

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/1795631 since 2021-08-02T11:38:20Z Published version: DOI:10.1182/BLOOD.2020006028 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use

(Article begins on next page)

of all other works requires consent of the right holder (author or publisher) if not exempted from copyright

protection by the applicable law.

ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

Joachim Yahalom, Bouthaina Shbib Dabaja, [...], and , on behalf of the International Lymphoma Radiation Oncology Group (ILROG)

Abstract

The International Lymphoma Radiation Oncology Group (ILROG) guidelines for using radiation therapy (RT) in hematological malignancies are widely used in many countries. The emergency situation created by the COVID-19 pandemic may result in limitations of treatment resources. Furthermore, in recognition of the need to also reduce the exposure of patients and staff to potential infection with COVID-19, the ILROG task force has made recommendations for alternative radiation treatment schemes. The emphasis is on maintaining clinical efficacy and safety by increasing the dose per fraction while reducing the number of daily treatments. The guidance is informed by adhering to acceptable radiobiological parameters and clinical tolerability. The options for delaying or omitting RT in some hematological categories are also discussed.

Background

The COVID-19 pandemic has created an unprecedented challenge for health care systems worldwide.1, 2 Radiation therapy (RT) is regarded as essential in many clinical circumstances and must be provided even during these difficult times. Yet, limitations in resources, including space, equipment, and staff, may result in reduction of treatment capacity. Furthermore, exposure of high-risk patients should be minimized by limiting the number of visits for RT.

General guidelines on RT under these conditions have been issued by several organizations. However, special considerations are pertinent for RT of hematological malignancies. The International Lymphoma Radiation Oncology Group (ILROG) is a well-recognized worldwide organization of radiation oncologists with a record of producing guidelines for modern RT of these diseases that have become standard.3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 With the present guidelines, ILROG aims to help radiation oncologists treating hematological malignancies make rational choices regarding possible changes to reduce the pressure on RT institutions in the current emergency situation. With regard to treatment techniques, keeping those with which the staff is familiar is recommended. Simpler techniques are encouraged when resources are limited.

Strategies

There are 3 potential strategies to reduce the demand for RT during the pandemic: omitting, delaying, and shortening the RT course. There are also clinical situations in which RT can be used as a bridging measure, resulting in rapid and effective tumor control, delaying the need to initiate systemic therapy. To decide on the most appropriate action in patients with hematologic malignancies, clinicians need to carefully assess disease factors (indication for radiotherapy, expected benefit, and natural history of disease) and patients' individual risk in case of COVID-19 infection (age, comorbidities, and expected case-fatality rate).

Omitting RT

When the risk of severe outcomes from COVID-19 infection (for those aged ≥ 60 years and/or with serious underlying health conditions) outweighs the benefit of RT, omitting RT is to be considered in the following situations 14, 15:

- in a palliative setting, where alternatives can be offered (eg, optimizing pain control);
- for localized low-grade lymphomas if completely excised (eg, follicular lymphoma, marginal zone lymphoma, cutaneous B-cell lymphoma)13;
- for localized nodular lymphocyte-predominant Hodgkin lymphoma if completely excised16; and
- in consolidation RT for diffuse large B-cell lymphoma/aggressive non-Hodgkin lymphoma (NHL) in patients who have completed a full chemotherapy course and achieved a complete remission.

However, if more chemotherapy needs to be given in order to omit RT, this may induce prolonged immunosuppression, which may, in many clinical situations, not be the best decision during a pandemic. Multidisciplinary discussion of each individual case is important.

Delaying RT

When there is no or little expected adverse effect on outcome from the delay, delaying RT is to be considered in the following situations:

- · for asymptomatic localized low-grade lymphomas;
- for localized nodular lymphocyte-predominant Hodgkin lymphoma;
- in a palliative setting for low-grade lymphomas in stable patients; and
- for patients who develop COVID-19 infection prior to commencing RT, until the infection is clear, provided the malignancy is not progressing.

12/04/22, 16:59

ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

Shortening RT course

Using alternative hypofractionation RT regimens when RT cannot be omitted or delayed is to be considered with the aim of maintaining high cure/palliation rates without undue toxicity. Hypofractionation will always influence the effective dose for late effects, so risks need to be carefully weighed. Radiobiological considerations and clinical experiences were used by the ILROG task force to generate the suggested altered dose and fractionation schedules described in Table 1 :

- The fractionation sensitivity of hematologic malignancies is underreported in clinical series. However, laboratory data suggest little to no shoulder on the linear-quadratic model of cell survival, leading to a large value of α/β .17 We therefore expect the biological effect of radiation on lymphoma cells, measured as equivalent dose in 2-Gy fractions (EQD2)18 to lie between EQD2 using $\alpha/\beta = 10$ Gy and EQD2 = total dose.
- The suggested hypofractionated schemes have little reduction of the total dose aiming to maintain the same level of tumor control. The risks of acute and late toxicity to normal tissues associated with large dose per faction and higher EQD2 for $\alpha/\beta = 3$ Gy are currently mitigated by the use of modern conformal RT techniques. Modern technology offers steep dose gradients around the target tumor with most of the surrounding normal tissues in the low-dose volume. Hence, if possible, using technology that provides optimal conformality is even more important here, including good quality control and daily image guidance. The risks are also mitigated by the low RT doses used in hematological malignancies, particularly the indolent types.
- The accuracy of the prediction of the α/β model may be less for the larger fraction sizes. Therefore, to mitigate clinical risk, we have used doseper-fractionation regimens that many in the clinical community are already familiar with and know are well tolerated.
- Hypofractionation has, however, not been rigorously tested in prospective randomized trials in the curative treatment of hematologic malignancies, and, therefore, the treatment schedules proposed are recommended to apply only to the emergency situation of the COVID-19 pandemic. For patients with substantial cardiac or lung exposure, standard (2-Gy) fractionation should be used if at all possible.

In Table 1, we present guidelines for possible abbreviated fractionation schemes for different clinical presentations that could be used in an emergency like the present COVID-19 pandemic. Other fractionation schemes could also be appropriate, depending on clinical circumstances, if the EQD2 is equivalent to curative standard treatment regimens. We have included guidance for constraints for doses to normal tissues, but it is important to note that the proposed abbreviated treatments should always be used with due consideration and clinical judgement in individual cases.

Table 1				
Standard and propo	od emergene	y fraction	ution scher	es for curative
	Standard		Emergency COVID-19 o	
	Total	No. of	c	owneeds
		fractions		
	Gy			
Curative				
HI, favorable,	20	10	Consider to	po-fractionation

Table 1

Standard and proposed emergency fractionation schemes for curative and palliative RT for hematologic malignancies

Acknowledgments

The authors acknowledge the continuous support of the International Lymphoma Radiation Oncology Group (ILROG) by The Connecticut Cancer Foundation.

Footnotes

The online version of this article contains a data supplement.

Prepublished online as Blood First Edition paper, April 10, 2020

The International Lymphoma Radiation Oncology Group provides evidence-supported options for adjusting radiation therapy timing and delivery for patients with selected hematological malignancies in the COVID-19 pandemic, while maintaining efficacy and safety.

Authorship

Contribution: All authors contributed equally, forming a task force that met daily through WebEx, dividing the work to all authors, and, over 6 days, coming to an agreement on the document.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

A list of members of the International Lymphoma Radiation Oncology Group (ILROG) steering committee appears in the supplemental appendix.

Supplementary Material

Supplemental File 1

Click here to view.(18K, xlsx)

Article information

Blood. 2020 May 21; 135(21): 1829–1832. Published online 2020 Dec 14. doi: 10.1182/blood.2020006028

PMCID: PMC7243146 PMID: 32275740

Joachim Yahalom,^{1,1} Bouthaina Shbib Dabaja,² Umberto Ricardi,³ Andrea Ng,⁴ N. George Mikhaeel,⁵ Ivan R. Vogelius,⁶ Tim Illidge,⁷ Shunan Qi,⁸ Andrew Wirth,⁹ and

Lena Specht⁶

¹Memorial Sloan Kettering Cancer Center, New York, NY
 ²MD Anderson Cancer Center, Houston, TX
 ³Department of Oncology, University of Turin, Turin, Italy
 ⁴Dana-Farber Cancer Institute, Boston, MA
 ⁵Guy's & St Thomas' Hospital, London, United Kingdom
 ⁶Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
 ⁷National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, The University of Manchester, Christie National Health Service (NHS)
 Foundation Trust, Manchester, United Kingdom
 ⁸National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
 ⁹Peter MacCallum Cancer Institute, Melbourne, VIC, Australia

, on behalf of the International Lymphoma Radiation Oncology Group (ILROG)

¹Correspondence: Joachim Yahalom, C/O Beatrice Fregonese, ILROG Central Office, Memorial Sloan Kettering Cancer Center, Koch Building, Room 20-193D, 530 East 74th St, New York, NY, 10021.

Received 2020 Mar 27; Accepted 2020 Apr 3.

Copyright © 2020 American Society of Hematology.

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. See editorial "Balancing risk and benefit during coronavirus" in *Blood*, volume 135 on page 1817.

This article has been cited by other articles in PMC.

REFERENCES

1. Wu Z, McGoogan JM,. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention [published online ahead of print 24 February 2020]. JAMA. doi:10.1001/jama.2020.2648. [PubMed]

2. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–337. [PMC free article] [PubMed] [Google Scholar]

3. Constine LS, Yahalom J, Ng AK, et al. The role of radiation therapy in patients with relapsed or refractory Hodgkin lymphoma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;100(5):1100–1118. [PubMed] [Google Scholar]

4. Dabaja BS, Hoppe BS, Plastaras JP, et al. Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood. 2018;132(16):1635–1646. [published correction appears in *Blood*. 2019;133(12):1384-1385] [PMC free article] [PubMed] [Google Scholar]

5. Dabaja BS, Specht L, Yahalom J. Lymphoblastic lymphoma: guidelines from the International Lymphoma Radiation Oncology Group (ILROG) Int J Radiat Oncol Biol Phys. 2018;102(3):508–514. [PubMed] [Google Scholar]

12/04/22, 16:59

ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

6. Illidge T, Specht L, Yahalom J, et al. International Lymphoma Radiation Oncology Group Modern radiation therapy for nodal non-Hodgkin lymphomatarget definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49–58. [PubMed] [Google Scholar]

7. Ng AK, Yahalom J, Goda JS, et al. Role of radiation therapy in patients with relapsed/refractory diffuse large B-cell lymphoma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;100(3):652–669. [PubMed] [Google Scholar]

8. Specht L, Yahalom J, Illidge T, et al. ILROG Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG) Int J Radiat Oncol Biol Phys. 2014;89(4):854–862. [PubMed] [Google Scholar]

9. Tsang RW, Campbell BA, Goda JS, et al. Radiation therapy for solitary plasmacytoma and multiple myeloma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;101(4):794–808. [published correction appears in *Int J Radiat Oncol Biol Phys.* 2018;102(5):1602] [PubMed] [Google Scholar]

10. Yahalom J, Illidge T, Specht L, et al. International Lymphoma Radiation Oncology Group Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):11–31. [PubMed] [Google Scholar]

11. Bakst RL, Dabaja BS, Specht LK, Yahalom J. Use of radiation in extramedullary leukemia/chloroma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;102(2):314–319. [PubMed] [Google Scholar]

12. Pinnix CC, Yahalom J, Specht L, Dabaja BS. Radiation in central nervous system leukemia: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2018;102(1):53–58. [PubMed] [Google Scholar]

 Specht L, Dabaja B, Illidge T, Wilson LD, Hoppe RT, International Lymphoma Radiation Oncology Group Modern radiation therapy for primary cutaneous lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):32–39. [PubMed] [Google Scholar]

14. National Comprehensive Cancer Network (NCCN), B-cell lymphomas., 2020. https://www.nccn.org/professionals/physician_gls/default.aspx. Accessed 2 January 2020.

15. National Comprehensive Cancer Network (NCCN), Primary cutaneous lymphoma., 2020. https://www.nccn.org/professionals/physician_gls/default.aspx. Accessed 2 January 2020. [PubMed]

16. Appel BE, Chen L, Buxton AB, et al. Minimal treatment of low-risk, pediatric lymphocyte-predominant Hodgkin lymphoma: a report from the Children's Oncology Group. J Clin Oncol. 2016;34(20):2372–2379. [PMC free article] [PubMed] [Google Scholar]

17. Aldridge DR, Radford IR. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res. 1998;58(13):2817–2824. [PubMed] [Google Scholar]

18. Bentzen SM, Dörr W, Gahbauer R, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology-terminology, quantities and units. Radiother Oncol. 2012;105(2):266–268. [PubMed] [Google Scholar]