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Using a sample of 1.31 x 10° J/y events collected with the BESIII detector, we perform a search for the
rare decay 5/ — 4x° via J/yr — yn'. No significant ' signal is observed in the 4z invariant mass spectrum.
With a Bayesian approach, the upper limit on the branching fraction is determined to be B(if' — 42°) <
4.94 x 1073 at the 90% confidence level, which is a factor of 6 smaller than the previous experimental limit.

DOI: 10.1103/PhysRevD.101.032001

I. INTRODUCTION (QCD), and studies of its decays have attracted consid-
erable theoretical [1] and experimental attention [2,3]. In

The 5/ meson has a special role in improving the - e ) ¢
addition to its important role in testing the fundamental

understanding of low-energy quantum chromodynamics
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discrete symmetries and searching for processes beyond the
Standard Model (SM), 1’ decays offer unique opportunities
to test the chiral perturbation theory (ChPT) [4] and the
vector-meson dominance (VMD)[5] model.

In theory, ' — 429 is a highly suppressed decay because
of the S-wave CP-violation. In the light of an effective
chiral Lagrangian approach, the S-wave CP-violation in
' — 4x° is induced by the so-called #-term, which is an
additional term in the QCD Lagrangian to account for the
solution of the strong-CP problem. It was found that the
S-wave CP-violation effect that contributed to this decay is
at a level of 10723 [6,7]. While higher-order contributions,
involving a D-wave pion loop or the production of two f,
tensor mesons (see Fig. 1), provide a CP-conserving route
through which the decay can occur. By ignoring the tiny
contribution from the latter process, calculations based on
ChPTand VMD model predict the branching fraction caused
by D-wave CP-conserving to be at the level of 1078 [8].
However, the theoretical prediction is not strictly based on
the effective field theory due to the lack of knowledge at such
a high order in the chiral expansion and the use of a model to
make an estimation. One does not know the reliability of that
model a priori. Therefore, a search for the decay ' — 47° is
useful to check the reliability of it.

So far the decay ' — 4z° has not been observed. About
three decades ago the first attempt to search for this mode
was performed by the GAMS Collaboration, and the upper
limit on the branching fraction was determined to be B(1' —
47%) < 5 x 10~ at the 90% confidence level (C.L.) [9]. The
more recent upper limit of 3.2 x 107 at 90% C.L. was
obtained by the GAMS-47z Collaboration [10].

Although #' meson can not be produced directly in e e~
annihilations, the decay J/w — yy/, with a branching

(b)

FIG. 1. D-wave pion-loop (a) and intermediate f, mesons
contribution (b) to 5’ — 4z° [8].

fraction of (5.13 4+0.17) x 1073 [11], provides an abun-
dant source of 7' meson in this environment. The BESIII
experiment has exploited this production mode to perform a
series of studies of #' decays [12], based on a sample of
(1310.6 £7.0) x 10° J/y events taken at the center-of-
mass energy of 3.097 GeV [13] with the BESIII detector,
corresponding to 6.7 x 10% i events. In this paper, using
this same J/y sample, we perform a search for 5 — 47°

via J/y — yf.

I1. BESIII DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector [14] is a magnetic spectrometer
located at the Beijing Electron Positron Collider (BEPCII)
[15], which is a double-ring e*e™ collider with a design
peak luminosity of 10*3 cm™2s~! at the center-of-mass
energy of 3.773 GeV. The cylindrical core of the BESIII
detector consists of a helium-based multilayer drift cham-
ber (MDC), a plastic scintillator time-of-flight system
(TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0 T (0.9 T in 2012)
magnetic field. The solenoid is supported by an octagonal
flux-return yoke with resistive plate counter muon-identi-
fier modules interleaved with steel. The acceptance of
charged particles and photons is 93% over the 4z solid
angle. The charged-particle momentum resolution at
1 GeV/c is 0.5%, and the dE/dx resolution is 6% for
electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at
1 GeV in the barrel (end cap) region. The time resolution
of the TOF barrel part is 68 ps, while that of the end cap part
is 110 ps.

Simulated samples produced with a GEANT4-based [16]
Monte Carlo (MC) simulation framework, which includes
the geometric description of the BESIII detector and the
detector response, are used to determine the detection
efficiency and to estimate the backgrounds. The simulation
includes the beam energy spread and initial state radiation
(ISR) in e*e™ annihilation modeled with the generator
KKMC [17]. The inclusive MC sample consists of the
production of the J/w resonance, and the continuum
processes incorporated in KKMC [17]. The known decay
modes are modeled with [18,19] using branching fractions
taken from the Particle Data Group (PDG) [20], and the
remaining unknown decays of the charmonium states with
LUNDCHARM [21]. The final state radiation (FSR) from
charged final-state particles are incorporated with the
PHOTOS package [22].

III. EVENT SELECTION

In this analysis, the pseudoscalar mesons # and z° are
reconstructed in the modes 5 — 42° and 7° — yy.

Candidate J/w — y4n° decays are chosen by selecting
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FIG. 2. )(%C distribution of candidate events in the 7’ signal
region showing data and the contribution from the considered
background sources. The arrow indicates the selection require-
ment of y3- < 30.

events with at least nine isolated photons and no charged
track. Photon candidates are reconstructed from clusters of
energy deposited in the EMC. Photon candidates are
required to have at least 25 MeV of energy for barrel
showers (| cos@| < 0.8) or 50 MeV for end cap show-
ers (0.86 < |cos 6] <0.92).

The photon candidate with the maximum energy depos-
ited in the EMC is treated as the radiative photon directly
originating from the J/y decay. For the two-body signal
decay J/w — yif/, this photon carries a unique energy of
1.4 GeV. To reconstruct the z° candidate from the remain-
ing photons, a one-constraint (1C) kinematic fit is per-
formed to each photon pair with the invariant mass
constrained to the 7° mass, with the requirement that the
goodness-of-fit y%-(yy) < 25. And at least four z° candi-
dates are required for further analysis. Then an eight-
constraint (8C) kinematic fit is performed for the
ya°72°72°7° combination by enforcing energy-momentum
conservation and constraining the invariant masses of each
of the four photon pairs to the nominal z° mass. If more
than one combination is found in an event, only the one
with the smallest 3 is retained. The y3. distribution is
shown in Fig. 2. Candidate events with y3. > 30 are
rejected. The MC study shows that after the above
selection, about 8% of events have a miscombination of
photons, which mainly occurs between the different 7°
candidates. Since this is not the miscombination between
the radiative photon and the photon from z° candidates, the
invariant mass of 479 is still in the 5’ mass region.

To ensure a good description of data, a signal MC
simulation is modeled with the decay amplitudes in
Ref. [8], which assumes the pion-loop contribution as
shown in Fig. 1(a) [the contribution from f, mesons shown
in Fig. 1(b) is considered to be much smaller]. After the full
event selection, the detection efficiency (¢) is determined to
be (2.46 £ 0.01)%.

Figure 3 shows the 47° mass spectrum, M(4x°), after
selection. No significant 7’ signal is evident. In order to

—e— Data

— Fitresult
------ Peaking background
Non-peaking background

—— signal MC

CH g = T PRI S S N T L n n
0.7 0.8 0.9 1 1.1
M(4r%)(GeV/ec?)

FIG. 3. The M(4x°) distribution in data, together with the total
fit result and the contributions from nonpeaking background and
the peaking background J/w — yi',if — 2°2%,n — 2°2°72°.
Also shown is the expected shape of the signal contribution,

with arbitrary normalization.

investigate possible sources of contamination, we apply the
selection to an inclusive MC sample of 1.22 x 10° J/y
events. Since the decay J/y — nz°, where n is the number
of 7° mesons, is forbidden because of charge conjugation
conservation, we find that the background comes mainly
from decays with the same final state as the signal, for
example, J/y — nw,n = 1°2°7°, @ — ya° or from radia-
tive decays with more than four z°s in the final states, of
which the dominant mode is J/w — yi',f — n°x°n,
n — 7°z°z°. None of these background events peaks in
the #' mass region, while the background events from
J/w =y (f = 7°7z°n) contributes to a broad structure
around 0.88 GeV/c? in the 47° mass spectrum. Then the
dedicated exclusive MC samples are generated for these
background channels. The decays of J/w — yn' and
J/w — nw, are generated using a helicity amplitude
model [19], where the cascade decays of ' — 7z°z% and
7 — 37° are modeled with the Dalitz plot analysis results
presented in Refs. [23,24]. And the uniform phase space
events are generated for the other background contribu-
tions. In accordance with the branching fractions and the

TABLE I. The main background channels and their expected
contribution to the selected sample.
Generated  Normalized

Decay mode events events
Jw—=yn =22 ,n— 2020x° 1.5 x 107 496 = 18
J/w = no,n = 1°2°2°, @ —» y2° 1 x 107 131 +4
J)w = ya’n®n,n = 7°x°x° 2.3 x 107 38 +£2
J)w — yan,n — 7°2°7° 3 x 10° 24+ 1
J/w—yf(1285),f,(1285) - %" 1.2 x 10’ I+l
J/w = r£>(1270), 2% 106 10+ 1

£2(1270) — 2°2°2°7°
Ty — yf1(1285), 1.2 x 107 5+1

£1(1285) = 2%2%
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reconstruction efficiencies, the normalized background
events are listed in Table I, and the expected peaking
contribution of J/y — yn' (' = 7°2%) to the 4z° mass
spectrum is displayed in Fig. 3.

IV. FIT MODEL AND UPPER LIMIT ON
BRANCHING FRACTION OF 7 — 4x°

An unbinned maximum likelihood fit is performed on
the 47° mass spectrum, allowing for background contri-
butions and a possible signal component. In the fit, the line
shape of the #’ signal is determined by a MC simulation.
The shape of peaking background J/w — yy'.,7' —
2°7%,n —» 72°2°2° is obtained from the dedicated MC
simulation [23,24] with the number fixed to the normalized
value while the nonpeaking background contribution is
described by a third-order Chebychev polynomial
function with the number and parameters of Chebychev
function free.

A Bayesian approach is used to determine an upper limit
on the branching fraction of 7/ — 47°. A series of unbinned
extended maximum likelihood fits are performed for
different assumed values of the signal yield N, and for
each fit the negative log-likelihood S is determined. For
each value of N the branching fraction is

N
NN 0y —
Bl 47) Nypy € By =) - Bz’ - yr)*
(1)
where N/, = (1310.6 £ 7.0) x 10 is the number of J /y/
events [13], ¢ is the detection efficiency, B(J/w — y1') and
B(n® - yy) are the branching fractions of J/y — y5’ and
7° — yy, respectively, which are taken from Ref. [11].
The distribution of normalized likelihood values, defined
as L(B) = exp(—[S(B) — Suin)), where S, is the lowest
negative log-likelihood obtained from the ensemble of fits,
is taken as the probability density function (PDF) for the
expected branching fraction of ' — 47°. The upper limit
on the branching fraction at the 90% C.L., defined as By,
corresponds to the branching fraction at 90% of the integral
of the PDF,

Bu £(B)dB
e = ?

and is found to be 4.57 x 1073, considering statistical
uncertainties alone.

V. SYSTEMATIC UNCERTAINTIES

Two categories of systematic uncertainty are considered:
those associated with the fit model and procedure, and
those which enter when using Eq. (1) to express the signal
yield as a branching fraction.

The fit-related uncertainties come mainly from the fitting
ranges, signal shape, nonpeaking background shape,

peaking background shape and the number of the peaking
background events.

The uncertainties due to the fit range are considered by
varying the fit ranges of 5 MeV/c? or 10 MeV/c?. And the
maximum change on the results is taken as the systematic
uncertainty from fit range. In the fit to the M(4z)
distribution, signal shape is taken from the MC simulation.
To assess the uncertainty due to the signal shape, an
alternative fit is performed by convolving a Gaussian
function with a fixed resolution of 2.6 MeV and mean
of 2.1 MeV which are obtained from a high purity control
sample of J/yr — yi', i’ = 7°2°7, 7 — yy. The uncertainty
from the nonpeaking background shape is determined by
using a fourth-order Chebychev polynomial in place of the
third-order Chebychev polynomial. To assess the uncer-
tainty associated with the number of the peaking back-
ground events, its contribution is recalculated after varying
the branching fractions of J/yw — yy' and its cascade
decays, ' — 7°2% and 5 — 2°2°2°, within their uncer-
tainties, and new fits are performed. The systematic
uncertainty associated with peaking background shape is
evaluated by convolving a Gaussian function with the
resolution and mean value left free. Among these cases, the
dominant fit-model uncertainty arises from fitting range
[0.705, 1.095] GeV /c?, and it changes the upper limit at the
90% C.L. to By, = 4.88 x 107>,

The other category of systematic uncertainties, summa-
rized in Table II, has contributions from the knowledge of
the photon detection efficiency, the efficiency of the
kinematic fit, signal model, MC statistical uncertainty
for the detection efficiency, the branching fractions of
the subdecays involved in the signal process, and the total
number of J/y events.

The uncertainty from the photon detection is investigated
with a high purity control sample of J/y — ztz~z°. It is
found that the differences between data and MC simulation
are 0.5% and 1.5% for each photon deposited in the barrel
and end cap of the EMC, respectively. With the same
approach as used in Ref. [25], the uncertainty on the
detection efficiency for each photon in the signal decay is
estimated to be 0.53%, and thus the nine photons in the
final state induce an overall uncertainty of 4.8%.

TABLE II. Summary of the systematic uncertainties unrelated
to the fit model. For each component the relative impact on the
branching fraction is listed in %.

Source Systematic uncertainties
Photon detection 4.8
Kinematic fit 4.1
Signal model 2.0
B(J/y — ') 3.1
B (77:0 - yy) 0.12
MC statistic 0.4
Number of J/y events 0.54
Total 7.3
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The uncertainty associated with the kinematic fit is
estimated by adjusting the components of the photon-
energy error matrix in the signal MC sample to reflect the
known difference in the resolution between data and the
MC simulation [26]. From the study of the y(3686) —
YXe1(xer = 47°) decay [27], it is known that the energy
resolution in data is 4% wider than in a MC simulation. The
relative difference in efficiency, 4.1%, is taken as the
systematic uncertainty from the kinematic fit.

In the normal fit, the cascade decay n' — 4z° is
described with the decay amplitude in Ref. [8]. A fit with
an alternative signal model replacing 5 — 42° decay
amplitude with a phase space (PHSP) distribution is
performed. The change of the efficiency, 2.0%, is taken
as the uncertainty due to the signal model.

The relative uncertainty in the knowledge of the branch-
ing fractions of J/y — yx' and 7z° — yy [11] induces a
corresponding uncertainty on the calculated upper limit on
the branching fraction. The uncertainty of the detection
efficiency, 0.4%, caused by MC statistics is also taken as a
source of systematic uncertainty. The number of J/y
events is determined from the measured number of had-
ronic decays and is found to be (1310.6 4 7.0) x 100 [13],
which corresponds to a relative uncertainty of 0.54%.

Assuming all systematic uncertainties presented in
Table II are independent, the total relative uncertainty is
obtained to be 7.3%, by adding all individual uncertainties
in quadrature.

VI. RESULT

The final upper limit on the branching fraction is
determined by convolving the likelihood distribution £
with the systematic uncertainties to obtain the smeared
likelihood L£smear,

Lomer () — / E(ZB) exp (- (82;?2)518. (3)

In this exercise all components listed in Table II, whatever
their nature, can be considered as an uncertainty on the

-
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FIG. 4. Normalized likelihood distribution before (black dots)
and after (red stars) convolution with systematic uncertainty.

detection efficiency &. The nominal efficiency value is €, o,
is the absolute total systematic uncertainty on the effi-
ciency, and B is the branching fraction of 7' — 4z°.
Figure 4 shows the normalized likelihood distribution
after taking all systematic uncertainties into account. The
corresponding upper limit of the branching fraction of
i — 4x° at the 90% C.L. is determined to be 4.94 x 107>,

VII. SUMMARY

Using a sample of 1.31 x 10? J/y events collected with
the BESIII detector, a search for the decay n' — 4z° is
performed via J/w — yn'. No evidence for the rare decay
7 — 47" is found, and an upper limit of B(y' — 42°) <
4.94 x 107 is set at the 90% confidence level. This limit is
approximately a factor of 6 smaller than the previous most
stringent result [10].

The current limit is still far to reach the theoretical
predication with a level of 1078 [8]. Further studies of 7’
rare decays are still necessary to test the ChPT and VMD
model and look for the CP-violation (S-wave) 5’ — 47°
decay. A sample of 10'° J /y events has now been collected
at BESIII, which will allow for even more sensitive
searches to be performed for this important decay mode.
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