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Abstract: The cross-linking density influences the physicochemical properties of cyclodextrin-based
nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs perfor-
mance has been investigated, a detailed study of the cross-linking density has never been performed.
In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities
of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2,
3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in
terms of swelling and rheological properties. The results, from the swelling experiments, exploiting
Flory–Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior.
The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction
methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the
cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have
emerged over the years as a highly versatile class of materials with potential applications in various
fields, this study represents the first step towards a full understanding of the correlation between
their structure and properties, which is a key requirement to effectively tune their synthesis reaction
in view of any specific future application or industrial scale-up.

Keywords: β-cyclodextrin nanosponges; swelling capacity; cross-linking density; Flory–Rehner
theory; rheology

1. Introduction

Hydrogels are chemically or physically three-dimensional nanoporous polymeric
networks [1] (Figure S1, Supplementary Material). They contain cross-links that avoid
the dissolution of the hydrophilic polymer chains into the aqueous phase [2]. As a result,
they can swell in aqueous media rapidly [1] and undergo hydrolysis easily [3]. Hydrogels
can be referred to as physical when polymer chains are connected by electrostatic forces,
hydrogen bonds, hydrophobic interactions, or chain entanglements or as chemical when
they are connected by covalent bonds [4]. The unique structure of cyclodextrins (CDs) has
a great potential in the preparation of hydrogels [5] for pharmaceutical applications, in
which they act as drug [6–10] and protein delivery systems [11]. Therefore, for many years,
CDs have fascinated scientists around the world.

CDs are oligomeric materials produced by enzymatic degradation of starch via
cyclodextrin-glycosyltransferase. These cyclic oligomers are shaped like truncated cones
with a hydrophilic outer surface and a relatively lipophilic central cavity. The central
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cavity enables the complex formation of CDs with guest molecules. CDs consist of six,
seven, eight, and a greater number of D-glucose units, joined through α-(1, 4) glycosidic
linkages to form rings, and are known as α, β and γ-cyclodextrin consecutively [12–14].
β-cyclodextrin (β-CD) possesses the most suitable cavity size for complex formation with
many drugs [15] and is the lowest-priced [16], making the cyclodextrin (CD) of commer-
cial interest [17]. However, native CDs have several limitations such as the inability of
including certain hydrophilic compounds or high molecular-weight drugs, low aqueous
solubility, and toxicity when it is administered intravenously [18–20]. As a consequence,
specific applications required overcoming the aforementioned limitations by chemical
modifications of CD structures [21–23]. A common approach to improve the performance
of parent CDs is cross-linking [24], producing water-soluble and insoluble cyclodextrin
polymers or cyclodextrin-based nanosponges (CD-NSs). CD-NSs are chemically cross-
linked polymers that have many attractive features for use as hydrogels. The structure
of CD-NSs is strongly dependent on the type of the cross-linker [25]. Dianhydrides are
suitable cross-linkers due to their reactivity with nucleophiles, such as the OH groups of
CDs structure. The unique property of the NSs synthesized is swelling in the biological and
aqueous environment [22,26]. The cross-linking reaction of dianhydrides with OH groups
is discussed widely in the literature [22]. Ester-bridged CD-NSs are capable of encapsulat-
ing a wide variety of compounds due to the hydrophilic channels of their porous structure
and the presence of the lipophilic nanosized cavities of cyclodextrin monomers [27,28].
This behavior has been exploited to improve the solubility, stability, and bioavailability,
and to control the release of poorly water-soluble drugs [29–31]. High encapsulation effi-
ciency and slow-release kinetics are due to the electrostatic interactions of the carboxylic
groups of dianhydride bridges with polar moieties of hydrophilic drugs [32] or due to the
inclusion complex formation with lipophilic drugs [33]. The β-CD:cross-linker molar ratio
influence on drug release was investigated. It was found that the β-CD and cross-linker
affect the nano-channels produced and, therefore, the extent of hydrogel swelling, drug
loading capacity, and the rate of drug release [34,35]. Moreover, to control and design the
delivery kinetics, deep knowledge of the cross-linking properties of polymeric structures
is a mandatory step [36]. Cross-linking density affects the final characteristic properties
of CD-NSs [3,37], controlling the swelling of the hydrogel and the consequent mechanical
properties, two key properties when ester-bridged CD-NSs are extensively explored as
drug delivery systems [38].

Significant advances on the synthesis of CD-NSs [39], and their applications ranging
from the environment [40] to other fields such as pharmacy, chemistry, agriculture, gene
delivery, biomedicine and biotechnology, food, cosmetics, biocatalysis, etc., [6–10,22] have
emerged over years. As judged from the historical development of CD-NSs [39], they have
been the subject of numerous surveys, heading towards greener processes such as the
CD-NSs synthesis in natural deep eutectic solvents (NADES) [41] and solvent-free CD-NSs
synthesis [42]. Studies performed on the polymeric structure of ester-bridged βCD-NSs
based on PMDA [27,43–45] showed that the crosslinking degree is strongly dependent on
the PMDA:β-CD molar ratio used during the CD-NSs synthesis, related to the swelling
capacity as an important parameter. Nevertheless, a deep study related to their crosslinking
density and the molecular weight between two cross-links points has never been probed.
Therefore, this subject is currently of great interest and a very challenging task.

In light of this, the aim of our study was to investigate the effect of the cross-linking
density on the swelling and mechanical properties of PMDA:β-CD n:1 molar ratio (n = 2,
3, 4, 5, 6, 7, 8, 9, and 10), using Flory–Rehner theory and rheology. The water absorption
capacity (WAC), and the fundamental parameters of polymer network such as molecular
weight between cross-links (Mc), cross-linking density (υ), storage modulus (G’), and loss
modulus (G”) were determined.

This study is a novelty for NSs literature because it is the first time that the above-
mentioned techniques have been used to investigate the influence of the cross-linking
density on βCD-NSs physicochemical properties.
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2. Materials and Methods
2.1. Materials

β-CD of molecular weight (Mw) 1134.98 g/mol was kindly provided as a gift by
Roquette (Lestrem, France). β-CD was dried in the oven at a defined temperature up to
constant weight before its usage, to remove any traces of water. PMDA (97%), dimethyl-
sulfoxide (DMSO, ≥99.9%), triethylamine (Et3N, ≥99%), and acetone (≥99% (GC)) were
purchased from Sigma-Aldrich (Darmstadt, Germany).

2.2. Methods
2.2.1. Synthesis of PMDA:β-CD NSs

The synthesis of PMDA:β-CD NSs was performed by modifying the procedure already
mentioned in the existing literature [46], based on the synthetic procedure described in the
Italian patent [47]. Nine types of NSs were synthesized by dissolving 4.886 g of anhydrous
β-CD in 20 mL of DMSO in a round bottom flask until a transparent uniform mixture
was observed. Afterwards, 1.25 mL of Et3N was used as a catalyst with the subsequent
addition of PMDA as a cross-linker by applying β-CD:PMDA molar ratios of 1:2, 1:3,
1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10 (Table S1 in Supplementary Material). The cross-linking
reaction was exothermic and, therefore, was carried out under intense magnetic stirring at
room temperature.

The polymerization was completed within a few minutes, especially for higher molar
ratios, obtaining a solid with a great yield that was allowed to stand for 24 h. The solidified
mass was broken up and manually ground in a mortar. Then, it was stirred with an
excess of deionized water, repeatedly, until a clear supernatant solution is obtained. The
purification process was speeded up using Buchner filtration system. The unreacted
reagents or residual reaction by-products were completely removed in Speed Extractor
(BUCHI E-914) with acetone for around 20 min. Finally, the NSs were air-dried, milled,
and utilized for characterization as white homogeneous powders. Figure 1 presents the
polymerization reaction. A schematic representation of the NSs synthesis is provided in
the Supplementary Material (Figure S2).
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Figure 1. Esterification of β-CD with pyromellitic dianhydride.

2.2.2. Swelling Studies

The kinetics of NSs swelling, having various degrees of crosslinking, was studied by
following their increase in weight and volume when immersed in water.

The swelling measurements were performed by immersing 500 mg of dry powder
(200 mg in the case of molar ratio 1:2), in deionized water (in-12 mL test tubes filled up to
10 mL), and blending them, in the beginning, using a Vortex Mixer. The test tubes were
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sealed and maintained at room temperature. After 0.5, 2, 4, 6, 12, 24, 48, and 72 h the
mixtures were centrifuged to obtain a layer of water-bound material and free unabsorbed
water. After removing the supernatant, the residual amount of free water was blotted
off using tissue paper and the weight was recorded. The used water was replaced with
fresh deionized water after each recording. The dry (Figure 2A) and swollen NS samples
(Figure 2B) were observed with an optical microscope equipped with a photo-camera.
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All swelling measurements were performed in triplicate for each molar ratio and the
data obtained were expressed as mean values ± SD.

The swelling rate in percentage (%S) or the water absorption capacity (%WAC) was
calculated using the equation [48–51]:

WAC (%) =
mt −mo

mo
× 100 (1)

where mt is the weight of the swollen sample at time t and mo is the initial weight of the
dry sample.

2.2.3. Cross-Linking Density Determination Using Swelling Experiments
Flory–Rehner Theory

A weighed amount of about 500 mg of β-CD:PMDA (200 mg in the case of the NS
with β-CD:PMDA molar ratio of 1:2) was dispersed in 10 mL of deionized water in a 10-mL
test tube and allowed to swell for two hours. The swelling study permitted the calculation
of the polymer volume fraction in the equilibrium-swollen polymer (υ2m) that is used
to calculate the cross-linking density (υ) using the Flory–Rehner theory. The number of
cross-links per unit volume in a polymer network is defined as cross-linking density [37].
The polymer volume fraction, an important parameter used for the characterization of
the polymer network structure, is related to the quantity of water that a polymer can
incorporate. It is expressed as a ratio of the volume of polymer (Vp) to the volume of the
swollen polymer or gel (Vgel) at equilibrium [52,53].

υ2m =
Vp
Vg

=
Vg −Vw

Vg
= 1 −

mw ρg

ρwmg
(2)

ρg is the density of the swollen polymer, ρw is the density of water, mg is the mass of the
swollen polymer at equilibrium and mw is the mass of water present in the swollen polymer.
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The densities of both dry and swollen polymers were determined using a pycnometer
(Figure S4 in Supplementary Material). The details are presented in Supplementary Ma-
terial (Sections S4 and S5). The experimental values of both densities are presented in
Table S2 (Supplementary Material).

The Mc is calculated using the Flory-Rehner equation (Mc) [54,55]:

Mc =
V1

[
(υ2m )̂1/3 −

(
2
f υ2m

)]
−
[
ln(1− υ2m) + υ2m + χ1 (υ2m)2

] (3)

where χ1 is the Flory–Huggins solvent-polymer interaction parameter, V1 is the molar
volume of water as a swelling agent and f is the functionality of the cross-links. The
relationship between Mc and υ is given by the following equation:

Mc =
ρp

υ
(4)

where ρp is the polymer density.
The procedure of the χ1 determination is published elsewhere [26,56], but there is no

literature value for PMDA CD polymers, therefore, in this work, the literature value of
χ1 = 0.473 for dextran was employed. Functionality (f ) is the maximum number of chem-
ically linked polymer chains at a cross-link. For the β-CD:PMDA system f = 3 was
taken into consideration, based on the three hydroxyl groups of the glucose unit, and
V1 = 18 cm3 mol−1. All the measurements were performed in triplicate for each molar ratio
and the data obtained were expressed as mean values ± SD.

Rheological Measurements

Rheological measurements were performed in a Rheometer TA Instruments Discovery
HR 1 by following the procedure described in the literature with some modifications [57,58].
The instrument was equipped with 20 mm diameter stainless steel plate geometry and
Peltier plate temperature control. Frequency sweep measurement was performed from
100 to 0.2 rad/s and stress amplitude of 2%. The amplitude sweep test was used to check
the value of stress amplitude, guaranteeing the performance of the measurements within
the linear viscoelastic region. The oscillatory shear mode was used to determine the
shear modulus (G), in particular the storage modulus (G’) and the loss modulus (G”) of
the swollen NSs as a function of frequency (Frequency Sweep test) and as a function of
shear strain (Amplitude Sweep test). G’ and the G” are two significant parameters for
the characterization of viscoelastic materials. The sample was placed between the upper
parallel plate and stationary surface with varying gap size (1 mm and 2 mm) adapted
following the same procedure previously detailed. The loading procedure was a practical
difficulty because care must be taken to avoid the formation of air bubbles. As the wall-
slip formation is inevitable [59], to overcome it, a roughened surface geometry, such as a
crosshatched plate, was employed to improve the contact between the geometry and the
sample. After sample loading, the sample edge was carefully trimmed with a spatula to
maintain the proper surface shape during the measurements and to avoid errors (Figures S5
and S6 in Supplementary Material). However, the effects of overfilling and solvent trap
on rheological measurements were also studied (Figure S7 in Supplementary Material).
Samples were equilibrated for 5 min, before the experiments, to allow the relaxation of
the whole structure. A delay of 5 min was applied to measure the initial structure level of
the samples before shearing and to eliminate any disturbance created by the measuring
geometry [60]. The temperature at 25 ◦C was controlled by a water bath circulator. To
ensure the reproducible state of the samples, the measurements, for each molar ratio, were
accomplished in triplicate recording their average. The data obtained were expressed as
mean values ± SD.

The fraction of elastically effective network chains is determined by the modulus
measurements. The theory of elasticity, developed by Flory, predicts the equilibrium shear
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elasticity. The value of the plateau modulus G’p, obtained by rheological measurements,
is directly related to the number of elastically effective chains per unit volume (υe) as
expressed by the following equation:

G′p =

(
1− 2

f

)
× υe × RT (5)

υe is the molar number of elastically effective network chains per unit volume estimated in
mol m−3, R is the universal gas constant (8.314 J mol−1 K−1), T is the temperature, f is the
functionality formerly defined [61].

3. Results and Discussions
3.1. Synthesis of Ester-Bridged βCD-NSs Based on PMDA

NSs of different cross-linking density were successfully synthesized by the esterifi-
cation of the hydroxyl groups of β-CD with PMDA, used as a crosslinker. The NSs were
prepared with stoichiometric ratios 0.285, 0.428, 0.571, 0.714, 0.857, 1, 1.142, 1.285, and
1.428 mol of PMDA per mole of glucose unit. β-CD esters are synthesized by the ring-
opening reactions of PMDA. The ring-opening of anhydride is caused by the reaction of the
hydroxyl groups in β-CD structure with PMDA, via nucleophilic attack, using Et3N as a
catalyst. This results in the formation of carboxyl and ester groups in the polymer network.
The four carbonyl groups attached to one benzene ring in a coplanar conformation, typical
of PMDA structure, show a high tendency to accept an electron [62]. Thus, PMDA is con-
sidered the most reactive dianhydride monomer. Ester-bridged βCD-NSs based on PMDA
contain free carboxylic acid groups, therefore they can form complexes with both apolar
organic molecules and cations. Depending on the amount of PMDA added, products with
a variable number of acid groups and different hardness were obtained. By varying the
ratio of the cross-linker used in the reaction, there was observed a change in the physical
appearance as well as the yield of the product. The network chain between the cross-links
becomes shorter and entangled, as the amount of PMDA increases, therefore, the polymer
is strongly interconnected or more rigid. Contrarily, the NSs with less amount of PMDA
have low rigidity because the polymer chains are loosely bonded by weak Van der Waals
forces or less strongly interconnected, and move easily. The NSs with higher molar ratios
resulted in higher yields than the others (Table 1).

Table 1. The yields of the final products with different amounts of the cross-linker.

Molar Ratios (β-CD:PMDA) Yield (%)

1:2 56%
1:3 74%
1:4 >95%
1:5 >95%
1:6 >95%
1:7 >95%
1:8 >95%
1:9 >95%
1:10 81%

3.2. Water Absorption Capacity (WAC)

As the network of the β-CD:PMDA NSs bears hydroxyl and carboxylic acid groups,
there is a high affinity for water molecules. The capacity to absorb water as a function of
time and ratio of cross-linker to monomer was determined. From Figure 3 it can be seen that
the maximum water absorbency was achieved after a few hours, followed by plateauing of
the absorption up to 72 h for most of the samples. Besides, the water absorption capacity
of the β-CD:PMDA NS with the lowest level of cross-linking (1:2) was gradually reduced
over time and the gel hydrolyzed after 24 h, as a consequence of the polymer network
degradation. The effect of the content of cross-linker on water absorption capacity is
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shown in Figure 4A. The values of water absorption capacity decrease as the content of
cross-linker are increased between the molar ratio 1:2 (1526%) and 1:5 (174%), as detailed
in the Supplementary Material (Table S3a). Above, the water absorption capacity remains
almost constant (1:6, 1:7, 1:8, 1:9) and then it rises in the case of 65% cross-linker (molar
ratio 1:10). Table S3b,c in Supplementary Material present the experimental values of WAC
as the function of the swelling time.
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In the case of 27% cross-linker (1:2), as presented in Figures 3 and 4A, can be observed
that is challenging to determine a physically meaningful value of WAC. The image in
Figure 4B shows that the opacity of the gel increases with the content of PMDA. This
substantiates previous findings in the literature demonstrating that the gels of the higher
concentration region of the cross-linker are opaque [63]. Opaque gels are characterized by a
heterogeneous network structure where particle aggregates are sufficiently large to scatter
light [64]. This heterogeneity can be explained by the fact that the increase of cross-links
restricts the movement of polymer chains [48,50], leads to the compaction of the structure,
and hampers the diffusion of water in the polymer network [65]. This results in a decreased
degree of swelling of gel. The driving force, in the swelling of cross-linked polymers, is due
to the contribution of normal entropy and enthalpy changes associated with the mixing of
solvent and solute molecules (Figure S1 in Supplementary Material). Further, changes in
configurational entropy result from the dilution of flexible chain molecules. The dispersion
tendency of cross-linked polymers is opposed by a decreased configurational entropy of
the polymer chains held between cross-links. This is caused by an elastic restrain force.
As the network expands, these chains are forced to assume more elongated, less probable
configurations, therefore, the swelling capacity is lower at higher crosslink ratio [54,66,67].

3.3. Flory–Rehner Theory

Numerous theories have been proposed to predict network structures. Flory and
Rehner convincingly, through their mathematical and conceptually simple theory, interpret
the swelling of polymeric networks [53]. The β-CD:PMDA NSs are hydrophilic polymers
containing carboxylic groups, as detailed in the previous section, in equilibrium with the
carboxylate groups in the presence of water. As a consequence of the electrostatic repulsion
of negative charges, the polymer chains are expanded [68]. Besides, the swelling comes as
a result of the cross-links presence within a polymer network that prevents the dissolution
of the polymer. If the network structure is not dissolved in water but only swells, a state of
equilibrium swelling can be reached, as explained by the Flory–Rehner theory. According
to this theory, the free energy change ∆F involved in the mixing of polymer with the solvent
consists of ordinary free energy of mixing ∆FM, and the elastic free energy ∆Fel.

∆F = ∆FM + ∆Fel (6)

The mixing free energy (∆FM) is a function of the polymer volume fraction (υ2,m) and
the Flory–Huggins solvent-polymer interaction parameter (χ). Its derivative, with respect
to the number of solvent molecules (n1), can be written as:

∂∆FM

∂n1
= RT×

{
ln(1− υ2,m) + υ2,m + χυ2

2,m

}
(7)

As β-CD:PMDA NSs are highly cross-linked systems, the contribution from the
configurational entropy of the network during the swelling is considered. According to the
aforementioned, the elastic free energy ∆Fel, associated with the expansion of the polymer
network, is equal to −T∆Sel representing the entropy change associated with the network
configuration change. Therefore, ∆Fel derivative can be expressed as:

∂∆Fel
∂n1

= RTυe ×
V1

V0
×
[
(υ2,m )̂1/3− υ2, m

2

]
,

υe

V0
=

ρ

Mc
(8)

Combining both contributions, from Flory–Huggins (Equation (7)) and the configura-
tional entropy of the network (Equation (8)), the overall free energy can be computed as:

∆F = RT× [ln(1− υ2,m)] + υ2,m + χυ2
2,m +

ρV1

Mc
×
[
(υ2,m )̂1/3− υ2,m

2

]
(9)
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When the equilibrium is reached, ∆F = 0, therefore, Equation (9) can be rearranged
as [26,38,54–56,69]:

− [ln(1− υ2,m)] + υ2,m + χυ2
2,m =

ρV1

Mc
×
[
(υ2,m )̂1/3− υ2,m

2

]
(10)

The details of the Flory–Rehner theory are described in the Appendix A.
The swelling of a polymer gel leads to a decrease in chain configurational entropy and

an increase in entropy of mixing of solvent with the polymer. The absorption of water is a
consequence of osmotic forces, whereas the decrease in entropy is caused by the stretching
of the polymer chains and it gives rise to the elastic force of the polymer network. The
equilibrium is reached when the opposing entropies are balanced, as extensively studied in
the literature [67,70–72]. According to the Flory–Rehner theory, the attraction of the water
molecules by the hydrophilic polymer chains is described by the mixing energy, specifically
the first three terms of Equation (10) ln(1−υ2,m), υ2,m and χυ2

2,m [73]. Meanwhile, the last
term [V1 × (υe/V0) × (υ2

1/3 − υ2/2)] describes the elastic free energy associated with the
stretching of the gel [74,75]. The water absorption or swelling capacity of the polymer
network depends on the degree of cross-linking. Therefore, swelling tests were performed
on the β-CD:PMDA NSs and the Flory–Rehner equation given previously (Equations (3)
and (4)) was applied to determine the degree of cross-linking of each molar ratio. Figure 5A
shows that by increasing the molar ratio up to 1:6 the cross-linking density increases,
reaching a “plateau” (1:7, 1:8, 1:9) and then it decreases in the case of molar ratio (1:10),
following a Gaussian distribution. This is in agreement with a previous study by Rossi
et al. [27]. According to this study, the increase in NS stiffness with the increasing of the
cross-linker amount reaches a maximum at a certain limit (1:6). If the molar ratio cross-
linker to β-CD is higher than 6, it leads to branching rather than further cross-linking of
the CD network. The maximum degree of cross-linking, probably due to steric effects, has
already been observed by the combined use of Raman and infrared spectroscopy supported
by quantum chemical calculations [44], as well as inelastic light-scattering experiments [27].
As expected, at a higher degree of crosslinking Figure 5B), the average distance between
two cross-link points (Mc) becomes shorter and the network structure becomes denser.
Thus, the experimental values of Mc increase with the decreasing of the cross-linking ratio
in β-CD:PMDA NSs.

The experimental values of molecular weight between cross-links (Mc), cross-linking
density (υ), and polymer volume fraction (υ2m) are shown in Table S4 provided in the
Supplementary Material. The molecular weight between cross-links (Mc) is the parameter
that describes the basic structure of the gel and it relates to the ability of the polymer
network to swell. An increase of molecular weight between crosslinks (Mc) is accompanied
by a decrease of cross-linking density, followed by a decrease of swelling ratio. High Mc
values correspond to a loosely cross-linked network and increased swelling ratio. Therefore,
the cross-linked structure of the NSs matrix can be controlled effectively by adjusting the
amount of cross-linking agent used in the synthesis process.
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3.4. Rheological Measurements

The swelling capacity is also a crucial property to determine the mechanical stiffnesses
of β-CD:PMDA NSs. Rheology is a technique frequently used to investigate the mechanical
properties of polymer networks. It studies the deformation and flow of material, by
applying a force called shear stress or a deformation called a strain, using a rheometer. The
rheometer consists of two basic components separated by the sample. The viscoelastic
behavior will appear as a response of the material to the applied force [76–79]. A stress
sweep test on a parallel plate rheometer under controlled strain conditions was performed
to study β-CD:PMDA NSs morphology. Shear modulus (G), in particular, the storage
modulus (G’) and the loss modulus (G”) are significant parameters which enable the
characterization of viscoelastic materials. The measure of the deformation energy stored
by the sample during the shear process is called G’ whereas the consumption of the
deformation energy by the sample during the shear process is called G”. Energy storage
materials are characterized by reversible deformation behavior because of the unchanged
shape after a load cycle. The viscous behavior of test material is represented by G” whereas
the elastic ones by G’. Therefore, the material appears as a gel when G” is lower than the
G’ and as a liquid when G’ is lower than G”. The cross-point expresses the oscillation
stress at which G” and G’ are equal [57,69,76,80–82]. Figures S8 and S9 in Supplementary
Material present the effect of overfilling and solvent trap on rheological measurements,
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with a gap of 1 mm. Figure S8 in Supplementary Material shows that the viscoelastic
properties of the synthesized NSs are a strong function of the test frequency. An abrupt
increase in G’ and G” was observed with increasing angular frequencies for NSs at molar
ratio of 1:5, 1:6, 1:7, 1:8, implying that the samples still maintain their strong gel and
elastic characteristics. Therefore, the gel consisting of the solvent immobilized within a
three-dimensional polymer network represented an elastic solid. Whereas, for NSs at molar
ratio of 1:3, 1:4, 1:9, and 1:10, the curve indicates a plateau towards the highest angular
frequencies (plateau modulus, Gp’). Exemplary results in Figure S9 in Supplementary
Material, determined for β-CD:PMDA molar ratio of 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, at
an angular frequency (ω) of 1 rad/s, demonstrated that G’ is higher than G” for all molar
ratios, confirming once more the gel-state behavior of the NSs. Moreover, an increase of
both the G’ and the G” is more pronounced as the PMDA content increases up to molar
ratio 1:5 and 1:6. The further increase of the cross-linker content (molar ratios 1:7, 1:8, 1:9,
and 1:10) results in a drastic decline of G’ and G”. Besides, the lowest molar ratio of NSs
such as 1:2 is inclined towards the liquid-state behavior. Therefore, its thickness was not
enough for the gap showing the poorest mechanical properties due to its highest swelling
degree. This confirmed what one study already observed [77], a decrease in the mechanical
properties of the hydrogels, and an increase of the water absorption capacity are caused by
the arrangement of water molecules inside the hydrogel structure. The presence of water
molecules affects the rheological properties of the hydrogels, making the hydrogel softer
under mechanical stress and vice versa. From the literature [83], the removal of the extra
sample outside the geometry is considered an essential step in experimental rheology to
minimize the experimental errors. Figures 6 and 7 present the rheological measurements
with varying gap of 1 mm (Figures 6A and 7A) and 2 mm (Figures 6B and 7B), trimming
the sample before the experiment and not using the solvent trap. The lowest molar ratio
of NSs such as 1:2 is also displayed among other results. The results show approximately
the same dependency of G’ and G’ from the PMDA content as previously described for
Figures S8 and S9 (Supplementary Material). As expected, the way of sample loading and
gap size varying can cause errors in final results. In most of the molar ratios, the G’ and G”
are decreased as the gap height is increased from 1 mm to 2 mm. Further, the errors are
higher at 1 mm gap size (Figure 7A) than at 2 mm gap size (Figure 7B).

At low frequency, the storage modulus (G’) tends toward a plateau that defines the
cross-linking density of the network. Therefore, the influence of the cross-linker ratio on G’
and G”, with gap size varying (1 mm and 2 mm), is studied. Generally, when the measured
values of G” were observed to be on the order of 0.1% to 5% of the G’ values, the inclusion
of G” in calculations could be neglected [61]. Hence, G’ is used to calculate the number of
effective chains per unit volume (υe) according to Equation (5).

The chains are considered elastically effective when are connected at both ends to
cross-links which are further defined as junctions with three or more paths to the gel
network [84]. Figure 8 shows that by increasing the cross-linker content at a certain amount
such as the molar ratio 1:6 (1 mm gap size) and 1:6 (2 mm gap size), the υeincreases as well.
A higher cross-linker concentration should promote a more efficient cross-linked network
with higher gel strength. It is observed a decrease of υe by further increasing the molar
ratio, and the errors are higher at 1 mm gap size than at 2 mm gap size. The trend of an
increase in the υe with increasing the cross-linker content at a certain amount (1:6 molar
ratio) is observed in Figure S10 (Supplementary Material). It presents the υecalculated
from rheological measurements carried out in the presence of overfilling and solvent trap.
Therefore, the values of υe, compare to abovementioned, in these conditions are higher
(Figure S11 in Supplementary Material), adding errors to the data. This can be rationalized
with what is already investigated in literature [83] that overfilling and gap size cause data
errors. To sum up, with the increasing of the cross-linker amount, the G’ values increase
(Figure 7A,B) because of the increment of υe points (Figure 8). The effectiveness of the
cross-linking agent can be associated with the occurrence of inhomogeneities within the
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network [85]. The experimental values of G’, G” and υe, at 1 mm and 2 mm gap size, are
presented in Tables S5–S8 of the Supplementary Material.
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3.5. Comparison of the Cross-Linking Density Determination Based on Two Different Methods

The profiles of cross-linking density vs. molar ratio obtained by both the Flory–Rehner
and the rheological methods are in close agreement with each other. In both cases, a
maximum cross-linking density appears in the range of 6–8 PMDA:β-CD molar ratio.
However, Figure 9 shows that the values based on the Flory–Rehner equation are higher
than those based on the rheological measurements. This trend of higher values in the case
of Flory–Rehner theory compared to other methods has also been observed in other studies
focused on the evaluation of the cross-linking density of rubbers [86] and hydrogels based
on cellulose [56]. Returning to Equations (3)–(5), it can be observed that the cross-linking
density determination is treated differently. According to Equations (3) and (4), both the
mixing and elastic contribution are considered. Thus, all monomer units belonging to the
polymer network contribute to the calculation of υFR. The higher values resulted from the
Flory–Rehner equation are attributed to its numerous parameters, obtained by various
independent methods, affecting the final values. Whereas, Equation (5) considers just a
certain fraction of the polymer network to calculate υe [55]. Therefore, the lower values of
υe, obtained from the rheological measurements, display probably the presence of chain
ends but not of the entanglements. This may be as a consequence of the number of added
effective sub-chains calculation from the number of added cross-links. Taken together,
this highlights the assumption that two effective sub-chains are equally with each added
cross-link [87]. At this stage it is not possible to fully explain the gap between the values
of cross-linking density, as it may arise both from the experimental procedure used to
prepare the gels and from the intrinsic differences between the two models applied. Future
studies are necessary to reduce such gap, starting from the determination of the interaction
parameter χ and its dependence on the content of PMDA, as well as the application of
different models able to take into account the entanglement points of the polymer network.
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4. Conclusions

In this study, chemically cross-linked β-CD-based NSs were successfully synthesized
varying the relative amount of the PMDA as a cross-linker (in stoichiometric proportions
of 2, 3, 4, 5, 6, 7, 8, 9, and 10). Based on the results the following particular features of
β-CD-based NSs can be concluded: (a) the capability to absorb a huge amount of water
concerning their weight or noted as swelling capacity, due to the presence of -OH and
-COOH pendant groups, and (b) the control of the cross-linking density and rheological
characteristics in a stoichiometric way. The water absorption or swelling capacity, measured
as a function of the cross-linker amount present in β-CD:PMDA NSs showed a maximum
of up to 1526 g H2O/g dry sample. The water absorption capacity was lower when the
concentration of PMDA increased. Both Flory–Rehner theory and rheology, through
equilibrium swelling experiments, have showed that the final β-CD-based NSs network
exhibited a cross-linking density distribution. These models yielded a reasonably good
fit of the data and good agreement between the theory and experiment. The cross-linking
density values reached a maximum with increasing the cross-linker content at a certain
amount (between 1:6 and 1:7, β-CD:PMDA). Additionally, the Mc, calculated by Flory–
Rehner theory, decreased with increasing cross-linking ratio. Rheology was used to study
the correlations between the cross-linking determination and mechanical properties of the
NSs network. The gel-state behavior of the NSs is confirmed by higher values of G’ than
G” for all angular frequencies, and both G’ and G” were dependent on PMDA content. As
PMDA increased at a certain amount, higher G’ and G” were pronounced.

These findings have a huge impact on a wide variety of practical uses, especially
for pharmaceutical (Figure S12 in Supplementary Material) and biomedical purposes.
Understanding the correlation between the structural features of PMDA βCD-based NSs
and their physicochemical properties will allow one day to identify rapidly and effectively
the right synthesis method, in terms of monomers formulation and reaction condition, to
fulfill the requirements of the desired specific applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/3/478/s1. Figure S1: Chemical modification of the polymer; Figure S2: Scheme of the synthesis
of β-CD:PMDA NSs; Figure S3: Images of β-CD:PMDA NS molar ratio in a dry state (A) and in a
swollen state (B); Figure S4: Pycnometer; Figure S5: Sample loading in a rheometer, 1 mm gap size,
removal of the extra sample outside the geometry and of the solvent trap; Figure S6: Sample loading in
a rheometer, 2 mm gap size, removal of the extra sample outside the geometry and of the solvent trap;
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Figure S7: Sample loading in a rheometer, 1 mm gap size. Non-removal of the extra sample outside
the geometry and of the solvent trap; Figure S8: Storage (G’) and loss (G”) modulus versus angular
frequency for β-CD:PMDA molar ratio of 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10. 1 mm gap size without
removing the extra sample outside the geometry and with solvent trap; Figure S9: Storage (G’) and
loss (G”) modulus versus molar ratio of β-CD:PMDA (1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10) at an angular
frequency (ω) of 1 rad/s; 1 mm gap size without removing the extra sample outside the geometry
and with solvent trap; Figure S10: Effective sub-chain density (moles of effective sub-chains per unit
volume, υe, mol/cm3) as a function of added cross-linker content. 1 mm gap size without removing
the extra sample outside the geometry and with solvent trap; Figure S11: Effective sub-chain density
(moles of effective sub-chains per unit volume, υe, mol/cm3) as a function of added cross-linker
content, for different rheological procedures as previously described (1 mm a), 1 mm b), 2 mm);
Figure S12: β-CD: PMDA NSs as delivery systems: acetyl salicylic acid, imiquimod, lansoprazole,
insulin, curcumin, resveratrol, meloxicam, rosuvastatin, rilpivrine; Table S1: The varying amounts of
PMDA as a cross-linker in the synthesis of β-CD NSs; Table S2: Calculated densities of both, the gel
and powder of β-CD: PMDA NSs having the various amount of PMDA. Mean Values ± SD; Table S3:
(a.) WAC experimental values of β-CD:PMDA NSs; (b.), (c.) Water absorption capacity (WAC)
as the function of the swelling time to monomer ratio of β-CD:PMDA NSs; Table S4: Calculated
physicochemical terms (Mc, υ, υ2m) of β-CD:PMDA NSs having the various amount of PMDA.
Mean Values ± SD; Table S5: Calculated rheological parameters of β-CD:PMDA NSs having various
amount of PMDA. Mean Values ± SD. Gap size (1 mm) without removing the extra sample outside
the geometry and with solvent trap; Table S6: Calculated rheological parameters of β-CD:PMDA NSs
having various amount of PMDA. Mean Values ± SD. Gap size (1 mm) removing the extra sample
outside the geometry and without solvent trap; Table S7: Calculated rheological parameters of β-
CD:PMDA NSs having various amount of PMDA. Mean Values ± SD. Gap size (2 mm) removing the
extra sample outside the geometry and without solvent trap; Table S8: Calculated physicochemical
term (υe) of β-CD:PMDA NSs molar ratio for different rheological procedures as previously described.
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Appendix A

Derivation of Equilibrium Swelling Equation

Equilibrium swelling of a gel is calculated by Flory–Rehner theory, by balancing the
mixing and elastic contributions to the osmotic pressure [88]. The ordinary free energy
of mixing ∆FM and the elastic free energy ∆Fel are two terms in which the free energy
change ∆F, involved in the mixing of an amorphous polymeric network with a pure solvent,
consists. Thus, it can be expressed:

∆F = ∆FM + ∆Fel (A1)

The external arrangement of the molecules and their segments enables the computing
of the configurational entropy (∆S∗M) representing the total entropy change ∆SM on mixing.
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The ∆S∗M combined with the heat of mixing (∆HM) result in the free energy of mixing that is
described in terms of the number of solvent molecules (n1), the volume fractions of solvent
(υ1) and polymer (υ2) in the swollen state, Boltzman’s constant (k), absolute (T) and the
Flory–Huggins interaction parameter (χ1) as:

∆SM∗ = −k× (n1 × lnυ1 + n2 × lnυ2) (A2)

∆HM = kT× χ1n1υ2 (A2’)

∆FM = ∆HM − T∆S∗M = kT× [n1 × lnυ1 + n2 × lnυ2 + χ1n1υ2] (A2”)

Due to the absence of individual polymer molecules in the network structure, the
number of polymer molecules (n2) is equal to zero.

n2 ln υ2 = 0

Therefore, the free energy of solvent-polymer network mixing is

∆FM = kT× [(n1 ln υ1) + (χ1n1υ2)] (A2”’)

The derivative of ∆FM to n1, yields:

∂∆FM

∂n1
= kT×

[
ln(1− υ2) + υ2 + χ1(υ2)

2
]

(A3)

The elastic-free energy ∆Fel, associated with the expansion of the polymer network, is
equal with −T∆Sel representing the entropy change with the change in network configura-
tion. The pressure acting on the swollen gel is defined as the elastic reaction of the network
structure. This pressure is sufficient to increase the chemical potential of the solvent in the
solution causing the equilibrium state. A state of equilibrium swelling is reached when the
chemical potential of the solvent in the solution is equal to the chemical potential of the
excess solvent surrounding the swollen gel.

∆S = −kTυe

2
×
[
a2

x + a2
y + a2

z–3–ln
(
axayaz

)]
(A4)

This equality is because the internal energy of the network structure does not ex-
perience any change from the occurrence of the deformation process during swelling.
αx = αy = αz are contributions to deformation from a relaxed state and can be written
in terms of the linear deformation factor αs (αx = αy = αz = αs) because of the isotropic
swelling. It is noted that αs

3 = V/V0 where V0 is the volume of the unswollen polymer and
V the volume of the swollen gel. Accordingly, V0/V = υ2.

According to the aforementioned, the elastic-free energy ∆Fel is presented as

∆Fel =
kTυe

2
×
[
3α2

s − 3− lnα3
s

]
(A5)

where υe is the effective number of chains in an imperfect network. The evaluation of ∆Fel
derivative is made by using

∂∆Fel
∂n1

=
∂∆Fel
∂αs

× ∂αs
∂n1

(A6)

The solvent contribution to the total volume of the system was computed by incorpo-
ration the molar volume of the solvent χ1

α3 =
V
V0

=
1
υ2

=
V0 +

[n1χ1
N
]

V0
(A7)
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where V0 is the polymer volume and V1 is the solvent molar volume.

∂∆Fel
∂n1

= kTυe
V1

V0

[
(υ2)

1̂/3 − υ2

2

]
(A8)

In the equilibrium state the elastic reaction of the network structure, a pressure acting
on the swollen gel is sufficient to increase the chemical potential of the solvent in the
solution. This action equals the excess solvent surrounding the swollen gel until the
equilibrium is reached. The chemical potential of the solvent in the gel is given by:

µ1 − µ0
1 = N×

[
∂∆FM

∂n1

]
T, P + N

[
∂∆Fel
∂αs

]
T, P

[
∂αs
∂n1

]
T, P (A9)

where µ1 is the chemical potential of the solvent in the gel, µ0
1 is the chemical potential in

the pure liquid, N is the number of Avogadro.
The derivatives in Equation (A9) were evaluated by using Equations (A3) and (A8).

µ1 − µ0
1 = NkT×

{[
ln(1− υ2) + υ2 + χ1(υ2)

2
]
+ NkTυe × V1

V0

[
(υ2 )̂1/3− υ2

2
]}

(A10)

µ1 − µ0
1 = NkT×

{[
ln(1− υ2) + υ2 + χ1(υ2)

2
]
+ υe × V1

V0

[
(υ2 )̂1/3− υ2

2
]}

(A10’)

The first three terms of Equation (A10’) such as ln (1−υ2), υ2 and χ1 υ2
2 express

∂∆FM/∂n1 as well as correspond to the lowering of the chemical potential due to mixing of
polymer and solvent. The last term [V1 (υe/V0) (υ2

1/3 − υ2/2)] describes the increase of the
chemical potential from the elastic reaction of the network.

To express υe in moles N and k have been replaced by R according to the equation:

R = N× k (A10”)

υe

V0
=

1
∼
vMc

(A10”’)

µ1 − µ0
1 = RT×

{[
ln(1− υ2) + υ2 + χ1(υ2)

2
]
+

V1
∼
vMc

[
(υ2 )̂1/3− υ2

2

]}
(A10””)

where
∼
v is the specific volume of polymer and Mc is the molecular weight between the two

cross-links. The thermodynamic equilibrium is reached when the chemical potential of the
solvent in the polymer equals the pure solvent so that the left side of Equation (A10””) will
be equal to zero. Therefore, the Equation (A10””) can be rearranged as follows [54,89].

−
[
ln(1− υ2) + υ2 + χ1(υ2)

2
]
=

V1
∼
vMc

[
(υ2 )̂1/3− υ2

2

]
(A11)

Mc =

V1
∼
v

[
(υ2 )̂1/3− υ2

2
]

−
[
ln(1− υ2) + υ2 + χ1(υ2)

2
] (A12)
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