5 UNIVERSITA
% DEGLI STUDI
ot DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Practical parallelization of scientific applications with OpenMP, OpenACC and MPI

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1792557 since 2021-07-01T18:06:21Z

Published version:
DOI:10.1016/j.jpdc.2021.05.017
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

28 October 2021

Practical Parallelization of Scientific Applications with OpenMP,
OpenACC and MPI

Marco Aldinucci®® 5-Valentina Cesare®, lacopo Colonnelli#P, Alberto Riccardo Martinelli®?,
Gianluca Mittone®P, Barbara Cantalupo®®, Carlo Cavazzoni®, Maurizio Drocco®

aComputer Science Department, University of Torino, Italy
bHPC Key Technologies and Tools national laboratory, CINI, Italy
CINAF - Osservatorio Astrofisico di Catania, Italy
dLeonardo S.p.A., Italy
€T.J. Watson Laboratory, IBM Research, USA

Abstract

This work aims at distilling a systematic methodology to modernize existing sequential scientific
codes with a little re-designing e [anit, turning an old codebase into modern code, i.e., parallel and ro-
bust code. We propose a semi-automatic methodology to parallelize scientific applications designed
with a purely sequential programming mindset, possibly using global variables, aliasing, random
number generators, and stateful functions. We demonstrate that the same methodology works for
the parallelization in the shared memory model (via OpenMP), message passing model (via MPI),
and General Purpose Computing on GPU model (via OpenACC). The method is demonstrated
parallelizing four real-world sequential codes in the domain of physics and material science. The
methodology itself has been distilled in collaboration with MSc students of the Parallel Comput-
ing course at the University of Torino, that applied it for the first time to the project works that
they presented for the final exam of the course. Every year the course hosts some special lectures
from industry representatives, who present how they use parallel computing and o [er codes to be
parallelized.

Keywords: loop parallelism, CUDA, OpenMP, OpenACC, MPI

1. Introduction

The shift toward parallel computing platforms has many drivers that are likely to sustain this
trend for several years to come. Software technology is consequently changing: in the long term,
writing parallel programs that are e [cieht, portable, and correct must be no more onerous than
writing sequential programs. While re-designing from scratch with an explicitly parallel approach
is still the most eledtive option to achieve scalable and e [cieht parallel codes, this approach
cannot e [edtively support the industrial adoption of parallel computing key technologies. In this
context, human productivity and time-to-solution are equally, if not more, essential aspects than
performance. Also, re-design is a dangerous activity because it might impair the code’s correctness;

LEorresponding author
Email address: marco.aldinucci@unito.it (Marco Aldinucci)

Preprint of

M. Aldinucci, V. Cesare, |. Colonnelli, A. R. Martinelli, G. Mittone, B. Cantalupo, C. Cavazzoni, and M. Drocco, “Practical parallelization of
scientific applications with OpenMP, OpenACC and MPI,” Journal of Parallel and Distributed Computing, vol. 157, pp. 13-29, 2021.
doi:10.1016/}.jpdc.2021.05.017

typical pitfalls are in numerical stability, validation of results, and random number generators in
parallel codes.

In the last three decades, parallel programming methodologies significantly evolved to ease
programmers’ tasks and improve program e [ciehcy. The common thread of this evolution has
been a rise in the level of abstraction of concurrency management primitives. A crucial step in this
process has been defining algorithmic paradigms or skeletons (as called by M. Cole in the eighties
[146]) for which a pre-defined proper parallel implementation exists. Some of these paradigms have
represented real enabling technologies for whole applicative areas. Among them, the embarrassingly
parallel paradigm (i.e., task farm skeleton) enabling elasticity in cloud computing [/], the data
parallel paradigm (map and reduce skeletons) enabling the MapReduce programming model [8] with
its whole array of Apache-BigData solutions, and the Single-Instruction-Multiple-Threads (SIMT)
programming model for GPUs.

These paradigms happen to work well because they are explicitly parallel abstractions. The pro-
grammers can directly design their applications within a specific programming model and verify the
embedded sequential code’s compliance with programming model constraints, such as associativity
of accumulation operations, concurrent access to shared data structures, and absence of a persis-
tent state in pure functions. Since the 1970s, many di[erent programming environments based on
these concepts have been proposed [9][10]. A well-known example is the Single Instruction Multiple
Data (SIMD) paradigm, which expresses data-level parallelism by applying the same operations to
multiple data items in parallel through low-level programming constructs (e.g., Intel SSE/AVX ISA
extensions [11]). Many other approaches remained research prototypes, but their essence, which
consists of promoting to a first-class concept the replication of sequential functions organized in a
parametric schema, has eventually become mainstream.

High-level parallel libraries allow programmers to directly define parallel constructs in the form
of either higher-order functions (as in Intel TBB [12], Apache Spark [13]) or directives (as in
OpenMP [14] and OpenACC [15]). Such constructs can be associated with semantically meaningful
points of the code, such as function calls and loops [16]. In modern languages, such as C++11, the
role of directives can also be played by attributes, i.e., first-class language statements that allow the
programmer to specify additional information. Such information can be used to enforce compilation
constraints or specific code generation, including parallelization [17].

A crucial aspect of generative approaches’ success has been focusing on loops as meaningful
points of the code. This is particularly true for the shared memory model, where the parallel
implementation of loops can be expressed as a composition of parallel constructs without the need
of partitioning the data structures [18]. Loops are typically used to navigate arrays and to discretize
dimensions (e.g., time and random walks). Since several tools to parallelize a single loop exist, a
cost-e [edtive method to enhance the performance and robustness of an entire scientific application
revolves around three main tasks: 1) selecting which loops we can correctly parallelize, avoiding
both to restrict parallelism needlessly and to require too complex code transformations that might
aledt numerical stability; 2) determining which loops are worth to be parallelized; 3) selecting points
in which the data structures are globally consistent for checkpointing, typically at the beginning of
a non-parallelizable loop not nested within a parallel loop.

1.1. Education principle: learning-by-doing parallel design with a Montessorian spirit

This work directly aims to define a strategy to teach students how to cost-e [edtively parallelize
real scientific applications, turning it into a teaching tutorial to be distributed in addition to the

text book. We believe that, besides students, this approach might be useful also for domain expert
practitioners to tune their scientific applications.

The strategy consists of a systematic methodology that follows well-defined steps, working both
in the shared memory model for multi-core and GPUs (for example, with OpenMP and OpenACC)
and in the message passing model (for instance, with MPI). We support a unifying approach for
prompting students to experience abstraction as computer science’s distinctive tool against other
scientific domains. This methodology has important aftermaths. Firstly, students learn how to
approach common cases. In this way, they do not get lost in the plethora of corner cases and
parallelization tricks that, in most cases, lead to non-portable code (the Internet is full of them).
Secondly, students directly experience how to go (by abstraction) beyond the traditional approach of
leveraging low-level and platform-specific functionalities. We believe that the low-level programming
approach, which could still be justified today in a few extreme-scale applications, has lost all reason
for existing for the vast majority of scientific (and non-scientific) codes. And it is a showstopper
for industrial adoption.

This approach matured in the last ten years within the course Parallel and Distributed Com-
puting Systems, taught by Prof. Marco Aldinucci at the University of Torino. The course program
is designed to be a parallel programming primer, and it is structured in four parts. The first three
parts cover three low-level parallel programming models: message passing (exemplified with MP1),
shared memory (exemplified with pthreads and OpenMP) and GPU programming (exemplified with
CUDA and OpenCL). The last part abstracts these paradigms in higher-level approaches to paral-
lel programming: parallelization methodologies (e.g., loop parallelization), skeletons and patterns
(data- and stream-parallelism), and programming models (e.g., MapReduce). In addition, from
two to four guest industrial researchers are invited each year for special lessons with a twofold goal:
bringing to class real-world evidences of industrial applications and facilitating possible internships
(e.g., IBM Research, E4 Engineering, Leonardo Company, ENI).

The course adopts two main education principles: 1) Learn-by-doin and 2) Student choice
of activity plus the discovery model E'] The course adheres to the learn-by-doing principle with
a periodic release of programming exercises (home works), followed by solutions discussed during
hands-on sessions. Moreover, the second principle is implemented by structuring the exam around
project work, namely an algorithm or application to parallelize. Each student (or group of students)
can propose an algorithm or a whole application of interest as project work, choosing one or more
parallelization approaches and comparing them. According to the second principle, applications in
various domains and di [erent complexity are acceptable (after a discussion with the teacher).

The teacher stimulates the students to join in small groups to address complex applications and
proposes standard parallelization exercises to students with no own proposals. Students are en-
couraged to start the project work in the middle of the term to stimulate the discovery model. The
project activity typically last few weeks. Students learn concepts from working together with teach-
ers using parallel computing tools, rather than by direct instruction (advocated by both Montessori
and Dewey). The final exam consists of both the parallelization activity, accompanied by a report
explaining the design choices and the achieved performances, and an oral discussion, covering the

1A theory of education expounded by John Dewey, an American philosopher, psychologist, and educational
reformer https://en.wikipedia.org/wiki/John_Dewey

2A method of education expounded by Maria Montessori, an Italian physician and educator best known for the
philosophy of education that bears her name, and her writing on scientific pedagogy https://en.wikipedia.org/
wiki/Maria_Montessori

project work and the general theory learned during the course. The final grade is given by balancing
the complexity of the project work, the quality of the report and the oral exam.

The teacher embraces the Montessorian principle that each student proceeds at its speed and
along its trajectory, withholding the temptation to make all student marching at the same pace.
According to this principle, the absolute performance achieved by the parallel code developed in the
limited time of the project work is not a primary evaluation criterion. Instead, the acquired ability
to orientate oneself in the di[erknt design choices and analyze (ex-post) performance bottlenecks is
highly appreciated.

1.2. Outline of the work

After an outline of related works (Sec. , Sec. (3| introduces the mentioned methodology. A
preliminary version of the same methodology, targeting OpenMP only, appeared in a previous
work [19]. In the present manuscript, we substantially extended it by covering all the mainstream
parallel programming models: shared memory multithreading for multi-cores, message passing for
clusters, and SIMT data parallelism for GPUs. In Sec.[4] the methodology is demonstrated on
four real-world scientific applications and validated on state-of-the-art parallel platforms. The
four considered codes are: the DiskMass Survey code, parallelized with OpenMP (Sec. , the
Spray-web code, parallelized for GPUs with OpenACC and CUDA (Sec., the SimpleMD and
Laplace2D codes, parallelized with MPI (Sec. and . The DiskMass Survey code implements
a Monte Carlo Markov Chain (MCMC) method and also appeared in [19], whereas the other three
applications are novel. The Spray-web code is a community codebase with closed source branches.
It is industrially adopted to evaluate the impact of new emission sources like roads, construction
sites and industrial plants, by simulating particle movement in a vector field. The SimpleMD code
implements a Molecular Dynamics simulation, while the Laplace2D is an elliptic Partial Di [erential
Equation solver. They represent two broad classes of scientific codes requiring a step-wise global
and local system knowledge, respectively. Although the methodology aims to guide the design
of a vanilla parallel version, the Spray-web application achieves a 3.7x speedup (NVidia T4 vs
Intel i7-7700HQ). SimpleMD has been tested on BSC MareNostrum4 supercomputer achieving a
maximum speedup of [IID, while Laplace2D has been tested on the CRESCO6 cluster, achieving
a maximum speedup of [778. Presenting to students these four examples and their scaling tests
would be essential to show the e [edtiveness of this methodology for di [erent parallelization models.

2. Related work

One of the main issues when dealing with loop parallelism is to find a solid strategy for schedul-
ing the iterations over a set of parallel workers, which must ensure both performance and sequential
equivalence (at least to the extent allowed by the finite numerical precision of floating-point op-
erations). Automatic loop parallelization techniques usually perform a lattice analysis of data
dependencies to explore the space of data/code transformations, facilitating an e [cieht loop it-
eration scheduling [20] [2I]. Since the nineties, several algebraic frameworks have emerged in the
compiler community; the polytope model [22][23] is an early example.

Nowadays, lattice analysis is almost exclusively left to either the compiler or the runtime layer
of a higher-level parallelization library, which o [ers a much more straightforward and user-friendly
interface to developers. Usually, such an interface comes in the form of either higher-order functions,
as in Intel TBB, or #pragma directives, as in OpenMP or OpenACC [15]. This kind of approach
minimizes the learning curve for developers with little or no parallel programming experience,

while still allowing more expert users to fine-tune their applications by specifying many optional
parameters. Therefore, these techniques have been preferred to lower-level alternatives over time,
as explicitly parallel approaches provide more scalability at the cost of a less intuitive interface [18].

The massive amount of sequential codebases pushed the parallel computing community to find
suitable techniques to provide fully automatic parallelization of serial codes [24426]. The need to
ensure correctness in all cases significantly limits the practical e [edtiveness of automatic approaches.
Indeed, some dependencies that can be easily removed through a code review process could prevent
exploiting the parallelism in full degree. As a result, the performance improvement over the baseline
is often modest. Unfortunately, even approaches based on compiler-level code inspection, such as
OpenMP, can often perform much below the expectations for similar reasons. Conversely, a minor
and straightforward code reorganization can significantly improve overall performance.

Typically, a significant gap exists between the toy examples provided in OpenMP tutorials and
real scientific applications with multi-level nested loops. This work precisely aims at filling this gap,
providing a practical but generic enough methodology for loop parallelization of typical scientific
code. Even though some examples of the application of OpenMP to serial scientific codes can be
found in literature [27!/28], the discussion is usually focused on the analyzed case, making it di [Ccult
for researchers without parallel programming experience to generalize concepts and apply them to
a similar but di [erent problem.

Other tools are trying to go beyond the state of the art, looking for several dilerent parallel
patterns in the code, rather than merely loops [10]. Tools such as Parallel Pattern Analyzer Tool [29]
aim to identify some patterns, including the map pattern (i.e., loop-independent loop), but also the
pipeline and farm patterns, which are typical of event processing (streaming).

OpenMP, OpenACC, and MPI are programming standards for parallel computing. OpenMP
originally targeted only shared memory multi-core platforms and it evolved over time to support
o [oadling loops onto GPUs and other accelerators [14], which is also the main target of Ope-
nACC [15]. MPI is the reference programming interface for message passing distributed memory
systems [30]. All these standards are presented in the parallel computing course at the University
of Torino as a fundamental part of any parallel programmer’s toolbox. They are so well-known that
they do not need an extensive description. Comparing their pragmatics helps in learning to evaluate
which one fits a specific application. In the domain of distributed shared memory systems, several
less mainstream languages and frameworks have been proposed that also support loop parallelism,
such as Chapel [31] and X10 [32].

2.1. Can we just bind OpenMP to multi-cores and OpenACC to GPUs?

OpenMP started with multithreading in the (cache-coherent) shared memory model. Although
it eventually provided support for other programming paradigms (e.g., parallel regions and tasks),
OpenMP s still prominently used with loops [14]. OpenACC (for open accelerators) started with
loop parallelization for heterogeneous systems but did not yet reach OpenMP’s maturity for mul-
tithreading [15]. For many years (and very practically), OpenMP was associated with multi-core
targets and OpenACC with GPUs. In both frameworks, the programmer can annotate C, C++,
and Fortran source code to identify the areas that should be accelerated using compiler directives
and additional functions.

More recently, the scenario has become more blurred. OpenACC 2.6, targeting both multi-cores
and GPUs, is fully supported by a mainstream compiler such as gccl0. OpenMP 4.5 provides a
substantial improvement in its support for programming accelerators and GPU devices. The target

platform is no longer crucial to choose between the two. Nevertheless, dilerknces exist, although
they are more subtle.

OpenACC uses directives to tell the compiler where and how to parallelize loops and to man-
age data between potentially separated host and accelerator memories. The OpenMP approach
is a more prescriptive, general-purpose parallel programming model where programmers explicitly
spread the execution of loops across a team of threads executing on one or more underlying types
of parallel computing hardware. The OpenMP directives instruct the compiler to generate parallel
code in a specific way, leaving little to the compiler’s discretion and optimizer. The compiler must
do as instructed. For instance, an OpenMP parallel do or parallel for directive does not guaran-
tee that a loop is loop-independent. Instead, it instructs the compiler to schedule the iterations
of that loop across the available OpenMP threads according to either a default or user-specified
scheduling policy. The programmer shares the responsibility with the compiler about correctness
of the generated code, possibly dealing with data races through OpenMP-supplied synchronization
constructs. The programmer also retains responsibility over execution aspects such as paralleliza-
tion and scheduling. By contrast, an OpenACC parallel loop directive is a higher-level construct,
by which the programmer simply mark a code section as loop and relies on the compiler for its
realization.

2.2. The durable Message Passing Interface (MPI)

Despite several research attempts [33], a similar mainstream directive-based loop parallelization
framework has not yet emerged in the distributed memory model, where the durable Message Pass-
ing Interface (MPI) standard [30], with send/receive, broadcast, reduction operators, and global
synchronizations (barriers), is still the paradigm of choice to construct parallel applications com-
posed of tens to hundreds of thousands of communicating processes. At the low-level tier of the
API, each MPI application is conceived as a single program designed on developer-based precise
knowledge of the whole code, partitioning of data, and communication overheads. Notwithstanding,
platforms have evolved substantially over the last twenty years. Accordingly, the way of exploit-
ing MPI has also evolved, including more collective operations such as the recently introduced
MPI 3.0 neighborhood collectives intended to provide support for sparse collective communica-
tions both for general communication graphs (no structural restrictions) and for highly structured
graphs like stencils over a cartesian topology where processes are organized into d-dimensional tori
or meshes [34] [35]. On the same line as neighborhood collectives, other higher-level constructs have
been included in MPI, aiming at supporting broad ranges of applications, from scientific cases to
deep neural networks.

2.3. Performance metrics

The performance metrics of strong and weak scalability are used to predict and test a parallel
code’s performance.

Strong scaling represents the ability of a software to solve a problem of fixed size faster with
a larger amount of computing resources, and it is strictly related to the notion of Speedup of
a program. The speedup of a parallel algorithm is defined as S(N) = ts/t,(N), i.e., the ratio
between the time ts taken by the best sequential algorithm and the time t,(N) taken by the parallel
algorithm against the number of processing elements N. The ideal speedup is linear. Nevertheless,
in a real scenario, it is limited by those portions of the code that cannot be parallelized. More
precisely, as Amdahl stated in 1967 [36], there exists an upper bound for a program speedup. Let
p [0, 1] be the fraction of time spent (by a serial processor) in the part of the code that can

benefit from parallelization, and s = 1 — p the fraction of time spent in the serial part of the
code. Assuming an ideal speedup of the parallel part, the execution time on N processors is no
better than t,(N) = s ts + p ts/N. Amdahl’s law says that the maximum speedup is given by
Samdanl(N) = ts/tp(N) = ts/(s ts + (1 —s) ts/N) = N/(1+ (N —1)s), meaning that the maximum
speedup is strongly bound by the sequential fraction of the code s, and Samdani(N) - 1/s, when
N - oo. Therefore, in practice, a code with serial fraction s = 5% is bound to a maximum
speedup of 20. Unfortunately, Amdahl’s law does not consider all the overheads introduced by
a parallel implementation, e.g., communications and synchronizations among di [erent workers or
initialization of processes/threads. Indeed, actual performances of a program are usually worse
than those derived from such law.

Whereas strong scaling is investigated for a problem of fixed size, weak scaling is investigated
for one of variable size, keeping constant the amount of work assigned to each computing resource.
Gustafson’s law, formulated in 1988 [37], proposes to measure the speedup by scaling the problem
size to the number of processors instead of fixing the problem size. Defining p, s, and N as before,
Gustafson’s law does not derive the execution time of the parallel code from the sequential one as
Amdahl’s law does, but it rather considers to keep constant the time tx spent in each processor
by fixing the problem size solved in each processor. As result, the global problem scales while N
increases. The latency of serial execution is Ts(N) = (s +p) N tx, and the parallel execution is
Tp(N) = st +p N tx. The Scaled speedup can be written as Sscaled(N) = (s +p N)/(s+p) =
N + (1 —N)s, which is a linearly decreasing function against the fraction of the serial code s, and a
linearly increasing function against the number of processing elements N. Observe that for a fully
parallelizable code, the time spent by a problem of size O(N) to run on N processors will remain
constant, but also that the scaled speedup does not have an upper limit and it is not bound by s,
which determines the maximum scaled speedup growth rate. Weak scaling is easier to achieve than
strong scaling.

3. A cost-e [edtive methodology to parallelize sequential applications

In this section, we detail a methodology to achieve the first version of a parallel fault-tolerant
code, starting from sequential scientific codes. The methodology pretends neither to be fully auto-
matic, nor to address the parallelization of algorithms exhibiting an inherently sequential behaviour,
which are not so frequent and that are not anyway the right testbed for inexpert parallel program-
mers. The four fundamental points that make this methodology important to transmit to students
are: 1) it provides an e [edtive parallelization of the original application, with a limited re-designing
e [ant; 2) it can be applied with di Cerknt parallelization models; 3) it is systematic, i.e., it is always
based on the same four steps that have to be executed in sequence; 4) it provides the programmers
with metrics and knobs to play with performance, helping students to understand that performance
tuning is complex and requires further training. The course would clearly impart a methodology to
parallelize scientific codes that goes beyond the copy-paste from library or language tutorials and
code samples.

The methodology we advocate guides non-expert parallel programmers in the parallelization of
an entire application, rather than automatically solving a single complex loop. The latter problem
is beyond the scope of the present work, and we refer the reader to literature for this aspect (see
Sec.. In reality, most scientific applications do not rely on complex iteration schema, but rather
revolve around several loops, either nested or in sequence. These loops can be distinguished into
for-loops and while-loops, where the former iterate over arrays of data and the latter iterate up

to a given convergence criterion [38]. The loop body might exhibit a network of dependencies,
among both dilerent loops and other iterations of the same loop. Some typical scientific codes
whose control flow statement is made of loops are: 1) Particle simulations, where an internal loop
computes quantities related to each particle, and an external loop advances the simulation time
step; 2) Optimization algorithms, where one or more internal loops iterate over a subset of the
solution space, and an external loop updates the best solution and the heuristic parameters; 3)
Ordinary di Cerkntial equations (ODE) solvers, where internal loops iterate over di [erent functions
or subsystems, and an external loop advances the time step.

The proposed parallelization methodology consists of four steps: 1) Identify all parallelizable
loops in the code, according to a depth-first search strategy; 2) Evaluate the potential perfor-
mance gain obtainable by modifying each parallelizable loop, filtering out those that are not worth
the parallelization e [ant; 3) Make each of the remaining candidate loops self-contained to remove
true data dependencies among di [erknt iterations; 4) Use non-parallelizable loops to implement a
checkpointing logic to support stop-resume behavior.

We will detail these steps in the remaining sections. As we discussed in Sec.[2] practical tools
such as OpenMP and OpenACC make it trivial to parallelize a loop in the shared-address model
(CPU and GPU), requiring programmers to simply add appropriate directives right before the
identified loops. In the distributed memory model, where fully automatic loop parallelization is
not as mature, we advocate (again) a semi-automatic methodology that categorizes the problem
according to the true dependencies patterns. As in Wilkinson & Allen’s textbook [39], we distinguish
problems in order of complexity in 1) embarrassingly parallel, 2) locally synchronous, and 3) globally
synchronous. We will discuss the approach we advocate in Sec.|3.5

3.1. Identify parallelizable loops

We say that A and B are nested loops when the statements of loop B are a proper subset of the
statements of loop A. In the most general case, due to procedure/function calls, the described loop
inclusion relationship generates a (cyclic) graph of loops and is too weak to identify parallelizable
loops. For this, given a code containing multi-level nested loops, it is useful to induce a partial
order relation in the inclusion graph using some other relations to turn the graph into a tree. A
good example is the domination relationship [40], which induces the loop-nest tree. Each node of
this tree refers to a distinct loop, and a node B is a child of a node A if they are nested and no
other loop appears between them. To put all loops in the same tree, we can consider the entire
program body as a pseudo-loop with only one iteration, and we can use it as the root of the tree.

A generic and formal treatment of this concept requires some technicalities from graph theory.
However, in many common cases it is quite simple to construct such a tree just by carefully analyzing
the code. Such representation of multi-level nested loops suggests a depth-first search approach to
parallelization, considering one loop at a time starting from the most external level. In this setting,
we consider the single iteration of the loop as an atomic work unit, and a synchronization barrier is
(implicitly or explicitly) placed at the end of each loop to preserve potential inter-loop dependencies.

Bernstein’s seminal paper [41] clearly states that the problem of determining if two arbitrary
program sections are parallelizable is undecidable in the general case. Then, it olers su [cieht
conditions to assert that two sections can be executed in parallel by way of three kinds of data
dependencies: true dependencies, anti dependencies, and output dependencies. They lead to cate-
gorizing loops as loop-independent, when iteration i does not depend on any iteration j < i for each
i <N, and loop-carried, when [Ml= 1 s.t. iteration i depends on iteration i —n.

Loops with independent iterations can be trivially parallelized, whereas things get more involved
in the presence of loop-carried dependencies. Unfortunately, loops that are not written with a par-
allel mindset can sometimes contain unnecessary dependencies. These dependencies are generally
due to certain sequential coding habits, such as “reusing” variable names for other purposes (in-
ducing anti and output dependencies). They can be automatically removed using techniques such
as variable privatization, i.e., using multiple copies of the same variable. Loop induction variables
are a typical example of variables that can be privatized. True dependencies are much harder to
address and have been the object of intense research [21]/42]. Loop-carried dependencies can often
be addressed by transforming the loop into some new form, in which dependencies are either re-
moved or arranged to occur at a su [cieht distance to avoid conflicts among concurrent iterations.
A paradigmatic example is the substitution of an accumulator variable with a reduce (higher-order)
function (over an array of privatized variables). However, not all true dependencies can be elimi-
nated via a reduce function. A typical case is when the accumulation operation is not associative,
as it happens when building a sequence of pseudo-random numbers from a stateful function, whose
state summarizes the history of generated numbers and cannot easily be parallelized.

A practical way to parallelize a program is to descend the loop hierarchy until a parallelizable
loop is found. Unfortunately, following the control can be di [cult in the presence of conditional
branches, which can make the parallelizability of a loop depending from input data and therefore
not statically decidable. In this case, it is useful to reduce complexity by identifying the most com-
putationally demanding paths in the control flow graph and enclosing them in dedicated procedure
calls. Another potential source of complication arises in those cases when a function containing a
loop in its body is called multiple times in the code. In such a scenario, the same loop can appear
multiple times in di [erent positions of the hierarchy, with di [erknt parallelizability properties each
time. In this case, a good strategy would be to maintain a serial version of the function for the
non-parallelizable cases, together with one or more parallel versions for the others.

3.2. Evaluate potential performance gain

Every time the previously described depth-first search encounters a parallelizable loop, it is
necessary to evaluate the potential benefit introduced by a parallel implementation. Indeed, par-
allelizing always comes with a certain amount of overhead, introduced by load imbalance and syn-
chronizations among di[erent workers. When the actual computation time of a work unit (called
grain) becomes too small, parallelization can result in even worse performances than the original
serial version. On a modern multi-core platform, the mainstream frameworks such as OpenMP or
Intel TBB exhibit a lower limit for the grain on the order of tens of thousands of clock cycles [16].
Finer grains can be addressed only with lock-free programming frameworks, such as Fastflow, that
can support grains down to hundreds of clock cycles [6]. On the other extreme, multicomputers
and clusters are naturally subject to network latency (no less than 1ps) and throughput (in turn
inducing additional memory copies). Given that, they need to operate with grains in the range of
milliseconds to seconds to gain decent scalability.

Both the number of iterations in a loop, which aledts the maximum obtainable degree of par-
allelism, and the total time spent by the program inside the loop, which determines the maximum
achievable speedup, should be taken into account when planning a loop parallelization. When
these estimations are complicated, due to the presence of a high number of branching constructs or
external procedure calls, a call-graph tool like Callgrind [43] can be helpful.

In general, it would be better to parallelize an outer loop instead of one of its nested coun-
terparts. Indeed, this strategy minimizes the introduced overheads, e.g., for thread creation and

synchronization, even if we cannot define a better strategy. Nevertheless, if a loop has very few iter-
ations, the parallelization of one or more of its inner loops can lead to better results. Furthermore,
if the code runs on many processors, the parallelization of both inner and outer loops can be even
more convenient [44]. An e[edtive greedy technique would be to start parallelizing the outermost
suitable loop, where suitable means both feasible and convenient. Then, the loop hierarchy can
be further explored, parallelizing suitable nested loops until either performance requirements are
met or no noticeable speedup is brought by further optimizations. Once all candidates for paral-
lelization have been identified, it is worth evaluating the maximum expected performance gain by
investigating the potential strong and weak scalability of the parallel code.

3.3. Make loops self-contained

Once we have identified a loop that is worth parallelizing, it is necessary to transform the
iterative construct into a self-contained procedure call. If the code targets a many-core accelerator
with a local address space, all the externally declared variables referenced inside the loop body must
be passed by value to the newly created procedure. Otherwise, only the set of variables accessed
by write operations should be passed by value. Some modern programming models for hardware
accelerators, such as latest versions of CUDA, provide a unified address space abstraction between
host and device memory, managing data transfers under the hood and considerably reducing the
programming e [ant.

Frequently, a loop is used to iterate over an array of inputs to produce an array of outputs.
Still, it is not uncommon that such a loop is immediately followed by another loop that combines
all the produced elements in a single value, utilizing an associative binary operator (e.g., the sum
or the product). When thinking about parallel implementations, this particular pattern can be
transformed into a reduce operation. Given N workers and an input array of k [Nlelements, a
reduce pattern can produce the final output in O(k/N + log, N) time steps.

Both the transformation of iterative constructs into self-contained procedure calls and the im-
plementation of the reduce function can either be performed manually or left to an external library
like OpenMP or OpenACC. It is always recommended to start with the latter approach, since it
is much easier and faster to implement and can guarantee better performance portability among
diCerent hardware architectures. Then, we can resort to a manual implementation when necessary.

Random number generators. A common problem related to making the loops self-contained revolves
around eliminating the interaction via global variables induces by stateful functions, such as system-
level or global Pseudo-Random Number Generator (PRNG). Stochasticity is a critical component of
many diverse scientific applications, ranging from Bayesian predictive models to Monte Carlo-based
simulations of complex systems. In general, all these approaches introduce randomness in their logic
by sampling values from a given probability distribution, which is commonly approximated by a
PRNG.

PRNGs are stateful objects that approximate genuinely random numbers with actually deter-
ministic numbers. These numbers can be reproduced if the state of the PRNG is known. PRNGs
appearing in sequentially executed portions of a program do not need special care, but their ini-
tial state can be captured for checkpointing (see Sec. . On the contrary, their parallelization
requires special care. Firstly, the PRNG implementation should be thread-safe, i.e., referenceable
concurrently from multiple threads without side eledts, and reentrant, i.e., always returning the
same results when called with the same input arguments. Secondly, to enforce reproducibility, the
random sequence generated in each parallel section should be deterministic, thus independent of

10

their relative execution order. This goal is achieved by privatizing the random induction variable.
In object-oriented languages, this can be easily achieved by using an array of PRNG objects, one
for each concurrent work unit. Thirdly, to enforce correctness and reproducibility, the array of
PRNG objects should be initialized with a seed generated with a master PRNG. Moreover, such
PRNG should be implemented using a dilerknt algorithm, as using the same algorithm reduces
the period and induces loss of distribution uniformity in generated numbers. Once the master
PRNG seed is fixed, the sequence of random numbers generated in each parallel section should be
deterministic. Fourthly, programmers should know that parallelizing a section of code with PRNG
breaks sequential equivalence, i.e., the results computed by the sequential and the parallel codes are
dilerent. It is a programmer’s duty to ensure that the sequential and parallel codes compute the
same stochastic process.

3.4. Implement checkpointing logic

Sequential regions of a parallel code do not provide a gain in performance. Still, they can provide
an advantage: since they define a global order in the program’s execution, they can be used as
checkpoints. A checkpoint is a snapshot of the entire state of the process at a given time, containing
all the information needed to restart the process from that point [45]. Usually, checkpoints are
recorded on a stable storage, i.e., a persistent storage with some reliability requirements.

Two essential concepts related to checkpoints are checkpointing overhead, i.e., the increase in the
total execution time caused by the introduction of the checkpointing procedure, and checkpointing
latency, i.e., the time needed to save the checkpoint. An appropriate checkpointing strategy aims to
minimize the first quantity. In order to do that, two di [erent approaches are possible. The first is to
minimize latency, either using more advanced storage and communication technologies or reducing
the amount of data that must be stored. The other is to store checkpointing data asynchronously,
reducing overhead regardless of latency. Often, a combination of the two gives the best results.

For example, a checkpoint can be defined in a random sequence of numbers initialized with a
given seed. If the application fail-stops at a given point in the sequence, it is possible to restart
it from the same point, provided that the state of the random number generator is saved at every
iteration in a persistent storage. We will see in Sec. how this procedure can be particularly
useful in Monte Carlo Markov Chains (MCMCs), which can be quite computationally expensive.

3.5. Parallelization of loops with MPI

Parallelizing loops in the distributed memory model exhibits two additional factors of complex-
ity with respect to the shared memory model discussed so far. The first, quite trivially, is that
the data structures must be distributed (replicated or partitioned) on di[erknt processing nodes.
Therefore, write operations on data replicas generated in dilerknt processing elements should be
explicitly re-conciliated with direct communications (either 1-to-1 or collective). The second factor
revolves around the (relatively) large latency of inter-node communications, requiring to reduce the
frequency of communications by setting up a large-enough grain of concurrent work units. It is
worth noting that this aspect also aledts the reconciliation process, requiring a careful design of
the communication plan.

We advocate the idea of parallelizing loops by mapping them into skeletons [1] 2} |9][10], i.e.,
pre-defined parallelization schemas. To parallelize the loops we consider data dependences. We
distinguish three cases: embarrassingly parallel, globally synchronous, and locally synchronous.

11

In an embarrassingly parallel case, a loop iterates over independent data, which are not parti-
tioned among nodes. These cases are typically approached by transforming the loop into a master-
worker (or farm) skeleton, i.e., a process schema in which one logical entity distributes data to
workers. Each worker then computes a function on its data partition and returns the result to the
master. The master-worker approach, when applicable, is the most popular and e [edtive paralleliza-
tion method [1] 2] [46]. A plethora of master-worker variants have been proposed in the literature,
from the simple centralized master (which is typically the first parallelization exercise in a parallel
computing course) to the replicated master schema, to the work-stealing schema where each process
acts both as master and worker [47]. Interestingly enough, several modern BigData frameworks are
built on top of a master-worker runtime system [13]. The Disk Mass Survey example, described in
Sec.[4.2]as an example for the shared memory model, can be easily re-implemented in a distributed
memory fashion as a master-worker, with the reduction operations performed in the master.

The two other cases, i.e., globally and locally synchronous, are variants of the data-parallel ap-
proach, where data structures are partitioned or replicated across di[erent processes (and possibly
compute nodes). Similarly to what has been theorized by Valiant’s Bulk Synchronous Parallelism
(BSP) [48], the parallel computations often proceed by successive super-steps. Each super-step is
composed by a computation step, in which each process locally computes a function on a data parti-
tion, followed by a communication step, where data partitions are reconciled through inter-process
communications (1-to-1 or collective). This communication step might include a synchronization
barrier (as in BSP) or a global or local data exchange. These two latter cases are globally and
locally synchronous computations, respectively.

In parallel computing, the data decomposition optimization is one of the crucial design steps for
performances. Load balance and communication overhead sensibly depend on data decomposition,
and this aspect can hardly be fully automated. However, as understood during the design of the
High-Performance Fortran compiler [49], the Owner Computes Rule with output data decomposition
works typically well in scientific computing. In this approach, each process retains a partition of the
data to be locally written and a copy of all the input data needed to compute the results (potentially
including replicated data).

Sequential loops whose iterations (or ranges of them) admit a partition of write-accessed data
can be turned into parallel Single Program Multiple Data (SPMD) processes owning these parti-
tions. Then, these processes can exchange data periodically, either locally or globally depending
on data dependency patterns. This approach is quite general but not very scalable. Any com-
putation stencil is admitted, including ones whose extent is potentially all the data (or randomly
selected inputs from the whole data). As an example, in Sec. we present the parallelization
of a Simple Molecular Dynamics application, where several second-level loops are parallelized by
partitioning iteration blocks into MPI processes that globally Allgather (or reduce) all the data
produced in the previous super-step. According to the proposed methodology, these loops are the
outermost parallelizable loops. Several recent applications of parallel computing, including the Dis-
tributed Stochastic Gradient Descent algorithm used to train Deep Neural Networks, are globally
synchronous [50].

In the case where a loop describes a stencil computation, where each data element depends of
its neighbors, the locally synchronous paradigm applies. A practical method to turn a loop (or loop
nest) into a locally synchronous computation is to transform the algorithm into a block algorithm,
where the data to be locally written are partitioned in tiles and traversed in order. Outer d loops
traverse tiles (in d dimensions), inner loops move inside each tile (in d dimensions). This tiled
sequential algorithm can be transformed into a parallel code by assigning each tile to a process

12

in a d-dimensional cartesian topology. Neighbor processes must then exchange tiles borders at
each super-step (halo-swap). This technique fits many scientific computations (e.g., simulations
and PDE solvers) and, thanks to the constant degree of communications per process per step, it is
typically very scalable. For this approach, the MPI standard (from version 3.0) directly supports
neighbor communications over cartesian topologies as a first-class concept. In Sec. |4.5] a Laplace
2D solver is presented as an example, the code itself being a mock-up of the PLUTO code [51].

4. Experimental validation

In this section, we present how we applied the methodology to four applications using di [erknt
technologies; for each application we show the performance we achieved (strong and weak scaling).
The parallelization of DiskMass Survey and Spray Web applications, for dilerknt reasons, clearly
exceed the e[ant a single exam should require. The DiskMass Survey is a novel scientific code and
the development of the sequential version has been a non trivial e [ant (happened before the course).
The Spray Web code is very long Fortran code with several numerical stability problems emerged
during the testing of the parallel version (solved after the exam). Both applications have been
proposed by two students because they was directly interested to the parallelization of these codes.
The other two kernels (simpleMD code and the 2D Laplace solver) better represent the expected
complexity of the code to parallelize for the exam.

4.1. Execution environments
In this subsection, we present the technical specification of the systems used for our experiments.

OCCAM@UNITO is a modular cluster consisting of FAT nodes (4 Xeon-E7@2.1GHz-12cores
768GB RAM), LIGHT nodes (2 Xeon-E5@2.5GHz-12cores 128GB RAM) and GPU nodes
(Xeon-E5@2.5GHz-12cores 128GB RAM 2 NVIDIA-K40).

MareNostrum4@BSC with 3456 nodes, each node consists of 2 Xeon-Platinum8160@2.1GHz-
24cores 96GB RAM and Intel Omni-Path (100 Gb/s) interconnection.

CRESCO6@ENEA has 434 nodes, each consisting of 2 Xeon-Platinum8160@2.1GHz-24cores
192GB RAM and Intel Omni-Path (100 Gb/s) interconnection.

4.2. DiskMass Survey with OpenMP

The DiskMass Survey code models the rotation curves and the vertical velocity dispersions
from the mass distributions of 30 disk galaxies belonging to the DiskMass Survey [52], exploring
the agreement between the models and the measured data with a Bayesian approach. The physics
of the problem and the related C++ implementation are discussed in detail in other works [19}[53].
In a nutshell, the code (Algorithm [1)) implements a MCMC method with a Metropolis-Hastings
acceptance criterion, obtaining the value of the random variate Xt step t+ 1 from its value at the
previous step t.

After a first preparatory phase that imports some data from external files and initializes the
MCMC (lines [L}2), we define two PRNGs with the same seed (line[3) in order to sample: a real
uniform distribution, U(0,1), for the Metropolis-Hastings criterion (line , and a multi-variate
Gaussian distribution, N (0, 1), used to generate the free parameters (line . After that, the
main loop (Iines computes T MCMC steps, iterating on the number of galaxies with two
distinct inner loops. They (Iines rely on a solver of the Poisson equation (C2q@l= 4nGp) to

13

approximate the gravitational potential for each galaxy, which is needed to derive the corresponding
x2. These x? values are then summed to obtain the global likelihood. At this point, a second
combination of free parameters is randomly generated from the previous one (line and the
second inner loop (lines[22}{25) repeats the X2 computations on these new values. Finally, the new
combination of free parameters is accepted or rejected according to a Metropolis-Hastings criterion
(line . In the Poisson equation, @ is the galaxy gravitational potential, p is the galaxy density,
the source of the potential, and G is the universal gravitational constant.

Because it involves many galaxies, whose quantities are discretized on grids of 100-150K points
each, the sequential version of this code can result in quite demanding computations when T is
large, especially because the Poisson solver must run twice per galaxy during each MCMC step.
Because of this, we decided to apply the proposed semi-automatic methodology to parallelize its
execution using OpenMP.

4.2.1. Semi-automatic parallelization of DiskMass Survey

Firstly, we identify the code regions with true data dependencies. The main MCMC loop is
a sequential process by definition, as the new combination of free parameters is drawn from the
previous one at every step. It cannot be parallelized, but it is a good site for the checkpointing
logic. The two innermost loops, which independently compute the x2 of every galaxy from its
gravitational potential, are good candidates for parallelization, but they are both loop-carried
because of two accumulator operators (Iinesand respectively). Nevertheless, since the sum
is an associative binary operation, they can be both turned into a parallelizable loop-independent
with a parallel reduction, as described in Sec. [3.1} Therefore, we were able to parallelize these
regions of the code with the OpenMP library by using a #pragma omp parallel for shared(x?)
reduction(+ : x2.,) directive before each loop (Iinesand .

Eventually, we implemented the checkpointing logic. Every 1000 iterations, the program saves
to disk both the values of the random generators PRNG; and PRNG, (Iines and the parameters
chains (Iines. If, for any reason, the execution is interrupted between the n < 1000 and the
(n+1) <1000 MCMC iterations, before restarting the main loop, we can just import from disk the
chains made of the first n < 1000 parameters and the two generators saved at step n < 1000, and
resume the MCMC loop from iteration n x 1000, instead of restarting it from scratch.

4.2.2. Performance evaluation of DiskMass Survey

Having parallelized only the inner for loops, which iterate on galaxies, the maximum ideal
speedup that we can achieve is equal to the number of galaxies in the DiskMass Survey (30 in our
experiment). We ran the scalability test on a FAT node of the OCCAM cluster (4 < 12 cores)
on T =5 MCMC steps to operate in reasonable timescales. Furthermore, we analyzed how the
distribution of threads onto the 4 sockets a[edts performances. On Linux systems, a process can be
launched using numa control—with the numactl command—to spread the computation on di [erknt
sockets and control how data are stored in dilerent cache levels. In particular, the interleave all
policy keeps all the cores available in all the sockets, whatever the number of threads, allocating
memory on all sockets using a round-robin strategy. Conversely, the block policy uses one socket at
a time until the number of threads saturates its cores. For comparison, we also ran the experiments
on a light OCCAM node (2 % 12 cores), this time without using numa control.

Strong scaling. For the strong scaling experiments, we considered the entire sample of 30 galaxies
and measured the CPU time of each MCMC iteration using the gettimeofday (us) function,
explicitly increasing the number of threads from 1 to 48 at every run (lines and [19120).

14

Algorithm 1: Parallel DiskMass Survey with OpenMP

1 data_import(density, kinematic data, grid features)
2 X inittMCMC()

3 PRNG; (seed), PRNG2(seed)

4 U < U(QO1

5 N — N(0,1)

e fort - 1to T do

7
8

9
10
11
12

13
14

15
16

17

18
19
20

21

22
23

24
25
26

27
28

if t mod 1000 == 0 then
| save(PRNGi, PRNG2)
Xeot () 0
omp_set_dynamic(0)
omp_set_num_threads(Nthreads)
#pragma omp parallel for shared(xf(@) reduction(+: xfot(m)

for j « 0 to Ngay — 1 do
potentials[j] — compute_potential (X¢)

X?[i]~ compute_chi2(potentials[j])
Xeor (k&) += X2[i]
Y 4 Xel+ jump x G(PRNG3)
Xeor (1 0
omp_set_dynamic(0)
omp_set_num_threads(Nthreads)
#pragma omp parallel for shared(x (¥)) reduction(+: Xz, (¥))
for j — 0to Nga —1do
potentials[j] — compute_potential (Y
X?[i]— compute_chi2(potentials[j])
Xeor 0 H= X[i]
Xel— MH_acceptance_criterion(Xao (X2, X0t (L1 U(PRNG1))
if t mod 1000 == 0 then
| save(Xe)

// checkpoint

// reduce

// reduce

// checkpoint

15

The left panel of Fig. shows the speedup (averaged over the 5 MCMC steps) obtained using
the numa control with block and interleave all policies and with the default policy of the machine
on the 48-cores node, where ts and t, are the execution times for the sequential and the parallel
code, respectively. It is worth noting that the ideal linear law holds more or less from 1 to 4
threads, but there is still quite a good linear trend until 9-10 threads. All measures converge to an
asymptotic value around 12, but the convergence speed depends on the scheduling policy. Indeed,
when applying the block policy, the asymptotic limit is reached more slowly, and the execution is
less performant between 10 and 34 t