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Abstract. A small library of 2,6- and 3,5-distyrenyl-substituted carborane-BODIPY dyes was efficiently 15 

synthesized by means of a Pd-catalyzed Heck coupling reaction. Styrenyl-carborane derivatives were exploited 16 

as molecular tools to insert two carborane clusters into the fluorophore core and to extend the π-conjugation 17 

of the final molecule in a single synthetic step. The synthetic approach allows to increase the molecular 18 

diversity of this class of fluorescent dyes by the synthesis of symmetric or asymmetric units with enhanced 19 

boron content. The structural characterization and photoluminescence (PL) properties of synthesized dyes were 20 

evaluated. The developed compounds exhibit a significant bathochromic shift compared to their parent 21 

fluorophore scaffolds, and absorption and emission patterns were practically unaffected by the different 22 

substituents (Me or Ph) on the Ccluster atom (Cc) of the carborane cage or the cluster isomer (ortho- or meta-23 

carborane). Remarkably, the presence of carborane units at 2,6-positions of the fluorophore produced a 24 

significant increase of the emission fluorescent quantum yields, which could be slightly tuned by changing the 25 

Cc-substituent and the carborane isomer, as well as introducing ethylene glycol groups at the meso-position of 26 
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the BODIPY. All these features make these dyes promising candidates for further investigations in live-cell 27 

imaging and bio-supramolecular assays. 28 

 29 

Keywords: carborane • BODIPY • dyads • photoluminescent material • Heck coupling 30 

 31 

1. Introduction 32 

 33 

The fascinating chemistry of polyhedral boron-carbon clusters has experienced an exponential and 34 

overwhelming growth since their discovery in the 1960s.[1] Icosahedral carborane derivatives have been the 35 

subject of an intense research owing to their unique properties such as high chemical and thermal stability,[2] 36 

delocalized three-dimensional aromaticity,[3] high hydrophobicity and enriched boron content,[4] electron-37 

withdrawing character[5] and high biocompatibility.[6] The remarkable physico-chemical features of carboranes 38 

and their versatility toward functionalization[7] have been widely exploited in several areas including medicine 39 

(as anticancer agents for boron neutron capture therapy (BNCT) and pharmacophores),[7b, 8] catalysis,[9] 40 

optoelectronic (as non-linear optical materials and liquid crystals),[10] and nanomaterials.[11] Additionally, the 41 

development of fluorescent materials incorporating carboranes has significantly increased in the last decade,[2a, 42 

12] and their photoluminescent (PL) behavior has been deeply investigated. As a result, the carborane cage 43 

linked to certain species (e.g. small fluorophores) directly influences both the PL properties and the thermal 44 

stability of the final material,[13] offering new outstanding opportunities toward the development of luminescent 45 

materials, organic field-effect transistors (OFETs), phosphorescent organic light emitting diodes (PHOLEDs), 46 

and biomedical tools (mainly bioimaging for diagnosis).[14] Owing to their unique spectroscopic features 47 

BODIPY dyes (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)[15] represent a very interesting class of 48 

fluorophores for carborane functionalization. Moreover, the countless pre- and post-functionalization synthetic 49 

pathways of the BODIPY core allows its easy linkage to the carborane cluster using common synthetic 50 

procedures. Several carboranyl-BODIPY dyads with remarkable PL properties for luminescent devices and 51 

BNCT purposes have been thus synthesized in the last few years by means of Pd-catalyzed cross coupling 52 

reactions or alkyne insertion into decaborane.[16] In the course of our studies aimed at exploiting the 53 
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photophysical properties of BODIPY dyes for biological applications,[17] we recently reported the first 54 

synthesis of a small family of carborane-(aza)BODIPY dyads by means of a convergent Heck coupling 55 

approach, starting from a styrenyl-containing carborane and a brominated (aza)dipyrromethene fluorophore.[18] 56 

Although these styrenyl carborane-BODIPY derivatives preserved the photophysical features of the 57 

fluorophore, the design of new dyes with optical properties shifted toward the near-infrared region and into 58 

the therapeutic window in biological tissues still remains a urgency in view of biomedical applications of these 59 

compounds.[19] Moreover, the need to perform efficient boron rich carriers to find novel potential candidates 60 

for BNCT is still on the rise. 61 

To this purpose, we planned to synthesize a new family of styrenyl carborane-BODIPY dyes exhibiting a 62 

whole π-conjugate system through the entire backbone of the molecule. In view of the development of bright 63 

and stable fluorophores emitting in the red spectral region, the extension of π-conjugation is essential for 64 

obtaining a bathochromic shift of both absorbance and emission maxima. The introduction of styrenyl groups 65 

on the BODIPY core at the 3,5- and 1,7-positions is one of the most efficient strategies toward a significant 66 

redshift of the spectral bands,[20] while to the best of our knowledge only one example of 2,6-distyrenyl 67 

substituted BODIPY dyes has been reported so far.[21]  68 

On the basis of these considerations and motivated by our ongoing interest in the design of new fluorescent 69 

and high boron content carborane-based scaffolds, we herein report the Pd-catalyzed synthesis of a small 70 

library of red-light emitting carborane-BODIPY dyads linked at the 2,6-positions and 3,5-positions with a π-71 

conjugated styrene moiety spacer (Figure 1). The rationale of this work focuses on the following key points: 72 

a) exploit styrenyl carborane derivatives as molecular tools to insert two boron-carbon cages into the 73 

fluorophore and extend the π-conjugation of the final molecule in a single synthetic step, b) enlarge the 74 

molecular diversity of the fluorescent dyads by the synthesis of symmetric or asymmetric units and c) enhance 75 

the boron content of the dyads. To this purpose, a series of ortho- and meta- (o- and m-) substituted styrenyl-76 

carboranes were linked to suitable BODIPY dyes halogenated at the 2,6- and 3,5-positions by means of a Heck 77 

coupling approach. The spectroscopic and photophysical properties of these new dyes are also discussed. 78 



4 
 

 79 

Figure 1. Aim of the work. 80 

 81 

2. Experimental section 82 

 83 

2.1 Materials and methods  84 

Unless specified, all reagents were used as received without further purifications. [Pd2(dba)3], [Pd(tBu3P)2] and 85 

Cy2NMe were purchased from Aldrich. All reactions involving air-sensitive reagents were performed under 86 

nitrogen in oven-dried glassware using the syringe septum cap technique. Anhydrous CH2Cl2 was obtained by 87 

distillation over CaH2. Anhydrous THF was obtained by distillation over LiAlH4, followed by distillation over 88 

Na-benzophenone. Et3N was distilled over CaH2 and dry 1,4-dioxane was purchased from Merck-89 

SigmaAldrich and used as received. Reactions were monitored using thin layer chromatography on silica gel 90 

coated aluminium plates. Chromatographic separations were performed under pressure on silica gel (40-63 91 

μm, 230-400 mesh). Rf values refer to TLC carried out on silica gel plates with UV light (254 nm and/or 366 92 

nm) as visualizing agent.  93 

 94 

 2.2 Instrumentation  95 
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1H NMR (600 MHz) and 13C{1H} (150 MHz) NMR spectra were recorded in CDCl3 on a Jeol ECZR600 96 

spectrometer at RT using residual solvent peak as an internal standard. 11B{1H} (128.38 MHz) NMR spectra 97 

were recorded on a Bruker ARX 400 spectrometer in CDCl3. Chemical shift values for 11B{1H} NMR spectra 98 

were referenced to external BF3·OEt2, those for 1H and 13C{1H} NMR were referenced to [Si(CH3)4] (TMS). 99 

Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (J) in Hertz (Hz). Multiplicities 100 

are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Low-resolution mass 101 

spectra were recorded on a Micromass Quattro microTM API (Waters Corporation, Milford, MA, USA) or at 102 

an ionizing voltage of 70 eV on a HP 5989B mass selective detector connected to an HP 5890 GC with a 103 

methyl silicone capillary column (EI). The MS flow-injection analyses were run on a high resolving power 104 

hybrid mass spectrometer (HRMS) Orbitrap Fusion (Thermo Scientific, Rodano, Italy), equipped with an ESI 105 

ion source. The samples were analyzed in acetonitrile solution using a syringe pump at a flow rate of 5 μL/min. 106 

The tuning parameters adopted for the ESI source were: source voltage 4.0 kV. The heated capillary 107 

temperature was maintained at 275 °C. The mass accuracy of the recorded ions (vs. the calculated ones) was 108 

± 2.5 mmu (milli-mass units). Analyses were run using both full MS (150-2000 m/z range) and MS/MS 109 

acquisition, at 500000 resolutions (200 m/z). 110 

 111 

2.3 Photophysical measurements 112 

The optical properties were evaluated in anhydrous grade THF, MeOH, CH3CN, CHCl3, toluene, dioxane, 113 

DMSO purchased from Sigma Aldrich and used without further purifications. Stock solutions in the selected 114 

solvent with a concentration between 2.87*10-4 M and 3.73*10-4 M were prepared for all the compounds tested. 115 

UV-Vis spectra were recorded on VARIANT Cary 5 UV-Vis-NIR spectrophotometer. Molar extinction 116 

coefficients were determined with solutions of THF with concentrations in the range 0.20*10-5 M to 1.5*10-5 117 

M. Emission spectra have been recorded with a VARIANT Cary Eclipse Fluorescence spectrophotometer. The 118 

excitation wavelengths were set just before the respective absorption maxima in each solvent tested to provide 119 

adequate excitation energy and maximize the detected signal, excitation and the emission slits are set at 2.5 120 

nm. The samples concentration was adjusted to have an absorbance between 0.1 and 1 at the Absmax to evaluate 121 

the general photophysical properties in THF (Absmax, Emmax, ΦF and Stokes Shift) and the possible 122 

solvatochromic features in MeOH, CH3CN, CHCl3, toluene, dioxane, DMSO. All the measurements were 123 
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carried out in a 1 cm four-sided quartz cuvette from Hellma Analitics. The absorption and steady state emission 124 

spectra were corrected for their respective blank. No fluorescent contaminants were detected on excitation in 125 

the wavelength region of experimental interest.  126 

The Fluorescence quantum yield evaluation was carried out on samples with concentrations adapted to have 127 

an absorbance lower than 0.1 in THF at the excitation wavelength (λex) using the above-mentioned DMSO 128 

stock solutions. The fluorescence quantum yield (φ) were evaluated compared on an external standard, 129 

Rhodamine 101 (φ :1 in MeOH, λex 576 nm)[22] by applying the following equation: 130 

𝜙 = 𝜙!"#
$

$!"#

%&'!"#
%&'

($

(!"#
$                                                               (1) 131 

where φSTD is the fluorescence quantum yield of the standard, I and ISTD are the integrated area of the emission 132 

band of the sample and the standard respectively. Abs and AbsSTD are the absorbance at the excitation 133 

wavelength for the sample and the standard, respectively. n and nSTD are the solvent refractive index of the 134 

sample and the standard solutions, respectively.  135 

 136 

2.3 Syntheses and characterizations  137 

Iodinated BODIPY dyes 1a,[23] 1c,[24] 1d[25] and styrenyl-containing carboranes[12l] m-Me-CB, o-Ph-CB and m-138 

Ph-CB were synthesized according to the procedures reported in literature. Mono-iodinated BODIPY dye 1b 139 

was synthesized starting from the corresponding 4-alkoxy substituted benzaldehyde (see Supporting 140 

Information for full synthetic details). Full characterization data, including copies of 1H and 13C NMR spectra 141 

(see Supporting Information), have been reported for the newly synthesized compounds. The syntheses of 2,6-142 

disubstituted styrenyl-carborane BODIPY dyes are depicted in Scheme 1 (2, 2a) and Scheme 2 (3-8). The 143 

synthesis of 3,5-disubstituted styrenyl-carborane BODIPY dye 9 is illustrated in Scheme 3. 144 

 145 

General procedure (A) for the Heck coupling reactions. A round-bottomed flask equipped with a condenser 146 

was charged with 3 mL of dry 1,4-dioxane, and the solvent was degassed with nitrogen for 15 minutes. The 147 

appropriate styrenyl-containing carborane (2.1 equiv.) and iodinated BODIPY derivatives 1a-b or 1d (1 equiv.) 148 

were added, followed by Pd2(dba)3 (3 mol%), Pd(P(t-Bu)3)2 (6 mol%) and Cy2NMe (4.8 equiv.). The reaction 149 

mixture was heated at reflux overnight. After complete conversion of the starting material (as monitored by 150 
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TLC analysis), the mixture was filtered over celite, washed with THF and concentrated to dryness. The crude 151 

residue was purified by flash column chromatography on silica gel. 152 

 153 

General procedure (B) for the Heck coupling reactions. A round-bottomed flask equipped with a condenser 154 

was charged with 3 mL of dry 1,4-dioxane, and the solvent was degassed with nitrogen for 15 minutes. The 155 

appropriate styrenyl-containing carborane (1 equiv.) and the styrenyl-carborane BODIPY derivative 6 (1.1 156 

equiv.) were added, followed by Pd2(dba)3 (5 mol%), Pd(P(t-Bu)3)2 (5 mol%) and Cy2NMe (1.34 equiv.). The 157 

reaction mixture was heated at reflux overnight. After complete conversion of the starting material (as 158 

monitored by TLC analysis), the mixture was filtered over celite, washed with THF and concentrated to 159 

dryness. The crude residue was purified by flash column chromatography on silica gel. 160 

 161 

Synthesis and characterization of compound 2. General procedure (A) starting from 1a and m-Me-CB. 162 

Purification by flash column chromatography on silica gel (PE/DCM 6/4 v/v) gave 2 as a bright blue solid. 163 

(43%, Rf = 0.5 PE/DCM 6/4 v/v). 1H NMR (600 MHz, CDCl3): δ 7.54-7.52 (m, 3H), 7.37 (d, J= 8.2 Hz, 4H), 164 

7.34-7.33 (m, 2H), 7.07 (d, J = 8.2 Hz, 4H), 6.87 (d, J = 16.5 Hz, 2H), 6.63 (d, J= 16.5 Hz, 2H), 3.18 (s, 4H), 165 

2.74 (s, 6H), 1.64 (s, 6H), 1.47 (s, 6H). 13C{1H} NMR (150 MHz, CDCl3) δ: 155.4, 141.6, 138.9, 137.1, 136.4, 166 

135.4, 131.6, 131.0, 130.4, 129.4, 129.3, 129.0, 128.4, 128.2, 126.2, 120.0, 70.9, 42.8, 24.7, 14.2, 13.1. 11B{1H} 167 

NMR (128.38 MHz, CDCl3) δ: 0.99 (s, 1B, BF2) -6.17 (s, 2B), -7.88 (s, 2B), -10.50 (br s, 12B), -13.04 (s, 4B).  168 

ESI-HRMS [M+Na]+: m/z 891.6674; C43H59B21F2N2Na+ requires 891.6638. 169 

 170 

Synthesis and characterization of compound 2a. Isolated by flash column chromatography on silica gel 171 

(PE/DCM 6/4 v/v) from crude reaction mixture of 2 (6%, Rf = 0.6 PE/DCM 6:4 v/v). 1H NMR (600 MHz, 172 

CDCl3): δ 7.50-7.49 (m, 3H), 7.38 (d, J = 8.2 Hz, 2H), 7.35-7.33 (m, 2H), 7.23 (d, J = 8.3 Hz, 2H), 7.07 (d, J 173 

= 8.2 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 16.5 Hz, 1H), 6.63 (d, J = 16.5, 1H), 5.84 (s, 1H), 5.10 (s, 174 

1H), 3.18 (s, 2H), 3.16 (s, 2H), 2.73 (s, 3H), 2.37 (s, 3H), 1.64 (s, 3H), 1.63 (s, 3H), 1.48 (s, 3H), 1.22 (s, 3H). 175 

13C {1H} NMR (150 MHz, CDCl3): δ 155.2, 155.0, 140.7, 140.5, 139.4, 138.8, 136.7, 136.3, 135.3, 131.5, 176 

130.8, 130.3, 130.1, 129.3, 129.2, 128.7, 128.2, 126.5, 126.2, 120.1, 117.6, 80.4, 70.8, 42.7, 42.6, 29.8, 24.6, 177 
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14.1, 13.5, 13.0, 12.9. 11B{1H} NMR (128.38 MHz, CDCl3) δ: 1.01 (s, 1B, BF2), -6.24 (s, 2B), -7.91 (s, 2B), -178 

10.50 (br s, 12B), -13.04 (s, 4B). ESI-HRMS [M+Na]+: m/z 891.6618; C43H59B21F2N2Na+ requires 891.6638. 179 

 180 

Synthesis and characterization of compound 3. General procedure (A) starting from 1a and m-Ph-CB. 181 

Purification by flash column chromatography on silica gel (PE/DCM 6/4 v/v) gave 3 as a bright blue solid 182 

(57%, Rf = 0.4 PE/DCM 6/4 v/v). 1H NMR (600 MHz, CDCl3): δ 7.49-7.40 (m, 4H), 7.33-7.24 (m, 11H), 7.15 183 

(d, J = 7.9 Hz, 4H), 7.02 (d, J = 7.9 Hz, 4H), 6.80 (d, J = 16.5 Hz, 2H), 6.55 (d, J = 16.5 Hz, 2H), 3.18 (s, 4H), 184 

2.66 (s, 6H), 1.40 (s, 6H). 13C{1H} NMR (150 MHz, CDCl3): δ 155.3, 141.5, 138.8, 137.0, 136.2, 135.3, 131.5, 185 

130.8, 130.3, 129.3, 129.2, 128.9, 128.6, 128.3, 127.8, 126.2, 120.0, 78.2, 76.3, 42.9, 14.1, 13.0. 11B{1H} NMR 186 

(128.38 MHz, CDCl3) δ: 0.95 (s, 1B, BF2), -5,90 (s, 4B), -10.66 (br s, 12B), -13.51 (s, 4B). ESI-HRMS 187 

[M+Na]+: m/z 1015.6956; C53H63B21F2N2Na+ requires 1015.6951.  188 

 189 

Synthesis and characterization of compound 4. General procedure (A) starting from 1b and m-Ph-CB. 190 

Purification by flash column chromatography on silica gel (DCM) gave 4 as a bright blue solid (52%, Rf = 191 

0.55 DCM). 1H NMR (600 MHz, CDCl3): δ 7.38 (d, J = 8.2 Hz, 4H), 7.35 (d, J = 8.6 Hz, 4H), 7.26-7.18 (m, 192 

8H), 7.10 (d, J = 8.1 Hz, 4H), 7.06 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 16.5 Hz, 2H), 6.62 (d, J = 16.5 Hz, 2H), 193 

4.23-4.20 (m, 2H), 3.95-3.92 (m, 2H), 3.79-3.76 (m, 2H), 3.75-3.70 (m, 2H), 3.70-3.66 (m, 2H), 3.62-3.58 (m, 194 

2H), 3.47 (t, J = 6.8 Hz, 2H), 3.26 (s, 4H), 2.72 (s, 6H), 1.58-1.54 (m, 2H), 1.52 (s, 6H), 1.40-1.33 (m, 2H), 195 

0.91 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 155.2, 139.0, 137.2, 136.3, 135.4, 132.0, 130.9, 196 

130.4, 129.6, 129.4, 128.9, 128.7, 128.4, 127.9, 127.6, 127.2, 126.3, 120.2, 115.5, 78.3, 76.4, 71.4, 71.1, 70.9, 197 

70.8, 70.2, 69.9, 67.7, 43.0, 31.8, 29.8, 19.4, 14.1, 13.4. 11B{1H} NMR (128.38 MHz, CDCl3) δ:0.93 (s, 1B, 198 

BF2), -5.92 (s, 4B), -10.64 (br s, 12B), -13.48 (s, 4B). ESI-HRMS [M+Na]+: m/z 1219.8335; C63H83B21F2N2 199 

O4Na+ requires 1219.8318 200 

 201 

Synthesis and characterization of compound 5. A round-bottomed flask equipped with a reflux condenser 202 

was charged with 3 mL of dry 1,4-dioxane, and the solvent was degassed with nitrogen for 15 minutes. The 203 

carborane m-Me-CB (1 equiv.) and mono- iodinated BODIPY derivative 1c (1.1 equiv.) were added, followed 204 

by Pd2(dba)3 (1.2 mol%), Pd(P(t-Bu)3)2 (1.6 mol%) and Cy2NMe (1.34 equiv.). The reaction mixture was 205 
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heated at reflux overnight. After complete conversion of the starting material (as monitored by TLC analysis), 206 

the mixture was filtered over celite, washed with THF and concentrated to dryness. The crude residue was 207 

purified by flash column chromatography on silica gel (PE/DCM 7/3 v/v) to give 5 as a bright purple solid 208 

(72%, Rf = 0.4 PE/DCM 7/3 v/v). 1H NMR (600 MHz, CDCl3): δ 7.53-7.46 (m, 3H), 7.36 (d, J = 8.1 Hz, 2H), 209 

7.31-7.27 (m, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.86 (d, J = 16.5 Hz, 1H), 6.60 (d, J = 16.5 Hz, 1H), 6.00 (s, 1H), 210 

3.16 (s, 2H), 2.71 (s, 3H), 2.57 (s, 3H), 1.46 (s, 3H), 1.37 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 156.1, 211 

154.8, 143.6, 141.8, 138.7, 137.1, 136.4, 135.2, 131.9, 131.2, 130.7, 130.3, 129.3, 129.2, 128.6, 128.2, 126.2, 212 

121.7, 120.1, 76.8, 70.8, 42.8, 24.6, 14.8, 14.6, 14.1, 13.0.  213 

 214 

Synthesis and characterization of compound 6. To a stirred solution of 5 (0.13 mmol) in dry DCM (30 mL) 215 

under a positive N2 atmosphere was added N-iodosuccinimide (NIS, 0.26 mmol, 2 eq.), and the reaction 216 

mixture was stirred at RT overnight. The mixture was then washed with water, dried over Na2SO4 and purified 217 

by flash column chromatography on silica gel (PE/DCM 75/25 v/v) to give 6 as purple solid (84%, Rf = 0.55 218 

PE/DCM 75/25 v/v). 1H NMR (600MHz, CDCl3): δ 7.48-7.43 (m, 3H), 7.30 (d, J = 8.3 Hz, 2H), 7.24-7.20 219 

(m, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 16.5 Hz, 1H), 6.55 (d, J = 16.5 Hz, 1H), 3.10 (s, 2H), 2.65 (s, 220 

3H), 2.58 (s, 3H), 1.56 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 157.2, 155.0, 221 

143.6, 141.4, 140.3, 136.8, 136.6, 135.1, 131.5, 131.3, 130.3, 129.7, 129.4, 128.1, 126.2, 119.6, 84.8, 76.6, 222 

70.8, 42.7, 29.8, 24.6, 16.9, 16.0, 14.3, 13.1.  223 

 224 

Synthesis and characterization of compound 7. General procedure (B) starting from 6 and o-Ph-CB. 225 

Purification by flash column chromatography on silica gel (PE/DCM 6/4 v/v) gave 7 as a bright blue solid 226 

(55%, Rf = 0.35 PE/DCM 75/25 v/v). 1H NMR (600 MHz, CDCl3): δ 7.72 (d, J = 7.7 Hz, 2H), 7.57-7.50 (m, 227 

4H), 7.49-7.43 (m, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.34-7.32 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.0 228 

Hz, 2H), 6.87 (d, J = 16.3 Hz, 1H), 6.85 (d, J = 16.3 Hz, 1H), 6.78 (d, J = 8.1 Hz, 2H), 6.62 (d, J = 16.5 Hz, 229 

1H), 6.58 (d, J = 16.5 Hz, 1H), 3.18 (s, 2H), 3.07 (s, 2H), 2.73 (s, 3H), 2.72 (s, 3H), 1.64 (s, 3H), 1.47 (s, 3H), 230 

1.46 (s, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 155.4, 155.3, 141.6, 138.9, 137.4, 137.1, 136.4, 135.4, 134.5, 231 

131.6, 131.6, 131.0, 130.9, 130.7, 130.5, 130.4, 129.4, 129.3, 129.2, 129.0, 128.9, 128.4, 126.2, 126.1, 120.3, 232 

120.0, 83.8, 82.1, 70.8, 42.8, 40.8, 32.1, 24.7, 22.8, 14.2, 13.1. 11B{1H} NMR (128.38 MHz, CDCl3) δ: 1.08 233 
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(s, 1B, BF2), -3.17 (s, 2B), -6.22 (s, 1B), -7.98 (s, 1B), -10.24 (br s, 14B), -12.93 (s, 2B). ESI-HRMS [M+Na]+: 234 

m/z 953.6817; C48H61B21F2N2Na+ requires 953.6794 . 235 

 236 

Synthesis and characterization of compound 8. General procedure (B) starting from 6 and m-Ph-CB. 237 

Purification by flash column chromatography on silica gel (PE/DCM 7/3 v/v) gave 8 as a bright blue solid. 238 

(35%, Rf = 0.21 PE/DCM 7/3 v/v). 1H NMR (600 MHz, CDCl3): δ 7.53 (m, 3H), 7.38-7.33 (m, 9H), 7.23-7.21 239 

(m, 2H), 7.10-7.06 (m, 4H), 6.87 (d, J= 16.5 Hz, 2H), 6.62 (d, J= 16.5 Hz, 2H), 3.26 (s, 2H), 3.18 (s, 2H), 240 

2.74 (s, 6H), 1.64 (s, 3H), 1.47 (s, 6H). 13C{1H} NMR (150 MHz, CDCl3): δ 155.4, 141.6, 138.9, 137.1, 137.1, 241 

136.4, 136.3. 135.4, 132.0, 131.0, 130.9, 130.4, 129.4, 129.3, 129.0, 128.7, 128.4, 127.9, 126.3, 126.2, 121.0, 242 

120.0, 78.3, 76.8, 76.3, 70.9, 43.0, 42.8, 24.7, 14.2, 13.1. 11B{1H} NMR (128.38 MHz, CDCl3) δ: 1.01 (br s, 243 

1B, BF2), -6.05 (s, 3B), -7.85 (s, 1B), -10.46 (s, 12B), -13.01 (s, 4B). ESI-HRMS [M+Na]+: m/z 953.6824; 244 

C48H61B21F2N2Na+ requires 953.6794 . 245 

 246 

Synthesis and characterization of compound 9. General procedure (A) starting from 1d and m-Ph-CB. 247 

Purification by flash column chromatography on silica gel (PE/DCM 7/3 v/v) gave 9 as a bright blue solid. 248 

(30%, Rf = 0.33 PE/DCM 7/3 v/v). 1H NMR (600 MHz, CDCl3): δ 7.79 (d, J= 16.3 Hz, 2H), 7.62 (d, J= 8.1 249 

Hz, 4H), 7.56-7.50 (m, 6H), 7.37-7.36 (m, 4H), 7.32 (d, J= 16.3 Hz, 2H), 7.25-7.21 (m, 5H), 7.19 (d, J= 8.1 250 

Hz, 4H), 6.93 (d, J= 4.5 Hz, 2H), 6.82 (d, J = 4.4 Hz, 2H), 3.30 (s, 4H). 13C{1H} NMR (150 MHz, CDCl3): δ 251 

154.8, 139.8, 138.0, 136.4, 136.2, 135.9, 135.3, 134.4, 130.6, 130.5, 130.0, 129.9, 128.7, 128.4, 127.9, 129.9, 252 

119.7, 116.5, 78.4, 76.1, 43.1. ESI-MS [M+H]+: m/z 939.16. 253 

 254 

3. Results and discussion 255 

 256 

3.1 Synthesis and characterization of dyes 257 

The presence of halogen atoms, either directly on the BODIPY core or attached to an aryl ring, facilitates 258 

further extension of the π-conjugation and to build sophisticated structures by means of metal-catalyzed 259 

coupling reactions.[26] Based on our previously reported results on the functionalization of the (aza)BODIPY 260 

core with styrenyl-containing carborane derivatives,[18] we started our preliminary investigation by testing the 261 
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Heck coupling procedure on the 2,6-diiodo-BODIPY derivative 1a and the methyl substituted styrenyl m-262 

carborane m-Me-CB (Scheme 1). The 2,6-diiodo-1,3,5,7-tetramethylBODIPY dye 1a, synthesized by 263 

condensation of 2,4-dimethylpyrrole with benzaldehyde followed by mild iodination with I2/HIO3,[27] exhibits 264 

an absorption maxima at 534 nm and a negligible fluorescence quantum yield due to the high heavy atom-265 

induced intersystem crossing (ISC) at the excited state.[28] The styrenyl-carborane m-Me-CB has been easily 266 

synthesized by electrophilic trapping of the parent lithium-closo-carborane cluster with 4-vinylbenzyl chloride 267 

as previously reported.[12l]  268 

 269 

Scheme 1. Model Heck coupling reaction for the synthesis of 2,6-bis(styrenylcarborane)-BODIPY dyes. 270 

 271 

The 2,6-diiodoBODIPY 1a was reacted with two equivalents of m-Me-CB in refluxing 1,4-dioxane using the 272 

Pd2(dba)3 (3 mol%) and Pd(P(t-Bu)3)2 (6 mol%) catalytic system,[29] in the presence of Cy2NMe as a base. 273 

Under these conditions, the reaction proceeded smoothly in 12 h with full conversion of the starting materials 274 

affording the target compound 2 in 43% isolated yield (β,β-isomer). Successful incorporation of the carborane 275 

cage was easily confirmed by the presence of the BH broad band in the upfield region of the 1H NMR (Figure 276 

2, top). Additionally, protons from CC-CH3 are identified near 1.65 ppm, which was consistent with the m-Me 277 

substitution pathway of the carborane cage. The 1H NMR spectrum confirmed the symmetric structure of the 278 

dye, showing the benzylic protons signal of the spacer at 3.18 ppm and the two equivalent methyl signals of 279 
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the fluorophore scaffold at 2.74 and 1.47 ppm. Moreover, analysis of the coupling constant for the olefinic 280 

proton doublets at 6.87 ppm and 6.63 ppm revealed the full trans-selectivity of the cross coupling reaction 281 

(3JHH = 16.5 Hz). Although the formation of geminal substituted olefins in the cationic Heck reaction of 4-282 

substituted styrenes should be suppressed by the presence of the strong electron-withdrawing carboranyl 283 

cage,[30] a small amount of α,β-isomer 2a (6%) was also isolated from the reaction mixture, while no α,α-284 

isomer was detected (Scheme 1).[21] The presence of both the terminal olefinic protons (5.84 ppm and 5.10 285 

ppm respectively, 2JHH = 1.3 Hz) and the more deshielded trans-olefinic protons (3JHH = 16.5 Hz) in the 1H 286 

NMR spectrum of 2a (Figure 2, bottom) revealed the asymmetric substitution pathway, alongside with the 287 

splitting of the four methyl groups of the BODIPY unit.     288 

 289 

Figure 2. 1H NMR spectra of bis-β,β-styrenyl carborane BODIPY derivative 2 (top) and its α,β-isomer 2a 290 

(bottom) in CDCl3. * H2O signal; ** residual CDCl3 peak. 291 

 292 

Analysis of the 11B{1H} NMR spectra further confirmed the formation of the expected compounds, showing 293 

one resonance centered at 0.99 ppm for β,β-isomer 2 and at 1.01 ppm for α,β-isomer 2a assigned to the -BF2 294 

unit. In addition to the -BF2 resonance, these compounds show broad resonances in the region from -6.17 to -295 
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13.04 ppm with the typical 1:1:6:2 pattern characteristic of m-carborane clusters.[12f] The 13C{1H} NMR 296 

spectrum of β,β-isomer 2 shows a resonance at 42.8 ppm assigned to the two equivalent benzylic carbon atoms 297 

(split into two different signals at 42.7 and 42.6 ppm for the asymmetric α,β-isomer 2a), and the CC-CH3 can 298 

be identified from 24.0–25.0 ppm for both isomers.  299 

The Heck coupling procedure was successfully applied to the styrenyl substituted m-carborane derivative m-300 

Ph-CB bearing a phenyl ring at one C atom of the cluster (CC) to achieve symmetric dyes 3 and 4 (Scheme 2). 301 

To our delight, the reaction of iodinated BODIPY 1a using m-Ph-CB as coupling partner proceeded smoothly, 302 

affording the corresponding dye 3 in 57% isolated yield. Also halogenated BODIPY dyes 1b, incorporating a 303 

nonionic amphiphile oligoethylene glycol alkyl chain at the meso-position,[31] was successfully reacted with 304 

m-Ph-CB derivative affording dye 4 in 52% isolated yield. The 1H NMR spectra clearly confirmed the 305 

symmetric structure of the dyes and the incorporation of the carborane cage, showing the typical BH broad 306 

band of the closo-carborane cluster in the upfield region and the benzylic protons signal of the spacer at 3.18 307 

(3) and 3.26 ppm (4). The 11B{1H} NMR spectra of these compounds exhibited a resonance at 0.93 ppm (3) 308 

and at 0.95 ppm (4) attributed to the -BF2 unit, alongside with broad resonances in the region from -5.90 to -309 

13.51 ppm with the typical 2:6:2 pattern of m-carborane clusters. 310 

 311 
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 312 

Scheme 2. Synthesis of symmetric and asymmetric carborane-BODIPY dyes 3-4 and 7-8. Reaction conditions: 313 

i) substrate 1a-b (1 eq.), m-Ph-CB (2 eq.), Pd2(dba)3 (3 mol%), Pd(P(t-Bu)3)2 (6 mol%), Cy2NMe (5 eq.). ii) 314 

1c (1.1 eq.), m-Me-CB (1 eq.), Pd2(dba)3 (1.2 mol%), Pd(P(t-Bu)3)2 (1.6 mol%), Cy2NMe (1.4 eq.), dry 1,4-315 

dioxane, 100 °C, 12 h. iii) 5 (1 equiv.), N-iodosuccinimide (2 eq.), DCM, RT, 12 h. iv) 6 (1.1 eq.), styrenyl-316 

CB2 (1 eq.), Pd2(dba)3 (5 mol%), Pd(P(t-Bu)3)2 (5 mol%), Cy2NMe (1.4 eq.), dry 1,4-dioxane, 100 °C, 12 h. 317 

 318 

As a further application of this methodology, we then envisaged the possibility to extend the feasibility of our 319 

approach to the synthesis of asymmetric compounds bearing two different C-substituted carborane units. We 320 

thus planned a tandem cross coupling/iodination/cross coupling approach starting from the mono-iodinated 321 

1,3,5,7-tetramethylBODIPY dye 1c (Scheme 2). Reaction of BODIPY 1c with a stoichiometric amount of the 322 
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m-substituted styrenyl-carborane m-Me-CB afforded the corresponding mono-substituted derivative 5 in good 323 

yield (72%), which was easily converted into a new potential coupling partner 6 by mild iodination at the 6-324 

position in the presence of N-iodosuccinimide (NIS). Although the final Heck coupling between substrate 6 325 

and styrenyl-carboranes o-Ph-CB and m-Ph-CB required a higher catalyst loading, asymmetric dyes 7 and 8 326 

were successfully isolated with moderate yields of 55% and 35%, respectively. Analysis of the 1H NMR spectra 327 

revealed the asymmetric substitution pathway, showing two different benzylic signals of the spacers at 3.18 328 

and 3.07 ppm (7) and at 3.26 and 3.18 (8). Moreover, the 1H NMR of 7 exhibited two resolved trans-olefinic 329 

systems belonging to the different styrenyl carborane units (3JHH = 16.3 Hz and 3JHH = 16.5 Hz), confirming 330 

the stereoselectivity of each Heck coupling reaction of the tandem sequence. The 11B{1H} NMR spectrum of 331 

7, bearing two different carborane isomers, one m- and one o-carborane, displayed the -BF2 unit centered at 332 

1.08 ppm and a set of broad resonances in the range from -3.17 to -12.93 ppm, with a 2:1:1:14:2 pattern 333 

reflecting the combined m- (1:1:6:2) and o- (2:8) typical distributions of closo-carboranes. Analysis of the 334 

11B{1H} NMR spectrum of 8 showed a resonance of the -BF2 unit at 1.01 ppm and the 1:1:6:2 pattern of broad 335 

resonances in the region from -6.05 to -13.01 ppm, ascribed to the two Me and Ph-substituted m-carborane 336 

clusters.  337 

With the aim to compare the photophysical properties of this new class of red-shifted 2,6-disubstituted 338 

carborane-BODIPY dyes with other similar dyes with different substitution patterns, we finally envisaged the 339 

possibility to exploit our synthetic methodology for the introduction of two styrenyl-containing carboranes on 340 

the BODIPY core at the 3,5-positions. To this purpose, we planned a short one-step synthesis of the symmetric 341 

dye 9 bearing two m-Ph-CB units starting from the corresponding 3,5-dichloroBODIPY 1d (Scheme 3). The 342 

3,5-dichloro-meso-phenyl-BODIPY dye 1d was synthesized by acidic condensation of pyrrole with 343 

benzaldehyde followed by chlorination/oxidation, and exhibits an absorption maxima centered at 517 nm (ΦF 344 

= 0.13).[32] Pleasingly, the 3,5-dichloroBODIPY 1d reacted smoothly in 12 h with two equivalents of m-Ph-345 

CB in refluxing 1,4-dioxane under our Heck coupling conditions, affording the desired 3,5-disubstituted 346 

BODIPY 9 in 30% isolated yield. More details about the structural characterization of all the compounds can 347 

be found in the Supporting Information.  348 
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 349 

Scheme 3. Synthesis of symmetric 3,5-disubstituted BODIPY dye 9. 350 

 351 

3.2. Photophysical properties 352 

The photophysical behavior of the final compounds was investigated, and the most significant spectroscopic 353 

properties are collected in Table 1. Figure 3 shows UV/Vis and fluorescence spectra of dyes in THF solution 354 

at 298 K. The optical properties of the new synthesized compounds were compared with the parent 2,6-styrenyl 355 

disubstituted BODIPY dye DS-BDP (meso-phenyl-2,6-distyrylBODIPY)[21] and the 3,5-styrenyl disubstituted 356 

BODIPY analogue 3,5-BDP (meso-phenyl-3,5-distyrylBODIPY),[33] both lacking the carborane cages.  357 

 358 
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 360 
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Table 1. Selected photophysical data for the reported compounds 2, 2a, 3, 4 and 7-9.[a] BODIPY dyes DS-365 

BDP (entry 1)[b] and 3,5-BDP (entry 9)[c] were added for comparison. 366 

 367 

Entry Compound λabs (nm) λem(nm) ε/106 
(M-1 cm-1) ΦF

[d] Stokes shift/ 
103 (cm-1) 

ε ΦF  

(M-1 cm-1) 
1 DS-BDP 575 633 0.031 0.01 1.59 310 

2 2 584 640 0.056 0.14 1.50 7840 
3 2a 548 627 0.030 0.05 2.30 1500 
4 3 578 643 0.035 0.11 1.75 3850 
5 4 580 640 0.029 0.14 1.62 4060 
6 7 578 643 0.049 0.12 1.75 5880 
7 8 582 641 0.058 0.12 1.58 6960 
8 9 641 651 0.087 0.36 0.24 31320 
9 3,5-BDP 633 646 0.104 0.83 0.32 86320 

[a] Measured in THF at room temperature. [b] Data for DS-BDP are reported in the literature in CH2Cl2 (see ref. 368 

[21]). [c] Data for 3,5-BDP are reported in the literature in THF (see ref. [33]) [d] Fluorescence quantum yields 369 

were determined using solutions of Rhodamine 101 in methanol (ΦF=1) as standard.[22]  370 

 371 

Generally, the absorption spectra of compounds 2-4 and 7-8 exhibited a significant bathochromic shift 372 

compared to their parent fluorophore scaffolds (meso-phenyl-1,3,5,7-tetramethyl BODIPY, λabs = 500 nm in 373 

THF),[34] but slightly red-shifted (3-9 nm) with respect to the DS-BDP (meso-phenyl-2,6-distyrylBODIPY),[21] 374 

showing a very small influence of the carborane cage and their respective CC-substituents (Me or Ph). 375 

Remarkably, all the compounds showed an enhanced fluorescence emission efficiency compared to the 376 

reference compound DS-BDP, resulting in a ten-fold increase of the fluorescence quantum yield (Table 1). 377 

This result might be ascribed to the well-known influence of the carborane cage on the photoluminescent 378 

properties of CB-containing dyes,[12f] along with  a lower degree of conformational flexibility in the S1 excited 379 

state provided by the incorporation of the carborane clusters.[21] Moreover, compounds 2-4 and 7-8 showed 380 

large Stokes shifts (56-65 nm) compared to other BODIPY dyes, which suffer of some experimental limitations 381 

such as self-quenching.[35] The simplest symmetrical BODIPY derivative 2, containing the m-Me-CB unit, 382 
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showed the highest fluorescence quantum yield (ΦF = 14 %) of the series bearing a phenyl group at the meso-383 

position (Table 1, entry 2). The photophysical features of 2 are easily distinguishable from the side product 2a 384 

containing one α-styrenyl substituted unit. A remarkable hypsochromic shift in the absorption (548 nm) and 385 

emission (627 nm) spectra of 2a in THF were observed (Table 1, entry 3), together with a larger Stokes shift 386 

and a significantly lower ΦF, compared to the β,β-isomer 2. These differences can be readily attributed to the 387 

lower degree of conjugation between the α-styrenyl substituent and the BODIPY scaffold, and to the increased 388 

HOMO-LUMO gap resulting from the stabilization effect of the α-styrenyl substituent exclusively on the 389 

HOMO.[21] The introduction of a phenyl ring on the same m-carborane isomer in 3 had minimal to no effect 390 

on the photophysical features of the compound (Table 1, entry 4), which were depicted by comparable labs, 391 

lem, whereas a drop of the ΦF was observed (ΦF = 11 %). When Ph-substituted m-carborane derivatives were 392 

compared (3 and 4), a slight increase of the fluorescence efficiency (ΦF = 14 %) was produced by introducing 393 

a short-terms oligoethylene glycol alkyl chain on the meso-phenyl ring (4, Table 1, entry 5). This latter was of 394 

particular synthetic value since it allowed the design of pre- or post-functionalization strategies for the 395 

introduction of amphiphilic solubilizing groups on the fluorophore core without affecting the PL properties. 396 

Regarding the asymmetric BODIPY dyes 7 and 8, similar results were obtained for both compounds (Table 1, 397 

entries 6-7), exhibiting comparable photophysical features in the series, although slightly lower quantum 398 

efficiencies were obtained when compared to their symmetric analogues 2-4. The replacement of one m-Me-399 

CB in 2 with a different CB moiety (o-Ph-CB or m-Ph-CB) in 7 had no significant impact neither on the 400 

BODIPY solubility in various solvents nor on the photophysical features as expected. Interestingly, shifting 401 

the substituents on the BODIPY core from the positions 2,6- in 3 to the positions 3,5- in 9 (Table 1, entry 8) 402 

caused a remarkable effect on the photophysical properties. The absorption spectrum of 9 (Figure 3, right) 403 

exhibited the typical narrow and intense structured S0®S1 transition with labs = 641 nm, slightly red-shifted 404 

(8 nm) with respect to the reference compound 3,5-BDP (meso-phenyl-3,5-distyrylBODIPY, labs = 633 nm). 405 

The absorption maxima of 3 (578 nm) was largely blue-shifted in comparison to 9 suggesting a less planar 406 

conformation also characterized by a lower extinction coefficient. Noteworthy, compound 9 shows the highest 407 

molar extinction coefficient of the series which is comparable with the reference 3,5-BDP. On the other hand, 408 

the fluorescence properties were similar in terms of quantum yields, while emission maximum of 9 was slightly 409 
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red-shifted (7 nm) compared to 3. Compound 9 showed a smaller Stokes shift compared to reference 3,5-BDP 410 

(13 nm) and 3 (65 nm) in THF, which can be rationalized on the basis of the dihedral angle between the two 411 

styrenyl substituents and the BODIPY moieties in the excited state.[21] Although 3,5-styrenyl disubstituted 412 

BODIPY dyes showed higher fluorescence quantum yields compared to their 2,6-analogues (e.g. entries 1 and 413 

9) due to a lower nonradioactive decay, the presence of two carborane cages in 9 significantly lower the 414 

fluorescence quantum yields with respect to 3,5-BDP (Table 1). We have also calculated the brightness of 415 

these dyes, which is the product of the molar extinction coefficient at the excitation wavelength and the 416 

fluorescence quantum yield [e(l)·ΦF]. As expected, the 3,5-disubstituted compound 9 showed the highest 417 

brightness of the series (31320 M-1 cm-1), while among the 2,6-substituted dyes the highest value of brightness 418 

was found for BODIPY derivative 2 (7840 M-1 cm-1), followed by the asymmetric derivatives 8 (6960 M-1 cm-419 

1) and 7 (5880 M-1 cm-1). 420 

 421 

Figure 3. Normalized absorption (dashed) and emission (solid) spectra of symmetric (2-4, left), asymmetric 422 

(7-8, right) and 9 (right) carborane-BODIPY derivatives in THF. 423 

 424 

The most performing probes have been also investigated in different solvents to evaluate their solubility, spot 425 

potential aggregation issues and screen the photophysical properties related to various polar environments. Of 426 

these, the polarity-induced change in the optical properties, often denoted as fluorescence solvatochromism,[36] 427 

is of wide interest in order both to identify several polarity-dependent molecular events, and in advancing the 428 

design of novel functional dyes. Among the new compounds, one representative candidate for each class was 429 
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selected on the basis of the most promising optical features (ΦF and brightness). The UV-Vis absorption and 430 

fluorescence spectra of carborane-BODIPY dyes 2 (m-Me symmetric), 3 (m-Ph symmetric), 7 (asymmetric) 431 

and 3,5-disubstituted analogue 9 were recorded in solvents with different dielectric constants (2.25–46.7) at 432 

298 K (Figure 4). The scarce influence of solvent polarity observed on the absorption spectra of the new 433 

compounds reflected the typical photophysical behavior of BODIPY chromophores.[37] Compound 2 showed 434 

a weak dependence of the absorption (575-584 nm) and the emission (642-652 nm) maxima on the 435 

environmental polarity (Figure 5a), as expected in symmetrical scaffolds due to the lack of an intrinsic 436 

molecular dipole moment. As a consequence, a similar behavior was observed for compound 3 bearing the 437 

phenyl substituted m-carborane cage, showing very little solvent effects on the absorption maxima (572-581 438 

nm) and fluorescence emission maxima slightly modulated in the 640-650 nm range (Figure 5b). The 439 

introduction of two different substituted o- and m-carborane units in the fluorophore core did not affect 440 

significantly the intrinsic molecular dipole moment of asymmetric carborane-BODIPY dyes, as a matter of 441 

fact the influence of solvent polarity on the PL properties of 7 (Figure 5c) remained very small (λabs = 572-584 442 

nm and λem = 640-650 nm). A similar behavior was observed for the symmetric compound 9 (Figure 5d), as a 443 

consequence of the low molecular dipole moment. None of the investigated compounds had shown 444 

precipitation in different solutions or aggregation phenomena detectable by absorption or emission 445 

spectroscopies. Water AF 446 

which make these dyes as promising candidates for further investigations in in live-cell imaging and bio-447 

supramolecular assays. 448 

  449 

a) b) 
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 450 

Figure 4. UV-Vis absorption and fluorescence spectra of BODIPY dyes (a) 2, (b) 3, (c) 7 and (d) 9 recorded 451 

in different solvents (ε) at 298 K: dioxane (2.25), toluene (2.38), CHCl3 (4.81), THF (7.58), CH3OH (32.7), 452 

CH3CN (37.5), and DMSO (46.7). See Supporting Information for normalized spectra.  453 

 454 

4. Conclusions 455 

 456 

In summary, a set of new red-light emitting 2,6-distyrenyl-substituted carborane-BODIPY dyes with enhanced 457 

boron content was successfully synthesized by a versatile Pd-catalyzed Heck coupling reaction, starting from 458 

a styrenyl-containing carborane and a halogenated dipyrromethene fluorophore. The synthetic procedure was 459 

successfully applied to different types of carborane derivatives with moderate yields, allowing both the 460 

introduction of two identical carborane cages into the fluorophore core and the extension of the π-conjugation 461 

within a single synthetic step. Of particular synthetic value, this methodology allowed the preparation of 462 

asymmetric dyes, bearing two different substituted carborane cages, by means of a tandem cross 463 

coupling/iodination/cross coupling sequence. The final compounds were fully characterized and their 464 

photophysical behavior was investigated. Absorption and photoluminescence (PL) emission patterns of 465 

synthesized dyes were almost unaffected by the different substituents on the Cc of the carborane cage or the 466 

cluster isomer. The 2,6-disubstituted dyes exhibited a significant bathochromic shift compared to their parent 467 

fluorophore scaffold (without carborane clusters) with a significant increase of the emission fluorescent 468 

quantum yields, while the introduction of the two carborane units in 3,5-positions of the fluorophore led to a 469 

significant depletion of the fluorescence efficiency with regards to its homologous fluorophore. Remarkably, 470 

the introduction of a short-terms oligoethylene glycol alkyl chain on the meso-phenyl ring had no effect on the 471 

d) c) 



22 
 

PL properties of the dyes, allowing the design of pre- or post-functionalization strategies for the introduction 472 

of solubilizing groups on the fluorophore core. The scarce influence of solvent polarity observed on the 473 

absorption spectra of the new compounds, together with the absence of precipitation or aggregation 474 

phenomena, suggested high stability for all of them in solution and make these types of dyes promising 475 

candidates for further investigations in live-cell imaging and bio-supramolecular assays.  476 
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