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Identifying the signature 
of prospective motor control 
in children with autism
Andrea Cavallo1,2, Luca Romeo3,4, Caterina Ansuini1, Francesca Battaglia1,5, Lino Nobili5,6, 
Massimiliano Pontil4, Stefano Panzeri7 & Cristina Becchio1*

Failure to develop prospective motor control has been proposed to be a core phenotypic marker of 
autism spectrum disorders (ASD). However, whether genuine differences in prospective motor control 
permit discriminating between ASD and non-ASD profiles over and above individual differences 
in motor output remains unclear. Here, we combined high precision measures of hand movement 
kinematics and rigorous machine learning analyses to determine the true power of prospective 
movement data to differentiate children with autism and typically developing children. Our results 
show that while movement is unique to each individual, variations in the kinematic patterning of 
sequential grasping movements genuinely differentiate children with autism from typically developing 
children. These findings provide quantitative evidence for a prospective motor control impairment 
in autism and indicate the potential to draw inferences about autism on the basis of movement 
kinematics.

Much autism research has focused on the social, communication and cognitive difficulties associated with the 
condition. However, recent years have seen an increasing interest in the motor side of autism spectrum disor-
ders (ASD)1, with several researchers going as far as proposing that impairments in the prospective control of 
movements2,3 may be predictive of ASD and may even underlie some of the core features of ASD4. Despite this 
enthusiasm, relatively little quantitative information is available about prospective movement alterations in ASD 
and questions remain regarding whether (and to what extent) kinematic patterning permit differentiating ASD 
and non-ASD profiles over and above individual differences in motor output5.

Recently, researchers have started to address these questions by applying machine learning as a tool for mul-
tivariate analysis with the goal of finding inherent patterns in kinematic data. In a typical application, a machine 
learning classifier is trained to distinguish ASD and non-ASD movement patterns on one part of a data set. Then, 
the classifier is tested on the remaining data. This results in a certain fraction of accurate classifications. If the 
classification accuracy lies significantly above the level expected by chance (e.g., 0.50), it can be concluded that 
a difference between classes exists. Studies applying this approach to prospective movement data suggest that 
patterns related to ASD can be classified with near-perfect accuracy6,7. The caveats inherent to applications of 
machine learning methods for identifying group differences in movement data, however, are rarely considered8.

A first caveat relates to confound variables, that is, variables that in the selected sample have an associa-
tion with diagnosis group, but are uninteresting from a clinical perspective9. Consider, for example, movement 
variations related to age. In a sample in which ASD children, say, are younger than typically developing (TD) 
children7, the classifier is not only learning movement features discriminating ASD and TD movement, but also 
age-related features. This can lead to overestimate the information that is computationally available to differenti-
ate ASD and TD movements.

A second caveat relates to individual variations in motor outputs. Individuals show variations in motor outputs 
that are both consistent within a given individual and differ from one individual to another10–13. When repeated 
measures from the same individual are randomly assigned to training and testing as in common machine learning 
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approaches using record-wise cross-validation6, algorithms can learn the association between individuals’ move-
ment signature and their diagnostic label. This can lead to identity-confounded predictions, where the easier 
task of identity classification de facto circumvents and replaces the harder task of diagnostic classification14.

Both these caveats are addressed in the present study. In a sample of cases accurately matched on age, gender, 
full-scale IQ, and stature, we use machine learning methods as a tool to determine the true power of prospec-
tive movement data to differentiate ASD and TD group profiles and predict the group of a previously unseen 
individual. We do so by contrasting record-wise data splits, where repeated measurements of each individual 
are assigned to both the training set and the test set, with subject-wise data splits, where any source of identity 
confound is neutralized by the assignment of all measurements of each subject to either the training set or the test 
set14 (see “Methods” section for details). Our results show that although movement is unique to each individual, 
differences in prospective motor control genuinely differentiate ASD from TD movement data.

Results
Data for this study consisted of 1600 movements recorded from 20 ASD and 20 TD children reaching towards 
and grasping a bottle with one of three prospective intentions: place the bottle into a box (grasp-to-place), pour 
some water (grasp-to-pour) or pass the bottle to another person (grasp-to-pass; see “Methods” section). Visually, 
movement traces showed high variability across individuals (Fig. 1B–F) and trials (Supplementary Fig. S1), with 
variations across individuals greatly exceeding variations between groups (ASD, TD) in all extracted variables.

Intention classification.  To quantify prospective modulation, we first attempted to classify intention, 
operationalized as onward action (place, pour, pass), from reach-to-grasp parameters, separately for TD and 
ASD data. Cross-validation using record-wise splits revealed that, in both groups, kinematics predicted inten-
tion above chance (TD mean ± SEM = 0.64 ± 0.02; p < 0.001, permutation test; ASD mean ± SEM = 0.57 ± 0.02; 
p < 0.001, permutation test). In line with15, prospective modulation was less pronounced in ASD movement 
profiles compared to TD movement profiles as indicated by a lower classification accuracy (p = 0.039, sign test).

Group classification.  After establishing reduced prospective modulation in ASD compared to TD data, 
we next sought to determine the power of prospective movement data to differentiate ASD and TD move-
ment profiles. Analysis of simulated14 and empirical data16 suggest that classifiers trained and evaluated using 
record-wise data splits can pick confounding relationship between identity and group and so produce inflated 
accuracies. To address this concern in our data, we contrasted record-wise data splits, where repeated measure-
ments from the same individual are assigned to both the training set and the test set, with subject-wise data 
splits, where measures of each subject are assigned to either the training set or test set, neutralizing any potential 
identity confounding14. Classifiers trained and evaluated using record-wise splits achieved perfect accuracy in 
discriminating ASD versus TD (accuracy mean ± SEM = 1.00 ± 0.00; sensitivity mean ± SEM = 1.00 ± 0.00; speci-
ficity mean ± SEM = 1.00 ± 0.00). As a control, we repeated record-wise splitting over 40 folds and found again 
that all cases were correctly classified (accuracy mean ± SEM = 1.00 ± 0.00; sensitivity mean ± SEM = 1.00 ± 0.00; 
specificity mean ± SEM = 1.00 ± 0.00). Classification accuracies of classifiers trained with subject-wise data splits 
(accuracy mean ± SEM = 0.75 ± 0.06; sensitivity mean ± SEM = 0.75 ± 0.09; specificity mean ± SEM = 0.75 ± 0.08) 
were significantly lower (p = 0.002, sign test), although still significantly above chance (p = 0.010, permutation 
test) (Fig. 2A). We obtained similar results using SVM-LASSO and RF (Supplementary Fig. S2).

To evaluate the influence of the training set size on classification accuracy, we considered four sets of clas-
sifiers in which the training set was composed of 4, 10, 20 or 39 subjects. The accuracy of classifiers built using 
record-wise splits was already perfect with 4 subjects and remained so through the four sets (Fig. 2D), raising the 
concern that record-wise classifiers fit to the idiosyncratic characteristics of the training sample17,18. In contrast, 
the accuracy of classifiers built using subject-wise data splits was at chance with 4 and 10 subjects, increased to 
0.61 with 20 subjects and continued to increase with 39 subjects, suggesting that subject-wise classifiers learned 
group information from new examples.

Quantification of identity confounding.  The above results are compatible with the notion that identity 
confounding artificially inflates classification accuracies using record-wise data splits. To confirm the presence of 
identity information, as a first step, we tested whether group could be identified based on identity. In this analysis, 
we trained classifiers with record-wise splits to predict the identity of participants rather than the group. Consist-
ent with the possibility that the power of record-wise classifiers is based on identity information, this analysis 
yielded perfect identity classification (accuracy mean ± SEM = 1.00 ± 0.00; sensitivity mean ± SEM = 1.00 ± 0.00; 
specificity mean ± SEM = 1.00 ± 0.00).

To more directly test whether record-wise classifiers learn identity information rather than group informa-
tion, we next randomly permuted the diagnostic labels of each subject as a block, so that all records of a given 
subject were assigned either ASD or TD during the permutation process16,19. The motivation for this relabelling 
scheme is that it preserves the confounding association between group and identity, while breaking the relation-
ship between movement data and group. Because group information is removed, permutation null distributions 
located on average above the 0.5 chance level indicate identity confounding19. Conforming an identity confound-
ing, the null distribution of classification accuracies obtained from record-wise data splits had all data distributed 
above the 0.5 chance level (Fig. 2B). To assess whether classifiers were learning group information in addition 
to identity information, we compared the location of the record-wise classification accuracy computed using 
the original (unpermuted) data relative to the permuted data. Only if classification accuracy computed using 
the original data is higher than that of permuted data, it can be concluded that the classifier is learning group 
information. Record-wise accuracy computed using the original data did not differ from the permutation null 
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distribution (p = 0.170). In contrast to record-wise data splits, the null distribution generated by splitting data in 
a subject-wise fashion was located around 0.5 (Fig. 2C). Also, subject-wise accuracy computed using the original 
data was significantly higher than the adjusted null distribution (p = 0.01, permutation test, Fig. 1D). Overall, 
these results support the conclusion that classifiers trained subject-wise, but not classifiers trained record-wise, 
learned differences between ASD and TD movements.

Generalizability to unseen cases.  If a classifier is learning group information, its predictive power should 
generalize to unseen cases. In contrast, if a classifier is learning identity information, its accuracy should drop on 
unseen cases. Based on these predictions, we compared the ability of classifiers trained record-wise and subject-
wise to predict group for unseen cases. To quantify the ability of classifiers trained record-wise to predict group 
for an unseen individual, we used a hybrid cross-validation procedure20 in which hyper-parameters were tuned 
record-wise in the inner loop (model validation), whilst model performance was recursively tested subject-
wise in the outer loop (model testing) on a new individual. Under this procedure, classifiers tuned record-wise 
(accuracy mean ± SEM = 0.58 ± 0.08; sensitivity mean ± SEM = 0.55 ± 0.12; specificity mean ± SEM = 0.60 ± 0.10) 
performed at chance level (p = 0.110, permutation test), significantly worse than classifiers tuned subject-wise 
at classifying unseen cases (p = 0.023, sign test; see Fig. 2E). Figure 2F,G provide an example of classification of 
the movements of a new, unseen ASD participant using subject-wise (Fig. 2F) and record-wise (Fig. 2G) tun-
ing. Data are visualized in a reduced kinematic space spanning only two kinematic features, velocity at 80% of 
movement duration and grip aperture at 90% of movement duration. Compared to the number of movements 
assigned to the correct group (ASD) using subject-wise data splits (30 out of 40; Fig. 2F), the number of correctly 
classified movements substantially decreases using record-wise data splits (17 out of 40; Fig. 2G). As a result, the 
participant’s group (ASD) is correctly classified using subject-wise tuning, but not record-wise tuning.

Intention‑specific contribution to group classification.  Subject-wise data splits indicate that pro-
spective movement data contain group discriminating information that generalizes to unseen cases. To examine 
how such information is encoded in specific intention profiles, we attempted to predict group separately from 
kinematic parameters of grasp-to-place, grasp-to-pour and grasp-to-pass movements. Supplementary Fig. S3 
visualizes individual movement profiles graphed by intention. Separating intentions revealed that group dif-
ferences were predominantly located in grasp-to-pass and grasp-to-pour movements. Characteristically, ASD 
grasp-to-pass showed later temporal setting of peak wrist velocity, peak wrist acceleration and peak wrist 
deceleration compared to TD grasp-to-pass. ASD grasp-to-pour also showed later peak wrist velocity and 
peak wrist deceleration compared to TD grasp-to-pour. Consistent with the visual impression gained from 
Supplementary Fig.  S3, classification of group was most accurate from grasp-to-pass movements (accuracy 

Figure 1.   (A) Image sequence of a reach-to-grasp movement with hand model overlay. (B–F) Kinematic 
profiles of reach-to-grasp movements performed with three prospective intentions (to place, to pour, to pass). 
Wrist velocity (B), wrist acceleration (C), wrist jerk (D), grip aperture (E) and wrist height (F) were extracted. 
Thick lines represent group average (red = ASD group, green = TD group). Thin lines represent trial-average of 
individual participants.
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mean ± SEM = 0.83 ± 0.05; sensitivity mean ± SEM = 0.80 ± 0.08; specificity mean ± SEM = 0.85 ± 0.08), followed 
by grasp-to-pour movements (accuracy mean ± SEM = 0.68 ± 0.07; sensitivity mean ± SEM = 0.60 ± 0.11; speci-
ficity mean ± SEM = 0.75 ± 0.09) and grasp-to-place movements (accuracy mean ± SEM = 0.60 ± 0.07; sensitivity 
mean ± SEM = 0.65 ± 0.12; specificity = 0.55 ± 0.12). Classification accuracy was above chance for grasp-to-pass 
(p < 0.001) and grasp-to-pour (p = 0.02) movements, but not for grasp-to-place movements (p = 0.380). This indi-
cates that grasp-to-pass and grasp-to-pour movements, but not grasp-to-place movements, individually contrib-
uted group discriminating information.

Discussion
Developments in machine learning and the increasing availability of motion tracking devices have brought move-
ment to the forefront of autism research, diagnosis and treatment4,21–23. However, questions remain regarding 
whether and to what extent kinematic patterning permit differentiating ASD and non-ASD movement profiles5.

Here, we assessed the potential of multivariate prospective motor control data to discriminate movements 
performed by ASD children from TD children in a sample of cases matched on age, gender, full-scale IQ, and 
stature. By comparing record-wise and subject-wise cross-validation approaches in combination with differ-
ent machine learning classifiers, we demonstrate that record-wise data splitting leads to an optimistic bias in 
accuracy. We show that such bias is inadvertently introduced in record-wise computations by individual move-
ment characteristics. Individuals performing prospective grasps exhibit repeatable aspects of their movement 
signature across trials10. When data collected from the same individual are assigned to both the training and the 
test sets (as in record-wise cross-validation), models learn the idiosyncratic movement signature of individual 
participants, rather than the signature that separates ASD and TD movements. The upshot is that the apparent 
perfect classification accuracy achieved by classifiers trained record-wise drops to chance level on unseen cases.

Whit subject-wise cross-validation, the accuracy of prospective movement data in predicting group 
decreases—the best classifier achieving 0.75 classification accuracy—but remains statistically significant. Because 
data from each individual are assigned to either the training or the test set, subject-wise accuracies represent the 
true accuracy of prospective movement data in predicting group.

Figure 2.   (A) Classification accuracy of group (ASD, TD) using subject-wise, record-wise 10 folds cross-
validation and record-wise 40 folds cross-validation. Histograms represent mean ± SEM. (B,C) Permutation 
null distribution generated by splitting data in a record-wise fashion (B) or subject-wise fashion (C). The 
permutation null distribution is represented by the grey histograms. The purple line in (B) represents the 
observed record-wise accuracy. The dark blue line in (C) represents the observed subject-wise accuracy. The 
dashed grey line indicates the 0.5 chance level. (D) Group classification accuracy as a function of sample size 
computed using record-wise and subject-wise cross-validation. (E) Group classification accuracy of unseen 
subjects obtained using subject-wise hyper-parameter tuning and record-wise hyper-parameter tuning. (F,G) 
Movement data colored according to group classification of one exemplar unseen subject with ASD using 
subject-wise hyper-parameter tuning (F) and record-wise hyper-parameter tuning (G). Data are visualized as a 
scatterplot of velocity at 80% of movement duration and grip aperture at 90% of movement durations.
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Separating data into intention-specific profiles revealed that group information is predominantly encoded in 
grasp-to-pass prospective movements. Unlike individual sequential actions such as grasp-to-place, passing an 
object requires the coordination—in space and time—between two partners24–26. One interpretation of this result 
is that ASD atypical grasp-to-pass profiles relate to the social nature of the task. However, another possibility is 
that atypical grasp-to-pass profiles relate to the semi-predictable nature of the passing task27. During passing, 
each partner may have a basic internal model regarding the evolution of the passing movement. However, given 
that control by one partner cannot be fully predicted by the other partner, there will necessarily be unpredictable 
aspects to the task28. We propose that the later temporal setting of key landmarks in ASD grasp-to-pass move-
ments may reflect reduced motor anticipation under conditions of uncertainty. A similar explanation may hold 
for grasp-to-pour movements, which have been shown to involve demanding probabilistic inferences about fluid 
dynamics over short time scales29. This account makes the prediction, testable in future studies, that ASD and 
TD movement profiles become more distinct under conditions of increased volatility30.

In our study, we chose to measure a homogeneous sample, carefully selected based on a specific set of inclusion 
and exclusion criteria to rule out a number of potential confounders. However, models based on homogeneous 
samples are less likely to generalize to real-life clinical settings, where patient groups are highly heterogeneous31. 
To dissect the heterogeneity of ASD, future studies should compare prospective motor control in ASD children 
with and without intellectual disability, and in ASD children classified as having comorbid attention and/or 
motor impairments. Such knowledge could help identifying ASD subtypes most likely to respond to specific 
interventions and developing personalized treatments.

Future research should also evaluate the specificity and sensitivity of ASD movement profiles relative to other 
neurodevelopmental disorders, such as attention deficit hyperactivity disorder and developmental coordina-
tion disorder. Testing specificity over multiple alternatives is important to establish whether prospective motor 
impairments in ASD could represent a putative endophenotype with potential to elucidate pathophysiology of 
ASD and facilitate early diagnosis5.

Finally, it will be important for future studies to assess the potential of prospective data to identify ASD in 
larger samples. In this regard, the steady increase in prediction accuracy observed using subject-wise data splits 
as a function of the size of training set—far from plateauing with 20 subjects per class—shows promise, suggest-
ing that prediction of unseen cases could be improved when training models on larger samples.

Conclusions
The study reports on a promising advance in objectively characterizing movement kinematics in ASD. Our 
approach enabled us to isolate the information that genuinely differentiates ASD and TD movement profiles and 
to quantify the identity confounding inherent to record-wise cross-validation. Combined, our findings invite 
a reassessment of recent conclusions about the diagnostic power of prospective movement data. The finding 
that prospective movement data contain identity information, but also genuine group information highlights 
the utility of machine learning methods as a tool for developing robust single-subject predictor to accurately 
differentiate autism and/or subtypes of autism.

Methods
Participants.  We report results from 20 ASD children (18 males) without accompanying intellec-
tual impairment and 20 typically developing children (16 males). Groups were matched for age (TD 
mean ± SD = 9.5 ± 1.5  years, months; ASD mean ± SD = 9.8 ± 1.5  years, months; t38 =−0.665, p = 0.510), stat-
ure (TD mean ± SD = 140.4 ± 8.1  cm; ASD mean ± SD = 137.7 ± 9.1  cm; t38 = 0.988, p = 0.329) gender, and Full 
Scale IQ as measured by the Wechsler Scale of Intelligence (WISC IV)32 (TD mean ± SD = 102.8 ± 9.4; ASD 
mean ± SD = 98.5 ± 11.1; t38 = 1.325, p = 0.193). Children with ASD were diagnosed according to DSM-5 criteria33. 
The Autism Diagnostic Observation Scale (ADOS-2)34 and Autism Diagnostic Interview-Revised (ADI-R)35 
were administered by two experienced professionals. All children had normal or corrected-to-normal vision 
and were screened for exclusion criteria (pharmacological treatment, epilepsy, and any other neurological and 
psychiatric conditions). Both ASD and TD groups were assessed for executive functions abilities by means of the 
Tower of London (TOL) test36. This test revealed no significant differences between TD and ASD children (TD 
mean ± SD = 29.35 ± 3.54; ASD mean ± SD = 29.35 ± 2.80; t38 = 0, p = 0.999). All but two of the children (one in the 
ASD group and one in the TD group) were right-handed according to the Edinburgh Handedness Inventory37. 
Written informed consent was obtained from the parents of the children prior to participation in the experi-
ment. The research protocol was approved by the local ethics committee (Comitato Etico Regionale Liguria) and 
was in accordance with the principles of the revised Helsinki Declaration (2013)38.

Experimental design.  Children were seated on a height-adjustable chair with their right elbow and wrist 
resting on a table (height = 64 cm; length = 100 cm; width = 60 cm). A plastic bottle filled with water (base diam-
eter = 5 cm; height = 18 cm; weight = 225 g) was positioned on the table at a distance of 44 cm from children’s 
midline. Children were asked to reach for and grasp the bottle to complete three sequential manipulation tasks: 
place the bottle into a box (grasp-to-place), pour some water into a glass (grasp-to-pour), or pass the bottle to a 
co-actor (grasp-to-pass), who would then either place the bottle into the box or pour some water. In each trial, 
children were asked to perform at a natural speed after an auditory tone. Each child completed 4 blocks of 12 tri-
als (1 grasp-to-place block, 1 grasp-to-pour block, and 2 grasp-to-pass blocks). The order of blocks was pseudo-
randomized across participants. The experiment lasted about 30 min, with a 2-min pause at the end of each 
block. Throughout the entire experimental session, the same female experimenter (co-actor) sat at the opposite 
side of the table and interacted with the child.
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Kinematics recording and data processing.  A near-infrared camera motion capture system equipped 
with six cameras (frame rate = 100 Hz; Bonita Vicon Motion Systems Ltd, Oxford, UK) was used to track and 
record the reach-to-grasp kinematics. The child’s right hand was outfitted with 8 retro-reflective hemispheric 
markers (6.5 mm in diameter) placed on the metacarpal joint and the tip of the index and the little finger, the tra-
pezium bone of the thumb, the radial aspect of the wrist and the centre of the hand dorsum (Fig. 1A). After data 
collection, each trial was individually inspected for correct marker identification and then run through a 6 Hz 
low-pass Butterworth filter15. Trials in which the quality of markers reconstruction was poor were discarded 
from the dataset and not considered for further analyses. To equate the total number of trials between blocks 
and participants, the final dataset consisted of 10 trials per block per participant, for a total of 1600 movements. 
A custom software written in Matlab (MathWorks, Natick, MA) was used to compute wrist velocity, wrist accel-
eration, wrist jerk, wrist height, and grip aperture. Each variable was computed at intervals of 10% of movement 
duration, from reach onset to reach offset (see Supplementary Table S1).

Classification analyses.  Intention classification.  We computed classification of onward action (place, 
pour, pass) from reach-to-grasp parameters based on a Support Vector Machine (SVM) model, separately for 
TD and ASD movement data. The SVM used Gaussian kernel (SVM-G) to compute the hyperplane that best 
separated grasp-to-place, grasp-to-pour and grasp-to-pass trials in each diagnosis group. To equate the number 
of trials across action classes, for grasp-to-pass we randomly selected 5 trials per block. For each diagnosis group, 
the dataset thus comprised 600 reach-to-grasp movements (20 participants × 10 trials × 3 actions). Models were 
trained, validated and tested using a record-wise cross-validation data split (with data split into 10 folds, each 
fold containing 1 movement for each intention for each participant). Classification accuracy was computed as 
the fraction of correctly classified trials for each cross-validation iteration.

Group classification.  For this analysis, we used all 1600 reach-to-grasp movements (40 participants × 10 tri-
als × 4 blocks). We computed group (ASD, TD) from reach-to-grasp parameters based on a SVM-G model. For 
comparison, we also computed group based on SVM regularized with least absolute shrinkage and selection 
operator (SVM-LASSO) and Random Forest (RF). Models were evaluated using record-wise cross-validation 
and subject-wise cross validation. For record-wise cross-validation, we split data into 10 (40) folds so that each 
fold contained 4 (1) movements from each subject. For subject-wise cross-validation, we split data by subjects 
such that training and test folds contained records from different subjects. In both methods, hyper-parameters 
were tuned recursively on all but one fold of the training set and tested on the remaining fold. For each subject, 
group was determined based on the averaged posterior scores of the movements of that subject. Classification 
accuracy was computed as the fraction of correctly classified subjects. Sensitivity—the fraction of ASD cases 
correctly classified as ASD in reference to all ASD cases—and specificity—the fraction of TD cases correctly 
classified as TD in reference to all TD cases—were also computed as measures of classifier performance.

Intention‑specific contribution to group classification.  To evaluate the diagnostic power of specific action 
sequences, we also computed group separately from grasp-to-place, grasp-to-pour and grasp-to-pass move-
ments based on three separate SVM-G models. Models were validated and tested using subject-wise cross vali-
dation.

Statistics of model performance.  In all analyses, we assessed model performance using classification 
accuracy. We evaluated the significance of classification accuracy against chance with permutation statistics. The 
chance-level null-hypothesis distribution of these statistics was created by computing classification accuracy 
after randomly permuting the trial label of each individual trial for the record-wise calculations and the trial 
label of all trials of a given subject as block for the subject-wise calculations (100 random permutations). We 
evaluated the significance of differences in how accurately different models classified intentions (intention classi-
fication) or group (group classification) using two-tailed paired-sample sign tests. We used non-parametric tests 
because classification accuracies do not follow a Gaussian distribution. Standard error of the mean (SEM) were 
computed by bootstrapping for reporting, but their value was not used in the computation of the non-parametric 
statistics of model performance.

Notes In all figures, * indicates p < 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001. Following standard 
notations, asterisks above bars indicate above chance significance, asterisks above connecting lines indicate 
comparison significance.

Community involvement.  We consulted clinical practitioners from the local hospital on how to create 
an enabling environment and plan experimental procedures to maximise the engagement and enjoyment of 
the children. Their feedback was incorporated in the study design. We shared the aggregate study results with 
children and their families in a 1-day workshop organized by the research team in partnership with clinical 
practitioners.

Data availability
The data supporting the main findings of the current study are available from the corresponding author on 
reasonable request. The code supporting the main findings is based on public available tools as detailed in 
“Methods” section. Custom functions inputting data to toolboxes will be made available by the corresponding 
author upon reasonable request.
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