplasma, as tested using the MycoAlert™ Mycoplasma Detection Kit (Lonza Sales AG-EuroClone S.p.A., Milano, It).

All cell media and supplements were purchased from Lonza Sales AG-EuroClone S.p.A. (Milano, It).

Cytotoxicity assay

Preliminary tests to assess the toxicity of GUVs were carried out using U-87 MG cancer cells in the MTT assay.⁵⁶ Cells were seeded into 96-well tissue culture plates (10⁴ cells per plate) 24h before the experiment. They were then incubated with fresh complete medium in the presence of RGD-Gd GUVs or ctrl-Gd–GUVs (concentration of vesicles is 0÷20 pM).

After incubation, the medium was removed, the cells were washed and re-incubated in the presence of fresh medium supplemented with 0.5 mg/mL MTT (Thiazolyl Blue Tetrazolium Bromide, Sigma Aldrich) for 4 h in a humidified 5% CO₂ incubator at 37°C. Then, the MTT solution was removed and the plates were filled with DMSO (0.1 mL for plate) for ½ h at room temperature, under gentle agitation, to allow the formazan crystals to solubilize. The absorbance of the resulting colored solutions was quantified using a 96-multiwell iMark Bio-Rad microplate Reader (λ = 570 nm). The percentage of viable cells was calculated on the basis of the control blank cells using the following formula (3):

\[
Viable \ cells \ % = \left(\frac{Abs - T}{Abs - cnt} \right) \times 100
\]

(3)
Where Abs-T is the mean absorbance of the treated cells and Abs-cnt is the mean absorbance of the control untreated cells (after subtraction of the absorption of empty plates as background). Cell experiments were repeated in triplicate and the data are reported as mean ± standard deviation. The blank was repeated 10 times.

Cell labelling

Human glioblastoma U-87 MG cells (8x10^5) were seeded in 6-cm Petri dishes containing 3 mL of complete EMEM medium and were placed in a humidified 5% CO₂ incubator at 37°C. The day after, when cells had reached ca. 70-80% confluence, they were incubated in fresh medium in the presence of either ctrl-Gd GUVs or RGD-Gd GUVs (concentration of vesicles is ca. 4 pM), for 30 min at 37°C. The cells were then washed 3-times with fresh PBS and detached using a non-enzymatic cell dissociation solution (Lonza Sales AG-EuroClone S.p.A., Milano, It). Finally, cells were loaded into glass capillaries and centrifuged at 1200 rpm for 5 min to give pellets for MRI acquisition.

Animals

The *in-vivo* experiments were performed on male athymic nude mice (Fox 1 nu/nu, Envigo) of 7-8 weeks of age and a weight of 21±2 g. The mice were kept in standard housing with standard rodent chow, water available *ad libitum* and a 12 h light/dark cycle.

For tumor-model preparation, mice were anesthetized *via* an intramuscular injection of tiletamine/zolazepam (Zoletil 100; Virbac, Milan, Italy) 20 mg/kg plus xylazine (Rompun; Bayer, Milan, Italy) 5 mg/kg using a 27-G syringe. Ca. 1x10^6 human glioblastoma U-87 MG cells were
suspended in 0.1 mL of PBS and subcutaneously injected into each leg of 8-week-old male mice (N=6, a low animal number in agreement with the 3R principles for the use of animals). Two tumors were implanted into each mouse, to double the number of analyzed tumors.

Animals were monitored by caliper weekly for changes in tumor size. MRI was performed 15 days after tumor-cell implantation when the mean tumor volume was 180 ± 30 mm3.

For the MRI experiments, mice were anesthetized via the intramuscular injection of tiletamine/zolazepam (Zoletil 100; Virbac, Milan, Italy) 20 mg/kg plus xylazine (Rompun; Bayer, Milan, Italy) 5 mg/kg using a 27-G syringe.

Permanent vein access was obtained by inserting a PE10 catheter into the tail vein (27-G needle).

The animal study protocol is reported in Fig.4A. Briefly, pre-MR images were acquired 15 days after tumor implantation. MR images were then acquired at t=0, t=4 h and t=24 h after the administration of GUVs. Mice were divided into two groups. The first group was injected with RGD-Gd GUVs (0.05 mmol Gd/kg), and the second group was injected with ctrl-Gd GUVs (0.05 mmol Gd/kg), i.e. the low range doses of current clinical GBCAs.

The injection of GUVs was performed via slow infusion (0.1 mL/min - 0.25 mL) using an infusion pump (Phd 22/2000 MRI compatible infusion/withdrawal remote programmable dual syringe pump, Harvard Apparatus), to ensure that the GUV-administration protocol was safe.

MRI acquisition and data analysis

MRI scans were acquired at 7 T on a Bruker Avance 300 spectrometer equipped with the Micro 2.5 microimaging probe. T_1W images were acquired using a standard MSME (multislice multiecho) sequence with the following parameters (TR = 250 ms, TE = 3.3 s, FOV = 1 cm x 1 cm, slice thickness = 1 mm, matrix size 128 x 128). T_2W images were acquired using a standard RARE (Rapid Acquisition with Refocused Echoes) sequence with the following parameters (TR = 4000 ms, TE = 5.5 s, FOV = 1 cm x 1 cm, slice thickness = 1 mm, RARE factor = 32, matrix size 128 x 128). T_1 values were measured using a Saturation Recovery Spin Echo sequence (TE = 3.8 ms, 10 variable TRs ranging
from 50 to 5000 ms, FOV = 1 cm x 1 cm, slice thickness = 1 mm, matrix size 128 x 128). T_2 values were measured using a MSME sequence (TR = 2000 ms, 20 variable TEs ranging from 11 to 500 ms, FOV = 1 cm x 1 cm, slice thickness = 1 mm, matrix size 128 x 128).

The T_1 contrast enhancement ($T_{1\,enh\,\%}$) was calculated as follows (3):

$$T_{1\,enh\,\%} = \frac{S_{I_{w}} - S_{I_{w/o}}}{S_{I_{w/o}}} \times 100$$

(3)

where $S_{I_{w}}$ and $S_{I_{w/o}}$ are the normalized MR signal intensities for pellets that contained and did not contain the Gd(III)-labelled cells, respectively.

Analogously, the T_2 contrast was calculated as negative enhancement ($T_{2\,enh\,\%}$) using the following expression (4):

$$T_{2\,enh\,\%} = \frac{S_{I_{w}} - S_{I_{w/o}}}{S_{I_{w/o}}} \times 100$$

(4)

In order to evaluate the Magnetization Transfer (MT) effect, Z-spectra were acquired in the ±300 ppm range. A typical RARE spin–echo sequence with an echo time of 3 ms and a TR value of 8 s was used. An isotropic 64 x 64 acquisition matrix with FOVs of 10 x 10 mm², for in-vitro experiments, and 30 x 30 mm², for in-vivo experiments, and a slice thickness of 1 mm were used. The whole sequence was preceded by a saturation scheme consisting of a 3-sec-long continuous rectangular wave pulse at a radiofrequency B_1 intensity of either 3, 6 or 12 μT (only $B_1 = 6 \mu$T for in-vivo experiments). The Z-spectra were analyzed using custom-made software, and were compiled in the MATLAB platform.

The MTC effect was measured using the following equation (5):

$$MTC_{enh\,\%} = \frac{S_{I_{RGD}} - S_{I_{ctrl}}}{S_{I_{ctrl}}} \times 100$$

(5)

where $S_{I_{RGD}}$ an $S_{I_{ctrl}}$ are the normalized MR signal intensities in the Z-spectrum at 16 ppm, in the presence of RGD-Gd GUVs and ctrl-Gd GUVs respectively.
ICP-MS

After the MRI experiments were completed, the animals were sacrificed and the tumors were explanted, weighed and processed for ICP-MS analysis using reported procedures. The explanted tissue was treated by adding 1 mL of concentrated HNO₃ (70%) to each sample. After the complete dissolution of the tissues, the samples were further digested using microwave heating (MicroSYNTH, Microwave labstation equipped with an optical fiber temperature control and HPR-1000/6M six position high-pressure reactor, Milestone, Bergamo, Italy). After digestion, the volume of each sample was brought to 2 mL using ultrapure water. The solutions were then filtered with a 0.45 μm filter and analyzed by ICP-MS for the quantification of Gd³⁺, using a Thermo Scientific ELEMENT 2 ICP-MS-Finnigan, Rodano (MI). Quantification was obtained using a calibration curve that was measured using four gadolinium absorption standard solutions (Sigma-Aldrich) in the range 0.005–0.1 μg/mL. The total mass of the Gd³⁺ that was retained in each specimen was calculated with respect to the weight of the tumor tissue (as μg of Gd³⁺/g of tissue).

Histology and confocal fluorescence microscopy

Confocal fluorescence microscopy of U-87 MG cells incubated in the presence of Gd-GUVs: 1.5 x 10⁴ U-87 MG cells were seeded into μ-Slide 8 Wells in the presence of fresh medium. One day later, they were incubated for 30 min with either Rhodamine-containing RGD-Gd GUVs or Rhodamine-containing ctrl-Gd GUVs (ca. 5.2 x 10⁶ vesicles per plate, red). After labelling, the cells were extensively and gently washed to remove any unbound liposomes. The cells were then stained with Phalloidin-FITC (green) solution for 30 min at RT. Subsequently, the cells were washed twice with fresh PBS and observed using confocal microscopy. Z-stack images were acquired on a Leica SP8 confocal system (Leica Microsystems), in order to acquire a series of parallel images along the Z-axis that could be used to reconstruct 3D images of the GUV-labelled cells. This allowed the effective number of GUVs that were bound to cells to be assessed. The following wavelengths were considered
for microscopy: 1) \(\lambda_{\text{ex}}=545 \text{ nm, } \lambda_{\text{em}}=567 \text{ nm for rhodamine-B; and 2) } \lambda_{\text{ex}}=495 \text{ nm, } \lambda_{\text{em}}=520 \text{ nm for Phalloidin-FITC.} \) Fluorescent images were processed using ImageJ Fiji freeware software.

Hematoxylin/Eosin and CD-31 staining: After MRI acquisition, mice were sacrificed via cervical dislocation. Cancer tissues were excised, cut along the major axis and frozen into cold isopentane (-80°C overnight). Then, 4 µm sections were prepared, using cryotome, and fixed using ice-cold acetone for 8 min. This was followed by three washings with PBS. One slice was stained with hematoxylin/eosin (H/E stain) (BioOptica) and observed under an Olympus BX41 microscope equipped with a Leica photographic system for a histological characterization of the tumor.

For CD-31 staining and confocal fluorescence microscopy, slices were incubated with 10% goat serum in PBS, 1 h, RT. They were then incubated in the presence of the primary antibody (rat anti-mouse CD-31 (Invitrogen, Life technologies, 1:200 in 10% goat serum in PBS) overnight at 4°C. Slices were washed three times with PBS (5 min, under agitation) and incubated in the presence of the secondary fluorescent antibody (Alexa Fluor 488 anti-rat antibody secondary Ab, Invitrogen, Life technologies, 1:500 in PBS), for 1 h at room temperature. Subsequently, the slices were washed 3 times with PBS (5 min, under agitation), and the nuclei were stained with TO-PRO-3 via incubation with the TO-PRO-3 staining solution (Thermo-Fisher Scientific) 1:1000 in PBS, for 10 min at room temperature. After 2 washings with PBS (5 min, under agitation), the sections were mounted using ProLong Mountant (Thermo-Fisher Scientific). Sections were imaged on a Leica SP8 confocal system (Leica Microsystems). The following wavelengths were considered for microscopy: 1) \(\lambda_{\text{ex}}=545 \text{ nm, } \lambda_{\text{em}}=567 \text{ nm for rhodamine-B of GUVs (red); 2) } \lambda_{\text{ex}}=495 \text{ nm, } \lambda_{\text{em}}=519 \text{ nm for CD-31 staining (green); and 3) } \lambda_{\text{ex}}=642 \text{ nm, } \lambda_{\text{em}}=661 \text{ nm for TO-PRO-3 nuclei staining (blue).} \)

Statistical analysis

All data are expressed as mean ± standard deviation (N=6). The Graph-Pad Prism software was used for data analysis. The statistical analysis of the data was carried out using the unpaired two-tailed t-test. A P-value < 0.05 was taken to be statistically significant.
Results

The aim of this work is to develop a MRI methodology that can detect tumors using Gd-loaded-targeting-GUVs and the MTC-MRI modality. U-87 MG human glioblastoma cells that overexpress integrin receptors were used as the target cancer cells. For this purpose, c(RGDfC) was used as the targeting vector as it is able to bind integrin receptors. In order to target GBCAs to U-87 tumor cells, giant unilamellar vesicles were functionalized with cyclic-RGD and loaded with a amphiphilic Gd-complex in the membrane and Gd-HPDO3A in the internal aqueous cavity (RGD-Gd GUVs).

![Diagram](image)

Fig.1. (A) Schematic representation of RGD-Gd-GUV formulation and the chemical addition of the targeting vector (the relative amount and size of the different chemicals is not to scale); (B) GUV diameter size distribution as assessed by confocal microscopy analysis.

Gd-HPDO3A is widely used in clinical and preclinical experiments and shows no toxicity.\(^{39,40}\)
Fig.1A provides a representation of RGD-Gd GUVs. GUVs were prepared as reported in the literature,23,33 and the c(RGDfC) peptide was attached to the DSPE-PEG2000Maleimide phospholipid component of the GUVs.35

Gd-GUVs \textit{w/o} the c(RGDfC) peptide (ctrl-Gd GUVs) were prepared by incorporating DSPE-mPEG2000 phospholipids, instead of DSPE-PEG2000Maleimide, into the membrane composition, and were used as controls.

The main features of the two GUV preparations are summarized in Table 1. They display quite similar size (hydrodynamic diameter is 2.0 ± 0.3 and 1.5 ± 0.2 \(\mu\)m, for RGD-Gd GUVs and ctrl-Gd GUVs, respectively, \textbf{Fig.1B}), surface \(\zeta\)-potential (-5.9 ± 0.6 mV and -2.2 ± 0.2 mV, for RGD-Gd GUVs and ctrl-Gd GUVs, respectively) and longitudinal relaxation rate (\(r_1\) normalized for 1 mM of Gd-concentration). The relaxivities were \textit{ca.} 5.5 mm-1s-1 and \textit{ca.} 1.8 mm-1s-1 for RGD-Gd GUVs and ctrl-Gd GUVs at 0.5 and 7 T, respectively).

<table>
<thead>
<tr>
<th>Membrane formulation</th>
<th>RGD-Gd GUVs</th>
<th>Ctrl-Gd GUVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPC 86.95% Amphiphilic Gd-complex 10% Liss Rhod PE 0.05% DSPE-PEG2000Maleimide 3%</td>
<td>DPPC 86.95% Amphiphilic Gd-complex 10% Liss Rhod PE 0.05% DSPE-mPEG2000 3%</td>
<td></td>
</tr>
<tr>
<td>Hydration solution</td>
<td>40 mM Gd-HPDO3A in HEPES/NaCl buffer (3.8 mM HEPES, 0.15 M NaCl)</td>
<td>40 mM Gd-HPDO3A in HEPES/NaCl buffer (3.8 mM HEPES, 0.15 M NaCl)</td>
</tr>
<tr>
<td>Hydrodynamic diameter (mean ± (\sigma))</td>
<td>2.0 ± 0.3 (\mu)m</td>
<td>1.5 ± 0.2 (\mu)m</td>
</tr>
<tr>
<td>Surface (\zeta)-potential (mean ± SD)</td>
<td>-5.9 ± 0.6 mV</td>
<td>-2.2 ± 0.2 mV</td>
</tr>
<tr>
<td>Longitudinal relaxation rate ((r_1))</td>
<td>\textit{ca.} 5.5 mm-1s-1 (at 0.5 T, 25°C) \textit{ca.} 1.8 mm-1s-1 (at 7 T, 25°C)</td>
<td>\textit{ca.} 5.5 mm-1s-1 (at 0.5 T, 25°C) \textit{ca.} 1.8 mm-1s-1 (at 7 T, 25°C)</td>
</tr>
</tbody>
</table>

\textbf{Table 1.} Main features of RGD-Gd GUVs and ctrl-Gd GUVs.
Fig. 2. (A) U-87 MG cell viability upon 30 min incubation with RGD-Gd GUVs and ctrl-Gd GUVs. (B) Confocal fluorescence microscopy of live glioblastoma cells incubated in the presence of RGD-Gd GUVs, and (C) in the presence of ctrl-Gd GUVs (scale bar = 50 μm). Arrows indicate RGD-Gd GUVs and ctrl-Gd GUVs. (D, E, F) Magnification of cells incubated in the presence of RGD-Gd GUVs (red = rhodamine-GUVs; green = Phalloidin-FITC) Scale bars = 20 μm.
As the synthesized Gd-GUVs display good paramagnetic and fluorescent properties, making them suitable for MRI and fluorescence microscopy applications, they were tested for their ability to target U-87 MG cells in cultures.

Firstly, the potential cytotoxicity of the GUVs was assessed in vitro using a MTT cell viability test.36 As reported in Fig.2A, only a small effect on glioblastoma cell viability was detected upon incubation with RGD-Gd GUVs and ctrl-Gd GUVs (cell viability is higher than 90\% for [GUVs] up to ca. 10 pM). Moreover, no significant difference was detected in the two GUV formulations (Fig.2A). Overall, the observed toxicity appears to be acceptable, as expected considering the well-established tolerability of Gd-HPDO3A, which is the main GBCA in the formulations.39,40

Confocal microscopy images of the cells were acquired to gain further insight into the specific binding of RGD-Gd GUVs to U-87 MG cells. The cells were stained using Phalloidin-FITC (green). Fig.2B and C report representative images of U-87 glioblastoma cells after 30 min of incubation either in the presence of RGD-Gd GUVs (Fig.2B), or in the presence of ctrl-Gd GUVs (Fig.2C). As expected, GUVs are only bound to glioblastoma cells when the RGD moiety is present.

The binding is specific without any evidence of the GUVs or their imaging reporters being internalized within the targeted cells. Furthermore, it can be noted that only a low number of GUVs are present per cell, and that there is evident vesicle clustering in discrete cell regions (mainly in cell spines) (Fig.2D, E and F magnification of U-87 MG cells incubated in the presence of RGD-Gd GUVs). 3D fluorescence confocal microscopy reconstructions of RGD-Gd-GUV binding to U-87 MG cells have been reported in the \textit{Supplementary information} (Movie S1, S2 and S3).

Considering the positive results for the cytotoxicity and specific binding of RGD-Gd GUVs to U-87 MG cells, the \textit{in-vitro} targeting experiments for MRI detection were carried out. For this purpose, glioblastoma cells were incubated in the presence of either RGD-Gd GUVs or ctrl-Gd GUVs (particle concentration \textit{ca.} 1 pM) for 30 min at 37°C. Then, after extensive washing with fresh PBS buffer, the cells were detached using a non-enzymatic cell-dissociation solution, and centrifuged inside glass
capillaries to give pellets for MRI acquisition, and in order to assess T_1, T_2 and MTC responses. Fig.3A reports representative MRI results for the U-87 MG cell pellets (T_{2w}, T_{1w} and MTC images).

Three specimens were considered: i) untreated U-87 MG cells (negative control); ii) U-87 MG cells incubated in the presence of ctrl-Gd GUVs (second negative control); and iii) U-87 MG cells incubated in the presence of RGD-Gd GUVs. The R_2 value of the cells incubated in the presence of...
ctrl-Gd GUVs was very similar to that of the specimen containing the unlabeled blank cells (19.37±0.64 vs. 19.31±0.19 s⁻¹, respectively) (Fig.3B).

Consequently, no T₂ contrast can be detected in the T₂w-MR images of the cells incubated in the presence of ctrl-Gd GUVs (Fig.3A top). In the case of incubation in the presence of targeted RGD-Gd GUVs, only a small increase in the R₂ value was detected (i.e. 22.62 ± 1.22 s⁻¹, corresponding to ca. 17% R₂ Enhancement) (Fig.3A). This slight increase in the R₂ value was barely detectable as contrast in the T₂w-MR images (Fig.3A top).

Furthermore, no differences in T₁ value nor T₁ contrast were observed in the T₁w-MR images (Fig.3C, A middle). Hence, the T₁ modality cannot be considered suitable for the detection of Gd-GUV-targeted cells in the applied experimental set-up. The Z-spectra of the U-87 MG cell specimens were then acquired using several B₁ pulses.

Representative MTC results obtained with B₁= 6 μT are reported in Fig.3A bottom, Fig.3D (Z-spectra), Fig.3E (magnification of Z-spectra) and Fig.3F (MTC enh%). A MT contrast of MTC enh%= 15.2±1.9 % was found for pellets of the cells treated with RGD-Gd GUVs with respect to the pellets made of untreated cells, and a of MTC enh%= 14.8±2.3 % was found compared to the pellets of cells treated with ctrl-Gd GUVs. Comparable results were obtained using a B₁= 3 and 12 μT (Fig.S4-S7).

An ICP-MS determination of the Gd content in the cell specimens upon incubation in the presence of either RGD-Gd GUVs or ctrl-Gd GUVs showed a significantly higher amount (ca. 15 times) of Gd in the cell specimens incubated in the presence of targeting RGD-Gd GUVs, compared to cells treated with ctrl-Gd GUVs (1.2x10⁸ vs. 8.2x10⁶ Gd³⁺/cell, respectively). Data are reported in Fig.3G).

U-87 MG cells were incubated in the presence of empty RGD GUVs for use as controls (i.e. GUVs containing RGD moiety, but with no Gd-complexes either in the membrane or inner cavity), and their Z-spectrum was quite analogous to that of the untreated cells (Fig.S8), indicating that the presence of Gd-complexes is needed for the MTC effect.
Fig.4. (A) Experimental set-up for in-vivo studies. (B) Representative axial and coronal T_{2w} and T_{1w} images of tumor-bearing mice. (*White arrows indicate transplantable tumors.*) (C) Z-spectra from the tumor region before and after treatment with ctrl-Gd GUVs (t=0, 4h and 24h, Group1). (D) Z-spectra from the tumor region before and after treatment with RGD-Gd GUVs (t=0, 4h and 24h, Group2). (E) Representative MTC image of ctrl-Gd-GUV-treated mice t=0. (F) Representative MTC image of ctrl-Gd-GUV-treated mice t=4h. (G) Representative MTC image of RGD-Gd-GUV-treated mice t=0. (H) Representative MTC image of RGD-Gd-GUV-treated mice at t=4h. (I) Normalized signal intensity of tumor ROI pre- (t=0) and post-treatment (t=4h or 24h) with ctrl-Gd GUVs or RGD-Gd GUVs. (J) MTC$^\text{enh\%}$ of the tumor region at t=0, 4h and 24h.

The positive data obtained in cell cultures drove us to perform the in-vivo targeting experiments. The experimental protocol is reported in **Fig.4A**.

Representative T_{2w}- and T_{1w} MRI of tumors are reported in **Fig.4B** (*tumors are indicated by the white arrows*). The presence of the two tumor masses is clearly visible. Mice were divided into two groups. Group1 received ctrl-Gd GUVs (0.05 mmol$_{Gd}$/kg, slow infusion), whereas Group2 was treated with the same dose of RGD-Gd GUVs under analogous administration conditions. MRI was carried out before and after (t=0, 4 h and 24 h) GUV administration.

From these acquisitions, it was evident that both T_2 and T_1 contrast are not able to distinguish the tumors in Group1 mice from those of Group2 mice.

As far as the Z-spectra are concerned, no difference can be detected between pre and post ctrl-Gd-GUV administration in Group1 (**Fig.4C**). On the other hand, in the case of Group2 (administration of RGD-Gd GUVs), a clear difference in the Z-spectra is present at $t=4\text{ h}$ post administration. At $t=0$ and $t=24\text{ h}$ post injection, the Z-spectra almost completely overlap with the pre-administration ones (**Fig.4D**).

Fig.4E-H report representative MTC MR images of mice treated with either ctrl-Gd GUVs or RGD-Gd GUVs at $t=0$ and $t=4\text{h}$. The normalized signal intensities obtained from the Z-spectra of tumor ROIs are reported in **Fig.4I**. There is only a significant increase in signal, *i.e.* a reduction in the MT effect, at $t=4\text{h}$ for the RGD-Gd-GUV-treated mice. A quantitative analysis was carried out by measuring the MTC enhancement, and the results are reported in **Fig.4J**. At $t=0$ there is a very small
MTC% contrast (ca. 5%), which is comparable for the two groups. At $t=4$ h the difference between the two groups is significant (16% vs. 2%, P-value < 0.05). At $t=24$ h, the MTC% of Group1 decreases and, in general, the difference between the two groups is no longer significant. The observed behavior suggests that the MTC data are indicative of the binding of RGD-Gd GUVs to glioblastoma tumor cells, with a maximum effect that corresponds to the maximum Gd accumulation (*vide infra*), at around $t=4$ h.

Fig.5. (A,B) H/E histology of representative tumors (10X and 20X, respectively). (C, D) CD-31 fluorescence staining of representative tumors from mice treated with either RGD-Gd GUVs or ctrl-Gd GUVs, respectively. *Green*=Vessels (CD-31/NG-2/CD-105), *Blue*=Nuclei (To-Pro) and *Red*=GUVs (rhodamine). Scale bar=10 μm. (E) ICP-MS quantification of Gd-content in tumors.
After the completion of the MRI experiments, the mice were sacrificed and tumors were explanted for histology and ICP-MS analyses. The H/E staining of the tumors (Fig.5A, B) shows homogeneous tumor growth with consistent and regular vascularization (yellow arrows) and the absence of necrotic regions. These features were confirmed for all tested tumors. The CD-31 fluorescence staining of the slices showed that the GUVs were only bound to vessels in Group2 mice (i.e. those ones treated with RGD-Gd GUVs) (Fig.5C white arrows), and not those in Group1 (i.e. those ones treated with ctrl-Gd GUVs) (Fig.5D).

Finally, the quantification of Gd(III) content in the tumors was carried out using the ICP-MS technique. As reported in Fig. 5E, the amount of Gd(III) is higher in tumors from Group2 than in those in Group1, both at t=4 h and t=24 h (P-value < 0.05). In Group2 tumors, 4.2 µg Gd/g of tumor and 1.6 µg Gd/g of tumor are present at t=4 h and t=24 h, respectively.

Discussion

The ability to target cancer cells,2,15 and visualize them using a high resolution imaging technique, such as MRI,2,4 is one of the most important goals of molecular imaging. Undoubtedly, detecting cancer cells at an early stage by MRI is of huge importance, and will allow the primary role of this diagnostic approach to be further enhanced within the field of oncology.2 Unfortunately, the intrinsically low sensitivity of MRI means that reaching the detection threshold in targeting experiments is challenging. Many attempts to obtain \(T_{1w}\) and/or \(T_{2w}\) images of cancer cells upon the administration of targeted contrast agents have been carried out over the last two decades.4-8,15 The use of \(T_1\) contrast agents has not provided convincing results, especially when targeted epitopes are sparse.41

In this work, we have explored a new way to tackle the sensitivity drawbacks of MRI by exploiting the synergy offered by two strategies: \textit{i}) RGD-Containing Giant Unilamellar Vesicles (GUVs); and \textit{ii}) MRI detection based on the assessment of Magnetization Transfer Contrast (MTC) as an
alternative to the commonly used T_{1w} images that are acquired in the presence of paramagnetic GBCAs.$^{20, 26-28}$

GUVs were chosen as they are biocompatible carriers that can be loaded with high payloads of T_1 Gd-based MRI CAs both encapsulated in the large inner cavity and incorporated into the phospholipidic membrane. The inner cavity was filled with a HEPES/NaCl buffer solution containing 40 mM of Gd-HPDO3A. Although the Gd-HPDO3A dose can be increased up to 300 mM without any osmolarity problems, this did not appear to be convenient because of the occurrence of relaxivity “quenching” upon increasing the amount of entrapped Gd-complexes. This is due to the low water permeability of the GUV membrane.$^{42-44}$ For this reason, and in order to increase the attainable relaxivity, the amphiphilic Gd-complex was inserted into the GUV membrane. The Gd-complexes exposed on the outside of the GUVs did not show any drawbacks in their function as agents that shorten the T_1 of water.

The ability to easily functionalize the surfaces of phospholipid vesicles (e.g. GUVs, SUVs, micelles, etc.) with targeting moieties is a particular advantage.$^{23, 33}$ Cyclic RGD has been used, herein, for its binding to integrins. The RGD tripeptide (Arg-Gly-Asp) is an amino acid sequence that is largely present in many extracellular matrix proteins (e.g. fibronectin, vitronectin, laminin, etc.) and is responsible for cell-cell and cell-matrix adhesion. This sequence is recognized by a number of integrin proteins, including $\alpha_\nu\beta_3$, $\alpha_5\beta_1$ and $\alpha_{IIb}\beta_3$. There is a large overexpression of integrins on the outer surface of solid tumors, and they play an important role in tumor proliferation, invasiveness and metastasis formation.$^{45, 46}$

Furthermore, integrin expression is also increased in endothelial cell surfaces during neo-angiogenesis, to facilitate the growth and survival of newly forming vessels.$^{47, 48}$ These liposomes have micrometric diameter (1.5-2 μm) and a slightly negative surface ζ-potential, making them suitable for extravascular/extracellular targeting. No significant differences between RGD-Gd GUVs and ctrl-Gd GUVs were reported. As previously reported,23 they are only slightly
internalized by macrophages, as observed in in-vitro experiments. Furthermore, no evidence of cell toxicity is present in either the targeted or untargeted formulations.

The targeting was efficient and specific. Only in the presence of RGD moiety can the GUV bind integrin-overexpressing cells. It is worth noting that RGD GUVs cannot be internalized by cells, and remain attached to the external surface, although they cluster into specific regions of cytoplasmatic membranes.

The feasibility of using RGD-Gd GUVs for the MRI detection of cancer cells was assessed both in vitro and in vivo by acquiring T_{1w}, T_{2w} and MTC MR images at 7T.

U-87 MG glioblastoma cells were chosen for the in-vitro experiments as they are characterized by a very high expression of RGD receptors, ca. 10^5 receptors per cell.49 Validation was carried out using fluorescent microscopy and ICP-MS for Gd(III) quantification.

The use of RGD-Gd GUVs allows a very large amount of GBCAs to be carried to the site of interest. This amount is one order of magnitude higher than the amount obtained with the use of ctrl-Gd GUVs (i.e. 1.2×10^8 vs. 8.2×10^6 Gd$^{3+}$/cell), which is, nevertheless, lower than the typical threshold reported for cell detection by T_{1w} MRI. In fact, some years ago, an empirical relationship to relate the threshold for MRI detection to relaxivity (r_{1p}) and the number (N) of Gd-complexes associated to each cell was proposed:8

$$N = 10^9/r_{1p}$$

Considering that the r_{1p} of RGD-Gd GUVs at 7 T is lower than 2 mM$^{-1}$s$^{-1}$, the number of Gd-complexes present in cell pellets, after binding RGD-Gd GUVs onto the external surfaces of cells, is ca. 4-5 times lower than the detection threshold. This clearly justifies the absence of detectable T_1 contrast upon the incubation of the U-87 MG cells in the presence of RGD-Gd GUVs. It is likely that T_{1w} images would have reported the targeting of RGD-Gd GUVs at a lower field strength, such as 0.5 T, as the measured r_{1p} value at this field strength was found to be 5.5 mM$^{-1}$s$^{-1}$. The higher relaxivity observed at 0.5 than at 7T reflects, on the one hand, the important contribution provided by the Gd-
complexes that are exposed on the surface of the liposome’s membrane and, on the other, the limited exchange of water molecules across the vesicle’s membrane, which leads to the “quenching” of the attainable relaxivity that is associated with the large amount of Gd-HPDO3A in the inner aqueous cavity.42-44 Although this has not yet been analyzed in detail, it is apparent that water-proton relaxation arises mainly from the exposed Gd-complexes that, being part of a supramolecular and slowly moving system, generate a relaxivity “hump” around a field strength of 1T. The relaxivity of the Gd-GUVs used in this work decreases to lower values as the field strength increases (it is \textless 2mMs-1 at 7T). More work is necessary if the permeability of GUV membranes is to be controlled to take full advantage of the large paramagnetic payload that such systems are capable of delivering.

As expected, better results were obtained by quantifying the T_2 effect. In fact, in this case, cells are detectable upon incubation in the presence of RGD-Gd GUVs, with a ΔR_2 of 18.3\% compared to control unlabeled cells. No significant ΔR_2 effect is present in cells upon incubation with ctrl-Gd GUVs.

MRI has traditionally been based on the exploitation of changes in proton density and the T_1 / T_2 relaxation times of tissue water protons. About three decades ago, a new form of tissue contrast was reported; Magnetization Transfer Contrast (MTC). It is based on the concept that tissues contain two, or more, separate populations of water molecules: i) a highly mobile (\textit{free}) water pool; and ii) an immobile, semi-solid (restricted) water pool. This latter is made up of water molecules bound to large macromolecules (\textit{e.g.} ECM proteins, cellular membranes, etc.).

The NMR signal of immobilized water protons is normally not visible because of their very short T_2 relaxation time (bandwidth > 10 KHz). Upon applying \textit{rf} irradiation (at a chemical shift far from the bulk water resonance, with saturation over a very large bandwidth, \textit{e.g.} 50 KHz), the saturated protons may enter the free bulk water proton pool (bandwidth < 20Hz) thus transferring their saturated magnetization to the free water protons. As consequence, there is a decrease in the visible MR signal and consequently the generation of contrast in regions in which the immobilized water molecules/proteins are present.26-28
MTC MRI has been widely investigated, at both clinical and preclinical levels, and the intrinsic differences in MTC between tissues have been exploited without the need to administer exogenous CAs.50,51

The theoretical relationship between the MTC effect and water T_1 has been widely investigated.26-28

Our aim is to assess whether this approach is even more sensitive than the usual effects of paramagnetic agents in T_1w MR images. In a previous work, we proved that Gd-labelled cells can be detected better by MTC than via the acquisition of T_1w images.20 Our current in-vitro experiments on U-87 MG cells have confirmed these previous observations. In fact, cells that were incubated in the presence of RGD-Gd GUVs were detectable by MTC-MRI. In particular, ca. 15% contrast difference was observed between the cells incubated with targeted-GUVs and the cells incubated in the presence of ctrl-Gd GUVs. Hence, when T_1 cannot detect U-87 MG cells, MTC succeeds in providing improved sensitivity.

Using the positive in-vitro results as a base, we carried out in-vivo experiments with the aim of exploring whether the advantages offered by MTC can be translated to in-vivo studies.

Mice underwent MRI examination when tumors reached a growth stage in which neo-angiogenesis and epithelial-mesenchymal transition events occur, but when necrotic areas are still not present; the tumors appeared to be well vascularized and perfused.

Analogously to the in-vitro experiments, in-vivo T_2 and T_1 contrast also failed to distinguish the tumors of mice injected with RGD- and ctrl-Gd GUVs. However, MTC was successful as it detected the pharmacokinetics of the GUVs in the tumor region. The MTC data suggest that the RGD-Gd GUVs were specifically bound to the glioblastoma tumor with a maximum effect around $t=4$ h (MTC% contrast of ca. 16%).

ICP-MS confirmed the specific accumulation of GBCAs, upon use of RGD-Gd GUVs. In fact, the amount of Gd found in the tumors upon the administration of the targeted GUVs is ca. 4 and 8 times higher than those of Gd found in tumors upon the administration of control untargeted GUVs (at $t=0$
and t=4h, respectively). Finally, the CD-31 fluorescence staining of the tumor slices indicated that a significant fraction of the RGD-Gd GUVs was bound to vessels in mice.

It should be noted that the GUVs cannot escape the vascular space in vivo, and this means that in-vitro and in-vivo RGD-targeting experiments are slightly different. In fact, the in-vitro experiments demonstrated that RGD GUVs directly bind the RGD that is overexpressed in U-87 MG cells (note that ca. 10^5 RGD receptors are present for each U-87 MG cell).^{47} Hence, it can be stated that RGD GUVs directly bind tumor cells.

In the in-vivo experiments, although the xenografts consisted of U-87 MG glioblastoma cells, the observed MTC effects cannot be associated to GUV’s binding of tumor cells as the size of the GUV particles hamper their extravasation from the vascular space. It follows that the observed effect relies on the binding of the integrins that are present on the surface of tumor endothelial cells (TECs). As widely reported in cancer-related literature, integrin expression is strongly increased in endothelial cell surfaces during neo-angiogenesis to facilitate the growth and survival of newly forming vessels. Tumor endothelial cells are markedly different from normal endothelial cells (NECs).^{52} This transition from NECs to TECs is triggered by the presence of tumor cells via several mechanisms, including: i) transdifferentiation, i.e. tumor cells, cancer stem cells or vascular progenitor cells might directly transdifferentiate into TECs; and ii) cell fusion, i.e. malignant tumor cells can fuse with NECs or circulating vascular progenitor cells. Both mechanisms lead to the over-expression of integrins on endothelial-cell surfaces.

Altogether, the herein reported data show that a protocol for the efficient detection of integrins that are overexpressed on glioblastoma tumors is possible.

The use of GUVs appears to be a good strategy for the delivery of a high amount of Gd-based MRI contrast agents to the tumor region. They appear to improve the sensitivity threshold of small unilamellar liposomes, while preserving their main advantages. In fact, they are biocompatible and easily loaded with contrast agents, just like as small liposomes, but they are neither sequestered by
macrophages nor internalized inside cells in vivo. Moreover, their inner cavity can host a very large number of Gd-complexes. However, although giant liposomes are able to deliver high Gd-complex amounts to the cancer region via the binding of overexpressed integrins, Gd concentration in the region of interest appears to be just at the threshold for the detection of the relaxation enhancement effects using conventional T_{1w} and T_{2w} images.

MTC MRI has been confirmed to possess higher sensitivity for the detection of the small effects that are associated with the presence of paramagnetic Gd-complexes than their $T_{1/2w}$ counterparts.

In conclusion, the synergic properties of applying RGD-Gd GUVs and the MTC-MRI technique have led to the successful visualization of the targeting of tumor integrins. The findings reported herein are promising for the development of new procedures for the preclinical targeting of epitopes that are expressed at low doses on the external surfaces of cells. More generally, the combination of MTC and GBCAs deserves more attention as it is a valid alternative to classical T_{1w} and T_{2w} MRI approaches.

References

