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1 Introduction

The problem of infrared divergences in gauge theory amplitudes and cross sections has
been studied for close to a century, starting with the seminal work of Bloch and Nordsieck
in QED [1], and solutions involving an increasing degree of generality and depth have been
put forward across the decades. One class of proposed solutions is based upon the idea of
carefully constructing well-defined (and thus finite) observable quantities, in the spirit of
the KLN theorem [2, 3]. Within this framework, one accepts that S-matrix elements are ill-
defined in massless theories, introduces an infrared regulator, and verifies the cancellation
of singularities for infrared-safe observables [4, 5]. Alternatively, one can try to tackle the
infrared problem at the root, recognising that it originates from an inadequate definition of
asymptotic states. This viewpoint led to the development of the method of coherent states,
by means of which an infrared-finite perturbative S-matrix can be defined, both in QED [6]
and for non-abelian theories [7]. Remarkably, the study of infrared singularities for non-
abelian gauge theories continues to this day to be a very active field of research, both for
theoretical reasons, and in view of phenomenological applications. On the theoretical side,
a general understanding of the all-order infrared factorisation properties of non-abelian
multi-particle scattering amplitudes has been developed over the years [8–24], and the
relevant soft and collinear anomalous dimensions have been computed to very high orders,
uncovering interesting new mathematical structures [25–38]. On the phenomenological
side, a vast effort has been devoted to the construction of efficient algorithms for the
subtraction of infrared singularities at high perturbative orders, in both virtual corrections
and real radiation contributions to cross sections of experimental interest at colliders. In
this case, the most significant problem is the treatment of unresolved real radiation for
complex observables, in the presence of intricate experimental cuts. Recent advances in
this direction have been reviewed in ref. [39].
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All the developments briefly summarised above are based on standard, if advanced,
techniques of quantum field theory in four dimensions, including diagrammatic tools, renor-
malisation group equations, Ward identities and effective field theories. In recent years,
starting with refs. [40, 41], a remarkable novel formulation of the infrared problem has
been introduced, based on the discovery of enhanced long-distance symmetries of theories
involving massless particles. Within this framework, the infrared behaviour of scattering
amplitudes is determined by infinite-dimensional asymptotic symmetries of the massless
theory under consideration, acting on the ‘celestial’ sphere intersecting the future (or past)
light cone at asymptotic distances. For gravity, these symmetries have been known for
a long time [42, 43], while in the case of gauge theories they take the form of ‘large’
gauge transformations with non-trivial action at null infinity [44–51]. In this context, soft
factorisation theorems for tree-level radiative amplitudes, and their next-to-leading-power
extensions, emerge as Ward identities of these asymptotic symmetries. The first few years
of work in this fast-developing field have been reviewed in [52], where one can find ample
references to the literature. At the moment, much of the work done within this framework is
focused on tree-level amplitudes for gauge theories and gravity (see, however, refs. [53, 54],
where one-loop effects are analysed), but the connection that has been uncovered between
infrared properties of d = 4 massless field theories and d = 2 conformal invariance on
the celestial sphere is intriguing, and represents a radically innovative point of view on
an old problem. An important new tool introduced in this context has been the use of
Mellin transforms of scattering amplitudes [55, 56], which are constructed to have simple
transformation properties under the conformal group acting on the celestial sphere, while
from a four-dimensional viewpoint they are boost eigenstates. A rapidly growing body of
literature (see, for example, refs. [57–67]) is exploring the properties of these celestial am-
plitudes, including detailed comparisons with known soft and collinear limits. Interestingly,
related ideas have also started to be applied in a more phenomenological context [68].

In this paper, we will take a different viewpoint: instead of considering the full multi-
particle scattering amplitude, we will take advantage of its factorisation properties in the
infrared, and focus on the universal infrared colour operator responsible for generating
all soft and collinear singularities. Colour correlations for this operator are well under-
stood to all orders in perturbation theory, and they originate from correlators of straight,
semi-infinite Wilson lines, emerging from the hard scattering and pointing in the light-like
directions defined by the momenta of the hard particles participating in the scattering. The
role of scale and conformal invariance in establishing the form of this infrared operator was
already pointed out in refs. [18, 19], and the conformal properties of the infrared factor
were instrumental in the determination of the three-loop infrared anomalous dimension
by a bootstrap approach in ref. [33]. More recently, a very important observation in this
direction was made in ref. [69]: examining the abelian case, Kalyanapuram noticed that the
one-loop soft factor for QED-like theories is very closely connected to a correlator of vertex
operators for free bosons on the celestial sphere. Here, we will pursue this remarkable
connection, and propose an extension to the non-abelian case.

At the outset, such a generalisation appears to be difficult to achieve, for several
reasons: first of all, in QED the exponentiation of the infrared factor is essentially one-
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loop exact (as it is in gravity [70]), while, in a non-abelian theory, intricate corrections
emerge at all perturbative orders; next, as a consequence, the scale dependence of the non-
abelian soft operator is non-trivial, and possibly entwined with colour correlations; finally,
and more importantly, the non-abelian infrared factor is a colour operator and not just
a number. These obstacles not withstanding, we will be able to propose a generalisation
of the results of ref. [69] to non-abelian massless gauge theories, in terms of a conformal
theory of Lie-algebra-valued free bosons on the celestial sphere.

We will begin in section 2 by providing a bird’s-eye view of our current understanding
of infrared divergences for massless non-abelian scattering amplitudes, focusing our atten-
tion on colour correlations, which arise exclusively from soft gauge boson exchanges. In
section 3, concentrating on colour correlations with a dipole structure, which are under-
stood to all orders, we will translate known results in terms of variables defined on the
celestial sphere. Remarkably, we will find that all dependence on the gauge coupling, on
the scale, and on the dimensional regulator factorises from kinematic and colour correla-
tions, and can be collected in a single universal function which is well-known in perturbative
QCD, giving, among other things, the all-order perturbative expression for the gluon Regge
trajectory in high-energy scattering [71–75]; dependence on colour and kinematics is then
strikingly simple, and naturally expressed in terms of distances on the celestial sphere. In
section 4, we introduce a Lie-algebra-valued free-boson conformal theory on the celestial
sphere. Vertex operators in this theory are colour matrices, in representations correspond-
ing to the hard particles participating in the scattering. That notwithstanding, they have
a well-defined conformal weight, and they form well-behaved correlation functions, which
could be seen as colour-kinematic duals [76, 77] of the integrands of bosonic string ampli-
tudes. These correlators exactly reproduce the all-order expression for infrared divergences
of gauge amplitudes with dipole colour correlations.

In order to further test the correspondence between the conformal theory and the
gauge theory, we note the presence in the celestial theory of a Lie-algebra-valued conserved
Noether current, whose OPE with vertex operators reproduces the tree-level soft-gluon
current responsible for soft real radiation in the gauge theory. This provides strong evidence
for identifying this Noether current with the Kac-Moody current constructed in refs. [40,
46] by considering asymptotic limits of four-dimensional gauge fields. Further, we use
the conformal OPE of vertex operators to study collinear limits of the infrared factor,
and we recover the expected expression for the splitting anomalous dimension for dipole
correlations [19, 78], once again an all-order result. In section 5, we discuss some of the
many questions that our proposal leaves open at this stage. In particular, we discuss
the matching between the celestial coupling and the gauge-theory coupling factor, noting
that it would be of great interest to develop an understanding of the role played by scale
dependence in the correspondence between the celestial and the four-dimensional theory.
We emphasise that, in our view, the theory as presented here is incomplete, and we expect
that a generalisation, or possibly a deformation, of the conformal theory we propose, should
be able to predict, and indeed compute, the quadrupole correlations which arise in the gauge
theory starting at three loops, and are explicitly known at that order [31–33]. We conclude
in section 6 summarising our results and suggesting several open lines for future research.

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
2
8
2

2 Non-abelian soft anomalous dimensions: a primer

The structure of infrared divergences for on-shell scattering amplitudes in massless non-
abelian gauge theories is understood in remarkable generality. To summarise what is
known, consider an n-point amplitude in dimensional regularisation, which we write as

A a1...an
n

(
pi
µ
, αs(µ), ε

)
, (2.1)

displaying the colour indices ai for each external particle. Note that we are allowing for
particles in different representations of the gauge group, so ai is not necessarily an adjoint
index; furthermore, renormalisation has already been performed, and we are working in
d = 4 − 2ε > 4, so that ε < 0, to regularise infrared singularities; finally, we are not
displaying polarisation indices, which will be irrelevant in what follows. If desired, one can
select a basis of colour tensors c a1...an

M spanning the space of allowed colour configurations for
the process at hand: the amplitude in eq. (2.1) is a vector in that space, whose components
in the chosen basis can be computed by suitable projections.

Infrared divergences arise from long-distance exchanges of virtual particles, and they
can be shown to factorise in the form [11, 16, 18, 19, 22, 24]

An
(
pi
µ
, αs(µ), ε

)
= Zn

(
pi
µ
, αs(µ), ε

)
Hn
(
pi
µ
, αs(µ), ε

)
, (2.2)

where colour indices are understood, Zn is a universal colour operator generating all in-
frared poles in ε, and acting on a colour vector Hn, which is process-dependent and finite
as ε → 0. The divergent factor Zn satisfies a renormalisation group equation, which can
be solved in the form

Zn
(
pi
µ
, αs(µ), ε

)
= P exp

[
1
2

∫ µ2

0

dλ2

λ2 Γn
(
pi
λ
, αs(λ, ε)

)]
, (2.3)

where αs(λ, ε) is the d-dimensional running coupling, satisfying

λ
∂αs
∂λ
≡ β(αs, ε) = −2εαs −

α2
s

2π

∞∑
k=0

(
αs
π

)k
bk . (2.4)

Eq. (2.3) features the central object of our discussion, the infrared anomalous dimension
matrix, which we denote by Γn. Note that the initial condition in eq. (2.3) has been fixed
in the infrared, by making use of the fact that αs(λ = 0, ε < 0) = 0; note also that the
matrix Γn is finite as ε→ 0, and all infrared singularities arise from the scale integration.

The matrix Γn is clearly a fundamental object for perturbative gauge theories: for
massless theories, it is fully known up to three loops for any n and for any gauge group and
representation content [31]. What is most remarkable, however, is the fact that its all-order
structure is strongly constrained by an underlying scale invariance of the infrared sector.
In order to describe this structure, it is best not to write Γn is a specific basis, but rather
to adopt the basis-independent colour-operator notation of refs. [79, 80]. In this language,
one introduces, for each hard particle i, i = 1, . . . , n, a colour operator Ti, which acts on
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the finite factor Hn as a generator of the gauge algebra in the appropriate representation.1
The colour operators Ti carry an adjoint index, and satisfy[

Ta
i ,Tb

i

]
= ifabc Tc

i , Ti ·Ti ≡ Ta
iTb

i δab = C
(2)
i ,

n∑
i=1

Ti = 0 , (2.5)

where C(2)
i is the quadratic Casimir eigenvalue of the gauge algebra in the representation

of particle i, while the last equation enforces colour conservation, and must be interpreted
as constraint on the action of the colour operators Ti on the finite factor Hn, dictated
by gauge invariance. Note that colour operators associated with different hard particles
commute, since Zn is an operator in the tensor product of the colour representations of
the n particles, and each Ti acts on a single factor in that product.

Let us now discuss the all-order structure of the infrared anomalous dimension matrix.
As we will see, a crucial ingredient is the light-like cusp anomalous dimension γK,r(αs),
governing the UV divergences of form factors of Wilson lines in representation r [81–85].
For the sake of simplicity, we will consider the approximation in which the cusp anomalous
dimension satisfies ‘Casimir scaling’, i.e. we will write

γK,r(αs) = C(2)
r γ̂K(αs) , (2.6)

where γ̂K(αs) is representation-independent. This approximation is known to fail at the
four-loop level [34, 35, 86–89], where contributions proportional to quartic Casimir eigen-
values have been shown to appear, with expected consequences on the structure of Γn
at four loops and beyond [90, 91]. With this single simplifying approximation, the soft
anomalous dimension matrix admits the all-order representation

Γn
(
pi
µ
, αs(µ)

)
= Γ dipole

n

(
sij
µ2 , αs(µ)

)
+ ∆n

(
ρijkl, αs(µ)

)
. (2.7)

The colour-dipole term Γ dipole
n is the only contribution at one and two loops, and can be

written as

Γ dipole
n

(
sij
µ2 , αs(µ)

)
= 1

2 γ̂K
(
αs(µ)

) n∑
i=1

n∑
j=i+1

log −sij + iη
µ2 Ti ·Tj −

n∑
i=1

γi
(
αs(µ)

)
, (2.8)

where we assumed for simplicity that all particles are outgoing, sij = 2pi · pj , and γi(αs)
is the UV anomalous dimensions for the field corresponding to particle i. The conformal
correction ∆n arises starting at three loops, with at least four particles, and it is constrained
by scale invariance to depend only upon the conformal cross-ratios

ρijkl = pi · pj pk · pl
pi · pl pj · pk

= sijskl
silsjk

. (2.9)

At the three-loop level, ∆n was computed in refs. [31–33], and it is built out of quadrupole
correlations of the form

Fijkl
(
{ρ}

)
fabef

e
cd Ta

iTa
jTc

kTd
l , (2.10)

1Thus, for example, for an outgoing quark one has Ti → T aij , where T a is a generator in the fundamental
representation of SU(N), while for a gluon one has Ti → −ifacd, where facd are the structure constants.
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where the kinematic dependence is contained in the functions Fijkl; by Bose symmetry
and colour conservation, actually only one function is involved, and it turns out to be an
extremely simple combination of weight-5 single-valued harmonic polylogarithms [92, 93].

In the present context, it is important to note that the dipole term can be organised
in a more useful way by exploiting colour conservation to simplify the scale dependence,
which will need to be integrated. One may write

Γ dipole
n

(
sij
λ2 , αs(λ, ε)

)
= 1

2 γ̂K
(
αs(λ, ε)

) n∑
i=1

n∑
j=i+1

ln
(−sij + iη

µ2

)
Ti ·Tj

−
n∑
i=1

γi
(
αs(λ, ε)

)
− 1

4 γ̂K
(
αs(λ, ε)

)
ln
(
µ2

λ2

)
n∑
i=1

C
(2)
i

≡ Γ corr.
n

(
sij
µ2 , αs(λ, ε)

)
+ Γ singl.

n

(
µ2

λ2 , αs(λ, ε)
)
, (2.11)

where µ is a fixed scale, while λ is the integration variable in eq. (2.3). In this form, one
can show that (aside from poles originating from the running of the coupling) the first
term, which contains dipole colour correlations, generates only single poles of soft origin,
while the remaining terms, which are colour singlets, generate single poles of hard-collinear
origin, as well as double poles of soft-collinear origin. In order to compute them explicitly,
one may use the explicit expression for the d-dimensional running coupling at the desired
order, and perform the scale integration in eq. (2.3). For example, at the one-loop level,
one may use the lowest-order expression for d-dimensional running coupling

αs (λ, ε) = αs (µ)
(
λ2

µ2

)−ε
, (2.12)

together with the basic integrals∫ µ2

0

dλ2

λ2 αs
(
λ, ε
)

= −1
ε
αs(µ) ,

∫ µ2

0

dλ2

λ2 ln
(
λ2

µ2

)
αs
(
λ, ε
)

= − 1
ε2
αs(µ) ,

(
ε < 0

)
.

(2.13)
Note that in a gauge theory which is conformal in d = 4, such as N = 4 Super-Yang-Mills
theory, the result in eq. (2.12) is exact, and indeed the logarithm of the infrared operator
Zn has only single and double poles [94], which are trivially determined in terms of the
perturbative coefficients of the singlet anomalous dimensions γ̂K and γi. In what follows,
we will concentrate on the colour correlated term, Γ corr.

n . It is useful to remember that it
originates from the Wilson-line correlator

Sn
(
βi · βj , αs(µ), ε

)
≡ 〈0|

n∏
i=1

Φβi(∞, 0) |0〉 , (2.14)

where βi are dimensionless four-velocity vectors parallel to the momenta pi, and Φβi are
semi-infinite Wilson lines along the classical trajectories of the particles exiting the hard
interaction vertex

Φβ(∞, 0) ≡ P exp
[
ig
∫ ∞

0
dλβ ·A(λβ)

]
. (2.15)
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Note that the Wilson lines in eq. (2.14) have open colour indices at both ends, so that Sn,
as announced, is a colour operator acting on the hard factor Hn in eq. (2.2). Classically, the
correlator in eq. (2.14) is invariant under the rescalings βi → κiβi, however this invariance
is broken by collinear divergences in the massless case: the dipole contribution to the
anomalous dimension matrix arises as a solution to the corresponding ‘anomaly equation’,
where the ‘anomaly’ is expressed by the cusp anomalous dimension [18, 19].

3 Colour correlations on the celestial sphere

Taking inspiration from refs. [33, 69], we now rewrite the colour-correlated part of the
infrared anomalous dimension matrix in terms of coordinates on the celestial sphere. We
parametrise the momenta pi as

pµi = ωi
{

1 + ziz̄i, zi + z̄i,−i
(
zi − z̄i

)
, 1− ziz̄i

}
, (3.1)

which is real if (as we assume) z̄i = z∗i , and implies

sij = 2pi · pj = 4ωiωj
∣∣zi − zj∣∣2 , (3.2)

so that all momenta are indeed light-like, p2
i = 0. We can define the four-velocities βi, for

example, by pµi =
√

2ωiβµi , so that βi · βj = |zi − zj |2. Then we notice that (as expected
from eq. (2.14)) the energies wi do not contribute to colour correlations, again as an effect
of colour conservation. Indeed one can use

log
(
−sij + iη

)
= log

(∣∣zi − zj∣∣2)+ logωi + logωj + 2 log 2 + iπ , (3.3)

and perform the colour sum on terms that do not depend simultaneously on i and j. All
these terms can then be shuffled into the colour-singlet contribution to Γn, so that we
can write

Γ dipole
n

(
sij
λ2 , αs(λ, ε)

)
≡ Γ̂ corr.

n

(
zij , αs(λ, ε)

)
+ Γ̂ singl.

n

(
ωi
λ
, αs(λ, ε)

)
, (3.4)

where we defined zij ≡ zi − zj . The colour-singlet contribution is given by

Γ̂ singl.
n

(
ωi
λ
, αs(λ, ε)

)
= −

n∑
i=1

γi
(
αs(λ, ε)

)
− 1

4 γ̂K
(
αs(λ, ε)

) n∑
i=1

ln
(
−4ω2

i + iη
λ2

)
C

(2)
i , (3.5)

while
Γ̂ corr.
n

(
zij , αs(λ, ε)

)
= 1

2 γ̂K
(
αs(λ, ε)

) n∑
i=1

n∑
j=i+1

ln
(∣∣zij |2)Ti ·Tj . (3.6)

The remarkable fact about eq. (3.6) is that the scale dependence is factorised, universal,
and free from colour correlations. This enables us to write the colour-correlated part of
the infrared operator Zn in a strikingly simple way, as

Z corr.
n

(
zij , αs(µ), ε

)
≡ exp

[∫ µ

0

dλ

λ
Γ̂ corr.
n

(
zij , αs(λ, ε)

)]
= exp

[
−K

(
αs(µ), ε

) n∑
i=1

n∑
j=i+1

ln
(∣∣zij |2)Ti ·Tj

]
, (3.7)
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where the universal scale-dependent prefactor is given by

K
(
αs(µ), ε

)
= −1

2

∫ µ

0

dλ

λ
γ̂K
(
αs(λ, ε)

)
. (3.8)

The function K is well-known in QCD, where it plays a role in a number of different
settings: importantly, it defines the perturbative Regge trajectory in the high-energy limit
of 2 → 2 scattering amplitudes [71–75], and it computes soft-collinear poles for Sudakov
form factors [13, 95]. In a gauge theory with conformal symmetry in d = 4 one finds

K
(
αs, ε

)
=
∞∑
n=1

(
αs
π

)n γ̂(n)
K

4nε , (3.9)

where γ̂(n)
K are the coefficients of the expansion of the function γ̂K(αs) in powers of αs/π.

With a non-vanishing β function one finds instead [96]

K
(
αs, ε

)
= αs

π

γ̂
(1)
K

4ε +
(
αs
π

)2( γ̂(2)
K

8ε + b0γ̂
(1)
K

32ε2

)

+
(
αs
π

)3( γ̂(3)
K

12ε + b0γ̂
(2)
K + b1γ̂

(1)
K

48ε2 + b20 γ̂
(1)
K

192ε3

)
+O

(
α4
s

)
, (3.10)

and all the higher-order coefficients can be explicitly determined [95] in terms of bn and
γ̂

(n)
K . A simple factorised form for the infrared operator Zn in terms of the function K had

previously been observed in the high-energy limit [72–75], but the complete generality of
eq. (3.7) only becomes apparent in the celestial coordinates of eq. (3.1).

As noted in ref. [69] in the abelian case (where the operators Ti are replaced by
the electric charges ei, and the one-loop approximation to the cusp anomalous dimension
suffices), eq. (3.7) bears a striking resemblance to a correlator of vertex operators in a
d = 2 conformal theory. In the non-abelian case, we need to handle the matrix structure
of eq. (3.7), but the eventual connection to conformal invariance is actually strengthened
by the knowledge that high-order corrections depend only on conformal cross-ratios, which
in this language read ρijkl = |zij |2|zkl|2/

(
|zil|2|zkj |2

)
. In what follows, we will make a

proposal for the conformal theory generating eq. (3.7), and speculate about the origin of
higher-order corrections.

4 A theory of Lie-algebra-valued free bosons

We consider a set of scalar fields on a two-dimensional sphere, φa(z, z̄), forming a multiplet
in the adjoint representation of a Lie algebra, which we will take to be su(Nc), so that
a = 1, . . . , N2

c − 1. For these fields one can naturally choose the action

S(φ) = 1
2π

∫
d2z ∂zφ

a(z, z̄) ∂z̄φa(z, z̄) , (4.1)

so that we have a theory of Lie-algebra-valued free bosons. Since we will have to pair these
free bosons with colour operators, one may also note from the outset that the scalars could
be naturally organised into a matrix field

Φr(z, z̄) ≡ φa(z, z̄)T ar, z , (4.2)
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where T ar, z are generators of the group in the irreducible representation r. Considering the
gauge-theory structure we are trying to mimic, the generators must be associated with the
point z on the sphere where the fields are evaluated: in particular, this means that the
colour-space commutator

[
Φ(z1, z̄1),Φ(z2, z̄2)

]
must vanish, so long as z1 6= z2. Products of

matrix fields at different points are operators on the tensor product of the corresponding
irreducible representations, and indeed one is free to consider products of matrix fields
belonging to different representations. In terms of these matrix fields, one can write the
action in eq. (4.1) as

S(Φ) = 1
2πtr

∫
d2zTr

[
∂zΦr(z, z̄) ∂z̄ Φr(z, z̄)

]
, (4.3)

where we normalised the generators according to Tr
(
T ar T

b
r

)
= trδ

ab. Writing the action in
the form of eq. (4.3), with matrices T ar, z that are taken to depend on z, suggests that the
proper underlying mathematical structure should be a gauge bundle on the sphere, and one
might then expect that the derivative should be replaced by a covariant derivative. Such
an extension is non-trivial for at least two reasons: first of all, one would need a precise
form for the gauge connection on the celestial sphere; next, we emphasise that the collinear
limits where two punctures zi and zj coincide is singular in our framework: indeed, eq. (2.2),
which was our starting point, was derived for fixed-angle scattering amplitudes, where none
of the invariants sij vanishes. In any case, we expect that corrections to eq. (4.3) arising
from this issue would be of higher order in the gauge coupling, and furthermore they would
contribute only to colour structures beyond dipoles, involving the structure constants fabc.
The free action in eq. (4.1) will therefore suffice for our present purposes, and we will take
it as the definition of the theory. We will briefly come back to this issue in section 5.

It is clear that in this setup the nature of the fields φa(z, z̄) as fields in a conformal
theory on the sphere is quite decoupled from the matrix structure that we have superim-
posed. Indeed, eq. (4.1) is essentially the bosonic string action in a conformal gauge, with
scalar fields interpreted as coordinates in a Lie algebra rather than a spacetime: one could
describe it as a ‘single copy’ of the tree-level bosonic string, in the spirit of colour-kinematic
duality [76]. Most of the well-known formalism for the treatment of two-dimensional free
scalar fields [97] is then simply inherited by our theory with only minor changes. In par-
ticular, the equations of motion are

∂z ∂z̄ φ
a(z, z̄) = 0 , (4.4)

implying that the field ∂zφa is holomorphic, while ∂z̄φa is anti-holomorphic. In the quantum
theory, when taking matrix elements of products of fields, eq. (4.4) leads to

∂z ∂z̄ φ
a(z, z̄)φb(w,w) = −π δabδ2(z − w, z̄ − w) , (4.5)

which suggests the definition of the normal-ordered product

:φa(z, z̄)φb(w,w) := φa(z, z̄)φb(w,w) + 1
2 δ

ab log |z − w|2 , (4.6)
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whose derivatives are free of contact terms. Following standard arguments, the theory
defined by eq. (4.1) has a traceless conserved energy-momentum tensor, which can be
organised into holomorphic and anti-holomorphic components, with

T (z) = − :∂zφa(z, z̄) ∂zφa(z, z̄) : , T̃ (z̄) = − :∂z̄φa(z, z̄) ∂z̄φa(z, z̄) : . (4.7)

More interestingly, since the action in eq. (4.1) involves only derivatives of φa, there is a
symmetry under translations in field space, which are now to be interpreted as translations
in the Lie algebra. The Noether current for this symmetry is Lie-algebra valued, and we
will propose that it should be interpreted as a leading-order contribution to a Kac-Moody
current for the full theory, to be identified with the current constructed in [40, 46]. Its
holomorphic and anti-holomorphic components are simply given by the derivatives of the
scalar fields

ja(z) = ∂zφ
a(z, z̄) , j̃a(z̄) = ∂z̄φ

a(z, z̄) . (4.8)

Following the standard lore for free bosons, we may now introduce vertex operators for this
theory, in the form

V (z, z̄) ≡ : eiκTz ·φ(z,z̄) : = : eiκΦ(z,z̄) : , (4.9)

where we dropped the representation label r, and we introduced the operator notation
discussed in section 2. The vertex operators in eq. (4.9) are matrices in the selected
representation of the gauge group: one can think of them as operators defined on the
celestial sphere and acting on the bulk colour degrees of freedom. We have introduced a
coupling κ in the exponent, allowing for the fact that the normalisation of the fields at this
stage is arbitrary, and we will need to match our results to the gauge theory. The vertex
operators in eq. (4.9) are reminiscent of those used in the vertex-operator construction
of Kac-Moody algebras [98], but we emphasise that they are quite different. In the Kac-
Moody construction, one works in the Cartan-Weyl basis for the Lie algebra, and one
introduces a (Fubini-Veneziano) scalar field Qi(z, z̄) only for generators Hi in the Cartan
subalgebra; one then builds a vertex operator for every root α of the algebra, with an
exponent proportional to αiQi. These operators build a representation of the Kac-Moody
algebra in the Hilbert space of the conformal theory, but they act as numbers in colour
space. In our case, on the other hand, in order to reproduce the gauge theory results,
we need an expression treating all colour degrees of freedom on the same footing, which
results in colour matrices. Pursuing an alternative analogy, one may note that a standard
construction of Kac-Moody algebras from ordinary Lie algebras involves promoting the
parameters θa of the Lie algebra to functions θa(z) on a circle S1, and taking Fourier
modes: in a sense, eq. (4.9) is similar, with the circle replaced by the sphere S2. Finally,
we must note a formal analogy between the fields φa in eq. (4.9) and the interpolating fields
for Reggeized gluons introduced in ref. [99], where however the gauge-theory Wilson lines
are not semi-infinite but infinite, and the sphere is replaced by the transverse plane. For
the purposes of the present paper, we will simply take eq. (4.9) at face value, and derive
its properties.

With the operators in eq. (4.9), we can construct correlation functions which bear
a direct analogy with the world-sheet integrands of tree-level bosonic string amplitudes.
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There are a number of potential obstacles for the consistency of this procedure, that we will
now consider, but, interestingly, they can all be bypassed using well-understood properties
of the operators Tz.

• First of all, we need to establish that the vertex operator in eq. (4.9) is a good
conformal field. This appears far from obvious given its matrix structure. Once
again, following standard procedures, one can write down an explicit solution of
the equations of motions for the fields φa(z, z̄) in terms of a Fourier expansion, and
proceed to quantise the theory by interpreting the coefficients of the Fourier modes as
(rescaled) harmonic-oscillator creation and annihilation operators. In this formalism,
the conformal dimension h (= h̄) of the vertex operator emerges entirely from the
normal ordering, bringing annihilation operators to the left and creation operators
to the right. The colour operators Tz are spectators in this calculation, and the
standard free-field (‘bosonic string’) result is reproduced. Pursuing the analogy, we
recall that in a string-theory context one finds

Vc.s.(z, z̄) ≡ : eikµXµ(z,z̄) : −→ h = 1
4 k

µkνηµν = k2

4 , (4.10)

where the space-time metric ηµν comes from the interpretation of the fields Xµ as
space-time coordinates. In the case of eq. (4.9), the fields φa are Lie-algebra coordi-
nates, and the metric is simply the Cartan-Killing metric δab. Therefore

V (z, z̄) ≡ : eiκTz ·φ(z,z̄) : −→ h = κ2

4 Tz ·Tz = κ2

4 C(2)
r , (4.11)

where C(2)
r is the quadratic Casimir eigenvalue for representation r, which, crucially,

is a number. In a conformal theory, this result must be consistent with the scaling
properties of two-point functions of vertex operators, which must satisfy〈

V (z1, z̄1)V (z2, z̄2)
〉
∼ |z12|−2∆ , (4.12)

with ∆ = h+ h̄. As we will see below, this is indeed the case, upon enforcing colour
conservation, which for the two-point function requires T1 = −T2.

• Of course, the analogy with strings should not be pushed too far: for example, we note
that, in the case of a string theory, the value of k2 in eq. (4.10) is fixed, and allowed
values for different vertex operators give the mass spectrum of the string. The origin
of the constraint, however, is the fact that string-theory vertex operators relevant
to string amplitudes are integrated over the world sheet, to preserve diffeomorphism
invariance. Invariance under rescalings of the world-sheet coordinates then imposes
h = 1 for the (‘tachyon’) vertex operator we are considering, and integer values of h
for vertex operators involving prefactors with derivatives of the fields. In our case,
we will never need to integrate over the locations of the punctures, which represent
the (fixed) momenta of the hard particles, so there are no constraints of this kind
on h. We are genuinely interested in the conformal correlation function in a fixed
coordinate system.
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• We will be evaluating correlation functions of n vertex operators of the form of
eq. (4.9). In the case of bosonic strings, arguments from holomorphicity, or just
the evaluation of such correlators from the path integral on the sphere [100], show
that the results are consistent and scale-invariant only if momentum is conserved,∑
i k

µ
i = 0. For string amplitudes, this has an obvious physical interpretation. In

the present case, colour conservation takes the place of momentum conservation, as
noted in section 2: the condition ∑

i Tzi = 0, which must be satisfied when the
correlator is regarded as an operator acting on the ‘bulk’ gauge theory, guarantees
the proper scale-invariant behaviour. Correlators will be operators with support
only on colour-conserving quantities, consistently with the gauge-invariance of the
four-dimensional theory.

Having established that we have a bona fide conformal field theory on the sphere, and well-
behaved — though matrix-valued — vertex operators, the obvious next step is to study
the correlator

Cn
(
{zi}, κ

)
≡
〈 n∏
i=1

V (zi, z̄i)
〉
. (4.13)

The evaluation of the correlator Cn is a textbook exercise (see for example chapter 6 in
ref. [100]): in a conformal invariant theory, one is always allowed to use a locally flat
metric (as we are doing), and one simply gets an expression analogous to the integrand of
the Virasoro-Shapiro amplitude for tree-level closed strings. We find

Cn
(
{zi}, κ

)
= C(Nc) exp

κ2

2

n∑
i=1

n∑
j=i+1

ln
(∣∣zij |2)Ti ·Tj

 , (4.14)

where C(Nc) is a constant dependent on the Lie algebra. This is of course the result we
have been working to achieve: it is precisely of the form of eq. (3.7), which in turn generates
all infrared singularities with a colour-dipole structure for any massless gauge theory and
to any perturbative order. It is therefore tempting at this stage to simply state that we
can set the coupling κ to reproduce eq. (3.7) exactly. This is certainly possible, but we
note at the outset that this identification raises interesting dynamical questions, concerning
both the scale dependence of the answer, and dependence on the dimensional regulator ε.
We discuss this issue and some of the many important open questions in section 5. A
further observation on eq. (4.14) is warranted: if one computes the correlator in eq. (4.13)
by means of a path integral on a curved two-dimensional surface, as done for example in
ref. [100], eq. (4.14) is modified by an extra factor arising from the Weyl anomaly. This
factor cancels in the conformal theory, but would be present, for example, if one were to
break scale invariance by considering a fixed sphere of finite radius R, thus introducing a
length scale. The Weyl factor for the correlator in eq. (4.13) takes the form

Wn

(
{zi}, κ

)
= exp

[
− 1

2

n∑
i=1

C
(2)
i g(zi, z̄i)

]
, (4.15)

where g(zi, z̄i) is a scale factor. The interesting point about eq. (4.15) is that the Weyl
factor matches the factor arising in the gauge theory from the energy-sensitive terms that
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we have shuffled to the colour-singlet part of the anomalous dimension, Γ̂ singl.
n in eq. (3.5).

Such ‘diagonal’ contributions to the infrared operator Zn, with an exponent proportional
to a sum of terms associated with single points zi, cannot be expected to emerge from the
celestial CFT: on the gauge theory side, they are related to collinear divergences, and do
not contribute to colour correlations, but they are sensitive to particle energies.

There are further significant tests of the correspondence we have found between the
infrared sector of non-abelian gauge theories and the proposed conformal theory on the
celestial sphere, arising from soft and collinear limits. On the gauge-theory side, it is well-
known that the tree-level emission of a soft gluon factorises [79] from hard n-point scattering
amplitudes (and similarly from correlators of n Wilson-lines such as Sn in eq. (2.14)), and
the soft factor is given by the soft current for the emission of a gluon of momentum k

Jµ(k) = g
n∑
i=1

Ti
βµi
βi · k

, (4.16)

exposing the singular behaviour of the radiative amplitude as the gluon energy vanishes,
as well as a set of collinear singularities as k becomes parallel to βi. The current is gauge-
invariant, in the sense that its longitudinal component vanishes, since

k · Jµ(k) = g
n∑
i=1

Ti = 0 , (4.17)

by colour conservation. Remarkably, this factorisation theorem for soft non-abelian ra-
diation can be derived in the conformal theory on the sphere, by consider a generalised
correlator of vertex operators, including an insertion of the Noether current in eq. (4.8).
Taking the OPE of the current with the vertex operators yields the result

〈
∂zφ

a(z, z̄)
n∏
i=1

V (zi, z̄i)
〉
' − i

2

n∑
i=1

T a
i

z − zi
Cn
(
{zi}, κ

)
. (4.18)

As discussed in detail in ref. [46] (see also refs. [40, 50, 51, 61]), the r.h.s. of eq. (4.18) is
the representation of the soft-gluon theorem [79] on the celestial sphere, and the poles as
z → zi are collinear poles. As noted above, in the gauge theory this pole is superimposed
to an angle-independent soft singularity arising when the energy of the soft gluon becomes
vanishingly small; the soft singularity is absent in eq. (4.18), which can be understood
in the present context by recalling that soft-collinear singularities are color-uncorrelated,
as shown in section 2 for virtual corrections. Colour conservation emerges in eq. (4.18)
from the request that the Noether current be holomorphic as z → ∞: the correlator in
eq. (4.18) must then vanish as z−2 for large z, which indeed requires that ∑i Ti = 0.
Importantly, ref. [46] finds the same result by employing a current constructed in terms
of asymptotic expressions for the four-dimensional fields: this provides clear evidence that
the two currents are different representations of the same object, at least to the accuracy
of the present calculation. In the framework of ref. [46], the soft pole is absent because the
current is constructed out of field strengths rather than gauge potentials, providing an ex-
tra power of the energy in the numerator. We note that one finds an equivalent result using
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the anti-holomorphic current in eq. (4.8): ref. [46], examining double soft emission, argues
that one of the two currents generates a Kac-Moody symmetry, but there are subtleties
in attempting to extend this to both currents, related to the ordering of soft limits in the
double-emission matrix element. An analysis of this ambiguity goes beyond the approxi-
mation we have taken so far (of including only colour-dipole correlations), since in QCD
the difference between soft orderings is proportional to colour correlations involving the
structure constants fabc, but this is without doubt a very interesting topic for future work.

Next, we turn to collinear limits, when the momenta of two hard particles become
proportional, and consequently two of the punctures on the celestial sphere become close.
As we noted, strict collinear limits, where some of the Mandelstam invariants sij vanish,
violate the factorisation theorem in eq. (2.2), and therefore lie outside the reach of our
discussion.2 We can, however, study the approach to the collinear limit, when two particles
i and j are nearly aligned, so that the invariant sij is much smaller than all other invariants.
In this limit, the factorisation in eq. (2.2) correctly captures all logarithms of the small
invariant that are multiplied by infrared poles. With this understanding, on the gauge
theory side, collinear limits of eq. (2.8) are well understood, and tested up to three loops
(where of course the correction ∆n must also be taken into account). On the celestial side
of the correspondence, collinear limits must correspond to short distance limits, |zij | → 0,
and therefore can be probed by considering the OPE of the vertex operators in eq. (4.9). In
order to clarify the correspondence, let us begin by giving a precise definition of the collinear
limit (see also ref. [65]). Following standard practices in QCD, in order to describe the
situation in which two light-like momenta p1 and p2 become collinear along a light-like
direction p, we introduce the Sudakov parametrisation

pµ1 = xpµ + pµ⊥ −
p2
⊥

2xp · n n
µ ,

pµ2 = (1− x)pµ − pµ⊥ −
p2
⊥

2(1− x)p · n n
µ , (4.19)

where nµ is a reference light-like vector satisying n2 = n · p⊥ = 0, and pµ⊥ is a space-like
vector orthogonal to the collinear direction, p · p⊥ = 0. The collinear limit is parametrised
by taking p2

⊥ → 0, and, in the limit, p1 +p2 = p. It is not difficult to translate the Sudakov
parametrisation to the celestial sphere: using eq. (3.1) for the momenta p1 and p2, and
picking a fixed vector nµ, for example, as

nµ = 1
2
{

1, 0, 0,−1
}
→ n · pi = ωi , n · p = ω1 + ω2 ≡ ω , (4.20)

one may determine the celestial expression for pµ, with the result

pµ = ω
{

1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄
}
, (4.21)

2Tools more suitable to handle collinear limits in this context could possibly be devised by considering
directly the light-ray operators in the d = 4 theory. These have a long history in the context of QCD (see,
for example, refs. [101, 102]), and have been intensively studied recently in a CFT context (see, for example,
refs. [103, 104]). Interestingly, phenomenological applications of these tools to QCD have already started
to appear [105, 106].
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where z = xz1 + (1 − x)z2, and ω1 = xω, while ω2 = (1 − x)ω. Furthermore, pµ⊥ can be
written as

pµ⊥ = ωx(1− x)
{

(1− 2x)
(
z1z̄2 + z̄1z2) + 2xz1z̄1 − 2(1− x)z2z̄2,

z12 + z̄12,−i
(
z12 − z̄12

)
,−(1− 2x)

(
z1z̄2 + z̄1z2)− 2xz1z̄1 + 2(1− x)z2z̄2

}
. (4.22)

The transverse momentum vector pµ⊥ is antisymmetric under the exchange of the labels
1↔2 (which implies x↔ 1− x), as expected from eq. (4.19), and one easily verifies that it
satisfies

p⊥ · n = p⊥ · p = 0 , p2
⊥ = −x(1− x)s12 = −4x(1− x)ω1ω2

∣∣z12
∣∣2 , (4.23)

providing a precise connection between the short distance limit on the sphere and the
collinear limit in the bulk.

Let us now use the conformal OPE to study the short distance limit of the correlator
Cn as, say, z1 → z2. When the locations of the two vertex operators are brought together
one finds

: eiκT1·φ(z1,z̄1) : : eiκT2·φ(z2,z̄2) :∼
∣∣z12

∣∣κ2T1·T2 : eiκ
(

T1+T2
)
·φ(z,z̄) : , (4.24)

where we placed the field on the r.h.s. of eq. (4.24) at the point z = xz1 + (1 − x)z2
associated with the collinear direction pµ, and corrections are suppressed by powers of z12.
The n-point correlator Cn in this limit is thus re-expressed in terms of the (n − 1)-point
correlator Cn−1, where however point z carries the sum of the colour operators of two
merging punctures. This is precisely what one expects on the gauge theory side [19, 78],
where this property is a consequence of collinear factorisation. The quantity of interest is
the splitting anomalous dimension, defined by

ΓSp.
(
p1, p2

)
≡ Γn

(
p1, p2, . . . , pn

)
− Γn−1

(
p, p3, . . . , pn

)∣∣∣
Tp→T1+T2

. (4.25)

The short distance limit on the celestial sphere, by means of eq. (4.24), identifies the form
of the correlator that one needs to compute in order to analyse the collinear limit in the
gauge theory. To make the comparison precise, one needs to extract Γ̂corr.

n from Cn, and
the appropriate form of Γ̂corr.

n−1 , with recombined colour factors, from Cn−1. Next, one needs
to reinstate the dependence on the energies of individual hard particles, since the collinear
limit is sensitive to how the energy of the parent particle is subdivided between the two
particles forming the collinear pair. At that point, the calculation mirrors exactly the
gauge theory procedure: the precise location of the point z on the arc joining z1 and z2 is
irrelevant at leading power in p⊥, and the result arises entirely from the scaling of particle
energies, ω1 = xω and ω2 = (1− x)ω. One finds

ΓSp.
(
p1, p2

)
= 1

2 γ̂K(αs)
[

ln
(−s12 + iη

µ2

)
T1 ·T2 − ln x T1 ·

(
T1 + T2

)
− ln(1− x) T2 ·

(
T1 + T2

)]
, (4.26)
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in agreement with ref. [19]. One may argue that the result in eq. (4.26) was to some
extent implicit in our earlier identification of the soft anomalous dimension matrix with the
logarithm of the conformal correlator: we note however that the emerging colour structure
is correctly identified by the OPE on the celestial sphere. The result is highly non-trivial
in the gauge-theory context: first of all, it embodies the collinear factorisation theorem,
stating that the collinear limit depends only on the particles participating in the splitting,
and colour correlations with the remaining n − 2 non-collinear particles vanish at leading
power; furthermore, eq. (4.26) is an all-order result, collecting all contributions to Γsp.
arising from dipole colour correlations (interesting corrections do of course arise when ∆n

is included).

5 Some open questions

It is clear that the construction that we have so far proposed represents only a first step in
the exploration of the emerging correspondence, and leaves many open questions. In this
section, we begin to discuss some of these questions.

First of all, we note, as we did after eq. (3.6), that the remarkable all-order correspon-
dence between the conformal correlator Cn on the celestial sphere and the infrared operator
Z corr.
n is made possible by the striking factorisation of the coupling and scale dependence

from angular and colour variables in eq. (3.7). This raises the question of the nature of the
correspondence between the coupling κ in the conformal theory and the function K(αs, ε)
in the gauge theory. This question has two aspects, one concerning the choice of the gauge
coupling, and the other concerning the integrated scale dependence. With regards to the
coupling, we note that one can bypass the need for a perturbative expansion of the function
γ̂K(αs) by simply choosing a scheme in which γ̂K itself plays the role of the coupling. The
idea that the universal cusp anomalous dimension should serve as a fundamental gauge
coupling, at least in the infrared, is certainly not new, and it has been raised in several
contexts (see, for example, refs. [107–111]), providing ample circumstantial evidence that
such a choice is physically sensible.

Having taken this option, one must still note that the celestial coupling κ does not
directly correspond to the new gauge coupling, γ̂K , but rather to its ‘average’ over scales,
K in eq. (3.8). We believe that this aspect of the correspondence is dynamically inter-
esting, and deserves closer examination. In a sense, one could argue that any matching
between the coupling κ on the celestial sphere and the gauge theory must share some
of the characteristics of K. After all, correlation functions on the sphere are finite and
scale-independent, while we are attempting to reproduce infrared divergences in a scale-
dependent theory: regulator dependence and scale dependence must therefore reside in
the matching coefficient. From the gauge theory side, it is quite surprising that such a
matching is at all possible, since scale dependence is expected in general to be entangled
with colour and kinematics. Even in the case of conformal gauge theories in d = 4, the
analysis of IR divergences requires breaking conformal symmetry by the introduction of
an appropriate factorisation scale, much like what happens in the UV case: dimensional
regularisation to d > 4 simply provides an elegant and computationally efficient way to
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perform this symmetry breaking. Indeed, as we noted, all IR divergences of scattering am-
plitudes, in any gauge theory, are generated by the scale integration, which can be taken
to extend to the IR region when d > 4, while all anomalous dimensions appearing in the
scale integrand are finite. That being said, it would be very interesting and appealing if the
scale integration could be made part of the correspondence, or, in other words, if one could
understand the meaning of the scale integration from the point of view of the conformal
theory on the celestial sphere. We note that, from the gauge theory point of view, the IR
operator Zn acts on a hard, finite coefficient function which is located at the common origin
of the Wilson lines in eq. (2.14). Distance along the Wilson lines thus can be considered
as a proxy for the inverse of the factorisation scale, with infrared scales (µ → 0) located
at large distances (λ→∞ in eq. (2.15)), and ultraviolet scales located at short distances.
The scale integration in eq. (3.7), in this picture, could be understood as an integration
over a scale factor for the celestial sphere, as it is brought from infinite distance to distance
1/µ. At this stage, of course, these considerations are purely speculative, and they could
only be made precise once a more detailed correspondence is constructed.

A second set of considerations must be devoted to the known corrections to eq. (3.7)
arising in the gauge theory, i.e. the functions of conformal cross ratios of kinematic in-
variants that arise starting at the three-loop level, for the scattering of at least four hard
particles, and build up the operator ∆n. Clearly, these corrections cannot arise from the
free-boson theory that we have just described: the action in eq. (4.1) must be complemented
with interaction terms. The nature of these interaction terms is strongly constrained by
our knowledge on the gauge theory side of the correspondence. We note, for example,
that the three-point correlator in our free-boson theory is trivial, in the sense that it does
not contain any colour correlations: indeed, all ‘scalar’ products Ti ·Tj reduce to Casimir
eigenvalues, as a consequence of colour conservation, T1 + T2 + T3 = 0, which implies
that T1 ·T2 = (C(2)

3 −C
(2)
1 −C

(2)
2 )/2, and similarly for the other two cyclic permutations.3

When more than three hard particles participate in the scattering, three-point correlations
can arise, and one might expect terms of the form fabcTa

1Tb
2Tc

3 to appear in Γn: indeed,
just such correlations do arise at two loops in the scattering of massive hard particles [112–
117]. No such corrections are possible, however, in the massless theory, essentially because
conformal cross-ratios necessarily involve at least four points. The analysis of refs. [31, 33]
furthermore shows that three-point correlations do arise in Γn for n > 3, but they are con-
strained to be independent of kinematics, and their colour structure has the peculiar form

fabef
e
cd

{
Ta
i ,Td

i

}
Tb
jTc

k , (5.1)

with i 6= j 6= k; in particular, correlations of this form are necessary to preserve collinear
factorisation. The special form of three-point correlations is very relevant to possible
generalisations of eq. (4.1), since the bootstrap principle for two-dimensional conformal
theories holds that four-point functions of conformal fields are determined once the three-
point functions are given. In the case at hand, of course, the precise form of the full

3We note in passing that these colour identities guarantee the proper scaling behaviour of three-point
functions of vertex operators, consistent with eq. (4.12).
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correction to the four-point function at the three-loop level is also known, involving the first
‘quadrupole’ correction to eq. (3.7). Similar considerations apply to the soft-gluon current
in eq. (4.18): in gauge theories, the current has an all-order definition in terms of matrix
element of Wilson lines, with a gluon state replacing the vacuum state [118]; this matrix
element is known both at one [119] and two loops [120–122], where it exhibits a non-trivial,
purely non-abelian colour structure. It is clear that this abundant and detailed knowledge
on the gauge-theory side of the correspondence will provide powerful constraints and checks
for any attempt to construct the completion of our matrix-valued free-boson proposal.

6 Perspectives

The formulation of the infrared problem for gauge theories and gravity in terms of asymp-
totic symmetries of the S-matrix, initiated in refs. [40, 41], provides a novel and interesting
viewpoint to investigate long-distance dynamics. One of the most intriguing aspects of this
approach is the emergence of a ‘holographic’ [50] correspondence between certain dynamical
properties of massless gauge theories in d = 4 Minkowski space and their asymptotic be-
haviour on the celestial sphere at large light-cone times. What emerges is a re-interpretation
of the soft limit of gauge amplitudes in terms of a two-dimensional conformal theory de-
fined on the sphere: many elements of this conformal theory can be constructed by taking
appropriate limits of gauge-theory quantities, and infrared factorisation properties of low-
order perturbative gauge amplitudes can be understood, and in fact generalised, in terms
of conformal objects defined on the sphere.

In this paper, inspired by the QED analysis in ref. [69], we took a different view-
point, starting from the all-order infrared factorisation properties of massless gauge theory
amplitudes, and attempting to find a characterisation of the universal infrared operators
emerging from the factorisation in terms of a celestial conformal field theory. For simplicity,
we have focused on colour correlations of dipole form, which are the only ones appearing
up to three loops in the massless theory: we emphasise however that our results apply
to all perturbative orders within this set, and they include both planar and non-planar
correlations. A first strong indication that the celestial sphere is an appropriate arena for
the discussion of infrared divergences came from the specific form of the exponentiation of
kinematic dependence in eq. (3.7): indeed, using the parametrisation in eq. (3.1) exposes
a complete factorisation of coupling and scale dependence from kinematic and colour vari-
ables, that had not previously been noticed, except in the high-energy limit. The simple
and transparent expression in eq. (3.7) provides a strong suggestion for the identification
of the appropriate celestial conformal theory, generalising [69] to the non-abelian theory.
We find that the all-order gauge-theory result in eq. (3.7) is reproduced by a celestial the-
ory of Lie-algebra-valued free bosons, by computing the correlator of n vertex operators
which are gauge-group matrices in the representations of the hard particles participating
in the scattering. We have seen that the matrix nature of the vertex operators does not
prevent them from being interpreted as conformal fields of definite weight, and we have
seen that their correlators have good conformal properties as a consequence of the gauge
invariance of the bulk gauge theory. Like Z corr.

n in eq. (3.7), the conformal correlator must
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be interpreted as a colour operator, defined on the celestial sphere, and acting on the bulk
colour degrees of freedom, which can be thought of as being located at the origin. The
identification of the celestial conformal field theory is further confirmed by the fact that
the conformal OPE reproduces both the tree-level factorisation theorem for the radiation
of a soft gluon, and the structure of collinear limits for the hard particles. It is striking
that a large fraction of the complexity of non-abelian interactions can be captured by a free
field theory on the celestial sphere. Two facts help to clarify this point. First, although
the celestial bosons are free, the vertex operators carry charges, which leads to non-trivial
interactions: in the abelian limit, the picture is that of a two-dimensional Coulomb gas,
with the charges located at the endpoints of the bulk Wilson lines. Second, we note that
by restricting our attention to dipole colour correlations we have effectively restricted the
interactions of the charges on the sphere to be pairwise. Including multipole correlation
will, in all likelihood, require an interacting two-dimensional theory.

In fact, both the known gauge-theory results and the structure of our proposed ce-
lestial theory point to the incompleteness of the picture drawn so far. On the celestial
side, the fact that we have a local matrix theory suggests that a gauge connection on the
sphere might need to be introduced, and consequently the theory is expected to become
interacting. While we leave this generalisation to future work, we have noted that known
multipole colour correlations arising in the gauge theory starting at the three-loop order
will pose stringent constraints on any extension of eq. (4.1). Clearly, the next very sig-
nificant goal in this program would be to compute the three-loop value of the operator
∆n, first determined in ref. [31], from conformal field theory data. This could open the
way to the exploration of even higher-order correlations with novel, and possibly simpler,
techniques, not associated with gauge-theory Feynman diagrams. In particular, it would
be of great interest to understand, in the conformal context, colour correlations associated
with higher-order Casimir operators of the gauge algebra, which have been neglected here,
but are known to be present starting at four loops [34, 35, 86–88, 90, 91], and whose role
on the gauge-theory side is not yet fully understood.

Aside from this first layer of generalisation, several other interesting questions and
possible developments will need to be explored. First of all, the role of collinear singularities
should be clarified: the conformal theory, as written, determines only colour correlations,
which originate exclusively from soft gluon exchanges at wide angles. Collinear poles are
‘colour-singlet’ quantities, and are associated to single points on the sphere, and not to
arcs. On the other hand, the relatively simple structure of infrared singularities embodied
by eq. (2.7) is specific to massless theories and thus it is inextricably linked to the presence
of collinear poles.

A related, and certainly more complex question is to what extent this framework
could be extended to massive hard particles: in a sense, one would expect drastic com-
plications, since the appropriate asymptotic configuration space would no longer be the
punctured Riemann sphere, but rather a three-dimensional hyperbolic space; on the other
hand, on the gauge theory side, soft poles are still generated by correlators of semi-infinite
Wilson lines, which are scale-invariant even away from the light-cone, and the modifica-
tions to the soft anomalous dimension for massive particles at two loops are remarkably
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simple [112, 113, 117]. It is not inconceivable that they might be understood in terms of a
deformation of the conformal theory defined in the massless case.

In a final speculative remark, we note that the basic gauge-theoretical ingredients
of infrared operators — form factors, matrix elements of Wilson lines and anomalous
dimensions — have definitions that apply in principle beyond perturbation theory, and
indeed, when strong-coupling data are available, they have been shown to smoothly match
onto the perturbative definitions [123, 124]. If the dictionary mapping these quantities to
the celestial sphere can be fully understood, it is possible that non-perturbative features of
the four-dimensional theory could be gleaned in the simpler context of the two-dimensional
celestial framework. To this end, a more precise matching between the ideas presented here
and the well-developed framework initiated in [40, 41] will certainly be useful.

Note added. One week after the present paper was published on arXiv, a paper contain-
ing related, partly complementary results appeared [125]. The authors work in the context
of celestial amplitudes [55, 56], and show how the infrared factorisation of the momentum-
space scattering amplitude is reproduced at the level of Mellin transforms, emphasising
the crucial role played by the cusp anomalous dimension for the existence of the celestial
amplitude. Their results in the large-N limit, and for the specific cases they consider, are
in agreement with our discussion.
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