
Time Flies When Looking out of the Window:
Timed Games with Window Parity Objectives
James C. A. Main
UMONS – Université de Mons, Belgium

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Jeremy Sproston
University of Torino, Italy

Abstract
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff
objectives with time bounds in two-player turn-based games on graphs [17]. It has since proved
useful in a variety of settings, including parity objectives in games [14] and both mean-payoff and
parity objectives in Markov decision processes [12].

We study window parity objectives in timed automata and timed games: given a bound on the
window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently
small window in which the smallest priority is even. We show that checking that all time-divergent
paths of a timed automaton satisfy such a window parity objective can be done in polynomial
space, and that the corresponding timed games can be solved in exponential time. This matches the
complexity class of timed parity games, while adding the ability to reason about time bounds. We
also consider multi-dimensional objectives and show that the complexity class does not increase. To
the best of our knowledge, this is the first study of the window mechanism in a real-time setting.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Window objectives, timed automata, timed games, parity games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.25

Related Version Full Version: https://arxiv.org/abs/2105.06686 [23]

Funding Research supported by F.R.S.-FNRS under Grant n° F.4520.18 (ManySynth).
Mickael Randour : F.R.S.-FNRS Research Associate.

1 Introduction

Timed automata and games. Timed automata [2] are extensions of finite automata with
real-valued variables called clocks. Clocks increase at the same rate and measure the elapse of
time between actions. Transitions are constrained by the values of clocks, and clocks can be
reset on transitions. Timed automata are used to model real-time systems [4]. Not all paths
of timed automata are meaningful; infinite paths that take a finite amount of time, called
time-convergent paths, are often disregarded when checking properties of timed automata.
Timed automata induce uncountable transition systems. However, many properties can be
checked using the region abstraction, which is a finite quotient of the transition system.

Timed automaton games [24], or simply timed games, are games played on timed automata:
one player represents the system and the other its environment. Players play an infinite
amount of rounds: for each round, both players simultaneously present a delay and an action,
and the play proceeds according to the fastest move (note that we use paths for automata and
plays for games to refer to sequences of consecutive states and transitions). When defining
winning conditions for players, convergent plays must be taken in account; we must not allow
a player to achieve its objective by forcing convergence but cannot either require a player to

© James C. A. Main, Mickael Randour, and Jeremy Sproston;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2021.25
https://arxiv.org/abs/2105.06686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Timed Games with Window Parity Objectives

force divergence (as it also depends on its opponent). Given an objective as a set of plays,
following [20], we declare a play winning for a player if either it is time-divergent and belongs
to the objective, or it is time-convergent and the player is not responsible for convergence.

Parity conditions. The class of ω-regular specifications is widely used (e.g., it can express
liveness and safety), and parity conditions are a canonical way of representing them. In
(timed) parity games, locations are labeled with a non-negative integer priority and the parity
objective is to ensure the smallest priority occurring infinitely often along the path/play
is even. Timed games with ω-regular objectives given as parity automata are shown to be
solvable in [20]. Furthermore, a reduction from timed parity games to classical turn-based
parity games on a graph is established in [19].

Real-timed windows. The parity objective can be reformulated: for all odd priorities seen
infinitely often, a smaller even priority must be seen infinitely often. One can see the odd
priority as a request and the even one as a response. The parity objective does not specify
any timing constraints between requests and responses. In applications however, this may
not be sufficient: for example, a server should respond to requests in a timely manner.

We revisit the window mechanism introduced by Chatterjee et al. for mean-payoff and
total-payoff games [17] and later applied to parity games [14] and to parity and mean-payoff
objectives in Markov decision processes [12]: we provide the first (to the best of our knowledge)
study of window objectives in the real-time setting. More precisely, we lift the (resp. direct)
fixed window parity objective of [14] to its real-time counterpart, the (resp. direct) timed
window parity objective, and study it in timed automata and games.

Intuitively, given a non-negative integer bound λ on the window size, the direct timed
window parity objective requires that at all times along a path/play, we see a window of size
at most λ such that the smallest priority in this window is even. While time was counted
as steps in prior works (all in a discrete setting), we naturally measure window size using
delays between configurations in real-time models. The (non-direct) timed window parity
objective is simply a prefix-independent version of the direct one, thus more closely matching
the spirit of classical parity: it asks that some suffix satisfies the direct objective.

Contributions. We extend window parity objectives to a dense-time setting, and study both
verification of timed automata and realizability in timed games. We consider adaptations
of the fixed window parity objectives of [14], where the window size is given as a parameter.
We establish that (a) verifying that all time-divergent paths of a timed automaton satisfy a
timed window parity specification is PSPACE-complete; and that (b) checking the existence
of a winning strategy for a window parity objective in timed games is EXPTIME-complete.
These results (Thm. 8) hold for both the direct and prefix-independent variants, and they
extend to multi-dimensional objectives, i.e., conjunctions of window parity.

All algorithms are based on a reduction to an expanded timed automaton (Def. 4). We
establish that, similarly to the discrete case, it suffices to keep track of one window at a time
(or one per objective in the multi-dimensional case) instead of all currently open windows,
thanks to the so-called inductive property of windows (Lem. 3). A window can be summarized
using its smallest priority and its current size: we encode the priorities in a window by
extending locations with priorities and using an additional clock to measure the window’s
size. The (resp. direct) timed window parity objective translates to a co-Büchi (resp. safety)
objective on the expanded automaton. Locations to avoid for the co-Büchi (resp. safety)
objective indicate a window exceeding the supplied bound without the smallest priority

J. C. A. Main, M. Randour, and J. Sproston 25:3

of the window being even – a bad window. To check that all time-divergent paths of the
expanded automaton satisfy the safety (resp. co-Büchi) objective, we check for the existence
of a time-divergent path visiting (resp. infinitely often) an unsafe location using the PSPACE
algorithm of [2]. To solve the similarly-constructed expanded game, we use the EXPTIME
algorithm of [20].

Lower bounds are established by encoding safety objectives on timed automata as
(resp. direct) timed window parity objectives. Checking safety properties over time-divergent
paths in timed automata is PSPACE-complete [2] and solving safety timed games is EXPTIME-
complete [21].

Comparison. Window variants constitute conservative approximations of classical objectives
(e.g., [17, 14, 12]), strengthening them by enforcing timing constraints. Complexity-wise, the
situation is varied. In one-dimension turn-based games on graphs, window variants [17, 14]
provide polynomial-time alternatives to the classical objectives, bypassing long-standing
complexity barriers. However, in multi-dimension games, their complexity becomes worse
than for the original objectives: in particular, fixed window parity games are EXPTIME-
complete for multiple dimensions [14]. We show that timed games with multi-dimensional
window parity objectives are in the same complexity class as untimed ones, i.e., dense time
comes for free.

For classical parity objectives, timed games can be solved in exponential time [19, 20].
The approach of [19] is as follows: from a timed parity game, one builds a corresponding
turn-based parity game on a graph, the construction being polynomial in the number of
priorities and the size of the region abstraction. We recall that despite recent progress
on quasi-polynomial-time algorithms (starting with [16]), no polynomial-time algorithm is
known for parity games; the blow-up comes from the number of priorities. Overall, the
two sources of blow-up – region abstraction and number of priorities – combine in a single-
exponential solution for timed parity games. We establish that (multi-dimensional) window
parity games can be solved in time polynomial in the size of the region abstraction, the
number of priorities and the window size, and exponential in the number of dimensions. Thus
even for conjunctions of objectives, we match the complexity class of single parity objectives
of timed games, while avoiding the blow-up related to the number of priorities and enforcing
time bounds between odd priorities and smaller even priorities via the window mechanism.

Outline. Due to space constraints, we only provide an overview of our work. All technical
details, intermediary results and proofs can be found in the full version of this paper [23].
This work is organized as follows. Sect. 2 summarizes all prerequisite notions and vocabulary.
In Sect. 3, we introduce the timed window parity objective, compare it to the classical parity
objective, and establish some useful properties. Our reduction from window parity objectives
to safety or co-Büchi objectives is presented in Sect. 4. Finally, Sect. 5 presents complexity
results.

Related work. In addition to the aforementioned foundational works, the window mechanism
has seen diverse extensions and applications: e.g., [5, 3, 11, 15, 22, 26, 8]. Window parity
games are strongly linked to the concept of finitary ω-regular games: see, e.g., [18], or [14]
for a complete list of references. The window mechanism can be used to ensure a certain
form of (local) guarantee over paths: different techniques have been considered in stochastic
models, notably variance-based [10] or worst-case-based [13, 7] methods. Finally, let us recall
that game models provide a useful framework for controller synthesis [25], and that timed
automata have been extended in a number of directions (see, e.g., [9] and references therein):
applications of the window mechanism in such richer models could be of interest.

CONCUR 2021

25:4 Timed Games with Window Parity Objectives

2 Preliminaries

Timed automata. A clock variable, or clock, is a real-valued variable. Let C be a set
of clocks. A clock constraint over C is a conjunction of formulae of the form x ∼ c with
x ∈ C, c ∈ N, and ∼∈ {≤, ≥, >, <}. We write x = c as shorthand for the clock constraint
x ≥ c ∧ x ≤ c. Let Φ(C) denote the set of clock constraints over C.

Let R≥0 denote the set of non-negative real numbers. We refer to functions ν ∈ RC
≥0 as

clock valuations over C. A clock valuation ν over C satisfies a clock constraint of the form
x ∼ c if ν(x) ∼ c and a conjunction g ∧ h if it satisfies both g and h. For a clock constraint g

and clock valuation ν, we write ν |= g if ν satisfies g.
For a clock valuation ν and d ≥ 0, we let ν + d be the valuation defined by (ν + d)(x) =

ν(x) + d for all x ∈ C. For any valuation ν and D ⊆ C, we define resetD(ν) to be the
valuation agreeing with ν for clocks in C \ D and that assigns 0 to clocks in D. We denote
by 0C the zero valuation, assigning 0 to all clocks in C.

A timed automaton (TA) is a tuple (L, ℓinit, C, Σ, I, E) where L is a finite set of locations,
ℓinit ∈ L is an initial location, C a finite set of clocks containing a special clock γ which keeps
track of the total time elapsed, Σ a finite set of actions, I : L → Φ(C) an invariant assignment
function and E ⊆ L×Φ(C)×Σ×2C\{γ} ×L an edge relation. We only consider deterministic
timed automata, i.e., we assume that in any location ℓ, there are no two outgoing edges
(ℓ, g1, a, D1, ℓ1) and (ℓ, g2, a, D2, ℓ2) sharing the same action such that the conjunction g1 ∧ g2
is satisfiable. For an edge (ℓ, g, a, D, ℓ′), the clock constraint g is called the guard of the edge.

A TA A = (L, ℓinit, C, Σ, I, E) gives rise to an uncountable transition system T (A) =
(S, sinit, M, →) with the state space S = L × RC

≥0, the initial state sinit = (ℓinit, 0C), set of
actions M = R≥0 × (Σ ∪ {⊥}) and the transition relation →⊆ S × M × S defined as follows:
for any action a ∈ Σ and delay d ≥ 0, we have that ((ℓ, ν), (d, a), (ℓ′, ν′)) ∈→ if and only if
there is some edge (ℓ, g, a, D, ℓ′) ∈ E such that ν + d |= g, ν′ = resetD(ν + d), ν + d |= I(ℓ)
and ν′ |= I(ℓ′); for any delay d ≥ 0, ((ℓ, ν), (d, ⊥), (ℓ, ν + d)) ∈→ if and only if ν + d |= I(ℓ).
Let us note that the satisfaction set of clock constraints is convex: it is described by a
conjunction of inequalities. Whenever ν |= I(ℓ), the above conditions ν + d |= I(ℓ) (the
invariant holds after the delay) are equivalent to requiring ν + d′ |= I(ℓ) for all 0 ≤ d′ ≤ d

(the invariant holds at each intermediate time step).
A move is any pair in R≥0 × (Σ ∪ {⊥}) (i.e., an action in the transition system). For

any move m = (d, a) and states s, s′ ∈ S, we write s
m−→ s′ or s

d,a−−→ s′ as shorthand for
(s, m, s′) ∈→. Moves of the form (d, ⊥) are called delay moves. We say a move m is enabled
in a state s if there is some s′ such that s

m−→ s′. There is at most one successor per move in a
state, as we do not allow two guards on edges labeled by the same action to be simultaneously
satisfied.

A path in a TA A is a finite or infinite sequence s0(d0, a0)s1 . . . ∈ S(MS)∗ ∪ (SM)ω such
that for all j, sj is a state of T (A) and for all j > 0, sj−1

dj−1,aj−1−−−−−−→ sj is a transition in
T (A). A path is initial if s0 = sinit. For clarity, we write s0

d0,a0−−−→ s1
d1,a1−−−→ · · · instead of

s0(d0, a0)s1(d1, a1)

An infinite path π = (ℓ0, ν0) d0,a0−−−→ (ℓ1, ν1) . . . is time-divergent if the sequence (νj(γ))j∈N
is not bounded from above. A path which is not time-divergent is called time-convergent;
time-convergent paths are traditionally ignored in analysis of timed automata [1, 2] as they
model unrealistic behavior. This includes ignoring Zeno paths, which are time-convergent
paths along which infinitely many actions appear. We write Paths(A) for the set of paths of A.

J. C. A. Main, M. Randour, and J. Sproston 25:5

Priorities. A priority function is a function p : L → {0, . . . , d − 1} with d ≤ |L|. We use
priority functions to express parity objectives. A k-dimensional priority function is a function
p : L → {0, . . . , d − 1}k which assigns vectors of priorities to locations.

Timed games. We consider two player games played on TAs. We refer to the players as
player 1 (P1) for the system and player 2 (P2) for the environment. We use the notion of
timed automaton games of [20].

A timed (automaton) game (TG) is a tuple G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ, I, E)
is a TA and (Σ1, Σ2) is a partition of Σ. We refer to actions in Σi as Pi actions for i ∈ {1, 2}.

Recall a move is a pair (d, a) ∈ R≥0 × (Σ ∪ {⊥}). Let S denote the set of states of T (A).
In each state s = (ℓ, ν) ∈ S, the moves available to P1 are the elements of the set M1(s)
where M1(s) = {(d, a) ∈ R≥0 × (Σ1 ∪ {⊥}) | ∃ s′, s

d,a−−→ s′} which contains moves with P1
actions and delay moves that are enabled in s. The set M2(s) is defined analogously with P2
actions. We write M1 and M2 for the set of all moves of P1 and P2 respectively.

At each state s along a play, both players simultaneously select a move (d(1), a(1)) ∈ M1(s)
and (d(2), a(2)) ∈ M2(s). Intuitively, the fastest player gets to act and in case of a tie, the
move is chosen non-deterministically. This is formalized by the joint destination function
δ : S × M1 × M2 → 2S , defined by

δ(s, (d(1), a(1)), (d(2), a(2))) =


{s′ ∈ S | s

d(1),a(1)

−−−−−→ s′} if d(1) < d(2)

{s′ ∈ S | s
d(2),a(2)

−−−−−→ s′} if d(1) > d(2)

{s′ ∈ S | s
d(i),a(i)

−−−−−→ s′, i = 1, 2} if d(1) = d(2).

For m(1) = (d(1), a(1)) ∈ M1 and m(2) = (d(2), a(2)) ∈ M2, we write delay(m(1), m(2)) =
min{d(1), d(2)} to denote the delay occurring when P1 and P2 play m(1) and m(2) respectively.

A play is defined similarly to a path: it is a finite or infinite sequence of the form
s0(m(1)

0 , m
(2)
0)s1(m(1)

1 , m
(2)
1) . . . ∈ S((M1 × M2)S)∗ ∪ (S(M1 × M2))ω where for all indices

j, m
(i)
j ∈ Mi(sj) for i ∈ {1, 2}, and for j > 0, sj ∈ δ(sj−1, m

(1)
j−1, m

(2)
j−1). A play is initial if

s0 = sinit. For a finite play π = s0 . . . sn, we set last(π) = sn. For an infinite play π = s0 . . .,
we write π|n = s0(m(0)

0 , m
(1)
0) . . . sn. A play follows a path in the TA, but there need not be

a unique path compatible with a play: if along a play, at the nth step, the moves of both
players share the same delay and target state, either move can label the nth transition in a
matching path.

Similarly to paths, an infinite play π = (ℓ0, ν0)(m(1)
0 , m

(2)
0) · · · is time-divergent if and

only if (νj(γ))j∈N is not bounded from above. Otherwise, we say a play is time-convergent.
We define the following sets: Plays(G) for the set of plays of G; Playsfin(G) for the set of finite
plays of G; Plays∞(G) for the set of time-divergent plays of G. We also write Plays(G, s) to
denote plays starting in a state s of T (A).

Note that our games are built on deterministic TAs. From a modeling standpoint, this is
not restrictive, as we can simulate a non-deterministic TA through the actions of P2.

Strategies. A strategy for Pi is a function describing which move a player should use based
on a play history. Formally, a strategy for Pi is a function σi : Playsfin(G) → Mi such that for
all π ∈ Playsfin(G), σi(π) ∈ Mi(last(π)). This last condition requires that each move given
by a strategy be enabled in the last state of a play.

A play s0(m(1)
0 , m

(2)
0)s1 . . . is said to be consistent with a Pi-strategy σi if for all indices

j, m
(i)
j = σi(π|j). Given a Pi-strategy σi, we define Outcomei(σi) (resp. Outcomei(σi, s)) to

be the set of plays (resp. set of plays starting in state s) consistent with σi.

CONCUR 2021

25:6 Timed Games with Window Parity Objectives

Objectives. An objective represents the property we desire on paths of a TA or a goal of a
player in a TG. Formally, we define an objective as a set Ψ ⊆ Paths(A) of infinite paths (when
studying TAs) or a set Ψ ⊆ Plays(G) of infinite plays (when studying TGs). An objective
is state-based (resp. location-based) if it depends solely on the sequence of states (resp. of
locations) in a path or play. Any location-based objective is state-based.

▶ Remark 1. In the sequel, we present objectives exclusively as sets of plays. Definitions for
paths are analogous as all the objectives defined hereafter are state-based.

We use the following classical location-based objectives. The safety objective for a set
F of locations is the set of plays that never visit a location in F . The co-Büchi objective
for a set F of locations consists of plays traversing locations in F finitely often. The parity
objective for a priority function p over the set of locations requires that the smallest priority
seen infinitely often is even.

Fix F a set of locations and p a priority function. The aforementioned objectives are
formally defined as follows:

Safe(F) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0) . . . ∈ Plays(G) | ∀ n, ℓn /∈ F};

coBüchi(F) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0) . . . ∈ Plays(G) | ∃ j, ∀ n ≥ j, ℓn /∈ F};

Parity(p) = {(ℓ0, ν0)(m(1)
0 , m

(2)
0) . . . ∈ Plays(G) | (lim infn→∞ p(ℓn)) mod 2 = 0}.

Winning conditions. In games, we distinguish objectives and winning conditions. We adopt
the definition of [20]. Let Ψ be an objective. It is desirable to have victory be achieved
in a physically meaningful way: for example, it is unrealistic to have a safety objective be
achieved by stopping time. This motivates a restriction to time-divergent plays. However,
this requires P1 to force the divergence of plays, which is not reasonable, as P2 can stall
using delays with zero time units. Thus we also declare winning time-convergent plays where
P1 is blameless. Let Blameless1 denote the set of P1-blameless plays, which we define in the
following way.

Let π = s0(m(1)
0 , m

(2)
0)s1 . . . be a (possibly finite) play. We say P1 is not responsible (or

not to be blamed) for the transition at step n in π if either d
(2)
n < d

(1)
n (P2 is faster) or

d
(1)
n = d

(2)
n and sn

d(1)
n ,a(1)

n−−−−−→ sn+1 does not hold in T (A) (P2’s move was selected and did not
have the same target state as P1’s) where m

(i)
n = (d(i)

n , a
(i)
n) for i ∈ {1, 2}. The set Blameless1

is formally defined as the set of infinite plays π such that there is some j such that for all
n ≥ j, P1 is not responsible for the transition at step n in π.

Given an objective Ψ, we set the winning condition WC1(Ψ) for P1 to be the set of plays

WC1(Ψ) = (Ψ ∩ Plays∞(G)) ∪ (Blameless1 \ Plays∞(G)).

Winning conditions for P2 are defined by exchanging the roles of the players in the former
definition. We consider that the two players are adversaries and have opposite objectives,
Ψ and ¬Ψ (shorthand for Plays(G) \ Ψ). There may be plays π such that π /∈ WC1(Ψ) and
π /∈ WC2(¬Ψ), e.g., any time-convergent play in which neither player is blameless.

A winning strategy for Pi for an objective Ψ from a state s0 is a strategy σi such that
Outcomei(σi, s0) ⊆ WCi(Ψ).

Decision problems. We consider two different problems for an objective Ψ. The first is the
verification problem for Ψ, which asks given a timed automaton whether all time-divergent
initial paths satisfy the objective. Second is the realizability problem, which asks whether in
a timed automaton game with objective Ψ, P1 has a winning strategy from the initial state.

J. C. A. Main, M. Randour, and J. Sproston 25:7

3 Window objectives

We consider the fixed window parity and direct fixed window parity problems from [14] and
adapt the discrete-time requirements from their initial formulation to dense-time requirements
for TAs and TGs. Intuitively, a direct fixed window parity objective for some bound λ

requires that at all points along a play or a path, we see a window of size less than λ in
which the smallest priority is even. The (non-direct) window parity objective requires that
the direct objective holds for some suffix. In the sequel, we drop “fixed” from the name of
these objectives.

In this section, we formalize the timed window parity objective in TGs as sets of plays.
The definition for paths of TAs is analogous (see Rmk. 1). First, we define the timed good
window objective, which formalizes the notion of good windows. Then we introduce the timed
window parity objective and its direct variant. We compare these objectives to the parity
objective and argue that satisfying a window objective implies satisfying a parity objective,
and that window objectives do not coincide with parity objectives in general, via an example.
We conclude this section by presenting some useful properties of this objective.

For this entire section, we fix a TG G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E),
a priority function p : L → {0, . . . , d − 1} and a bound λ ∈ N \ {0} on the size of windows.

3.1 Definitions
Good windows. A window objective is based on a notion of good windows. Intuitively, a
good window for the parity objective is a fragment of a play in which less than λ time units
pass and the smallest priority of the locations appearing in this fragment is even.

The timed good window objective encompasses plays in which there is a good window at
the start of the play. We formally define the timed good window (parity) objective as the set

TGW(p, λ) =
{

(ℓ0, ν0)(m(1)
0 , m

(2)
0) . . . ∈ Plays(G) | ∃ j ∈ N, min

0≤k≤j
p(ℓk) mod 2 = 0

∧ νj(γ) − ν0(γ) < λ
}

.

The timed good window objective is a state-based objective.
We introduce some terminology related to windows. Let π = (ℓ0, ν0)(m(1)

0 , m
(2)
0)(ℓ1, ν1) . . .

be an infinite play. We say that the window opened at step n closes at step j if minn≤k≤j p(ℓk)
is even and for all n ≤ j′ < j, minn≤k≤j′ p(ℓk) is odd. Note that, in this case, we must have
minn≤k≤j p(ℓk) = p(ℓj). In other words, a window closes when an even priority smaller than
all other priorities in the window is encountered. The window opened at step n is said to
close immediately if p(ℓn) is even.

If a window does not close within λ time units, we refer to it as a bad window: the window
opened at step n is a bad window if there is some j⋆ ≥ n such that νj⋆(γ) − νn(γ) ≥ λ and
for all j ≥ n, if νj(γ) − νn(γ) < λ, then minn≤k≤j p(ℓk) is odd.

Direct timed window objective. The direct window parity objective in graph games requires
that every suffix of the play belongs to the good window objective. To adapt this objective
to a dense-time setting, we must express that at all times, we have a good window. We
require that this property holds not only at states which appear explicitly along plays, but
also in the continuum between them (during the delay within a location). To this end, let us
introduce a notation for suffixes of play.

CONCUR 2021

25:8 Timed Games with Window Parity Objectives

ℓ0
x ≤ 2

1

ℓ1
true

2

ℓ2
x ≤ 2

0

(true, a,∅) (true, a, {x})

(true, a, {x})

Figure 1 Timed automaton A. Edges are labeled with triples guard-action-resets. Priorities are
beneath locations. The initial state is denoted by an incoming arrow with no origin.

Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0)(ℓ1, ν1) . . . ∈ Plays(G) be a play. For all i ∈ {1, 2} and all

n ∈ N, write m
(i)
n = (d(i)

n , a
(i)
n) and dn = delay(m(1)

n , m
(2)
n) = νn+1(γ) − νn(γ). For any n ∈ N

and d ∈ [0, dn], let π+d
n→ be the delayed suffix of π starting in position n delayed by d time units,

defined as π+d
n→ = (ℓn, νn + d)((d(1)

n − d, a
(1)
n), (d(2)

n − d, a
(2)
n))(ℓn+1, νn+1)(m(1)

n+1, m
(2)
n+1) . . . If

d = 0, we write πn→ rather than π+0
n→.

Using the notations above, we define the direct timed window (parity) objective as the set

DTW(p, λ) = {π ∈ Plays(G) | ∀ n ∈ N, ∀ d ∈ [0, dn], π+d
n→ ∈ TGW(p, λ)}.

The direct timed window objective is state-based: the timed good window objective is
state-based and the delays dn are encoded in states (by clock γ), thus all conditions in the
definition of the direct timed window objective depend only the sequence of states of a play.

Timed window objective. We define the timed window (parity) objective as a prefix-
independent variant of the direct timed window objective. Formally, we let

TW(p, λ) = {π ∈ Plays(G) | ∃ n ∈ N, πn→ ∈ DTW(p, λ)}.

The timed window objective requires the direct timed window objective to hold from some
point on. This implies that the timed window objective is state-based.

3.2 Comparison with parity objectives
Both the direct and non-direct timed window objectives reinforce the parity objective with
time bounds. It can easily be shown that satisfying the direct timed window objective implies
satisfying a parity objective. Any odd priority seen along a play in DTW(p, λ) is answered
within λ time units by a smaller even priority. Therefore, should any odd priority appear
infinitely often, it is followed by a smaller even priority. As the set of priorities is finite, there
must be some smaller even priority appearing infinitely often. This in turn implies that the
parity objective is fulfilled. It follows from prefix-independence of the parity objective, that
satisfying the non-direct timed window objective implies satisfying the parity objective.

However, in some cases, the timed window objectives may not hold even though the
parity objective holds. For simplicity, we provide an example on a TA, rather than a TG.
Consider the timed automaton A depicted in Fig. 1.

All time-divergent paths of A satisfy the parity objective. We can classify time-divergent
paths in two families: either ℓ2 is visited infinitely often, or from some point on only delay
transitions are taken in ℓ1. In the former case, the smallest priority seen infinitely often is 0
and in the latter case, it is 2.

However, there is a path π such that for all window sizes λ ∈ N \ {0}, π violates the direct
and non-direct timed window objectives. Initialize n to 1. This path can be described by the
following loop: play action a in ℓ0 with delay 0, followed by action a with delay n in ℓ1 and

J. C. A. Main, M. Randour, and J. Sproston 25:9

action a in ℓ2 with delay 0, increase n by 1 and repeat. The window opened in ℓ0 only closes
when location ℓ2 is entered. At the n-th step of the loop, this window closes after n time
units. As we let n increase to infinity, there is no window size λ such that this path satisfies
the direct and non-direct timed window objectives for λ.

This example demonstrates the interest of reinforcing parity objectives with time bounds;
we can enforce that there is a bounded delay between an odd priority and a smaller even
priority in a path.

3.3 Properties of window objectives
We present several properties of the timed window objective. First, we show that we need
only check good windows for non-delayed suffixes πn→. Once this property is introduced, we
move on to the inductive property of windows, which is the crux of the reduction in the next
section. This inductive property states that when we close a window in less than λ time
units all other windows opened in the meantime also close in less than λ time units.

The definition of the direct timed window objective requires checking uncountably many
windows. This can be reduced to a countable number of windows: those opened when
entering states appearing along a play. Let us explain why no information is lost through
such a restriction. We rely on a timeline-like visual representation given in Fig. 2. Consider
a window that does not close immediately and is opened in some state of the play delayed
by d time units, of the form (ℓn, νn + d) (depicted by the circle at the start of the bottom
line of Fig. 2). This implies that the priority of ℓn is odd, otherwise this window would
close immediately. Assume the window opened at step n closes at step j (illustrated by the
middle line of the figure) in less than λ time units. As the priority of ℓn is odd, we must have
j ≥ n + 1 (i.e., the window opened at step n is still open as long as ℓn is not left). These
lines cover the same locations, i.e., the set of locations appearing along the time-frame given
by both the dotted and dashed lines coincide. Thus, the window opened d time units after
step n closes in at most λ − d time units, at the same time as the window opened at step n.

ℓn ℓn+1 ℓj−1 ℓj

Figure 2 A timeline representation of a play. Circles with labels indicate entry in a location. The
dotted line underneath represents a window opened at step n and closed at step j and the dashed
line underneath the window opened d time units after step n.

▶ Lemma 2. Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0) . . . ∈ Plays(G) and n ∈ N. Let dn denote

delay(m(1)
n , m

(2)
n). Then πn→ ∈ TGW(p, λ) if and only if for all d ∈ [0, dn], π+d

n→ ∈ TGW(p, λ).
Furthermore, π ∈ DTW(p, λ) if and only if for all n ∈ N, πn→ ∈ TGW(p, λ).

In turn-based games on graphs, window objectives exhibit an inductive property: when
a window closes, all subsequently opened windows close (or were closed earlier) [14]. This
is also the case for the timed variant. A window closes when an even priority smaller than
all priorities seen in the window is encountered. This priority is also smaller than priorities
in all windows opened in the meantime, therefore they must close at this point (if they are
not yet closed). We state this property only for windows opened at steps along the run and
neglect the continuum in between due to Lem. 2.

CONCUR 2021

25:10 Timed Games with Window Parity Objectives

▶ Lemma 3 (Inductive property). Let π = (ℓ0, ν0)(m(1)
0 , m

(2)
0)(ℓ1, ν1) . . . ∈ Plays(G). Let

n ∈ N. Assume the window opened at step n closes at step j. Then, for all n ≤ i ≤ j,
πi→ ∈ TGW(p, λ).

It follows from this inductive property that it suffices to keep track of one window at a
time when checking whether a play satisfies the (direct) timed window objective.

4 Reduction

We establish that the realizability (resp. verification) problem for the direct/non-direct timed
window parity objective can be reduced to the realizability (resp. verification) problem for
safety/co-Büchi objectives on an expanded TG (resp. TA). Our reduction uses the same
construction of an expanded TA for both the verification and realizability problems. A state
of the expanded TA describes the status of a window, allowing the detection of bad windows.
Due to space constraints, we only describe the reduction here and sketch the main technical
hurdles along the way. The full approach, including intermediate results, is presented in the
full version of our paper [23].

The sketch is as follows. First, we describe how a TA can be expanded with window-related
information. Second, we show that time-divergent plays in a TG and its expansion can be
related, by constructing two (non-bijective) mappings, in a manner such that a time-divergent
play in the base TG satisfies the direct/non-direct timed window parity objective if and only
if its related play in the expanded TG satisfies the safety/co-Büchi objective. These results
developed for plays are (indirectly) applied to paths in order to show the correctness of the
reduction for the verification problem. Third, we establish that the mappings developed in
the second part can be leveraged to translate strategies in TGs, and prove that the presented
translations preserve winning strategies, proving correctness of the reduction for TGs.

For this section, we fix a TG G = (A, Σ1, Σ2) with TA A = (L, ℓinit, C, Σ, I, E), a priority
function p and a bound λ on the size of windows.

Encoding the objective in an automaton. The inductive property (Lem. 3) implies that it
suffices to keep track of one window at a time when checking a window objective. Following
this, we encode the status of a window in the TA.

A window can be summarized by two characteristics: the lowest priority within it and for
how long it has been open. To keep track of the first trait, we encode the lowest priority seen
in the current window in locations of the TA. An expanded location is a pair (ℓ, q) where
q ∈ {0, . . . , d − 1}; the number q represents the smallest priority in the window currently
under consideration. We say a pair (ℓ, q) is an even (resp. odd) location if q is even (resp. odd).
To measure how long a window is opened, we use an additional clock z /∈ C that does not
appear in A. This clock is reset whenever a new window opens or a bad window is detected.

The focus of the reduction is over time-divergent plays. Some time-convergent plays may
violate a timed good window objective without ever seeing a bad window, e.g., when time
does not progress up to the supplied window size. Along time-divergent plays however, the
lack of a good window at any point equates to the presence of a bad window. We encode
the (resp. direct) timed window objective as a co-Büchi (resp. safety) objective. Locations
to avoid in both cases indicate bad windows and are additional expanded locations (ℓ, bad),
referred to as bad locations. We introduce two new actions β1 and β2, one per player, for
entering and exiting bad locations. While only the action β1 is sufficient for the reduction to
be correct, introducing two actions allows for a simpler correctness proof in the case of TGs;
we can exploit the fact that P2 can enter and exit bad locations.

J. C. A. Main, M. Randour, and J. Sproston 25:11

It remains to discuss how the initial location, edges and invariants of an expanded TA
are defined. We discuss edges and invariants for each type of expanded location, starting
with even locations, then odd locations and finally bad locations. Each rule we introduce
hereafter is followed by an application on an example. We depict the TA of Fig. 1 and the
reachable fragment of its expansion in Fig. 3 and use these TAs for our example. For this
explanation, we use the terminology of TAs (paths) rather than that of TGs (plays).

The initial location of an expanded TA encodes the window opened at the start of an
initial path of the original TA. This window contains only a single priority, that is the priority
of the initial location of the original TA. Thus, the initial location of the expanded TA is the
expanded location (ℓinit, p(ℓinit)). In our example, the initial location of the expanded TA is
(ℓ0, 1).

Even expanded locations encode windows that are closed and do not need to be monitored
anymore. Therefore, the invariant of an even expanded location is unchanged from the
invariant of the original location in the original TA. Similarly, we do not add any additional
constraints on the edges leaving even expanded locations. Leaving an even expanded location
means opening a new window: any edge leaving an even expanded location has an expanded
location of the form (ℓ, p(ℓ)) as its target (p(ℓ) is the only priority in the new window) and
resets z to start measuring the size of the new window. For example, the edge from (ℓ2, 0) to
(ℓ0, 1) of the expanded TA of Fig. 3 is derived from the edge from ℓ2 to ℓ0 of the original TA.

Odd expanded locations represent windows that are still open. The clock z measures how
long a window has been opened. If z reaches λ in an odd expanded location, that equates to
a bad window in the original TA. In this case, we force time-divergent paths of the expanded
TA to visit a bad location. This is done in three steps. We strengthen the invariant of odd
expanded locations to prevent z from exceeding λ. We also disable the edges that leave odd
expanded locations and do not go to a bad location whenever z = λ holds, by reinforcing
the guards of such edges by z < λ. Finally, we include two edges to a bad location (one per
additional action β1 and β2), which can only be used whenever there is a bad window, i.e.,
when z = λ. In the case of our example, if z reaches λ in (ℓ0, 1), we redirect the path to
location (ℓ0, bad), indicating a window has not closed in time in ℓ0. When z reaches λ in
(ℓ0, 1), no more non-zero delays are possible, the edge from (ℓ0, 1) to (ℓ1, 1) is disabled and
only the edges to (ℓ0, bad) are enabled.

When leaving an odd expanded location using an edge, assuming we do not go to a bad
location, the smallest priority of the window has to be updated. The new smallest priority
is the minimum between the smallest priority of the window prior to traversing the edge
and the priority of the target location. In our example for instance, the edge from (ℓ1, 1) to
(ℓ2, 0) is derived from the edge from ℓ1 to ℓ2 in the original TA. As the priority of ℓ2 is 0 and
is smaller than the current smallest priority of the window encoded by location (ℓ1, 1), the
smallest priority of the window is updated to 0 = min{1, p(ℓ2)} when traversing the edge.
Note that we do not reset z despite the encoded window closing upon entering (ℓ2, 0): the
value of z does not matter while in even locations, thus there is no need for a reset when
closing the window.

A bad location (ℓ, bad) is entered whenever a bad window is detected while in location
ℓ. Bad locations are equipped with the invariant z = 0 preventing the passage of time. In
this way, for time-divergent paths, a new window is opened immediately after a bad window
is detected. For each additional action β1 and β2, we add an edge exiting the bad location.
Edges leaving a bad location (ℓ, bad) have as their target the expanded location (ℓ, p(ℓ));
we reopen a window in the location in which a bad window was detected. The clock z is
not reset by these edges, as it was reset prior to entering the bad location and the invariant

CONCUR 2021

25:12 Timed Games with Window Parity Objectives

ℓ0
x ≤ 21

ℓ1
true2

ℓ2
x ≤ 20

(true, a,∅)

(true, a, {x})

(true, a, {x})

(ℓ0, 1)
x ≤ 2 ∧ z ≤ λ

(ℓ1, 1)
z ≤ λ

(ℓ0, bad)
z = 0

(ℓ1, bad)
z = 0

(ℓ2, 0)
x ≤ 2

(ℓ1, 2)
true

(z < λ, a,∅)

(z = λ, β, {z})(true, β,∅) (z = λ, β, {z})

(z < λ, a, {x})

(true, a, {x, z})

(true, β,∅)

(true, a, {x, z})

Figure 3 The TA of Fig. 1 (left) and the reachable fragment of its expansion (right). We write β

for actions β1 and β2.

z = 0 prevents any non-zero delay in the bad location. For instance, the edges from (ℓ1, bad)
to (ℓ1, 2) in our example represent that when reopening while in location ℓ1, the smallest
priority of this window is p(ℓ1) = 2.

The expansion depends on the priority function p and the bound on the size of windows
λ. Therefore, we write A(p, λ) for the expansion. The formal definition of A(p, λ) follows.

▶ Definition 4. Given a TA A = (L, ℓinit, C, Σ, I, E), the TA A(p, λ) is defined to be the TA
(L′, ℓ′

init, C ′, Σ′, I ′, E′) such that
L′ = L × ({0, . . . , d − 1} ∪ {bad});
ℓ′

init = (ℓinit, p(ℓinit));
C ′ = C ∪ {z} where z /∈ C is a new clock;
Σ′ = Σ ∪ {β1, β2} is an expanded set of actions with special actions β1, β2 /∈ Σ for bad
locations;
I ′(ℓ, q) = I(ℓ) for all ℓ ∈ L and even q ∈ {0, . . . , d − 1}, I ′(ℓ, q) = (I(ℓ) ∧ z ≤ λ) for all
ℓ ∈ L and odd q ∈ {0, . . . , d − 1}, and I ′(ℓ, bad) = (z = 0) for all ℓ ∈ L;
the set of edges E′ of A(p, λ) is the smallest set satisfying the following rules:

if q is even and (ℓ, g, a, D, ℓ′) ∈ E, then ((ℓ, q), g, a, D ∪ {z}, (ℓ′, p(ℓ′)) ∈ E′;
if q is odd and (ℓ, g, a, D, ℓ′) ∈ E, then ((ℓ, q), (g ∧z < λ), a, D, (ℓ′, min{q, p(ℓ′)})) ∈ E′;
for all ℓ ∈ L, odd q and β ∈ {β1, β2}, ((ℓ, q), (z = λ), β, {z}, (ℓ, bad)) ∈ E′ and
((ℓ, bad), true, β,∅, (ℓ, p(ℓ)) ∈ E′.

For a TG G = (A, Σ1, Σ2), we set G(p, λ) = (A(p, λ), Σ1 ∪ {β1}, Σ2 ∪ {β2}).

We write (ℓ, q, ν̄) for states of T (A(p, λ)) instead of ((ℓ, q), ν̄), for conciseness. The bar
over the valuation is a visual indicator of the different domain. We write Bad = L × {bad}
for the set of bad locations.

Expanding and projecting plays. A bijection between the set of plays of G and the set of
plays of G(p, λ) cannot be achieved naturally due to the additional information encoded in
the expanded TA, notably the presence of bad locations. We illustrate this by showing there
are some plays of G(p, λ) that are intuitively indistinguishable if seen as plays of G.

Consider the initial location ℓinit of G, and assume that its priority is odd and its invariant
is true. Consider the initial play π̄1 of G(p, λ) where the actions βi are used by both players
with a delay of λ at the start of the play and then only delay moves are taken in the reached

J. C. A. Main, M. Randour, and J. Sproston 25:13

bad location, i.e., π̄1 = (ℓ, p(ℓ), 0C∪{z})((λ, β1), (λ, β2))
(
(ℓ, bad, ν̄)((0, ⊥), (0, ⊥))

)ω, where
ν̄(x) = λ for all x ∈ C and ν̄(z) = 0. As the actions βi and z do not exist in G, π̄1 cannot be
discerned from the similar play π̄2 of G(p, λ) where instead of using the actions βi, delay moves
were used instead, i.e., π̄2 = (ℓ, p(ℓ), 0C∪{z})((λ, ⊥), (λ, ⊥))((ℓ, p(ℓ), ν̄′)((0, ⊥), (0, ⊥)))ω with
ν̄′(x) = λ for all x ∈ C ∪ {z}.

This motivates using two mappings instead of a bijection. Using the expansion mapping
Ex : Plays(G) → Plays(G(p, λ)) and projection mapping Pr : Plays(G(p, λ)) → Plays(G) defined
in the full paper [23], we obtain the following equivalence.

▶ Theorem 5. Let A = (L, ℓinit, C, Σ, I, E) be a TA, p a priority function and λ ∈ N \ {0}.
All time-divergent paths of A satisfy the (resp. direct) timed window objective if and only
if all time-divergent paths of A(p, λ) satisfy the co-Büchi (resp. safety) objective over bad
locations.

Translating strategies. We translate P1-strategies of the expanded TG to P1-strategies
of the original TG by evaluating the strategy on the expanded TG on expansions of plays
provided by the expansion mapping and by replacing any occurrences of β1 by ⊥. The fact
that translating a winning strategy of the expanded TG this way yields a winning strategy
of the original TG is not straightforward. When we translate a winning strategy σ̄ of G(p, λ)
to a strategy σ of G, the expansion of an outcome π of σ may not be consistent with σ̄,
e.g., moves of the form (d, β1) may appear along Ex(π) in places where σ̄ suggests otherwise,
therefore, it cannot be inferred from the fact that σ̄ is winning that Ex(π) satisfies the
winning condition. We circumvent this issue by constructing another play π̄ in parallel that
is consistent with σ̄ and shares the same sequence of states as Ex(π). This ensures, by the
properties of the expansion mapping, that all time-divergent outcomes of σ are also winning.
Furthermore, if the constructed play π̄ is P1-blameless and time-convergent, then π also is
P1-blameless, ensuring that all time-convergent outcomes of σ are winning.

In the other direction, we translate P1-strategies of the original TG to strategies of
the expanded TG using the projection mapping and by replacing moves that are illegal in
the expansion with suitable moves of the form (d, β1). The technical difficulties for this
translation are similar to those encountered in the first one and are handled similarly. From
these two translations, we obtain the following equivalence.

▶ Theorem 6. Let sinit be the initial state of G and s̄init be the initial state of G(p, λ). There
is a winning strategy σ for P1 for the objective TW(p, λ) (resp. DTW(p, λ)) from sinit in
G if and only if there is a winning strategy σ̄ for P1 for the objective coBüchi(Bad) (resp.
Safe(Bad)) from s̄init in G(p, λ).

Multi-dimensional objectives. The construction of the expanded TA A(p, λ) can be ex-
tended to handle generalized (resp. direct) timed window objectives, defined as conjunctions
of several (resp. direct) timed window objectives. Generalized objectives are given by k-
dimensional priority functions and vectors λ ∈ (N \ {0})k of bounds on the size of windows
for each dimension. To keep track of the windows for each dimension, locations are expanded
using k-dimensional vectors and one new clock per objective is added to the expanded
automaton. The expanded TA in this case is of size exponential in k. The objective on
the expansion is a co-Büchi or safety objective, even for multiple objectives. Due to space
constraints, we omit the full generalization, which can be found in the full paper [23].

CONCUR 2021

25:14 Timed Games with Window Parity Objectives

5 Algorithms and complexity

This section outlines algorithms for solving the verification and realizability problems for
generalized (resp. direct) timed window parity objectives. We consider the general multi-
dimensional setting and we denote by k the number of timed window parity objectives under
consideration. Technical details and a comparison with timed parity games can be found in
the full paper [23].

Algorithms. Our solution to the verification and realizability problem for generalized
(resp. direct) timed window objectives consists of a reduction to a co-Büchi (resp. safety)
objective on an expanded automaton. The following lemma establishes the time necessary
for the reduction.

▶ Lemma 7. Let A = (L, ℓinit, C, Σ, I, E) be a TA. Let p : L → {0, . . . , d − 1}k be a k-
dimensional priority function and λ ∈ (N \ {0})k be a vector of bounds on window sizes. The
expanded TA A(p, λ) = (L′, ℓ′

init, C ′, Σ′, I ′, E′) can be computed in time exponential in k and
polynomial in the size of L, the size of E, the size of C, d, the length of the encoding of the
clock constraints of A and the encoding of λ.

Let G be a TG. To solve the realizability problem on the expanded TG G(p, λ), we use the
algorithm of [20], which checks the existence of a winning strategy for P1 for location-based
objectives specified by a deterministic parity automaton. Using this algorithm, we can check
the existence of a winning strategy for P1 for the co-Büchi (resp. safety) objective on G(p, λ)
in time O

((
|L|2 · (dk + 1)2 · (|C| + k)! · 2|C|+k

∏
x∈C(2cx + 1) ·

∏
1≤i≤k(2λi + 1)

)4)
, where L

is the set of locations of G, C the set of clocks of G and cx is the largest constant to which
x ∈ C is compared to in G (recall that λi refers to the bound on window sizes for the ith
dimension). This establishes membership of the realizability problem in EXPTIME as the
construction of the expanded game can be done in exponential time by Lem. 7.

Let us move on to the verification problem. For one dimension, the verification problem
for the (resp. direct) timed window objective is reducible in polynomial time to the verification
problem for co-Büchi (resp. safety) objectives by Lem. 7. This establishes membership in
PSPACE for the case of a single dimension. For multiple dimensions, the single-dimensional
case can be used as an oracle to check that, for each individual objective, all time-divergent
paths belong to the objective. This shows membership of the verification problem for
generalized objectives in PPSPACE = PSPACE [6].

Lower bounds. Lower bounds are established by reducing the verification/realizability
problem for safety objectives to the verification/realizability problem for (resp. direct)
timed window parity objectives. The verification problem for safety objectives is PSPACE-
complete [2] and the realizability problem for safety objectives is EXPTIME-complete [21].

The reduction is as follows. Given a TA A and a set F of locations to avoid, we construct
a TA A′ obtained by extending locations of A with a Boolean indicating whether F has been
visited. We assign an odd priority to expanded locations that indicate F has been visited,
such that windows can no longer close if F has been visited.

Complexity wrap-up. We summarize our complexity results in the following theorem.

▶ Theorem 8. The verification problem for the (direct) generalized timed window parity
objective is PSPACE-complete and the realizability problem for the (direct) generalized timed
window parity objective is EXPTIME-complete.

J. C. A. Main, M. Randour, and J. Sproston 25:15

References
1 Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time. Inf.

Comput., 104(1):2–34, 1993. doi:10.1006/inco.1993.1024.
2 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994. doi:10.1016/0304-3975(94)90010-8.
3 Christel Baier. Reasoning about cost-utility constraints in probabilistic models. In

Mikolaj Bojanczyk, Slawomir Lasota, and Igor Potapov, editors, Reachability Problems
– 9th International Workshop, RP 2015, Warsaw, Poland, September 21-23, 2015, Pro-
ceedings, volume 9328 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.
doi:10.1007/978-3-319-24537-9_1.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
5 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight monitoring

with linear temporal logic: complexity and decidability. In Thomas A. Henzinger and Dale
Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14–18, 2014, pages 11:1–
11:10. ACM, 2014. doi:10.1145/2603088.2603162.

6 Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975. doi:10.1137/0204037.

7 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold constraints with
guarantees for parity objectives in Markov decision processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.121.

8 Benjamin Bordais, Shibashis Guha, and Jean-François Raskin. Expected window mean-
payoff. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 32:1–32:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.32.

9 Patricia Bouyer, Thomas Brihaye, Mickael Randour, Cédric Rivière, and Pierre Vandenhove.
Decisiveness of stochastic systems and its application to hybrid models. In Jean-François
Raskin and Davide Bresolin, editors, Proceedings 11th International Symposium on Games,
Automata, Logics, and Formal Verification, GandALF 2020, Brussels, Belgium, September
21-22, 2020, volume 326 of EPTCS, pages 149–165, 2020. doi:10.4204/EPTCS.326.10.

10 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in Markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.
doi:10.1016/j.jcss.2016.09.009.

11 Tomás Brázdil, Vojtech Forejt, Antonín Kucera, and Petr Novotný. Stability in graphs and
games. In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59
of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.CONCUR.2016.10.

12 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is random,
time is not: Markov decision processes with window objectives. Log. Methods Comput. Sci.,
16(4), 2020. URL: https://lmcs.episciences.org/6975.

13 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Inf.
Comput., 254:259–295, 2017. doi:10.1016/j.ic.2016.10.011.

14 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

CONCUR 2021

https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-24537-9_1
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1137/0204037
https://doi.org/10.4230/LIPIcs.ICALP.2017.121
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.32
https://doi.org/10.4204/EPTCS.326.10
https://doi.org/10.1016/j.jcss.2016.09.009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
https://lmcs.episciences.org/6975
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.4204/EPTCS.226.10

25:16 Timed Games with Window Parity Objectives

15 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the complexity of
heterogeneous multidimensional games. In Josée Desharnais and Radha Jagadeesan, editors,
27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

16 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

17 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

18 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-
regular games. ACM Trans. Comput. Log., 11(1):1:1–1:27, 2009. doi:10.1145/1614431.
1614432.

19 Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed parity games:
Complexity and robustness. Log. Methods Comput. Sci., 7(4), 2011. doi:10.2168/LMCS-7(4:
8)2011.

20 Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga.
The element of surprise in timed games. In Roberto M. Amadio and Denis Lugiez, editors,
CONCUR 2003 – Concurrency Theory, 14th International Conference, Marseille, France,
September 3-5, 2003, Proceedings, volume 2761 of Lecture Notes in Computer Science, pages
142–156. Springer, 2003. doi:10.1007/978-3-540-45187-7_9.

21 Thomas A. Henzinger and Peter W. Kopke. Discrete-time control for rectangular hybrid
automata. Theor. Comput. Sci., 221(1-2):369–392, 1999. doi:10.1016/S0304-3975(99)
00038-9.

22 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean payoff through
foggy windows. Acta Inf., 55(8):627–647, 2018. doi:10.1007/s00236-017-0304-7.

23 James C. A. Main, Mickael Randour, and Jeremy Sproston. Time flies when looking out
of the window: Timed games with window parity objectives. CoRR, abs/2105.06686, 2021.
arXiv:2105.06686.

24 Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed
systems (an extended abstract). In Ernst W. Mayr and Claude Puech, editors, STACS 95, 12th
Annual Symposium on Theoretical Aspects of Computer Science, Munich, Germany, March
2-4, 1995, Proceedings, volume 900 of Lecture Notes in Computer Science, pages 229–242.
Springer, 1995. doi:10.1007/3-540-59042-0_76.

25 Mickael Randour. Automated synthesis of reliable and efficient systems through game theory:
A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages
731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

26 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy
by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122
of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.FSTTCS.2018.38.

https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1016/S0304-3975(99)00038-9
https://doi.org/10.1016/S0304-3975(99)00038-9
https://doi.org/10.1007/s00236-017-0304-7
http://arxiv.org/abs/2105.06686
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/978-3-319-00395-5_90
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38

	1 Introduction
	2 Preliminaries
	3 Window objectives
	3.1 Definitions
	3.2 Comparison with parity objectives
	3.3 Properties of window objectives

	4 Reduction
	5 Algorithms and complexity

