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Simple Summary: In chronic lymphocytic leukemia (CLL), immune alterations—affecting both
the innate and adaptive immunity—are very common. As a clinical consequence, patients with
CLL frequently present with autoimmune phenomena, increased risk of infections and second
malignancies. The aim of this review article is to present available data on CLL-associated alterations
of immune parameters that correlate with known prognostic markers and with clinical outcome.
Also, data on the impact of immune-related clinical manifestations on the prognosis of patients with
CLL will be discussed.

Abstract: Chronic lymphocytic leukemia (CLL) is characterized by a wide spectrum of immune
alterations, affecting both the innate and adaptive immunity. These immune dysfunctions strongly
impact the immune surveillance, facilitate tumor progression and eventually affect the disease course.
Quantitative and functional alterations involving conventional T cells, γδ T cells, regulatory T cells,
NK and NKT cells, and myeloid cells, together with hypogammaglobulinemia, aberrations in the
complement pathways and altered cytokine signature have been reported in patients with CLL. Some
of these immune parameters have been shown to associate with other CLL-related characteristics
with a known prognostic relevance or to correlate with disease prognosis. Also, in CLL, the complex
immune response dysfunctions eventually translate in clinical manifestations, including autoimmune
phenomena, increased risk of infections and second malignancies. These clinical issues are overall
the most common complications that affect the course and management of CLL, and they also may
impact overall disease prognosis.

Keywords: chronic lymphocytic leukemia; immune dysfunctions; prognosis

1. Introduction

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease typically char-
acterized by a wide spectrum of immune alterations, affecting both innate and adaptive
immunity (reviewed in [1]). In addition to being a hallmark of the disease, CLL-associated
immune dysfunctions strongly impact the immune surveillance, facilitate tumor progres-
sion and eventually affect the disease course.

The aim of this review article is to present available data on immune parameters which
are altered in patients with CLL, and that can associate with other disease characteristics with
a known prognostic relevance or that directly correlate with prognosis (Figure 1). In addition,
we will discuss major immune-related clinical manifestations – such as autoimmunity,
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infections and second malignancies – that characterize CLL clinical course and may also
impact on disease prognosis.
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lymphocytic leukemia. 

2. Specific Cellular and Humoral Immune Dysfunctions and Their Prognostic Impact 
in CLL 
2.1. T Cells 
2.1.1. Conventional T Cells 

T lymphocytes play a pivotal role in tumor immune-surveillance and immune 
response to infections. CD4+ T helper lymphocytes are the main coordinator of immune 
response via both cell-to-cell interactions and cytokine production, activating B 
lymphocytes and CD8+ cytotoxic T lymphocytes [reviewed in [2,3]]. In patients affected 
by CLL, CD4+ and CD8+ T lymphocyte numbers are increased [4–7], and several studies 
have explored a possible prognostic impact of conventional T-cell counts in this disease. 
The ratio of T cells:malignant monoclonal B cells (MBC) has been described as an 
independent predictor of time-to-first treatment (TTFT) in early stage CLL, with higher 
CD4:MBC and CD8:MBC ratios predicting longer overall survival (OS) [8]. Also, an 
indolent clinical course (i.e., a probability of OS at 10 years of 95%) has been described in 
a subgroup of patients characterized by elevated CD8:MBC ratio and the absence of CD38 
expression on tumor cells [9]. 

In CLL, T cells undergo oligoclonal proliferation that is probably due to the chronic 
exposure to malignant B cells [10]. The expansion of CD8+ T lymphocytes outweighs that 
of CD4+, resulting in a reduced (also called inverted) CD4:CD8 ratio [5–7,11], which has 
been associated with advanced disease stages [6]. Interestingly, Apostolopoulos and 
colleagues showed that a lower CD4:CD8 ratio is also predictive of recurrent respiratory 
infections [12]. Consistently, several studies found that an inverted CD4:CD8 ratio is 
associated with shorter TTFT [7,13], progression-free survival (PFS) [14,15] and OS [13–
15]. In the post-treatment setting, instead, it has been shown that following fludarabine-
cyclophosphamide-rituximab (FCR) treatment, a higher CD4+ − but not CD8+ − T-
lymphocyte count associate with a shorter PFS in patients maintaining a detectable 
minimal residual disease [16]. In this study, a thorough characterization of the CD4+ 

Figure 1. Summary of the main alterations characterizing immune cells of patients with early and advanced stage chronic
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2. Specific Cellular and Humoral Immune Dysfunctions and Their Prognostic Impact
in CLL
2.1. T Cells
2.1.1. Conventional T Cells

T lymphocytes play a pivotal role in tumor immune-surveillance and immune re-
sponse to infections. CD4+ T helper lymphocytes are the main coordinator of immune
response via both cell-to-cell interactions and cytokine production, activating B lympho-
cytes and CD8+ cytotoxic T lymphocytes [reviewed in [2,3]]. In patients affected by CLL,
CD4+ and CD8+ T lymphocyte numbers are increased [4–7], and several studies have
explored a possible prognostic impact of conventional T-cell counts in this disease. The
ratio of T cells:malignant monoclonal B cells (MBC) has been described as an independent
predictor of time-to-first treatment (TTFT) in early stage CLL, with higher CD4:MBC and
CD8:MBC ratios predicting longer overall survival (OS) [8]. Also, an indolent clinical
course (i.e., a probability of OS at 10 years of 95%) has been described in a subgroup of
patients characterized by elevated CD8:MBC ratio and the absence of CD38 expression on
tumor cells [9].

In CLL, T cells undergo oligoclonal proliferation that is probably due to the chronic
exposure to malignant B cells [10]. The expansion of CD8+ T lymphocytes outweighs that of
CD4+, resulting in a reduced (also called inverted) CD4:CD8 ratio [5–7,11], which has been
associated with advanced disease stages [6]. Interestingly, Apostolopoulos and colleagues
showed that a lower CD4:CD8 ratio is also predictive of recurrent respiratory infections [12].
Consistently, several studies found that an inverted CD4:CD8 ratio is associated with
shorter TTFT [7,13], progression-free survival (PFS) [14,15] and OS [13–15]. In the post-
treatment setting, instead, it has been shown that following fludarabine-cyclophosphamide-
rituximab (FCR) treatment, a higher CD4+− but not CD8+− T-lymphocyte count associate
with a shorter PFS in patients maintaining a detectable minimal residual disease [16]. In
this study, a thorough characterization of the CD4+ population revealed that it mostly
consists of regulatory T cells (Tregs, CD25+CD127-FoxP3+), which are known to facilitate
relapse and progression in CLL (see below).

The composition of T-cell differentiation subsets and Th1/Th2 cell distribution has also
been extensively studied in patients with CLL. A reduction in naïve T cells and an increase
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in effector T lymphocytes and terminally differentiated memory T lymphocytes were
consistently described [10,14,17,18]. Furthermore, most reports agree on the increase of Th1
lymphocytes in patients with CLL compared to healthy controls, whereas regarding Th2
cells the data are controversial [7,17,19–21]. Nevertheless, to our knowledge, to date there
are no available data that clearly associate Th1 and/or Th2 cell subset expansion with CLL-
related prognostic factors. Interestingly, Puzzolo and colleagues recently demonstrated that
the treatment with the BTK ibrutinib induces a decrease in the Th1/Th2 cell ratio, which is
more prominent in patients with unmutated immunoglobulin heavy chain variable region
genes (IGHV) status and in those who achieve a complete response to therapy [22].

Th17 cells represent a subset of pro-inflammatory cells involved in inflammation and
autoimmunity, which may play a dichotomous role in cancer [23]. Compared to healthy
controls, patients affected by CLL have an increased frequency and absolute count of Th17
lymphocytes [17,21,24,25]. Concerning their role on disease evolution, a higher Th17-cell
number has been correlated with early stages of the disease [26], and most [25,27,28] – but
not all [26] – available data have reported a positive impact of high Th17-cell counts on OS.

In CLL, as in many other cancers, the tumor-mediated chronic antigenic stimulation
of T cells also determines an increased surface expression of typical markers of activa-
tion [29,30], and affects their phenotypic and functional features. Leukemic B cells, through
a direct cell-to-cell contact, modify the expression of genes involved in CD4+ and CD8+
T-cell differentiation and function [31], confirming the role of the malignant cells in nour-
ishing a favorable pro-tumoral microenvironment. Several studies have reported that
T lymphocytes from patients with CLL are primed for anergy because of their higher
expression of immune-checkpoint molecules, such as CTLA-4 [32], PD-1 [18,33], LAG3 [34],
Tim-3 [35], TIGIT [36], CD160 and CD244 [37], leading to a microenvironment characterized
by reduced T-cell proliferation, killing ability and cytokine release. Of note, both CD8+
and CD4+ T-cell subsets show a complex co-expression of molecules indicating T-cell
exhaustion (PD-1), senescence (KLRG-1) and activation (HLA-DR) [15].

Despite T-cell phenotypic and functional alterations have been extensively described in
CLL, only few parameters have been reported to have a prognostic relevance. For example,
higher soluble LAG3 levels in patients’ sera were found to be associated with progressive
disease status and shorter TTFT [34]. These findings are possibly attributable to the higher
expression of LAG3 mRNA detected in CLL cells with unmutated IGHV compared to
mutated IGVH and normal B cells. Also, PD-1 upregulation was described in both CD4+
and CD8+ T cell subsets [18], and was associated with disease progression [14,15,17] and
shorter TTFT [14]. Consistently, in a cohort of 80 patients with CLL, Palma et al. found that
those with progressive disease had higher CD4+PD1+ and CD8+PD1+ T cells compared to
both healthy controls and to non-progressive patients, with a bigger difference noted in
previously treated patients [17]. Moreover, among previously treated patients, those with
advanced disease stages showed an increased PD1+, Tim-3+ and TIGIT+ T-cell counts [35].
In line with these data, Jimenez et al. recently reported that patients who are in clinical
progression present an accumulation of terminally exhausted effector CD8+ T cells, which
are characterized by the co-expression of PD-1, CD244 and CD160 inhibitory receptors
and by an altered gene expression profile [38]. Interestingly, these specific CD8+ T-cells
alterations are possibly mediated by IL-10 released by leukemic cells [38]. Finally, Elston
and colleagues examined in their cohort of 74 patients whether specific T-cell subsets
could be associated with inferior clinical prognosis [15]. In multivariate analysis, higher
percentages of circulating CD4+HLA-DR+PD1+ T-lymphocytes were associated with a
shorter PFS.

2.1.2. Gamma-Delta T Cells

γδ T lymphocytes are a subset of non-MHC-restricted T lymphocytes which account
for 2 to 10% of circulating T cells in healthy subjects. γδ T cells have the ability to kill
their targets via cytotoxic mechanisms and, thus, are involved in infection responses,
autoimmunity and tumor immune surveillance [39].
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The main circulating subset of γδ T lymphocytes is represented by Vγ9Vδ2 T cells,
which recognize non-peptidic phosphoantigens, such as isopentenyl pyrophosphate and
aminobisphosphonates, in a T cell receptor (TCR)-dependent fashion [40,41]. Vγ9Vδ2
T cells collected from patients with CLL show dysfunctional cytokine production and
degranulation, resulting in less effective cytotoxicity toward tumor cells. Interestingly,
a comparable dysfunctional phenotype is also inducible in Vγ9Vδ2 T cells yielded from
healthy individuals when co-cultured with CLL cells, suggesting a leukemia-induced
immune-dysfunction [42]. We have previously reported that the in vitro proliferative
response of Vγ9Vδ2 T cells is significantly impaired in a subset of patients affected by
CLL (low-responder, LR, patients), who also display an unbalanced Vγ9Vδ2 T-cell subset
distribution in favor of effector memory and terminally differentiated effector memory
cells [43]. The LR condition was associated with unmutated IGHV status and, most
importantly, it was an independent predictor of shorter TTFT in multivariate analysis.
These findings support the concept that tumor-induced chronic activation fosters the
undesired accumulation of immune cells inadequate for an effective antitumor activity.

2.1.3. Regulatory T Cells

Tregs are a fundamental CD4+ T-lymphocyte subset which prevents excessive immune
activation and thus autoimmunity. In regards to hematological malignancies, Tregs may
contribute to a pro-tumoral microenvironment, facilitating tumor progression [44]. Several
studies demonstrated an increased count of circulating Tregs in CLL patients compared
to healthy controls [45–48]. Interestingly, the expansion of Tregs is probably mediated by
CD27-CD70 interactions and by a resistance to apoptosis, rather than by chronic antigenic
stimulation [49]. Higher Treg numbers have been associated with increased tumor load
and advanced stages of disease [45,50–52]. Specifically, Treg count progressively increases
as the patients transition from an healthy status, to a monoclonal B cell lymphocytosis
(MBL), and later to an overt and advanced CLL [53]; furthermore, Treg count is higher
in patients with progressive disease compared to those with a stable disease [14,28,46,54].
Treg count has also been associated with CLL-related prognostic markers such as CD38 and
ZAP70 expression [55], and in CLL, higher Treg absolute number and frequency correlate
with shorter TTFT and OS [47,56,57]. Notably, different non-chemotherapy drugs such as
thalidomide, lenalidomide, idelalisib and ibrutinib have shown the ability to restore or at
least reduce Treg counts [58–60].

Beside the increased count, Tregs from CLL patients produce a larger amount of
IL-10 and TGF-β1 and overexpress CTLA-4 compared to healthy controls [33,52,61]. Motta
et al. showed in a cohort of 40 untreated patients with CLL, that CTLA-4 expression in
CD4+CD25+ T cells is increased and correlates with advanced Rai stage, hypogammaglob-
ulinemia, adverse cytogenetics and unmutated IGHV status [33].

Finally, the prognostic impact of Tregs in CLL has also been assessed in relation to
other T-cell subsets. Specifically, a reduced Tregs/Th17 ratio due to Th17 number increase
has been associated with autoimmune cytopenias [24]. Also, a higher Treg number has been
correlated to dysfunctional Vγ9Vδ2 T lymphocytes in untreated CLL patients [43]. Taken
together, all these observations suggest an active role of Tregs in the progression of the CLL.

2.2. Natural Killer and Natural Killer T Cells
2.2.1. Natural Killer Cells

Natural Killer (NK) cells are fundamental components of the innate immune system
and play an important role in antitumor immunity, being able to kill neoplastic cells
without priming or prior activation [1,62]. However, the activity of NK cells, which is
regulated by activating and inhibitory signals, is disrupted in malignant environments [63].
Specifically, in CLL, leukemic cells can interact directly with the host’s lymphocytes and
secrete cytokines that alter the number, subset distribution and functions of NK cells [64].

Quantitative NK abnormalities have shown to impact both prognosis and therapeutic
efficacy in CLL. Different groups have confirmed that, when compared to healthy donors,
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patients with CLL univocally present higher NK-cell count [8,9,65,66]. Interestingly, in-
creased NK-cell count (>0.40 × 109/L) corresponds to positive prognostic factors (i.e.,
early Rai or Binet stage, normal levels of β2-microglobulin, negativity of ZAP70 or CD38
expression, absence of TP53 gene mutation, mutated IGHV status and absence of ATM dele-
tion) [66]. Also, the NK-cell count does not seem to decrease with disease progression [65].
However, no correlation between NK-cell absolute number and TTFT was reported [8,9,66]
and, in regard to OS prediction, only Wang et al. have correlated a shorter OS to a lower
NK-cell count [66]. When examining NK-cell relative number, a higher NK:MBC ratio was
associated to low-risk disease (i.e., early Rai stages and mutated IGHV status) [8,9], but
only Palmer et al. correlated NK-cell relative number to a longer TTFT [8].

The lack of a strong prognostic correlation, even though NK-cell number is consis-
tently increased in patients with CLL, may be attributable to the NK-cell dysfunctional
cytotoxicity [65]. In line with this hypothesis, NK cells from patients with CLL have shown
an impaired expression of the NKG2D costimulatory receptor and, consequently, a defec-
tive cytotoxic activity [65]. Along with quantitative defects, MBC can in fact also cause
functional aberrations in the NK-cell compartment (briefly summarized in Table 1), thus
affecting NK cell-mediated immune mechanisms that are innately able to recognize cancer
cells and which are also often exploited by therapeutical approaches. Amongst the latter,
we find anti-CD20 monoclonal antibody (mAb)-based therapies, whose anti-tumor activity
is strongly linked to the NK cell-related antibody-dependent cell-mediated-cytotoxicity
(ADCC). Multiple pieces of evidence support the hypothesis that NK-cell number and
activity have a direct impact on the efficacy of specific treatment regimens. As an example,
Vitale et al. showed that, in patients with CLL treated with a regimen containing the anti-
CD20 mAb ofatumumab and lenalidomide, those who achieved a complete response had a
higher baseline absolute number and a more preserved function of NK cells, as compared
to those who did not respond [67]. Furthermore, in CLL the effectiveness of anti-CD20
mAb treatments is positively affected by recombinant human IL-15 and lenalidomide,
which are able to induce NK-cell proliferation and to improve NK cells-mediated ADCC
and cytotoxicity [65,66,68].

Table 1. Relevant qualitative NK-cell aberrations reported in patients with CLL.

NK-Cell Aberrations Consequence Impact on Disease Ref.

Reduction of NKp30 and NKp46
activating receptors Exhaustion state on NK cells Immune escape [63]

Increased expression of Tim-3
immune checkpoint Exhaustion state on NK cells Immune escape [63]

Abundance of immature CD56bright

NK cells
Reduced NKG2D activating receptor

and cytokine (IL-10 and IL-13) secretion CLL cells survival and proliferation [69,70]

Irregular NKG2AR activity and
reduced killer Ig-like receptors (KIRs)

Hampering of NK-cell cytotoxicity
and viability Compromised immune system [1]

Lower natural cytokine receptors
(NCRs) expression Immune escape [69]

NKG2D downregulation Hampering of NK cytotoxicity [65]

2.2.2. Natural Killer T Cells

Another important player of the immune surveillance against tumors are type I
invariant natural killer T (NKT) cells, which recognize glycolipid antigens presented by
CD1d, an MHC class I-like molecule, expressed also on CLL cells [71,72]. A lower frequency
of circulating NKT cells were found in CLL patients compared to healthy controls [72] and
were correlated with progressive disease [73]. Indeed, the reduction of NKT-cell number
negatively affects antitumor response, as it causes lower TNF expression and a decrease
in the production of IFN-γ and cytokines involved in T- and NK-cell activation [74]. In
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CLL patients, CD1d is expressed on malignant B cells in a lower percentage comparted to
normal B cells [73]. However, CD1d expression increases along with disease progression
and correlates with unfavorable prognostic factors [i.e., higher ZAP70 and CD38 expression,
presence of del(11q) and/or del(17p)] and shorter TTFT and OS [72]. Similarly, Gorini
et al. showed in 46 patients with CLL a significant correlation between lower NKT-cell
number and higher numbers of malignant CD1dhigh cells with disease progression [75].
Along with numerical abnormalities, a functional impairment of NKT cells isolated from
CLL patients with high CD1d expression was also reported, possibly due to progressive
exhaustion of NKT cells following chronic stimulation from CD1dhigh CLL cells [75]. To
date, little is known on how NKT cells can affect therapeutical approaches in CLL, however
it has been reported that, even if decreased in number, they are not functionally impaired
after chemotherapy [76]. Therefore, therapies aiming at enhancing NKT cells in CLL may
be a possible advantageous tool to reinforce antitumor immunity in CLL.

2.3. Normal B Cells and Hypogammaglobulinemia

Regarding normal B-cell dysfunctions, most available data focus on immunoglobulin
(Ig) deficiency, which results from CLL cells inhibition on the residual subset of normal
B cells. Hypogammaglobulinemia is a common condition in patients with CLL, with
a frequency ranging from 20% to 70% of cases, depending on the heterogeneity of the
analyzed populations [77–80]. Data regarding the impact of hypogammaglobulinemia
on infection rates are controversial. Although several groups established an association
between the presence of hypogammaglobulinemia and the occurrence of infections [81–83],
few reports showed that Ig deficiency does not specifically correlate with the incidence of
infections, but rather with an increased risk of deaths from all causes [84,85], thus indicating
hypogammaglobulinemia as a marker of leukemia-induced microenvironment alteration
and, in general, of disease aggressiveness. In line with this concept, the presence of Ig
deficiency was reported to correlate with more advanced stages of disease (i.e., Rai III–IV
and Binet B–C) [86–88] and with patients’ high-risk features (i.e., unmutated IGHV or
unfavorable cytogenetics) [88,89].

The overall impact of hypogammaglobulinemia on the OS of patients with CLL re-
mains unclear. In a cohort of 159 newly diagnosed patients, Andersen and colleagues
reported that any type of Ig deficiency is an adverse prognostic factor for OS [85]. Con-
versely, data from the Israeli CLL study group, including 1113 Binet stage A patients,
and from the Mayo Clinic group, including 1482 newly diagnosed patients, described no
significant association between hypogammaglobulinemia and OS [88,90]. In terms of Ig
classes, IgA deficiency seems to be a strong negative predictor, as shown by the association
of reduced IgA levels with shorter TTFT, treatment-free-survival (TFS) and-in some cases-
OS [79,89–93]. Interestingly, the ability of ibrutinib administration to improve serum IgA
levels – with an observed lower rate of infections in patients showing greater improvements
in IgA – further confirmed the role of IgA as both an active weapon against infections and
an indicator of improved immune functionality [94]. Concerning the prognostic impact
of other Ig classes, decreased IgM levels have been reported to predict shorter TFS and
OS [85], while IgG deficiency, and especially low levels of IgG1 and IgG3 subclasses, have
been associated with shorter TFS and OS in univariate analysis [87]. The main reason for
the controversy of these observations lies in the retrospective nature of most studies, which
enrolled heterogeneous and often not comparable patient populations, mainly consisting
of early-stage patients. Further prospective studies with a more balanced distribution of
patients in terms of disease stage and indications to treatment will be certainly instrumental
in the definition of the impact of Ig deficiencies on patients’ outcome.

2.4. Myeloid Cells

In conditions of chronic inflammation, monocytes, macrophages and dendritic cells
(DCs) differentiate within the inflammatory environment and acquire immunosuppressive
characteristics, thus becoming myeloid-derived suppressor cells (MDSCs). This reprogram-
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ming process is induced by several factors, some of which derive directly from tumor
cells and allow immune escape [95]. In the setting of CLL, the crosstalk between cancer
cells and their myeloid microenvironment has been extensively studied. Indeed, patients
with CLL present an increased number of CD14+HLA-DRlow monocytes [96–98]. This
correlates—from the biologic standpoint—with decreased antigen-presenting capacity
and decreased immune-stimulatory capacity of monocytes [96] and – from the clinical
standpoint – with advanced Rai stages (i.e., III and IV) [99]. Moreover, higher monocytic
MDSCs (M-MDSCs) count was noticed in patients presenting high-risk disease features
[i.e., ZAP70 positivity, presence of del(11q) and/or del(17p), or unmutated IGHV] [99] and
correlated with shorter time to progression (TTP), TTFT and OS [97,99,100].

Another key player of myeloid origin in the tumor microenvironment are the nurse
like cells (NLCs), which are tumor-associated macrophages exhibiting M2 hallmarks and se-
creting immunosuppressive and tumor-supportive cytokines [101]. NLCs induce apoptosis-
resistance in tumor cells [102], and elevated serum levels of NLCs-secreted cytokines in
patients with CLL correlate with poor prognostic factors (i.e., Rai stage III or IV, elevated
LDH and/or β2-microglobulin) and have a negative impact on OS [103,104].

Although little is known on how these alterations of the tumor microenvironment
can affect treatment results, a recent study has reported on the impact of ibrutinib on
the myeloid compartment. Ferrer et al. showed that after treatment initiation, polymor-
phonuclear MDSCs (PMN-MDSCs) numbers progressively decline, whereas M-MDSC
numbers are unaffected. Notably, this ibrutinib-induced reduction in PMN-MDSCs on one
hand drove the differentiation of T lymphocytes toward less immunosuppressive Th cells,
and on the other hand correlated with a decrease in CLL cell number and with a clinical
improvement [100]. Based on these observations, immunotherapeutic strategy lowering
the number of MDSCs, and more specifically of PMN-MDSCs, might be a valuable option
for treatment of patients with CLL.

2.5. Humoral Immunity: Complement and Cytokines

Beside hypogammaglobulinemia, other alterations of the humoral immunity have
been broadly described in CLL patients. For instance, exhaustion of the classical pathway
of the complement cascade has been reported in 38% of patients, resulting in a hampered
complement-dependent cytotoxicity that may affect both protection from infections and the
therapeutic efficacy of mAbs [105]. Interestingly, an impact of changes in the complement
cascade on CLL prognosis has already been suggested. Indeed, Varga et al. have shown
that a low activity of the classical complement pathway at CLL diagnosis predicts a short
OS, especially in patients with Rai stage II and III disease [106].

Another peculiar aspect of the altered humoral immunity in CLL is the presence of
a specific cytokine signature, capable of influencing the course of the disease [107]. In
CLL, cytokines are mainly produced by leukemic cells, but they may also originate from
the interactions between the neoplastic clone and immune cells (i.e., T cells, NLCs, bone
marrow stromal cells) [108]. The modulation of the cytokine milieu within the tumor can in
turn stimulate the growth and survival of the neoplastic clone [109], through the receptor-
mediated activation of different signaling pathways involved in cell migration, proliferation
and apoptotic function. Over the years, the altered expression of several cytokines has been
correlated with CLL biological characteristics and prognostic features (Table 2). Cytokine
profiling of patients’ sera has shown that increased levels of Th2-related cytokines and de-
creased levels of Th1-related cytokines correlate with an aggressive disease and predict the
need of therapy [110]. Notably, in line with previous data disclosing a correlation between
serum concentration of some chemokines and CLL prognosis [111], Yan and colleagues
identified a panel of 17 cytokines/chemokines that were significantly elevated in CLL
patients compared to healthy controls [112]. Among these, a group of chemokines specifi-
cally involved in cell migration and in T-cell attraction and infiltration have demonstrated
to predict a worse prognosis. More recently, in a study by Agarwal and colleagues, six
cytokines (i.e., SDF-1/CXCL12, uPAR, IGFBP-2, BMP-4, MCP-4, IL-1 R4/ST2) resulted to
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be statistically different between initial and advanced stages of the disease [113]. Of those,
SDF-1, a chemoattractant for leukemic B cells expressing CXCR4, resulted to be overex-
pressed in patients with advanced disease [113]. Our group has recently demonstrated that
the SDF-1/CXCR4 axis is critically involved in the microenvironment-induced protection of
CLL cells through the positive regulation of HIF-1α transcription factor [114]. Interestingly,
we also reported that HIF-1α, which regulates tumor cell adaptation to hypoxia and to
microenvironmental stimuli, is overexpressed in CLL cells from patients carrying IGHV
unmutated genes and TP53 alterations, who are typically characterized by poor outcome
and resistance to therapy [115,116]. Of note, the overexpression of chemokine receptors,
such as CXCR4, on CLL cells has prompted the investigation of new potential therapeutic
targets. Unfortunately, despite showing significant activity against CLL cells, none of
CXCR4-inhibitors has so far been transferred to clinical practice [117–119].

Table 2. Alterations of cytokine levels and their correlation with biological characteristics and/or prognosis in patients
with CLL.

Cytokines Alteration Compared
to Healthy Controls Correlation with Biological Characteristics and/or Prognosis Ref.

sCD8 Increased Active disease, advanced Rai stage. [120]

sCD27 Increased Advanced Rai stage, elevated β2-microglobulin. [121]

sIL-2R Increased Active disease, advanced Rai stage, high lymphocyte count. [120]

IL-6

Increased Advanced Rai stage, previous treatment, elevated β2-microglobulin, elevated LDH, worse OS *. [104]

Increased Advanced Binet stage, previous treatment, non-CR status, presence of del(17p)/del(11q), shorter
absolute LDT, worse TTFT, worse PFS. [122]

Increased Elevated β2-microglobulin. IL-6, IL-8 and TNFα levels correlated with each other. In patients ≥ 70
years, IL-6 is a better prognostic marker than IGHV mutational status. [123]

IL-8

Increased Active disease (progression from Binet stage A to B/C). [124]

Increased Elevated β2-microglobulin. IL-8, IL-6 and TNFα levels correlated with each other. [123]

Increased Advanced Rai stage, elevated β2-microglobulin.
[121,
125,
126]

IL-9
Increased Advanced stage, elevated β2-microglobulin, higher ZAP70 expression. [127]

Increased Advanced Rai stage, higher ZAP70 and CD38 expression. [128]

IL-10

Increased Advanced Rai stage, previous treatment, elevated β2-microglobulin, elevated LDH, worse OS *. [104]

Decreased Active disease. [129]

Increased High-risk and active disease. Worse TFS (in high-risk group, regardless of IGHV mutational status),
worse OS §. [130]

Increased Advanced Rai stage, elevated β2-microglobulin. [121]

IL-23R Decreased Worse prognosis in early stage CLL, worse TTFT. [131]

TNFα

Increased Advanced stage, elevated β2-microglobulin, higher CD38 expression, presence of del(11q), tris(12),
chromosome 17 aberrations, worse OS. [132]

Increased High-risk and active disease. Worse TFS (in high-risk group, regardless of IGHV mutational status),
worse OS §. [130]

Increased Elevated β2-microglobulin. IL-6, IL-8 and TNFα levels correlated with each other. In patients ≥ 70
years, IL-6 is a better prognostic marker than IGHV mutational status. [123]

SDF-1 and uPAR Increased Advanced stage. [113]

SDF-1 and CXCR4 Increased Advanced Rai stage. [133]

IGFBP-2, BMP-4, MCP-4 Decreased Advanced stage. [113]

CCR7 Increased Advanced Rai stage. [133]

CXCR3 Decreased Advanced stage, higher CD38 expression, unmutated IGHV status, worse OS. [134]

CX3CL1
Increased Lymph node involvement, worse TTT, high risk of progression (especially in earlier stages of disease). [135]

Increased Higher ZAP70 expression. [136]

CCL3/MIP-1α Increased Advanced stage, higher CD38 and ZAP70 expression, unmutated IGHV status. [137]

* IL-6 and IL-10 emerged as independent prognostic factors for OS both when analyzed individually and in combination. § The cytokine
low-risk group comprised patients with either low TNFα or low IL-10 or those with only one elevated parameter. The cytokine high-risk
group comprised patients with both high TNFα and high IL-10.
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3. Clinically Meaningful Immune Alterations: The Impact of Autoimmunity,
Infections and Second Malignancies on the Prognosis of Patients with CLL

The complex immune alterations characterizing CLL eventually manifest in clinically
relevant immune dysfunctions, including autoimmune phenomena and increased risk of
infections [138–141]. Also, this immune dysregulation leads to an increased risk of second
malignancies in patients with CLL [142,143]. These additional clinical manifestations are
overall the most common complications that affect the course and management of this
chronic disease, and they impact on the overall CLL prognosis.

3.1. Autoimmune Manifestations

Autoimmune phenomena frequently complicate the clinical course of patients affected
by CLL. As reviewed in [141], up to a quarter of patients with CLL may present concomi-
tant autoimmune manifestations, which are primarily autoimmune cytopenias, including
autoimmune hemolytic anemia (AIHA), immune thrombocytopenia (ITP), pure red cell
aplasia and autoimmune granulocytopenia. Conversely, non-hematological autoimmunity,
such as Hashimoto’s thyroiditis, rheumatoid arthritis, vasculitis, bullous pemphigus or
acquired angioedema, are undoubtedly rarer.

Multiple immune mechanisms are involved in the pathophysiology of CLL-related
autoimmune manifestations, and both humoral and cellular immune dysfunctions may
support the development of these complications [141]. Interestingly, autoimmune cytope-
nias appear to occur most frequently in patients with CLL in advanced clinical stage,
whereas non-hematological autoimmune complications are more common in the initial
phases of the disease, possibly suggesting an even wider heterogeneity in the pathogenic
mechanisms [144,145].

The observed association of autoimmune cytopenias with the disease stage may also
be determined by the fact that the Binet and Rai staging systems do not discriminate
between bone marrow infiltration and autoimmunity as the cause of anemia or thrombo-
cytopenia [146]. Different groups have shown that the survival for patients with anemia
or thrombocytopenia of autoimmune origin is longer than for those with cytopenias at-
tributable to bone marrow infiltration [147–149]. Beside the clinical stage, a significant
association between CLL-related autoimmune complications and other negative prog-
nostic parameters, such as high lymphocyte count, high β2-microglobulin or LDH level,
increased CD38 or ZAP-70 expression, adverse FISH [i.e., del(17p) or del(11q)], or unmu-
tated IGHV has been observed in different cohorts [149–158]. Of note, not all prognostic
parameters were assessed by all groups, and-most importantly-not all publications are
concordant in reporting an association between autoimmune manifestations and some
of the variables, possibly depending on the heterogeneity of the cohorts evaluated, on
the retrospective nature of the studies and on the variability in the criteria used to define
autoimmune cytopenias.

In spite of the frequently reported association of autoimmune cytopenias with adverse
prognostic factors, the number of articles specifically concluding for a significant impact
of autoimmune phenomena on the prognosis of patients with CLL is limited. In their
cohort of 473 consecutively diagnosed patients with CLL, Visco and colleagues reported
a 7% occurrence of AIHA: there was not a significant difference in terms of OS between
patients with or without AIHA, but patients developing AIHA earlier in the disease course
(i.e., within 48 months after CLL diagnosis) had a significantly inferior OS compared to
those with late-onset AIHA or to those who did not develop AIHA at all [159]. Seven-
hundred seventy-seven patients with treatment-naive CLL requiring therapy, who were
enrolled in the randomized UK LRF CLL4 trial, were evaluated by Dearden et al. [160].
Among patients who were tested for direct antiglobulin test (DAT) at study entry, 89 (14%)
resulted positive, and among those with available information, 77 (10%) developed AIHA
during treatment. Both DAT positivity and the development of AIHA were predictive
for shorter PFS and OS in this cohort. Accordingly, other groups confirmed the negative
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prognostic impact of DAT positivity at CLL diagnosis, independently from the occurrence
of AIHA [161–163].

In a large cohort of 1477 patients with CLL, Shvidel et al. identified 100 patients with
autoimmune cytopenia (7%) [164]. As compared with control patients without cytopenia
and who never developed AIHA or ITP, patients with AIHA had a significantly worse
outcome in terms of OS from the time of CLL diagnosis, whereas the survival was similar
for patients with ITP and controls. Conversely, in a cohort of 1278 newly diagnosed patients
with CLL, 64 cases of ITP were identified (5%) and the development of the autoimmune
phenomenon at any time during the disease course conferred a shorter OS [152]. In these
patients, an early occurrence of ITP (i.e., within 24 months after CLL diagnosis) was
found to be an independent adverse prognostic factor for OS. As for the association with
prognostic parameters, the evaluation of the impact of autoimmunity on OS also produced
inconsistent results, mainly due to the heterogeneity of the patient populations analyzed
in different studies. Notably, the prognostic impact of non-hematological autoimmune
manifestations is even more difficult to ascertain due to the rarity of their occurrence.

It is widely accepted that the initial treatment for CLL-associated autoimmune cytope-
nias is based on steroids, possibly in combination with rituximab and/or immunosuppres-
sive drugs, whereas when CLL treatment criteria are fulfilled or when the autoimmune
phenomenon is not controlled, a CLL-directed treatment is recommended [146,165]. Few
data are available regarding the impact of autoimmune manifestations on response to CLL-
directed therapy. In the previously mentioned UK LRF CLL4 trial reported by Dearden
and colleagues, where patients were randomized to receive chlorambucil, fludarabine or
fludarabine plus cyclophosphamide, it was noted that patients who developed AIHA had
inferior response rates and quality [160]. Of note, patients with AIHA did receive less
therapy. More recently, the presence of a positive DAT was found to be a predictor for
non-response to frontline chemoimmunotherapy treatment in a cohort of 120 patients with
CLL [166].

The therapeutic scenario for CLL recently changed, with the introduction of targeted
agents, such as B-cell receptor inhibitors and Bcl-2 antagonists [167]. Interestingly, data
from our group and others indicate that in patients treated with ibrutinib, idelalisib or
venetoclax, a pre-existing autoimmune cytopenia does not carry an adverse impact on
patients’ prognosis, suggesting that these effective drugs might be able to attenuate the
inferior outcome associated with autoimmune manifestations [156,158].

3.2. Infections

In patients with CLL, infection is a common cause of morbidity and mortality, account-
ing for up to more than 50% of the deaths–depending on the characteristics of the patients’
cohorts included in the different studies–and the negative impact of infections raises in
patients with multiple comorbidities [85,168,169]. Interestingly, as compared to a control
population, the risk of infection is higher not only in patients with CLL, but also in those
with MBL, the pre-disease stage preceding CLL [170]. The increased risk of infection is
certainly dependent on the underlying CLL-related immune dysfunctions, but also on the
immune perturbations specifically related to different CLL-directed therapies. Accordingly,
current guidelines recommend antimicrobial prophylaxis in patients with a higher risk of
developing infections, based on the treatment regimen received [165].

The possible correlation of infections and CLL prognostic parameters has been ex-
plored. Francis at al. retrospectively evaluated a cohort of 280 patients, and–as expected–
infection rate inversely associated with Ig levels [81]. Also, patients with advanced clinical
stage, unmutated IGHV, genetic abnormalities [TP53 mutation or deletion, ATM mutation
or deletion, tris(12)] and those with CD38 positivity had a shorter time-to-first major infec-
tion, with both stage and IGHV mutational status maintaining their independent value
in multivariate analysis. The same four parameters negatively impacted infection-related
mortality, possibly reflecting an association between disease aggressiveness and immune
deficiency. Consistently, in the monocentric cohort of 706 patients reported by Visentin and
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colleagues, major infections–defined as events requiring in patient management or intra-
venous antibiotics–were associated with clinical stage, IGHV mutational status, high-risk
cytogenetics and CD38 positivity [80]. More recently, Andersen and colleagues interrogated
the Danish National CLL registry, assessing a cohort of 2905 patients diagnosed with CLL
between the years 2008 and 2016 [82]. In multivariate analysis, variables that significantly
associated with infection-specific hazard rates were Binet stage, β2-microglobulin and
IgA levels. As highlighted by the authors, the lack of association of the risk of infections
with adverse FISH abnormalities or unmutated IGHV status might be explained by the
impact of these variables on the probability of treatment, which was a competing risk in
this model.

Undoubtedly, the development of models capable to identify patients more susceptible
of developing severe infections during the course of their disease would be extremely
useful, also in terms of treatment selection. To this aim, Agius and colleagues recently
developed a machine learning model identifying with high precision patients at risk of
severe infection within 2 years of CLL diagnosis [171].

Regarding the evaluation of the impact of infections on the overall prognosis of
patients with CLL, in the already cited Danish registry cohort, patients with CLL who have
had an infection during the first year after diagnosis–identified as those who had a blood
culture drawn prior to CLL therapy–had a significantly shorter TFS and OS [172]. In their
monocentric cohort of 706 patients, Visentin and colleagues showed that patients with a
history of major infection had a shorter OS compared to those who did not experience this
complication, and this factor maintained its impact on survival in multivariate analysis [80].
Data from Crassini et al., who analyzed the long-term follow-up (9.5 years) of a cohort
of 147 patients, confirmed a significant association between the occurrence of serious
or recurrent infectious complications within the first year of observation and a shorter
OS [173].

It needs to be highlighted that in the last few years, the introduction of targeted
agents for the treatment of patients with CLL may have had an impact on the infectious
complication spectrum for these patients (reviewed in [140]). For example, opportunistic
pathogens have been recognized as an emerging cause of infection in patients treated with
ibrutinib. However, the infectious risk seems more related to the disease itself and to the
previous treatment status than to the administered drugs. Recently, Mauro and colleagues
specifically evaluated the prognostic impact of infections in 494 patients with CLL treated
with ibrutinib [174]. Ibrutinib was permanently discontinued in 9% of patients due to
infections and OS for patients who had a severe infection or pneumonia was significantly
shorter compared to those infection-free.

Finally, it is worth to be mentioned that in the current worldwide pandemic scenario,
patients with CLL can be severely affected by SARS-CoV-2 infection [175]. Older patients
seem to be at increased risk of infection, with a high incidence of mortality among hospital-
ized patients (reviewed in [176]). Interestingly, it has been postulated that BTK inhibitors
such as ibrutinib or acalabrutinib could attenuate hyperinflammatory responses thus ex-
erting protection against severe disease course, but to date data are still controversial and
prospective clinical trials are ongoing [176]).

3.3. Second Malignancies

Considering the high median age at diagnosis (i.e., 70 years) of patients with CLL [177],
who mostly remain under surveillance for years, it is not surprising how during the course
of the disease the onset of another cancer often occurs, and has a considerable impact
on the patient’s prognosis. Strati et al. reported their results on a prospective cohort of
1143 newly diagnosed patients with CLL, amongst whom 225 deaths were reported after
a median follow-up of 6 years: cause of death was attributed to a second malignancy in
19% of patients [168]. Undoubtedly, together with the age, CLL-related factors–such as
the loss of immune surveillance and previous treatments–exert their contribute on the
occurrence of other malignancies. Registry-derived data from the early 1990s already
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reported a significantly increased risk of developing a second malignancy in patients with
CLL, compared to the general population [178].

The contribution of previous treatments in this increased risk has been specifically
evaluated by Falchi and colleagues, who analyzed the impact of other malignancies in
797 patients with CLL who survived >10 years [143]. In this cohort, an excess of cancer
diagnosis in patients with CLL compared to the general population was confirmed, with a
standardized incidence ratio (SIR) of 1.2. Interestingly, the cumulative frequency of other
cancers was similar in patients who received treatment for CLL and in those who remained
untreated (36%), and the therapy for CLL was not associated with the occurrence of other
malignancies in multivariate analysis. Conversely, a large population-based analysis on
data from 38754 patients with CLL, derived from the Surveillance Epidemiology and End
Results (SEER) database, showed an increased risk of second primary malignancies in
patients who had received prior chemotherapy compared to those untreated or with an
unknown treatment status (SIR 1.38 vs. 1.16) [179]. However, when the analysis was
restricted to patients diagnosed with CLL in the time interval 2003–2015–when an overall
increasing trend of second primary malignancies was noted–no difference was found in
the risk for solid tumors between previously treated and untreated patients.

Besides the impact of CLL-directed treatments, some attempts have been made to
identify a possible correlation between the development of second cancers and CLL-
related biological parameters. In their retrospective analysis on 2028 patients with CLL,
Tsimberidou and colleagues reported that elevated levels of β2-microglobulin and LDH,
but not the presence of cytogenetic aberrations, were independent factors predicting for the
development of second cancers [180]. However, in the already cited analysis on long-term
survivors performed by Falchi et al., β2-microglobulin did not emerge as independent
predictor, possibly reflecting differences in the patients’ cohorts [143]. Additional studies
should assess the impact of risk factors, including immune parameters, on the risk of
developing second primary malignancies.

The group at Mayo Clinic specifically focused on the risk of developing a second
lymphoproliferative disorder, retrospectively analyzing 962 patients with CLL [181]. After
a median follow-up of 3.3 years, 2.9% of patients developed a second lymphoproliferative
disorder, and this was not associated with CLL biological characteristics, such as ZAP70 or
CD38 expression, IGHV mutational status or cytogenetic aberrations. The incidence of and
risk factors for second malignancies was also recently evaluated in a cohort of 691 patients
treated with ibrutinib or acalabrutinib [182]. After a median follow-up of 44 months,
20% of patients were diagnosed with a non-melanoma skin cancer and 9% with other
primary malignancies, which were responsible for 13% of deaths. In this cohort, the SIR for
secondary invasive cancers was 2.2, and a lower risk for other cancers was significantly
associated in multivariate analysis with a higher baseline CD8+ T-cell count, supporting a
correlation between immune function and carcinogenesis in this patient population.

It is conceivable that the presence of another malignancy may impact the overall
prognosis of a patient. In the previously cited analysis from Tsimberidou et al., patients
who had a history of a prior malignant neoplasms at the time of presentation with CLL had
a significantly shorter OS as compared to those who did not. However, the authors did not
specifically evaluate the survival of patients who developed a second malignancy after CLL
diagnosis compared to those who did not [180]. Among 12,041 patients with CLL from
the Swedish Cancer Registry, Toro and colleagues reported 236 cases of non-melanoma
skin cancer, including 111 squamous cell cancers [183]. These patients had a significantly
shorter OS than CLL patients without non-melanoma skin cancer, and 44% of deaths
were attributed to CLL. However, it has to be highlighted that the median age at CLL
diagnosis for patients with a non-melanoma skin cancer was significantly higher compared
to those without a history of non-melanoma skin cancer (78.5 vs. 71 years). Finally, Royle
et al. reported in their cohort of 13580 patients diagnosed with CLL in Australia between
1983 and 2005 a SIR for second primary cancers of 2.17 [184]. Sixty-five% of deaths were
attributed to cancer (15% excluding lymphoproliferative neoplasms). Overall, CLL patients
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had a 2.5 times higher mortality rate as compared to the general population, and their age
standardized cancer mortality ratios–excluding lymphoproliferative neoplasms–was 1.72.
Additional studies are currently needed to elucidate whether second primary malignancies
have a more aggressive evolution, ultimately leading to a worse outcome, in patients with
CLL compared to the general population.

4. Conclusions and Perspectives

The evaluation of the multiple immune alterations occurring in patients with CLL,
which affect both the innate and adaptive immunity, is certainly fundamental to better
understand the biology of the disease. Some of these immune system dysfunctions are
associated with other disease-specific prognostic hallmarks and have been shown to have
a prognostic impact. These observations support the notion that the clinical heterogeneity
that characterizes CLL depends not only on the intrinsic features of the tumor clone, but
also on the complex interrelation occurring between the cancer cells, the immune system
and the tumor microenvironment.

The disease-related immune dysfunctions can be further exacerbated by the immuno-
suppressive effects of the CLL-directed therapies, constituting a double-hit process that
favors the development of clinically relevant manifestations such as autoimmunity, infec-
tions and second malignancies. These manifestations may have an impact on the overall
patients’ prognosis, not only because they directly impact the clinical outcome, but also
because they easily interfere with the treatment program, causing delays or interruptions.
Of note, in some patients, autoimmune phenomena, infections or second cancers can even
occur simultaneously, on one hand because of a higher susceptibility linked to the intrinsic
features of higher-risk subtypes of the disease, and on the other hand because of the mutual
influence that these three complications can exert on each other: in patients with autoim-
mune cytopenia, infections are a frequent complication following immunosuppressive
treatments, and second malignancies have been reported as the leading cause of death [147].
The use of less toxic treatments, exerting a reduced impact on the immune system function-
ality, may be beneficial on the overall management of these patients, especially when other
comorbidities are present.

Most of the data presented in this article were collected from the chemotherapy or
chemoimmunotherapy era, and the advent of targeted agents may arguably result in
changes in the current scenario. Therapies with an improved efficacy prolong patients’
survival and confer a longer follow-up duration, thus increasing the possibility to detect
disease-related complications over a longer period of time. Targeted drugs—which along
with their anti-tumor activity exert multiple off-target effects on different components
of the immune system and tumor microenvironment (reviewed in [1,2,185,186])—may
also directly impact on the risk of immune dysfunctions and immune-dependent clinical
manifestations. Therefore, we expect that the current wide use of these compounds in the
clinical practice and the progressively growing follow-up duration will provide more data
and pieces of information to be added to this complex scenario.
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Abbreviations

CLL chronic lymphocytic leukemia
MBC monoclonal B cells
TEMRA terminally differentiated memory T cells
EM effector memory T cells
Th T helper
Tregs T regulatory cells
NK natural killer
NKT natural killer T
M-MDSCs monocytic myeloid-derived suppressor cells
NLCs nurse like cells
DCs dendritic cells
TTFT time-to-first treatment
OS overall survival
PFS progression-free survival
FCR fludarabine-cyclophosphamide-rituximab
IGHV immunoglobulin heavy chain variable region
TCR T cell receptor
MBL monoclonal B cell lymphocytosis
mAb monoclonal antibody
ADCC antibody-dependent cell-mediated-cytotoxicity
KIRs killer Ig-like receptors
NCRs natural cytokine receptors
Ig immunoglobulin
TFS treatment-free survival
TTP time to progression
PMN-MDSCs polymorphonuclear myeloid-derived suppressor cells
AIHA autoimmune hemolytic anemia
ITP immune thrombocytopenia
DAT direct antiglobulin test
SIR standardized incidence ratio
SEER surveillance epidemiology and end results
CR complete remission
LDT lymphocyte doubling time
TTT time-to-treatment
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