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Abstract 15 

The vertical root distribution (VRD) in the soil remains unknown for most plant species, as 16 

studying root systems in different pedo-climatic settings is time-consuming and 17 

methodologically challenging. Yet, information on the VRD of different vegetation types is 18 

essential to understand better the biogeochemical processes occurring at the soil-plant-19 

atmosphere continuum. The aim of this study was to describe the (VRD) of three dominant 20 

alpine, herbaceous plants (i.e. Euphrasia minima Jacq., Leucanthemopsis alpina L., and Poa 21 

alpina L.) on the basis of simple and easy-to-measure climate, soil, and plant attributes in order 22 

to test the validity of existing descriptive protocols and parametric ecohydrological models. 23 

The results showed that the VRD decreased with soil depth for the three plants and that it can 24 

be effectively described with a negative exponential equation. Key VRD parameters, such as 25 
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the mean rooting depth, cross-sectional area at the root collar, and root biomass, were both site 26 

and species-specific but they were chiefly influenced by the attributes regulating the soil’s 27 

water mass balance. The existing parametric ecohydrological models were not able to portray 28 

successfully the VRD of the studied alpine plants but we found a strong correlation between 29 

empirical and parametric VRD models that establish a clear direction for future research. 30 

Future work should address the influence of the snowpack characteristics and the length of the 31 

snow-free and frozen ground periods on the soil’s ecohydrology and VRD in alpine 32 

ecosystems.   33 

 34 

Keywords: root, model, ecohydrological, alpine, data mining 35 

 36 

Abbreviations 37 

 38 
 Mean precipitation intensity over VSD fc Soil moisture at field capacity 

AI Aridity index g Gravimetric soil moisture content 

ALR Allometry ratio wp Soil moisture at wilting point 

Ar Root cross-sectional area bk Soil’s bulk density 

Aro Cross-sectional area at root collar r Root mass density 

b Mean rooting depth Sa Soil’s sand content 

Cl Soil’s clay content Sk Soil skeleton 

CN Concave topographic curvature SOC Soil organic carbon 

CS Plant’s crown spread Sp Plant’s aerial projected area 

CX 
Convex topographic curvature 

Tbase 
Optimum temperature for plant growth 

Etp Potential evapotranspiration Tmn Daily minimum air temperature 

FL Flat topographic curvature Tmx Daily maximum air temperature 

GDD Growing-degree day VRD Vertical root distribution 

 Precipitation frequency over VSD VSD Vegetative season duration 

Ma Aboveground biomass WAP Water available to plants 

Mr Belowground biomass z Soil depth 

n Soil porosity   

 39 

 40 

 41 

 42 

 43 

 44 
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 45 

 46 

1. Introduction 47 

 48 

Knowledge of root systems of different vegetation types is essential for a better understanding 49 

of biogeochemical processes occurring at the soil-plant-atmosphere continuum (Rodriguez-50 

Iturbe and Porporato, 2005). Despite relatively recent efforts in investigation and description 51 

of plant root architecture (e.g., Waisel et al., 2002, Mickovski and Ennos 2003, Mickovski and 52 

van Beek 2005), it remains largely unexplored for most plant species. A number of authors 53 

have explored root system architecture of a large number of plants native to almost all 54 

bioclimatic regions (e.g. Schenk and Jackson, 2005), and attempted prediction of rooting 55 

depths through optimisation (van Wijk and Bouten, 2001; Kleidon, 2004) or inverse methods 56 

(Zuo and Zhang, 2002). These approaches led to an increase in knowledge and understanding 57 

of plant physiological processes such as water and nutrient uptake, resources competition, and 58 

plant‐soil interactions (Herbert et al., 2004; Laio et al., 2006, Preti et al., 2010; Gonzalez-59 

Ollauri and Mickovski, 2017a). Despite the efforts in the past decade, the comprehensive 60 

understanding of the effect of soil and plant properties and climate conditions on root 61 

architecture and morphology remains largely unknown. 62 

 63 

Obtaining root information is time-consuming and methodologically challenging. The 64 

investigation of root systems normally involves destructive and invasive sampling approaches 65 

(Bhöm, 1979), followed by detailed description and measurement of specific root traits (Stokes 66 

et al., 2009). However, for many environmental applications related to plant-soil interactions, 67 

knowledge of the vertical root distribution (VRD) – i.e. the pattern in which root density 68 

biomass is distributed along the soil profile -  is perhaps the most important feature to know 69 
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because it can be used, for example, to estimate the degree of soil-root mechanical 70 

reinforcement (Arnone et al., 2016; Gonzalez-Ollauri and Mickovski, 2016; Kokutse et al., 71 

2016), to estimate plant-water uptake (Jarvis, 1989; Laio, 2006; Shukla, 2014), or to gain 72 

insight into the ability of vegetation to remove pollutants from the soil (Verma et al., 2006; 73 

Gonzalez-Ollauri and Mickovski, 2018; Lucherini et al., 2020). For most of these applications, 74 

VRD can be easily portrayed with asymptotic mathematical functions (Jackson et al., 1996), 75 

which substantially simplify the process of describing the root system, as they normally require 76 

few parameters related to the root system, such as the rooting depth or the cross-sectional area 77 

at the root collar (Preti et al., 2010). However, standard and reproducible protocols to describe 78 

VRD are still lacking.   79 

 80 

The way in which roots distribute in the soil has been the scope of research for many decades 81 

(e.g. Darwin, 1880; Laio et al., 2006). Previous research indicates that the root distribution in 82 

the soil is mostly influenced by water availability to plants (i.e. hydrotropism; Tsutsumi et al., 83 

2003). This is relevant because it permits to connect VRD to climate and soil attributes 84 

regulating the water cycle in the soil (e.g. soil porosity, soil organic matter, soil texture, etc; 85 

Toth et al., 2015), and to set the basis for establishing cost-effective analytical approaches 86 

describing VRD on the basis of few, easy-to-measure variables. As a result, and to the best of 87 

our knowledge, two parametric, ecohydrological models predicting VRD have been developed 88 

for arid or semi-arid (Laio et al., 2006; Preti et al., 2010) and for temperate-humid (Gonzalez-89 

Ollauri and Mickovski, 2016) ecosystems, respectively. These models incorporate plant-90 

specific attributes by considering the relative allocation of plant biomass between the above- 91 

and belowground soil compartments (i.e. allometry; Cheng and Niklas. 2007) and by assuming 92 

that the root system can take a known, simple geometrical shape, such as a cylinder, a cone, or 93 

a hemisphere (e.g. Lynch, 1995; Kutschera and Lichtenegger, 1992; Kokutse et al., 2006). The 94 
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ability of these models to realistically portray VRD has been successfully tested for few 95 

herbaceous (Gonzalez-Ollauri and Mickovski, 2016) and shrub species (Preti and Giadrossich, 96 

2009; Preti et al., 2010), but their application to the wider pool of plants, in general, and to 97 

woody plants (e.g. Preti et al., 2010; Tron et al., 2014; Tardio et al., 2016), in particular, needs 98 

further validation. In addition, the robustness of the model conceptualisation and the 99 

assumptions still need to be verified against primary data showing the influence of multiple 100 

soil and plant attributes on VRD, which could help to identify potential model improvements 101 

including application to climates with different ecohydrological features, such as tropical or 102 

alpine.    103 

 104 

Alpine ecosystems are normally found above the upper limit of tree growth in mountainous 105 

areas. They are generally characterised by cold winter temperatures, precipitation in the form 106 

of snow, and short snow-free periods (Freppaz et al., 2019) – all of which tend to limit the 107 

duration of the vegetative season. As a result, alpine vegetation, which mostly comprises low-108 

growing herbaceous perennial plants, tends to be sparse and endemic to these ecosystems, or 109 

it may have evolved to withstand the environmental stress related to alpine climates (Germino, 110 

2014). In addition, the growth and development of alpine plants is also constrained by the low 111 

availability of nutrients in the soil, particularly nitrogen (e.g. Freppaz et al., 2019; Zong et al., 112 

2020). Still, alpine vegetation may play a crucial role in cycling carbon and nutrients in alpine 113 

ecosystems (e.g. Iversen et al., 2014), or in protecting the soil against shallow landslides and 114 

erosion (Preti. 2013; Burylo et al., 2014; Gonzalez-Ollauri and Mickovski, 2017b), where 115 

poorly developed soils subjected to freezing are prone to soil mass wasting processes (e.g. 116 

Hudek et al., 2017a). Yet, knowledge of the root systems in alpine plants is scarce (e.g. Iversen 117 

et al., 2014) and only few studies have attempted addressing this knowledge gap (e.g. Pohl et 118 

al., 2011; Burylo et al., 2014; Hudek et al., 2017b).   119 
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 120 

The aim of this study is to describe the VRD of three dominant alpine plants on the basis of 121 

simple and easy-to-measure climate, soil, and plant attributes in order to test existing 122 

descriptive protocols and parametric ecohydrological models. The objectives of the study 123 

include (i) selection and characterisation of three alpine sites in terms of climate and soil 124 

attributes, (ii) sampling above- and below-ground plant parts of three dominant pioneer plant 125 

species from the three study locations to retrieve relevant plant information and to describe the 126 

VRD, (iii) investigation of the influence of evaluated soil and plant attributes on key VRD 127 

parameters, and (iv) testing the predictive capacity of an existing parametric ecohydrological 128 

model for VRD using pedo-climatic and plant attributes.      129 

 130 

2. Materials and Methods 131 

 132 

2.1. Study area  133 

 134 

The study area is located adjacent to Monte Rosa massif (4634 m above sea level; a.s.l.), within 135 

the Long-Term Ecological Research (LTER) site Angelo Mosso Institute, Valle d’Aosta 136 

Region, Northwest Italy (Fig. 1a). The climate in the study area is Alpine (ET; Köppen, 1884), 137 

characterised by a mean annual air temperature of -2.5°C, a cumulative annual snowfall of 8.50 138 

m, and a mean annual rainfall of 350 mm. The snowpack generally develops in late October - 139 

early November and lasts until the onset of snowmelt in late May – early June. Soil temperature 140 

and meteorological parameters such as air temperature, rainfall during the snow-free season, 141 

and snowfall have been continuously recorded with a 1-minute resolution in the study area 142 

since 2005 using one Automatic Weather Station (AWS) located at 2901 m a.s.l. (Fig. 1; 143 

Comando Truppe Alpine - Servizio Meteomont).  144 
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 145 

Three, high-altitude study sites located in the upper part of a glacier valley were selected within 146 

the study area (Fig. 1a). The sites were located at different elevations and had distinct 147 

underlaying soil types -i.e. Site 1: 2840 m a.s.l on Dystric Leptic Regosol; Site 2: 2795 m on 148 

Dystric Lithic Leptosol ; Site 3: 2770 m on Haplic Umbrisol (IUSS Working Group WRB, 149 

2015). Sites 1 and 2 (Figs.1b and 1c) are characterised by relatively flat topographies. The 150 

dominant vegetation at these sites comprises nival plant species of perennial grasses (Poa laxa, 151 

Poa alpina), together with other herbaceous species such as forbs (Leucanthemopsis alpina, 152 

Gnaphalium supinum), cushion plants (Minuartia sedoides) and dwarf, woody plants that can 153 

tolerate long-lasting snow cover (Salix herbacea, Loiseleuria procumbens). The topography of 154 

Site 3 is rougher and the vegetation cover denser than at sites 1 and 2 (Fig. 1a). Alpine 155 

grasslands dominate Site 3 with the most characteristic plant species being Carex curvula and 156 

Euphorbia minima (Freppaz et al., 2019; Lonati et al., unpublished data).  157 

 158 

 159 
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 160 

Figure 1 a) Locations of the study sites (1-3) and b) characteristic soil profiles for site 1, 2 and 3.  161 

 162 

2.2.Climatic attributes 163 

 164 

We measured four climatic attributes reported to influence plant growth and root development 165 

(e.g. Preti et al., 2010; Gonzalez-Ollauri and Mickovski, 2016), and which are nested in the 166 

parametric, ecohydrological VRD model to be tested herein (Section 2.6; Table 1). To this end, 167 

we examined daily meteorological records collected with one AWS between 2005 and 2019 168 

(Fig. 1a), which we assumed to be representative for the three study sites. The vegetative season 169 

duration (VSD) was defined using the heuristic growing-degree days (GDD; Eq.8) approach 170 

(e.g. McMaster and Wilhelm, 1997), which is a measure of the daily heat accumulation to 171 

(a)

(b)

Site 1 Site 2 Site 3
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predict plant development and phenology. We assumed that the vegetative season begun once 172 

the cumulative GDD reached 200°C (Eq.8; Table 1), and that it ended when daily mean soil 173 

temperature was below 4°C (i.e. root growth is inhibited under 4°C; e.g. Alvarez-Uria and 174 

Körner, 2007). We also assumed 5°C as the optimum soil temperature for plant growth (Tbase; 175 

Eq.8; Table 1). We then calculated the aridity index (AI) of the study site as the ratio of the 176 

total potential evapotranspiration to the total precipitation (Eq. 9; Table 1; Greve et al., 2019) 177 

over the vegetative season. The total precipitation was considered as the sum of rainfall and 178 

snowfall (i.e. snow water equivalent) recorded during the vegetative season of each examined 179 

year. The total potential evapotranspiration over the vegetative season, which is in turn nested 180 

in the VRD model (Eq.4; Table 1), was calculated with the Priestly and Taylor (1972) equation 181 

(Eq. 10; Table 1). Subsequently, we estimated the mean precipitation depth (; mm event-1) 182 

and the frequency of precipitation events () during the vegetative season (Laio et al., 2006; 183 

Preti et al., 2010). We calculated  as the ratio of the total precipitation to the number of 184 

precipitation events (i.e. days with precipitation > 0.2 mm) during the vegetative season 185 

averaged for the studied time period comprised between 2005 and 2019. Rainfall lost to surface 186 

runoff was assumed to be negligible in our study area (e.g. Tron et al., 2014). We calculated  187 

as the ratio of the number of precipitation events to the total vegetative season duration 188 

averaged for the studied period.   189 

 190 

2.3.Soil attributes 191 

 192 

The slope gradient and aspect were measured manually with a hand-held inclinometer and with 193 

a compass, respectively, at locations adjacent to each sampled plant individual (Section 2.4). 194 

The terrain curvature of each sampling location was visually described as either concave (CN), 195 

convex (CX) or flat (FL) (e.g. Gonzalez-Ollauri and Mickovski, 2017c). Undisturbed soil 196 
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samples (N=36) from the topsoil (0 mm - 100 mm below ground level; b.g.l) were collected at 197 

the same locations where plants were sampled using a soil core sampler. These samples were 198 

used to determine the soil bulk density (bk; g cm-3), soil porosity (n) and gravimetric moisture 199 

content (g; %) following standard methods (Head, 1980). The soil organic carbon (SOC; %) 200 

and pH were determined using a portion of the collected soil materials, which was air-dried for 201 

168 h and sieved through a 2 mm opening sieve. SOC was determined using a C/H/N analyser 202 

(Elementar Vario EL) while soil pH was determined in soil–water suspension (soil: water = 203 

1:2.5) following the slurry method (ASTM, 1995) and using a pH electrode (Fisher Scientific 204 

Accumet Basic AB15). Additional soil materials in form of bulk samples of 4kg-5kg were 205 

collected with a shovel from the topsoil (0 mm – 300 mm b.g.l) at three representative locations 206 

per study site (N=9). These representative sampling locations, which were assumed to capture 207 

the main soil features within a study site, were within the area range covered by plant sampling, 208 

and were less than 5 m away from any given plant individual sampled in this study. The soil 209 

samples were stored in heavy-duty PVC bags and transported to the laboratory where they were 210 

mixed per study site (N=3) prior to further analysis. The particle size distribution (PSD) of the 211 

collected soil materials was determined through the dry sieving and the hydrometer methods 212 

for the coarse (i.e. gravel and sand) and fines (i.e. silt and clay) fractions, respectively (Head, 213 

1980). The soil skeleton (i.e. percentage of rock fragments in the soil sample; Sk; %) was 214 

determined through dry sieving (Head, 1980). Soil moisture content at field capacity (fc; %) 215 

and wilting point (wp; %) were estimated through pedotransfer functions (Eqs. 11 and 12; 216 

Table 1; Toth et al., 2015), which are nested in the VRD model and use PSD, n, and SOC as 217 

inputs.    218 

 219 

2.4. Plant species, plant attributes and vertical root distribution 220 

 221 
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We selected three dominant, characteristic plant species for the study from sites 1, 2, and 3 222 

(Fig.1):  223 

(i) dwarf eyebright (Euphrasia minima Jacq.), an annual, facultative root hemiparasite 224 

(Matthies, 1998; Fig. 2a) with erect stems reaching up to 150 mm, which grows in 225 

humid mountainous habitats between 950-3000 m a.s.l. (Asturnauta, 2020) 226 

(ii) alpine chrysanthemum (Leucanthemopsis alpina L.), a perennial, herbaceous plant 227 

belonging to the daisy family and specific to high alpine elevations, growing 228 

between 1800-3500 m a.s.l. It can be an early coloniser after the retreat of glaciers, 229 

being generally small in size (< 200 mm in height) with a root system characterised 230 

by horizontal rhizomes (ukwildflowers.com, 2020; Fig. 2b).  231 

(iii) alpine bluegrass (Poa alpina L.), a subartic-alpine meadow tufted grass found in 232 

moist to dry limestone and in basaltic rock crevices and exposed heathlands. It is a 233 

pseudoviviparous, apomictic, and fast germinating plant (Pierce et al., 2000) that 234 

can reach up to 400 mm in height, normally has narrow leaves (2-4 mm), and its 235 

inflorescence is pyramidal, twice as tall as wide; it also has an adventitious root 236 

system that arises extra-vaginally through the lead-sheaths at the base of the plant 237 

(Pierce et al., 2000; Fig. 2c).  238 
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 239 

Figure 2. Selected root systems of (a) Euphrasia minima (b) Leucanthemopsis alpina (c) Poa alpina.  240 

Plant sampling was undertaken at the height of the growing season when four individuals per 241 

plant species were sampled at random locations within each study site (N=36; Fig. 1). The 242 

projection area of the aerial plant parts (Sp; cm2; total plant aboveground area projected on the 243 

ground, assuming a plant crown with a circular shape) and average crown spread (CS; cm; 244 

mean spread diameter of the aboveground plant parts) were measured for each sampled 245 

individual with a meter tape following the Spokes distance method (Blozan, 2006). Each plant 246 

individual was excavated by hand before being clipped with scissors above the root collar (Fig. 247 

3) to separate the above from the belowground part. The aboveground plant materials were 248 

oven-dried at 60°C until constant mass to measure the aboveground biomass (Ma; g) of each 249 

sampled individual. The belowground parts were cleaned with a water jet to separate soil 250 

particles attached to the root system prior to being air-dried for 2 h for describing the vertical 251 

root distribution (VRD).  252 

 253 

VRD was measured manually as the total cross-sectional root area at a given soil depth (Fig. 254 

3) for each sampled plant before being averaged per plant species and study site. Using a 255 

permanent marker and a ruler, marks were drawn on the root systems at equal length intervals 256 

(a) (b) (c)
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ranging from 5 to 20 mm and starting from the root collar (Fig. 3) to visualise the assumed 257 

root-soil intersection planes (Fig. 3). The diameter of all the roots intersecting each plane was 258 

measured with Vernier callipers, and their cross-sectional area (Ar(z); mm2) was calculated 259 

with Eqs. 1 and 2 (Table 1; Fig. 3), assuming all roots had circular cross-section when crossing 260 

a given intersection plane (Fig. 3). Subsequently, Ar was averaged per intersection plane and 261 

per plant species for a given sampling site.  Then, a nonlinear least squares (nls) exponential 262 

model of the form 𝑦 = 𝑎𝑒−𝑥
𝑏⁄ , where y is the dependent variable (i.e. root cross-sectional area; 263 

Ar), x is the independent variable (i.e. soil depth), and a and b are fitting parameters (Eq.3; 264 

Table 1) was fitted to the measured data resulting from the previous step. With this approach 265 

and, for modelling purposes, it was assumed that the root biomass is distributed in the soil 266 

following a cone shape volume (Fig. 3b; Preti et al., 2010; Gonzalez-Ollauri and Mickovski, 267 

2016; see Supplementary Material) in which the total rooting depth (i.e. soil depth at which 95 268 

% of roots are found; 3xb; mm; Laio et al., 2006) was the cone’s height and the cross-sectional 269 

area of the root collar (Aro; mm2) the cone’s basal area (Fig. 3b). Accordingly, the rooting 270 

depth (b; mm) was quantified as 1/3 of the longitudinal distance between the root collar and 271 

the tip of the root system of each studied individual (Laio et al., 2006).  It must be borne in 272 

mind that with the former cone-shape-volume approach (Fig. 3b), we are not trying to capture 273 

the shape of the root system per se (Fig. 2; e.g. Köstler et al., 1968) but to provide a generic 274 

basis to model the widely-observed decrease in root biomass with soil depth (e.g. Schenk, 275 

2005; see Supplementary Material). Finally, the root materials were oven-dried at 60°C until 276 

constant mass to measure the root biomass (Mr; g) and the allometry ratio (ALR) as the quotient 277 

between Mr and Ma.    278 

  279 
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Table 1. List of equations used in this study. Arid and humid ecosystems are defined on the basis of the aridity index (AI) over the growing season -i.e. AI < 1: arid; AI > 1: humid; ppu: parts-per 280 

unit. VS: vegetative season. 281 

 282 
Definition Equation No Parameters Units Source 

Cross-sectional area of the ith 

root at a given intersection 

plane 

𝐴𝑖 = 𝜋 (𝑑𝑥 2⁄ )2 Eq. 1 Ai: cross-sectional area of the ith root at a given 

intersection plane 

dx: root diameter 

mm2 

 

mm 

Gonzalez-Ollauri and 

Mickovski (2016) 

Root cross-sectional area at a 

given intersection plane 

𝐴𝑟(𝑧𝑖) = Σ𝐴𝑖 Eq.2 Ar(zi): cross-sectional area of all roots crossing a 

given intersection plane 

mm2 

 

Gonzalez-Ollauri and 

Mickovski (2016) 

Vertical root distribution 

(VRD) 

𝐴𝑟(𝑧) = 𝐴𝑟𝑜. 𝑒
−𝑧
𝑏  

Eq. 3 Ar(z): cross-sectional area of all roots along the 

soil profile 

Aro: cross-sectional area of the plant stem above 

the root collar 

b: mean rooting depth  

z: soil depth  

mm2 

 

mm2 

 

mm 

mm 

Preti et al. (2010) 

Mean rooting depth in arid 

and semi-arid ecosystems 

𝑏 =
𝛼

𝑛(𝜃𝑓𝑐 − 𝜃𝑤𝑝)(1 −
𝜆𝛼
𝐸𝑡𝑝

)
 Eq. 4 : mean precipitation intensity per event over the 

growing season 

n: soil porosity 

fc: volumetric soil moisture content at field 

capacity  

mm 

event-1 

 

ppu 

 

ppu 

Laio et al. (2006) 
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wp: columetric soil moisture content at wilting 

point 

: frequency of precipitation events over the 

growing season 

Etp: total potential evapotranspiration over the 

growing season 

 

ppu 

 

events 

 

mm 

 

 

 

Mean rooting depth in humid 

ecosystems 

𝑏 =
𝛼

𝑛(𝜃𝑓𝑐 − 𝜃𝑤𝑝)
 Eq. 5   Gonzalez-Ollauri and 

Mickovski (2016) 

Water available to plants in 

the soil 

𝑊𝐴𝑃 = 𝜃𝑓𝑐 − 𝜃𝑤𝑝 Eq. 6 WAP: water available to plants ppu  

Area at the root collar 
𝐴𝑟𝑜 =

𝑀𝑟

𝑏 𝜌𝑟
 

Eq. 7 Aro: cross-sectional area of the plant stem above 

the root collar 

Mr: plant belowground biomass 

r: root mass density  

mm2 

 

g 

g mm-3 

Preti et al. (2010) 

Growing-degree day 
𝐺𝐷𝐷𝑖 =

𝑇𝑚𝑥 − 𝑇𝑚𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 

Eq.8 Tmx: daily maximum air temperature 

Tmn: daily minimum air temperature 

oC 

 

McMaster and Wilhelm 

(1997) 
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{
 ∑ 𝐺𝐷𝐷𝑖

𝑛

𝑖=1

 ≥ 200℃.     𝑉𝑆 𝑠𝑡𝑎𝑟𝑡

   𝑇𝑠𝑜𝑖𝑙 ≤ 4℃            𝑉𝑆 𝑒𝑛𝑑

 

Tbase: optimum daily mean temperature for plant 

growth 

i: ith day 

Tsoil: daily mean soil temperature 

oC 

 

 

oC 

Aridity index 
𝐴𝐼 =

𝐸𝑡𝑝

𝑃𝐶𝑃
 

Eq. 9 PCP: total precipitation over the growing season mm Greve et al. (2019) 

Potential evapotranspiration 
𝐸𝑡𝑝 = 0.00128

𝑅𝑛𝑙

58.3

Δ

∆ + 𝛾
 

Eq. 10 Rnl: net solar radiation 

: slope of saturation vapour pressure 

: psychrometric constant 

MJ m-2 

day-1 

kPa oC 

 

kPa oC 

Priestly and Taylor (1972) 

Soil moisture at field capacity 𝜃𝑓𝑐 = 𝜃33 + 1.23𝜃33
2 − 0.374𝜃33 − 0.015 

𝜃33 = −0.251𝑆𝑎 + 0.195𝐶𝑙 + 0.011𝑆𝑂𝐶
+ 0.006𝑆𝑎. 𝑆𝑂𝐶
− 0.027𝐶𝑙. 𝑆𝑂𝐶 + 0.452𝑆𝑎. 𝐶𝑙
+ 0.299 

Eq. 11 θ33: soil moisture at -33 kPa of matric suction  

 

Sa: sand content in the soil  

 

Cl: clay content in the soil 

 

SOC:  soil organic carbon  

ppu 

ppu 

ppu 

ppu 

Toth et al. (2015) 

Soil moisture at wilting point 𝜃𝑤𝑝 =  𝜃1500 + 0.14𝜃1500 − 0.02 

𝜃1500 = −0.024𝑆𝑎 + 0.487𝐶𝑙 + 0.006𝑆𝑂𝐶

+ 0.005𝑆𝑎. 𝑆𝑂𝐶

− 0.013𝐶𝑙. 𝑆𝑂𝐶 + 0.068𝑆𝑎. 𝐶𝑙

+ 0.031 

Eq. 12 θ1500: soil moisture at -1500 kPa of matric 

suction  

 

ppu Toth et al. (2015) 

283 



 17 

 284 

 285 

 286 

Figure 3. (a) Illustration of the methodological approach followed to separate aboveground and belowground plant parts and 287 

to describe vertical root distribution (VRD) for the studied plant species. Approach B was followed to describe the cross-288 

sectional area of all roots at a given crossing plane (Ar(z)) , as it does not overestimate the root cross-sectional area compared 289 

to approach A. r stands for the rooting radius and d for the diameter of ith root at a given crossing plane. (b) VRD was 290 

modelled as a cone with base’s area Aro (i.e. root collar area; mm2) and height 3b, being b the mean rooting depth (mm) and 291 

3b the soil depth at which 95% of the roots are found (Laio et al., 2006). V stands for the cone volume and h for the cone 292 

height. See mathematical formulation in Supplementary Material.      293 

 294 

2.5. Relationship between soil and plant attributes with key VRD parameters 295 

 296 

We investigated the relationship between the studied soil (Section 2.3) and plant attributes 297 

(Section 2.4) with the relevant/key parameters used to portray VRD (Aro: cross-sectional area 298 

of the root collar, and b: mean rooting depth) through a data mining workflow (Supplementary 299 

Material – Fig. S1) which was built using the statistical language R v5.5.1 (R Core team, 2018).  300 

We also included plant belowground biomass (Mr) in the analysis, as Mr will ultimately limit 301 

the extent of VRD (Gonzalez-Ollauri and Mickovski, 2016). This workflow was used to 302 

accomplish three objectives: (i) to evaluate the ability to predict relevant VRD parameters 303 

using the investigated soil and plant attributes as predictors, (ii) to evaluate the importance of 304 

h=3b

AroGround level

V=1/3πr2h

(a) (b)
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each plant and soil predictor on the relevant VRD parameters, and (iii) to evaluate predictor-305 

response dependency - i.e. how the response variable changes following predictor changes.  306 

  307 

To accomplish objective (i), 100 random forest models (RF; Breiman, 2001) were fitted with 308 

1000 regression trees each, using the R package “randomForest” (Liaw and Wiener, 2020). 309 

Only uncorrelated attributes to the VRD parameters were considered to fit RF models. Each 310 

RF model was cross-validated with a bootstrapping method without replacement (e.g. 311 

Gonzalez-Ollauri et al., 2020) and through the evaluation of the coefficient of determination 312 

(R2), root mean square error (RMSE) and variance explained (VExp) following the least-313 

squares method (Fuller, 1987). The pool of cross-validation coefficients retrieved from 314 

implementing the data mining workflow was examined by plotting their corresponding 315 

probability density functions (Appendix A).  316 

 317 

To accomplish objective (ii), the importance of each plant and soil attribute on the response 318 

variables (i.e. key VRD parameters) was examined on the basis of permutation tests using the 319 

R package “caret” (Khun et al., 2018), which measures attribute importance by observing 320 

model performance when each predictor is randomly dropped out from fitting a RF model 321 

during the training step (e.g. Strobl et al., 2008).  322 

 323 

To achieve objective (iii), we examined the Partial Dependence Plots (PDPs; Hastie et al., 324 

2009) retrieved from using the R package “pdp” (Greenwell, 2017). PDPs were retrieved to 325 

show whether the interaction between a target VRD parameter and a target plant and soil 326 

attribute was linear, monotonic, or more complex in the fitted RF models, representing how a 327 

given attribute influenced the prediction on average for a given VRD parameter. The R script 328 

used to implement the data mining workflow described above is provided in Appendix C.  329 



 19 

 330 

2.6. Empirical vs. parametric, ecohydrological model for vertical root distribution 331 

 332 

We tested the predictive capacity of an existing parametric ecohydrological model for vertical 333 

root distribution (Eqs. 4-5, Table 1; Laio et al. 2006; Preti et al., 2010; Gonzalez-Ollauri and 334 

Mickovski, 2016) against the empirical VRD model fitted to the measured data described in 335 

Section 2.4. The parametric ecohydrological VRD model was firstly developed for arid and 336 

semi-arid ecosystems by Laio et al. (2006) and extended by Preti et al. (2010), and then adapted 337 

to temperate-humid climates by Gonzalez-Ollauri and Mickovski (2016). This model estimates 338 

the mean rooting depth (b; Eqs. 4 and 5; Table 1) on the basis of pedo-climatic parameters (i.e. 339 

: mean precipitation depth during the growing season; : frequency of precipitation events; 340 

Etp: potential evapotranspiration; Section 2.2) and of the product between soil porosity (n) and 341 

the water available to plants in the soil (WAP; Eq. 6; Table 1), function of the difference 342 

between the volumetric soil moisture content at field capacity (fc) and at wilting point (wp). 343 

Different equations for b must be considered depending on whether the aridity index (AI; Eq. 344 

8) is greater than 1 (i.e. arid climate; Eq. 4; Preti et al., 2010) or lower than 1 (i.e. humid 345 

climate; Eq.5; Gonzalez-Ollauri and Mickovski, 2016). VRD is then modelled with a negative 346 

exponential equation (Eq. 5; Table 1) using b, the cross-sectional area at the root collar (Aro) 347 

and the soil depth (z; mm) as inputs, assuming that the probability density function for the daily 348 

rainfall intensity at the study site is exponentially distributed (Laio et al., 2006). The cross-349 

sectional area at the root collar (Aro) is estimated using plant-specific information and the 350 

rooting depth under the assumption that the distribution of root biomass along the soil profile 351 

can be portrayed with a conical-shape-volume (Fig. 3b; Section 2.4; Eq. 6; Table 1; 352 

supplementary material). In addition, we assumed that the portion of soil explored by roots was 353 

uniform and isotropic.  354 
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 355 

The outcomes from the parametric, ecohydrological and the empirical VRD models were 356 

compared in the light of the outputs for the root cross-sectional area (Ar) of all roots along the 357 

soil profile. To do so, Ar was firstly retrieved for soil depths of 0 mm - 100 mm using the 358 

parametric ecohydrological and empirical VRD models (Section 2.4), respectively. Then, the 359 

two Ar datasets were log-transformed and plotted together to graphically evaluate the 360 

mathematical relationship between the two models. Subsequently, a linear regression model 361 

was fitted between the two retrieved, log-transformed Ar datasets in R v3.5.1. Additionally, 362 

the correlation between the linear fitting parameters and the studied plant and soil attributes 363 

was examined by estimating pairwise Pearson’s correlation coefficients.  364 

 365 

2.7. Statistical analysis 366 

 367 

Normality checks were undertaken for every studied soil and plant attribute with the Shapiro 368 

Wilk test. Soil and plant attributes were aggregated into plant species and study site, 369 

respectively, for statistical analysis. Statistical differences in plant attributes between plant 370 

species and investigation site were evaluated with the non-parametric Kruskal Wallis (2) test, 371 

as plant attributes did not follow a normal distribution. Where statistically significant 372 

differences were encountered, plant attribute’s differences between two plant species were 373 

evaluated with the non-parametric Wilcoxon (W) test. Statistical differences in soil attributes 374 

between plant species and investigation site were evaluated with one-way ANOVA (F) and 375 

Kruskal Wallis (2) tests for normal and non-normal distributed variables, respectively. 376 

Vertical root distribution (VRD) differences between investigated sites were evaluated per 377 

plant species with the Kruskal Wallis (2) test, as VRD did not follow a normal distribution. 378 

Where statistically significant differences were encountered, the differences within the plant 379 
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species were evaluated with the non-parametric Wilcoxon (W) test. VRD differences between 380 

plant species for a given investigation site were examined with the same approach indicated 381 

before. Statistical differences between the importance of the attributes used as predictors for 382 

the selected VRD parameters were also evaluated with the Kruskal Wallis test. The statistical 383 

relationship between the studied plant and soil attributes was evaluated with the pair-wise 384 

Pearson’s correlation test and interpreted on the basis of the resulting correlogram plot. All 385 

statistical tests were carried out at the 95 % and 99 % confidence level using the ‘base’ package 386 

embeddedw in the statistical computing software R v3.5.1 (R Core Team, 2018).   387 

 388 

3. Results 389 

 390 

3.1. Climate attributes 391 

 392 

The growing season duration for the period 2005-2019 was on average 5018 days long, 393 

generally starting in early July and ending in early September. The aridity index of the study 394 

site during the snow-free period was 0.910.2, indicating that the temperate-humid, 395 

ecohydrological VRD model (Eq.5; Table 1) must be implemented for the study area. The 396 

mean precipitation depth per event during the growing season () was 6.682.33 mm, the 397 

frequency of precipitation events () was 0.560.05, and the total potential evapotranspiration 398 

(Etp) during the vegetative season was 68.82.1 mm.  399 

 400 

3.2.Soil attributes 401 

 402 

The examined soil attributes (Table 2) differed significantly between the investigated study 403 

sites. Site 3 had a substantially higher slope gradient (2:18.2 df:2 p<0.01), it was consistently 404 
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concave in terms of the terrain curvature, and it had a more South-facing aspect than Sites 1 405 

and 2. In addition, Site 3 had a significantly higher soil moisture (F:65.89 df:1 p<0.01), soil 406 

organic carbon (F:45.3 df:1 p<0.01), and proportion of fine soil materials (2:35 df:2 p<0.01) 407 

than Sites 1 and 2, while having a substantially lower bulk density (2:20.2 df:2 p<0.01), soil 408 

skeleton (2:35 df:2 p<0.01), and coarse soil materials (2:35 df:2 p<0.01) than the other two 409 
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Table 2. Soil attributes investigated in this study averaged per plant species and per sampling site  standard deviation. g: gravimetric moisture content; bk: dry bulk density; n: soil porosity; 410 
SOC: soil organic carbon; Sk: soil skeleton. 411 

  Slope (°) Curvature Aspect g (%) bk (g cm-3) n SOC (%) pH Sk (%) 

Plant species Euphrasia 

minima  8.428.7 convex 145.4222.8 29.2011.4 1.180.2 0.560.1 7.702.6 4.500.1 20.707.2 

Leucanthemopsis 

alpina  8.426.3 flat/convex 14525.3 27.469.3 1.240.2 0.530.1 6.591.4 4.500.1 20.707.2 

Poa alpina  11.507.3 flat/convex 152.0818.8 27.439.2 1.200.2 0.550.1 7.832.6 4.500.1 20.707.2 

Sampling site Site 1 6.924.5 flat/convex 133.5011.1 19.447.1 1.370.2 0.480.1 5.521.4 4.600.0 16.300.0 

Site 2 4.332.1 convex 135.59.81 26.054.0 1.260.1 0.520.0 6.961.4 4.400.0 30.400.0 

Site 3 17.087.3 concave 173.514.9 38.605.5 0.980.2 0.630.1 9.641.6 4.500.0 15.400.0 

 412 

 413 

 414 

 415 
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Table 2 Cont. Soil attributes investigated in this study averaged per plant species and per sampling site  standard deviation. fc: volumetric soil moisture content at field capacity; wp: 416 

volumetric soil moisture content at wilting point. 417 

  Clay (%) Fine silt (%) Coarse silt 

(%) 

Fine sand 

(%) 

Coarse sand 

(%) 

fc (%) wp (%) 

Plant species Euphrasia 

minima  1.400.34 5.671.11 11.303.33 50.733.64 30.872.15 27.8510.3 1.560.04 

Leucanthemopsis 

alpina  1.400.34 5.671.11 11.303.33 50.733.64 30.872.15 28.330.2 2.010.10 

Poa alpina  1.400.34 5.671.11 11.303.33 50.733.64 30.872.15 29.180.4 3.090.20 

Sampling sites Site 1 1.000.0 4.300.0 9.200.0 52.300.0 33.200.0 28.780.7 2.370.9 

Site 2 1.400.0 5.800.0 15.800.0 45.900.0 31.200.0 28.100.6 2.200.7 

Site 3 1.800.0 6.900.0 8.900.0 54.000.0 28.200.0 28.230.9 2.160.7 

 418 
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investigated sites (Table 2). However, significant differences for the investigated soil attributes 419 

were not detected between the three studied plant species (Table 2; F:1.1 df:2 p=0.34). The 420 

available water to plants in the soil (Eq. 6, Table 1) was on average of 26.130.3 %.  421 

 422 

3.3.Plant attributes 423 

   424 

The evaluated plant attributes (Table 3) were statistically different between the three studied 425 

plant species. In particular, Poa alpina individuals had a substantially larger crown spread (CS; 426 

2:26.7 df:2 p<0.01), plant projected area (Sp; 2:26.7 df:2 p<0.01), cross-sectional area at the 427 

root collar (Aro; 2:27.1 df:2 p<0.01),  aboveground biomass (Ma; 2:26.4 df:2 p<0.01), and 428 

root biomass (Mr; 2:29.3 df:2 p<0.01) than those of the other two studied species (Table 3). 429 

However, the measured mean rooting depth (b) was not statistically different between the three 430 

studied plant species (Table 3; 2:0.6 df:2 p=0.76). On other hand, the three investigated study 431 

sites did not present statistical differences in terms of the evaluated plant attributes (2:0.3 df:2 432 

p=0.85) with the exception of the observed b, which was significantly higher in Site 3 than in 433 

Sites 1 and 2 (Table 3; 2:26.7 df:2 p<0.01).      434 

 435 

3.4. Vertical root distribution 436 

 437 

The measured vertical root distribution (VRD) decreased exponentially with soil depth for the 438 

three studied plant species and at the three study sites (Fig 5). As a result, negative exponential 439 

models (Eq. 3. Table 1) were successfully fitted to the observed data (i.e. empirical model) 440 

with high goodness of fit (R2>0.9) in all cases. The model fitting parameters (Table 4) did not 441 

differ statistically from the measured VRD parameters (b:W=49 442 
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Table 3. Plant attributes investigated in this study averaged per plant species and per sampling site standard deviation . CS: crown spread; Sp: plant’s aerial projected area; Aro: root collar 443 
area; b: mean rooting depth; Ma: aboveground biomass; Mr: root biomass; ALR: allometry ratio -i.e. Mr/Ma.    444 

  CS (cm) Sp (cm2) Aro (mm2) b (mm) Ma (mg) Mr (mg) ALR 

Plant species Euphrasia minima  1.601.4 3.447.9 0.170.1 15.0010.9 13.3812.1 1.081.1 0.120.2 

Leucanthemopsis alpina  3.840.8 12.094.9 0.380.1 14.4410.9 85.4340.8 62.1221.0 0.820.4 

Poa alpina  8.013.0 56.9045.7 1.150.7 15.838.1 226.42162.4 379.07366.3 1.821.2 

Sampling sites Site 1 4.063.3 20.9931.4 0.720.9 4.721.9 100.10132.3 189.71371.1 1.091.1 

Site 2 3.902.2 15.4913.8 0.450.4 16.677.8 133.03173.3 158.17274.4 0.951.1 

Site 3 5.494.1 35.9450.5 0.520.5 23.896.0 92.1172.5 94.39142.9 0.710.9 

 445 

Table 24. Vertical root distribution (VRD) parameters measured, retrieved though fitting nls exponential models to the measured data -i.e. empirical VRD model (†), and predicted with the 446 
parametric, ecohydrological VRD model (†† ) per plant species and sampling site. b: mean rooting depth; Aro: cross-sectional area at the root collar. 447 
 448 

 Site 1 Site 2 Site 3 

Plant 

species 

b (mm) b† 

(mm) 

b† †  

(mm) 

Aro 

(mm2) 

Aro† 

(mm2) 

Aro††  

(mm2) 

b (mm) b† 

(mm) 

b† † 

(mm) 

Aro 

(mm2) 

Aro† 

(mm2) 

Aro† † 

(mm2) 

b (mm) b† 

(mm) 

b††  

(mm) 

Aro 

(mm2) 

Aro† 

(mm2) 

Aro††  

(mm2) 

E. 

minima 

4.170.9 7.89 52.7 0.130.0 0.13 0.013 17.5012.9 5.20 49.9 0.080.0 0.08 0.016 23.33.8 8.50 38.1 0.290.1 0.30 0.09 

L. 

alpina 

3.330.0 22.80 56.9 0.380.1 0.9 1.89 15.004.3 19.70 49.9 0.380.1 1.00 2.24 25.010 19.10 42.8 0.370.1 0.50 1.66 

P. 

alpina 

6.671.9 24.4 2.6 1.661.0 0.60 15.88 17.505.7 21.70 47.9 0.880.2 0.20 12.68 23.333.8 26.60 42.5 0.910.6 0.40 8.33 

449 
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df=7 p=0.48; Aro:W=40 df=7 p=1 ;Table 4). The VRDs were different between plant species 450 

(2:212.1 df:2 p<0.01) and they generally differed across study sites (2:99.7 df:2 p<0.01). L. 451 

alpina had the widest and densest VRD followed by P. alpina and E. minima (Fig. 4; Table 4). 452 

However, the VRD for P. alpina tended to be deeper than for the other two plant species (Fig. 453 

4; Table 4). A clear relationship between VRD and study site was not observed, indicating that 454 

the extent and depth of the VRD was not linked to the study site (Fig. 4).  455 

 456 

 457 

 458 

Figure 34. Vertical root distribution (VRD) for (a) Euphrasia minima, (b) Lecanthemopsis alpina, and (c) Poa alpina. 459 
Triangles, dots and crosses represent observed values for the root cross-sectional area of all roots found at a given soil 460 
depth as described in Section 2.4. The lines portray the nls exponential models fitted to the measured data points -i.e. 461 
empirical VRD model. See online version for colours.   462 

 463 

3.5.Influence of plant and soil attributes on key vertical root distribution parameters    464 

 465 

The cross-validation results from fitting random forest models to the key vertical root 466 

distribution (VRD) parameters (i.e. b, Aro, and Mr; Appendix A - Table A1 and Figure A1; 467 

Supplementary Material) suggested that the latter can be predicted successfully using the 468 

studied plant and soil attributes as predictors.   469 
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Figure 45. Violin plots depicting the influence of the studied plant and soil attributes on relevant vertical root distribution (VRD) parameters -i.e. (a) mean rooting 
depth, b; (b) root collar area, Aro; (c) plant belowground biomass, Mr. The white dot within the violin plot boxes represent the median while the grey area around the 
box represents the probability density of the data at different values.    
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The mean rooting depth (b) was chiefly influenced by soil attributes (Fig. 5a) such as the soil 472 

volumetric moisture content at wilting point, followed by the soil texture (Fig. 5a). Soil pH and 473 

the soil moisture at field capacity also appeared to significantly influence b (Fig. 5a). In the 474 

light of the correlogram (Fig. 6), the rooting depth was strongly correlated to the soil texture, 475 

positively with clay and silt contents and negatively with coarse sand content. The slope aspect, 476 

the soil moisture, and organic carbon content also had a strong, positive correlation with b (Fig. 477 

6). In the light of the PDPs (Appendix B - Fig. B1), there was a positive influence of the wilting 478 

point on b (i.e. the higher wp the higher b), up to 3.4 %, after which a constant effect was 479 

observed. Field capacity also had a positive effect on b only detected when fc was above 15.6 480 

%. We noticed a negative influence of soil pH on b when the former was above 4.5. The 481 

attributes that did not have a substantial effect on b (Fig. 5a) had a remarkable effect when the 482 

PDPs were assessed (Appendix B - Fig. B1). For example, deeper root systems were found 483 

under steeper conditions. However, shallower root systems were encountered when soil was 484 

wetter, but shifts in the soil hydrological regime led to changes in the influence of soil moisture 485 

on b. A negative effect of soil moisture on b was observed under residual and saturated regimes, 486 

and a positive effect was noticed under the transitional regime. Contrariwise, soil porosity and 487 

organic carbon had a positive effect on b (Tables 2 and 3; Fig. 6) which was not detected in the 488 

PDPs for the soil porosity (Fig. B1).  489 

 490 

The cross-sectional area at the root collar (Aro) was mostly affected by plant attributes (Fig. 491 

5b). The root biomass, surface projected area, crown spread, and aboveground biomass had a 492 

significant influence on Aro. However, the investigated soil attributes did not have a substantial 493 

influence on Aro on the basis of the RF model outputs (Fig. 5b). In the light of the correlogram 494 

plot (Fig. 6), Aro had a strong, positive correlation with above- and belowground biomass but 495 

also with the soil water content at field capacity and wilting point. According to the PDPs 496 
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(Appendix B - Fig. B2), all the examined plant attributes had a consistent, positive effect on 497 

Aro. We also observed that some soil attributes had a consistent effect on Aro when the PDPs 498 

were examined (Fig. B2) that could not be detected in the correlogram (Fig. 6) or in relative 499 

influence plots (Fig. 5b). According to the PDPs, soil porosity, the percentage of clay, fine silt 500 

and fine sand had a negative effect on Aro, while the percentage of coarse sand and coarse silt 501 

had a positive effect. We also observed that Aro tended to be wider under steeper slope 502 

conditions, and narrower when soil organic carbon increased (Fig. B2).  503 

 504 

The root biomass (Mr) was predominantly influenced by plant attributes (Fig. 5c) such as the 505 

aboveground biomass, Aro, crown spread, and plant’s surface projected area. However, the 506 

influence of soil organic carbon on Mr was significantly higher than the influence of the rest 507 

of the studied soil attributes (Fig. 5c). In the light of the correlogram plot (Fig. 6), Mr had a 508 

strong, positive correlation with the aboveground biomass, the crown spread, and Aro. In 509 

addition, soil attributes, such as the soil moisture at field capacity and wilting point, also had a 510 

strong positive correlation, with the latter being the attribute with highest correlation to Mr 511 

(Fig. 6). According to the PDPs (Appendix B - Fig. B3), all the plant attributes studied had a 512 

consistent, positive effect on Mr. In addition, we noticed a consistent effect of some of the soil 513 

attributes studied on Mr which resembled the effects observed for Aro (Fig. B2).     514 
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 515 

Figure 56. Correlation plot depicting Pearson’s correlation coefficient between the investigated plant and soil attributes. 516 
Blue colour: positive correlation; Red colour: negative correlation. The darker the colour shade, the higher the correlation 517 
between two attributes. See online version for colours. 518 

 519 

 520 

3.6.Ecohydrological model for vertical root distribution 521 

 522 

We found a substantial mismatch between the chosen parametric ecohydrological and the 523 

empirical VRD models (Figs. 8a-c; Table 4). This showed that the existing parametric,  524 

ecohydrological VRD model cannot readily predict VRD under the pedoclimatic conditions of 525 

the study area. However, we detected a consistent (R2 > 0.9) linear relationship between the 526 

ecohydrological and empirical VRD models when Ar(z) was log-transformed (Figs. 8d-e) -i.e. 527 

a consistent exponential fit was observed when comparing empirical, untransformed Ar(z) 528 

values against parametric, untransformed Ar(z) values. The fitting parameters for the log-529 

transformed linear models established between ecohydrological and empirical VRD models 530 
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are shown in Table 5. We observed a strong correlation (r > 0.5) between most of the studied 531 

plant attributes and the fitting parameters for the log-transformed linear models (Table 6). In 532 

addition, a strong correlation was observed between the fitting parameters and the soil moisture 533 

content at field capacity and at wilting point (Table 6).      534 

 535 

 536 

 537 

Figure 67.  (a-c) Vertical root distribution (VRD) models fitted with a nls exponential model to the measured data – i.e. 538 
empirical VRD model (solid lines) and with the parametric, ecohydrological VRD model (dotted line) (d-e) Mathematical 539 
relationship between empirical and ecohydrological VRD models established with a log-transformed linear model of the 540 
form “Ln(Empirical Ar(z))=A+BxLn(Ecohydrological Ar(z))”  (see Table 5 for fitting parameters). Also, see online version of 541 
this manuscript for colours.  542 
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Table 35. Fitting parameters for the log-transformed linear model the form “Ln(Empirical Ar(z))=A+BxLn(Ecohydrological 543 
Ar(z))”  fitted between empirical and ecohydrological VRD models.  544 

 Site 1 Site 2 Site 3 

Plant species A B A B A B 

E. minima 26.88 6.67 37.46 9.68 9.47 4.47 

L. alpina -1.67 2.49 -2.07 2.53 -1.86 2.24 

P. alpina -6.44 2.15 -7.00 2.21 -4.41 1.59 

Table 46. Pearson’s correlation coefficients for the pair-wise correlation between the evaluated soil and plant attributes and 545 
the fitting parameters for the log-transformed linear model the form “Ln(Empirical Ar(z))=A+BxLn(Eco-hydrological 546 
Ar(z))”  fitted between empirical and ecohydrological VRD models.  547 

Variable A B 

Slope -0.36 -0.42 

Aspect -0.31 -0.36 

Curvature -0.05 0.03 

CS -0.74 -0.73 

Sp -0.56 -0.58 

Aro -0.65 -0.60 

Ma -0.75 -0.68 

Mr -0.61 -0.54 

b -0.11 -0.11 

g 0.20 0.23 

bk -0.12 -0.14 

n 0.18 0.20 

SOC -0.18 -0.20 

pH -0.12 -0.14 

sk -0.09 -0.16 

Clay 0.19 0.29 

Fine silt -0.14 -0.16 

Coarse silt -0.12 -0.13 

Fine sand 0.19 0.29 

Coarse sand -0.21 -0.31 

fc 0.16 0.19 

wp -0.59 -0.57 

548 
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 549 

4. Discussion 550 

4.2.Vertical root distribution 551 

The vertical root distribution (VRD) of the three studied alpine plant species decreased 552 

exponentially with soil depth. Accordingly, VRD was successfully described with a negative 553 

exponential model that was fitted to the measured data (Fig. 4). This is consistent with VRDs 554 

reported for shrub, woody, and herbaceous plant species in Mediterranean (Preti et al., 2010; 555 

Tron et al., 2014), southern alpine (Burylo et al., 2011) and temperate-humid ecosystems 556 

(Gonzalez-Ollauri and Mickovski, 2016; Tardio et al., 2016), and it confirms that the proposed 557 

approach for describing VRD in herbaceous plants is methodologically robust across terrestrial 558 

ecosystems in Europe.  559 

 560 

We attributed the observed VRD differences across plants and sites (Fig. 4) to the differences 561 

in plant attributes that we found (Table 3). In spite of the differences observed in key VRD 562 

parameters across sites (Table 3), and of the strong influence of site-specific attributes on the 563 

key VRD parameters that we noticed herein (Fig. 5 and Section 4.2), the direction of the effect 564 

of the study site on the size and depth of the measured VRDs was unclear, given that the extent 565 

of VRD changed with the plant species from site to site (Fig. 4). Yet, there were limitations to 566 

the study, as we did not evaluate altitudinal differences between plant individuals (e.g. Gale, 567 

2004; Miyamoto et al., 2015), nor the differences in soil nutrients between sampling locations 568 

(e.g. Forde and Lorenzo, 2001), or the climatic differences across study sites (Schenk and 569 

Jackson, 2005). We think that all these aspects deserve further consideration to expand on our 570 

findings related to how VRD is shaped by local site conditions.  571 

 572 
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The proposed VRD description approach has been used effectively in woody plant species 573 

under both sloped and flat topographies (Tron et al., 2014; Tardio et al., 2016; Gonzalez-Ollauri 574 

et al., 2020). Still, its ability to capture realistically large roots (> 3 mm in diameter, incl. tap 575 

roots) in woody plants needs further verification, notwithstanding the fact that the in situ 576 

description of root systems for woody plants is methodologically challenging (Böhm, 1979), 577 

and it generally focuses on one or two vertical profiles of the root system (e.g. Tardio et al., 578 

2016; Gonzalez-Ollauri et al., 2020) from which it is hard to comprehensively capture root 579 

system features. However, the VRD description approach followed herein is methodologically 580 

simple and easy to implement, it provided a good and realistic picture of the VRD for the 581 

studied alpine plants with root systems mainly comprising fine roots, and it generated 582 

information directly applicable in workflows needing VRD information such as plant-water 583 

uptake models (e.g. Laio, 2006; Shukla, 2014) or soil-root reinforcement estimation 584 

approaches (e.g. Gonzalez-Ollauri and Mickovski, 2016, 2017b; Kokutse et al., 2016).  585 

 586 

4.3.Influence of climate, plant and soil attributes on key vertical root distribution parameters    587 

 588 

The rooting depth (b) and root biomass (Mr) for the three studied plant species (Table 3) were 589 

within the ranges described in Pohl et al. (2011) and Hudek et al. (2017) for alpine ecosystems. 590 

However, these were below the ranges reported for semi-arid (Preti et al., 2010) and temperate-591 

humid (Gonzalez-Ollauri and Mickovski, 2016) climates. These differences were attributed to 592 

the short duration of the growing season in our study area, and associated to long periods with 593 

snow cover and low temperatures, which likely limited plant development (e.g. Kaspar and 594 

Bland, 1992; Lahti et al., 2005; Alvarez-Uria and Körner, 2007). 595 

 596 
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The key studied VRD parameters (i.e. b: mean rooting depth; Aro: cross-sectional area at the 597 

root collar; and Mr: root biomass) were distinctly influenced by the investigated soil and plant 598 

attributes (Figs 6, 7 and Appendix B – Figs. B1-B3). We observed that, while the rooting depth 599 

was mostly site-specific, the allocation of biomass to the belowground plant parts and its 600 

distribution along the soil profile was both species-specific and reliant on relevant soil 601 

ecohydrological features.  602 

 603 

4.3.1. Rooting depth 604 

 605 

The mean rooting depth (b; Laio et al., 2006) was chiefly influenced by soil attributes 606 

governing the water available to plants in the soil (WAP; i.e. difference between soil water 607 

content at field capacity (fc) and wilting point (wp); Fig. 5a, 7 and Appendix B – Fig. B1; 608 

Table 4; Eq.4 Table 1; Casper et al., 2003). It is worth noting that fc and wp were estimated 609 

in the light of well-established pedotransfer functions nested in the VRD model (Eqs. 4, 5, 11 610 

and 12; Table 1) with relatively low sensitivity (Gonzalez-Ollauri and Mickovski, 2016) and 611 

which employed soil texture, soil organic carbon, and porosity as inputs (Toth et al., 2015). 612 

Accordingly, soils with high organic carbon and with a fine texture (i.e. high clay and silt 613 

content) would have high water retention capacity (Kirkham, 2005; Lu and Likos, 2004) and, 614 

as a result, deeper root systems, as it was shown herein (Figs. 6 and B1; Table 3; Schenk and 615 

Jackson, 2005; Gonzalez-Ollauri and Mickovski, 2016). In fact, we observed clear differences 616 

across sites in terms of the soil attributes governing WAP (Table 2), which may explain why 617 

Site 3 had substantially deeper rooting depths than sites 1 and 2 (Table 3). The effect of the 618 

soil’s ecohydrological characteristics on the rooting depth has been highlighted in previous 619 

studies (e.g. Schenk, 2005; Laio et al., 2006; Preti et al., 2010), suggesting that the ability of 620 

roots to explore the soil in depth largely depends on the water mass balance within the topsoil 621 
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(Tsutsumi et al., 2003; Laio, 2006; Laio et al., 2006). In fact, the soil water mass balance 622 

features in the proposed ecohydrological models predicting the mean rooting depth (Eqs. 4 and 623 

5; Table 1; Laio et al., 2006; Gonzalez-Ollauri and Mickovski, 2016), and our results validate 624 

that these models are conceptually correct. However, other models are nested into the 625 

investigated VRD model (e.g. growing season duration, evapotranspiration, soil pedotransfer 626 

functions, etc.), leading to likely propagation of errors and uncertainty (Taylor, 1997) that 627 

should be thoroughly investigated and dealt with prior to verifying the quality and robustness 628 

of the VRD models (e.g. Gonzalez-Ollauri and Mickovski, 2017b).   629 

 630 

Model differences between the options for arid or semi-arid (Eq. 4; Table 1) and temperate 631 

humid (Eq.5; Table 1) climates imply rooting depth differences that were not tested herein. In 632 

arid climates, water withdrawal through evapotranspiration limits the amount of water 633 

available to plants in the topsoil, thus encouraging deeper rooting depths than in humid 634 

climates. By contrast, in temperate humid climates, water inputs exceed outputs in the topsoil 635 

(i.e. rainfall > evapotranspiration), leading to shallower rooting depths as roots do not face 636 

water limitations in the topsoil - i.e. roots do not need to explore the soil in search of deep water 637 

(Schenk and Jackson, 2005). In alpine climates, however, where snowfall, ground frost, and 638 

short snow-free periods govern the soil ecohydrological behaviour (e.g. Molotch et al., 2009), 639 

further model tuning is needed to fully capture the rooting depth and VRD with the proposed 640 

parametric ecohydrological model (Fig. 7a-c; Table 4). In addition, the direct quantification of 641 

soil attributes governing the available water to plants through, for example, retrieving the soil-642 

water retention function (e.g. Zhang et al., 2019) or by evaluating the soil structure and 643 

aggregates (e.g. Bengough, 2003) could shed more light on the effect of the soil’s 644 

ecohydrological characteristics on the rooting depth and VRD.   645 

 646 
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It is also worth noting the high influence of soil pH on the rooting depth (Fig. 4a; Fig. 6), which 647 

on the basis of the correlogram (Fig. 6) and PDPs (Annex B – Fig.B1) was negative – i.e. 648 

shallower rooting depths were noticed when the pH was higher. This observation may indicate 649 

that plants tend to reduce root elongation and increase thickness as a strategy to promote 650 

nutrient uptake when soil pH is high (e.g. Robles-Aguilar et al., 2019). The latter is somehow 651 

supported by the positive interaction that we observed between soil pH and the cross-sectional 652 

area at the root collar (Aro; Figs. 6 and B2), suggesting that root thickness increased at the 653 

collar when soil pH increased.  Yet, as the variability in soil pH was small across study sites 654 

(Table 3), we cannot convincingly elucidate possible reasons behind our observations and we 655 

thus recommend further research on the effect of soil pH on the key VRD parameters.   656 

 657 

In this study, there were also limitations to the analysis because site-specific records for the 658 

climate attributes and for the snowpack depth, although capable of affecting the rooting depth 659 

in alpine ecosystems (e.g. Cooper et al., 2011), were not available. Additionally, we did not 660 

consider the topographical effect of the slope gradient on the rainfall lost to runoff and, in turn, 661 

on the rooting depth (Tron et al., 2014; Tardio et al., 2016); nor the influence of preferential 662 

flow paths in the soil (e.g. Clothier et al., 2008; Gonzalez-Ollauri et al., 2020) or the effect of 663 

soil anisotropy on the rooting depth and VRD. We believe that all these aspects deserve detailed 664 

consideration to improve the predictive capacity of the parametric VRD models studied here. 665 

However, the consistent linear relationship between empirical and parametric ecohydrological 666 

VRD models reported in this study (Fig. 7d-e), and the high correlation found between fitting 667 

parameters and soil attributes governing the available water to plants (i.e. fc and wp; Table 668 

6) set the direction of future research.  669 

 670 

4.3.2. Cross-sectional area at the root collar and root biomass 671 
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 672 

The cross-sectional area at the root collar (Aro) and the root biomass (Mr) were mostly 673 

influenced by the investigated plant attributes (Fig. 5 and Appendix B – Figs. B2 and B3). 674 

However, a substantial effect of the soil water at field capacity and wilting point on Aro and 675 

Mr was also detected (Fig. 6). It is worth noting that the combined effect of the soil and plant 676 

attributes on the key VRD parameters was only evident when multiple data analysis approaches 677 

were used together - i.e. relative influence from RF models (Fig. 5), pairwise correlation (Fig. 678 

6) and PDPs (Appendix B), indicating that comprehensive data mining is needed to fully grasp 679 

complex interactions between environmental variables affecting VRD (Supplementary 680 

Material - Fig. S1). The findings shown herein corroborate that while the extent of the root 681 

system in the soil (i.e. rooting depth; Section 4.2.1) is delimited by the soil water mass balance 682 

and its contributing soil attributes (i.e. soil texture, SOC, fc and wp; Figs. 5a and 6), the plant 683 

biomass allocated belowground is distributed along the VRD profile in the light of both plant-684 

specific and soil attributes (Figs. 6b-c and 7). The latter aspect features in the proposed VRD 685 

model through Aro (Eq.3; Table 1), which acts as scaling factor in the distribution of root 686 

biomass along the root profile in the soil (Preti et al., 2010; Gonzalez-Ollauri and Mickovski, 687 

2016). In this regard, we noticed that the magnitude of Aro was positively influenced by the 688 

slope gradient whilst being negatively affected by SOC (Fig. B2). A plausible explanation for 689 

the former is that plants tend to adopt anchoring strategies in steep slopes (e.g. Tardio et al., 690 

2016), which may imply the allocation of root biomass near the ground surface to promote 691 

anchorage to the ground and plant stability (Chiatante et al., 2003). In fact, we also noticed that 692 

Mr was higher on steeper slopes (Fig. B3). Contrariwise, root biomass tends to be distributed 693 

towards deeper portions of the soil when there is more SOC, which would reduce the amount 694 

of root biomass allocated near the surface (Fig. B3) and thus to Aro.  All these aspects support 695 

the assumption of using a ‘cone-shape-volume’ to model the distribution of root biomass in the 696 
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soil (Fig. 3b; Supplementary Material), which was further supported by the strong influence of 697 

Mr on Aro (Figs.6b and 7). However, the observed mismatch between empirical and parametric 698 

ecohydrological VRD models (Fig. 7a-c; Table 4), in which Aro, Mr, and b are embedded 699 

(Table 1), suggests that the modelling approach to estimate the key VRD parameters Aro and 700 

b (Eqs. 4, 5 and 7; Table 1) must be revised for alpine ecosystems. Future work may consider 701 

to explore the effect of topography in detail and/or to include climate-specific variables such 702 

as snowpack depth, duration of the snow-free period, and frozen ground cycle, and how these 703 

influence AWP and Aro in alpine ecosystems. In addition, soil nutrient limitations (e.g. 704 

nitrogen; Zong et al., 2020) and plant-specific aspects related to growth and survival strategies 705 

of alpine plants (e.g. Cooper et al., 2003; Germino, 2014) can be considered in future versions 706 

of the VRD model to portray more realistically the characteristic allocation of plant biomass 707 

above- and belowground in alpine ecosystems (e.g. Wu et al., 2013).    708 

 709 

Nonetheless, the strong correlation between the investigated plant attributes and the fitting 710 

parameters resulting from evaluating the relationship between empirical and parametric, 711 

ecohydrological VRD models (Table 6) suggests that the collection of studied plant attributes 712 

was appropriate, setting the direction of future research. The strong influence of plant attributes 713 

such as the crown spread and projected area on the plant aboveground biomass (Ma) and Aro 714 

(Figs.6b-c, 7, Appendix B – Figs. B2 and B3) hints at the possibility of establishing robust 715 

data-mining approaches able to predict VRD on the basis of easy-to-measure aboveground 716 

plant attributes (e.g. Fig. 3); provided that information on the allometry relationship between 717 

above and belowground plant parts is available (Table 2; e.g. Cheng and Niklas, 2007). In this 718 

regard, we expected that the allometry ratio (i.e. ALR=Mr/Ma; Table 2) would be consistently 719 

above unity in the studied alpine plant species (e.g. Pohl et al., 2011), as a greater allocation of 720 

biomass to the belowground plant parts could help plants to withstand harsh aboveground 721 
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conditions (Germino, 2014). Nonetheless, only P. alpina had an ALR consistently above unity. 722 

Future work helping to establish consistent and site-specific allometry relationships between 723 

above and belowground plant parts in alpine ecosystems (e.g. Štastná et al. 2012) will 724 

undoubtedly help to consolidate approaches seeking to describe VRD using very few, easily 725 

measurable, parameters, like the one discussed herein.    726 

 727 

5. Conclusion 728 

Our study consolidates a simple protocol to describe the vertical root distribution (VRD) in 729 

herbaceous plants. It also addresses, for the first time, the influence of soil and plant attributes 730 

on key VRD parameters, validating the principles and assumptions behind the existing 731 

parametric, ecohydrological models predicting VRD, and casting light on how VRD can be 732 

effectively described using simple climate, soil and plant attributes. In fact, we confirmed that 733 

insights into the water mass balance in the soil and into the water available to plants are crucial 734 

to describe VRD in alpine ecosystems, as it has been suggested in previous studies for semi-735 

arid and temperate humid ecosystems. However, the existing parametric ecohydrological VRD 736 

models were not able to portray successfully the vertical root distribution of the studied alpine 737 

plants in the light of the measured root profiles. Although we found a strong correlation 738 

between empirical and parametric VRD models that establish a clear direction for future 739 

research, we also think that the parametric VRD model needs to be revised in the future to 740 

include features affecting the water available to plants in alpine ecosystems, such as the 741 

snowpack characteristics or the length of the snow-free and frozen ground periods. We also 742 

encourage future work exploring in detail the effect of topography, elevation, climate and 743 

nutrient limitations on VRD, as these factors can help to formulate new models predicting VRD 744 

realistically.      745 

 746 
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Appendix A: Goodness of fit of the Random Forest models fitted to key vertical root 984 

distribution parameters 985 

 986 

Figure A1.  Probability density functions illustrating the coefficients of determination (R2), root mean square error (RMSE) and 987 
variance explained (VarExp) retrieved from the cross-validation process  implemented on random forest (RF) models, fitted 988 
between the studied soil and plant attributes to predict key vertical root distribution parameters.  989 
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Table A1. Coefficient of determination (R2) and root mean square error (RMSE) for the best performing random forest 994 
models fitted between the key vertical root distribution (VRD) parameters mean rooting depth (b), cross-sectional area at 995 
the root collar (Aro) and root biomass (Mr) and the studied plant and soil attributes.  996 

 R2 RMSE Model No. 

b 0.78 0.67 28 

Aro 0.92 0.003 78 

Mr 0.90 0.11 68 

 997 

  998 
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Appendix B: Partial dependence plots (PDPs) for the key vertical root distribution 999 

parameters 1000 

  1001 

 1002 

Figure B1. Partial dependence plots (PDPs) showing the relationship between the mean rooting depth (b) and the investigated 1003 
plant and soil attributes in this study retrieved from fitting random forest models as indicated in the analytical framework 1004 
shown in Figure 4.  1005 
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 1009 

Figure B2. Partial dependence plots (PDPs) showing the relationship between the cross-sectional area at the root collar (Aro) 1010 
and the investigated plant and soil attributes in this study retrieved from fitting random forest models as indicated in the 1011 
analytical framework shown in Figure 4.  1012 
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 1019 

Figure B3. Partial dependence plots (PDPs) showing the relationship between the root biomass (Mr) and the investigated 1020 
plant and soil attributes in this study retrieved from fitting random forest models as indicated in the analytical framework 1021 
shown Figure 4.  1022 

2 6 12

0
.1

4
4

(a) slope_deg

slope_deg

M
r

1 4 7

0
.1

3

(b) aspect_deg

aspect_deg

M
r

1.0 2.5 4.0

0
.1

4
5

(c) curvature

curvature

M
r

1 3 5

0
.1

3
0

(d) av_crown_spread_cm

av_crown_spread_cm

M
r

0 20 40

0
.1

3

(e) sp_cm2

sp_cm2

M
r

0.5 2.0

0
.1

4
6

(f) b_cm

b_cm_obs

M
r

0.00 0.10

0
.1

3

(g) aboveground_biomass_g

aboveground_biomass_g

M
r

0.002 0.008

0
.1

3

(h) Aro_cm2

Aro_cm2

M
r

100 120

0
.1

4
8

8

(i) soil_wetness_g

soil_wetness_g

M
r

14 20

0
.1

5
0

(j) mositure_grav_per

mositure_grav_per

M
r

0.75 1.00

0
.1

5
0

0

(k) dry_bulk_density_g_cm3

dry_bulk_density_g_cm3

M
r

0.34 0.42

0
.1

4
6
7

(l) porosity

porosity

M
r

4.5 6.0

0
.1

4
2
8

(m) soc_per

soc_per

M
r

4.40 4.55

0
.1

4
6
0

(n) pH

pH

M
r

15 25

0
.1

4
6

0

(o) soil_skeleton_per

soil_skeleton_per

M
r

1.0 1.4 1.8

0
.1

4
6
0

(p) clay_per

clay_per

M
r

4.5 6.0

0
.1

4
6
0

(q) fine_silt_per

fine_silt_per

M
r

28 31

0
.1

4
6
0

(r) coarse_silt_per

coarse_silt_per

M
r

28 31

0
.1

4
6

(s) coarse_sand_per

coarse_sand_per

M
r

46 50 54

0
.1

4
6

0

(t) fine_sand_per

fine_sand_per

M
r

0.6 1.0 1.4

0
.1

0

(u) texture_USDA

texture_USDA

M
r

0.150 0.156

0
.1

4
4

0

(v) field_capacity

field_capacity

M
r

0.033 0.038

0
.1

4
8
6

(w) wilting_point

wilting point

M
r



 58 

 1023 

Appendix C. R script – VRD data mining  1024 

#Description: 1025 
#this script provides a series of functions to evaluate the relationship between the 'rooting 1026 
depth' variable and selected soil and plant attributes. Please, note that this is just a 1027 
sample script for the 'rooting depth' only.  1028 
#Instructions: 1029 
#copy-paste the following script in your R console https://cran.r-project.org/ and change the 1030 
working directory as appropriate 1031 
######################################################## 1032 
#Outline 1033 
######### 1034 
#i-RANDOM FOREST IMPLEMENTATION: it fits random forest models (RF) between the target 1035 
variable and selected plant and soil attributes and generates data frames storing relevant 1036 
outputs related to goodness of fit and relative importance of covariates 1037 
#ii-OUTPUTS COLLECTION AND RELATIVE IMPORTANCE EVALUATION: outputs collection, generation of 1038 
output datasets and creation of relevant plots evaluating model quality 1039 
#iii-PARTIAL DEPENDENCE PLOTS: creates practical dependence plots for the target variable  1040 
####################################################################################### 1041 
#Abbreviations: 1042 
 1043 
#b_cm_obs: measured mean rooting depth in cm  1044 
############################################## 1045 
 1046 
 1047 
#load data set and required R packages 1048 
 1049 
setwd("/Users/ollauri/Desktop/work/catena_roots/in") #write the path to your folder here 1050 
dts<-read.csv("DATASET.csv") 1051 
library(caret) 1052 
library(rattle) 1053 
library(pdp) 1054 
library(randomForest) 1055 
 1056 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1057 
#i: RANDOM FOREST IMPLEMENTATION 1058 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1059 
 1060 
 1061 
n<-100 #number of models to fit 1062 
RFs.b<-vector("list",n) #empty list object to store RF models 1063 
predictions.b<-vector("list",n) #empty list object to store predictions from RF models 1064 
train.A<-vector("list",n) #empty list object to store train data sets to fit RFs 1065 
LMs.b<-vector("list",n) #empty list object to store objective function -i.e. linear 1066 
regression models between observed and predicted 1067 
RMSEs.b<-vector("list",n) #empty list to store RMSE (root mean square error) 1068 
Rsq.b<-vector("list",n) #empty list to store coefficient of determination (r-sq) 1069 
out.b<-list() #empty list to store outputs 1070 
ct<-seq(1,100) #vector to assign numbers to outputs 1071 
output.b<-matrix(,nrow=n,ncol=3) #empty matrix to store outputs 1072 
varImp.b<-vector("list",n) #empty list to store variables importance 1073 
varImp.vals.b<-list() #empty list to store values of relative importance 1074 
varImp.names.b<-list() #empty list to sotore variables names related to relative importance 1075 
for(i in 1:n){ 1076 
 set.seed(i) #random number changes in each model run 1077 
 train.A[[i]]<-sample(nrow(dts),0.7*nrow(dts)) #sets training data set - i.e. bootstrapping 1078 
 RFs.b[[i]]<-randomForest(b_cm_obs~species+site+slope_deg+aspect_deg+curvature+ 1079 
av_crown_spread_cm+ sp_cm2+ Aro_cm2+aboveground_biomass_g+belowground_biomass_g+ 1080 
soil_wetness_g+ mositure_grav_per+ dry_bulk_density_g_cm3+ porosity+ soc_per+ pH+ 1081 
soil_skeleton_per+ clay_per+ fine_silt_per+ coarse_silt_per+ coarse_sand_per+ fine_sand_per+ 1082 
texture_USDA+ field_capacity+ 1083 
wilting_point,data=dts[train.A[[i]],],mtry=5,importance=TRUE,ntree=1000) #fits random forest 1084 
models between target variable and soil & plant attributes 1085 
 predictions.b[[i]]<-predict(RFs.b[[i]],dts[-train.A[[i]],]) #predictions using the RF models 1086 
and remaining data set 1087 
 LMs.b[[i]]<-lm(predictions.b[[i]]~dts$b_cm_obs[-train.A[[i]]]) #fits regression models 1088 
 RMSEs.b[[i]]<-sqrt(mean((dts$b_cm_obs[-train.A[[i]]]-predictions.b[[i]])^2)) #calculates RMSE 1089 
 Rsq.b[[i]]<-as.matrix(summary(LMs.b[[i]])$adj.r.squared) #calculates r-sq 1090 
 out.b[[i]]<-list(ct[i],Rsq.b[[i]],RMSEs.b[[i]]) #stores outputs 1091 
 output.b[i,]<-c(out.b[[i]][[1]],as.numeric(out.b[[i]][[2]]),out.b[[i]][[3]]) #arranges 1092 
outputs 1093 
 varImp.b[[i]]<-varImp(RFs.b[[i]]) #calculates RELATIVE IMPORTANCE 1094 

https://cran.r-project.org/
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 varImp.vals.b[[i]]<-varImp.b[[i]] #stores relative importance values 1095 
 varImp.names.b[[i]]<-rownames(varImp.b[[i]])#stores variables names   1096 
} 1097 
 1098 
 1099 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1100 
#ii: OUTPUTS COLLECTION 1101 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1102 
setwd("/Users/ollauri/Desktop/work/catena_roots/out") 1103 
pdf("RFs_hist_rooting_depth_global.pdf") 1104 
hist(output.b[,2],col="gray",main="b vs plant & 1105 
soil",xlab=expression(paste("R"^"2")),ylim=c(0,40)) #histogram showing density distribution 1106 
function for goodness of fit of RF models 1107 
dev.off() 1108 
out.df.b<-data.frame(model=output.b[,1],Rsq=output.b[,2],RMSE=output.b[,3]) 1109 
write.csv(out.df.b,"b_global_RFs.csv") #data frame storing summary for RF models' goodness of 1110 
fit 1111 
save(RFs.b,file="RFs_b_global.RData") #data base storing RF models 1112 
varImp.df.b<-data.frame(var=unlist(varImp.names.b),imp=unlist(varImp.vals.b)) 1113 
write.csv(varImp.df.b,"varImp_b.csv") #data frame storing relative influence 1114 
pdf("RFs_b_varImp.pdf") 1115 
boxplot(imp~reorder(var,imp,FUN=mean),data=varImp.df.b,horizontal=TRUE,las=2,cex.axis=0.7,mai1116 
n="varImp rooting depth") #boxplot for relative influence 1117 
dev.off() 1118 
 1119 
 1120 
 1121 
 1122 
 1123 
 1124 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1125 
#iii:PARTIAL DEPENDENCE PLOTS 1126 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1127 
 1128 
#Note: numerical variables, only - factor/character must be coded into numeric variables 1129 
first 1130 
 1131 
 1132 
#p1.x<-vector("list",n) #empty vectors to store partial dependence  1133 
p2.x<-vector("list",n) 1134 
p3.x<-vector("list",n) 1135 
#p4.x<-vector("list",n) 1136 
#p5.x<-vector("list",n) 1137 
p6.x<-vector("list",n) 1138 
p7.x<-vector("list",n) 1139 
p8.x<-vector("list",n) 1140 
p9.x<-vector("list",n) 1141 
p10.x<-vector("list",n) 1142 
p11.x<-vector("list",n) 1143 
p12.x<-vector("list",n) 1144 
p13.x<-vector("list",n) 1145 
p14.x<-vector("list",n) 1146 
p15.x<-vector("list",n) 1147 
p16.x<-vector("list",n) 1148 
p17.x<-vector("list",n) 1149 
p18.x<-vector("list",n) 1150 
p19.x<-vector("list",n) 1151 
p20.x<-vector("list",n) 1152 
p21.x<-vector("list",n) 1153 
p22.x<-vector("list",n) 1154 
#p23.x<-vector("list",n) 1155 
p24.x<-vector("list",n) 1156 
p25.x<-vector("list",n) 1157 
 1158 
#store partial dependence for each covariate with the target variable 1159 
for(i in 1:n){ 1160 
#p1.x[[i]]<-partial(RFs.b[[i]],pred.var="species",plot=FALSE,from=0,to=10)   1161 
p2.x[[i]]<-partial(RFs.b[[i]],pred.var="site",plot=FALSE) 1162 
p3.x[[i]]<-partial(RFs.b[[i]],pred.var="slope_deg",plot=FALSE) 1163 
#p4.x[[i]]<-partial(RFs.b[[i]],pred.var="aspect_deg",plot=FALSE) 1164 
#p5.x[[i]]<-partial(RFs.b[[i]],pred.var="curvature",plot=FALSE) 1165 
p6.x[[i]]<-partial(RFs.b[[i]],pred.var="av_crown_spread_cm",plot=FALSE) 1166 
p7.x[[i]]<-partial(RFs.b[[i]],pred.var="sp_cm2",plot=FALSE) 1167 
p8.x[[i]]<-partial(RFs.b[[i]],pred.var="Aro_cm2",plot=FALSE) 1168 
p9.x[[i]]<-partial(RFs.b[[i]],pred.var="aboveground_biomass_g",plot=FALSE) 1169 
p10.x[[i]]<-partial(RFs.b[[i]],pred.var="belowground_biomass_g",plot=FALSE) 1170 
p11.x[[i]]<-partial(RFs.b[[i]],pred.var="soil_wetness_g",plot=FALSE) 1171 
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p12.x[[i]]<-partial(RFs.b[[i]],pred.var="mositure_grav_per",plot=FALSE) 1172 
p13.x[[i]]<-partial(RFs.b[[i]],pred.var="dry_bulk_density_g_cm3",plot=FALSE) 1173 
p14.x[[i]]<-partial(RFs.b[[i]],pred.var="porosity",plot=FALSE) 1174 
p15.x[[i]]<-partial(RFs.b[[i]],pred.var="soc_per",plot=FALSE) 1175 
p16.x[[i]]<-partial(RFs.b[[i]],pred.var="pH",plot=FALSE) 1176 
p17.x[[i]]<-partial(RFs.b[[i]],pred.var="soil_skeleton_per",plot=FALSE) 1177 
p18.x[[i]]<-partial(RFs.b[[i]],pred.var="clay_per",plot=FALSE) 1178 
p19.x[[i]]<-partial(RFs.b[[i]],pred.var="fine_silt_per",plot=FALSE) 1179 
p20.x[[i]]<-partial(RFs.b[[i]],pred.var="coarse_silt_per",plot=FALSE) 1180 
p21.x[[i]]<-partial(RFs.b[[i]],pred.var="coarse_sand_per",plot=FALSE) 1181 
p22.x[[i]]<-partial(RFs.b[[i]],pred.var="fine_sand_per",plot=FALSE) 1182 
#p23.x[[i]]<-partial(RFs.b[[i]],pred.var="texture_USDA",plot=FALSE) 1183 
p24.x[[i]]<-partial(RFs.b[[i]],pred.var="field_capacity",plot=FALSE) 1184 
p25.x[[i]]<-partial(RFs.b[[i]],pred.var="wilting_point",plot=FALSE) 1185 
} 1186 
 1187 
#retrieve outputs and arrange them for graphic display 1188 
 1189 
#p1.a<-list() 1190 
#for(i in 1:n){ 1191 
# p1.a[[i]]<-p1.x[[i]][[1]] 1192 
#} 1193 
#p1.mtx.a<-do.call(rbind,p1.a) 1194 
#p1.mtx.a.t<-t(p1.mtx.a) 1195 
#p1.xs<-rowMeans(p1.mtx.a.t) 1196 
#p1.b<-list() 1197 
#for(i in 1:n){ 1198 
 #p1.b[[i]]<-p1.x[[i]][[2]] 1199 
#} 1200 
 1201 
#p1.mtx<-do.call(rbind,p1.b) #i kind of have now the list elements in a matrix 1202 
#p1.mtx.t<-t(p1.mtx) 1203 
#p1.yhat<-rowMeans(p1.mtx.t) 1204 
 1205 
p2.a<-list() 1206 
for(i in 1:n){ 1207 
 p2.a[[i]]<-p2.x[[i]][[1]] 1208 
} 1209 
p2.mtx.a<-do.call(rbind,p2.a) 1210 
p2.mtx.a.t<-t(p2.mtx.a) 1211 
p2.xs<-rowMeans(p2.mtx.a.t) 1212 
p2.b<-list() 1213 
for(i in 1:n){ 1214 
 p2.b[[i]]<-p2.x[[i]][[2]] 1215 
} 1216 
p2.mtx<-do.call(rbind,p2.b)  1217 
p2.mtx.t<-t(p2.mtx) 1218 
p2.yhat<-rowMeans(p2.mtx.t) 1219 
 1220 
p3.a<-list() 1221 
for(i in 1:n){ 1222 
 p3.a[[i]]<-p3.x[[i]][[1]] 1223 
} 1224 
p3.mtx.a<-do.call(rbind,p3.a) 1225 
p3.mtx.a.t<-t(p3.mtx.a) 1226 
p3.xs<-rowMeans(p3.mtx.a.t) 1227 
p3.b<-list() 1228 
for(i in 1:n){ 1229 
 p3.b[[i]]<-p3.x[[i]][[2]] 1230 
} 1231 
p3.mtx<-do.call(rbind,p3.b)  1232 
p3.mtx.t<-t(p3.mtx) 1233 
p3.yhat<-rowMeans(p3.mtx.t) 1234 
 1235 
#p4.a<-list() 1236 
#for(i in 1:n){ 1237 
# p4.a[[i]]<-p4.x[[i]][[1]] 1238 
#} 1239 
#p4.mtx.a<-do.call(rbind,p4.a) 1240 
#p4.mtx.a.t<-t(p4.mtx.a) 1241 
#p4.xs<-rowMeans(p4.mtx.a.t) 1242 
#p4.b<-list() 1243 
#for(i in 1:n){ 1244 
# p4.b[[i]]<-p4.x[[i]][[2]] 1245 
#} 1246 
#p4.mtx<-do.call(rbind,p4.b)  1247 
#p4.mtx.t<-t(p4.mtx) 1248 



 61 

#p4.yhat<-rowMeans(p4.mtx.t) 1249 
 1250 
#p5.a<-list() 1251 
#for(i in 1:n){ 1252 
# p5.a[[i]]<-p5.x[[i]][[1]] 1253 
#} 1254 
#p5.mtx.a<-do.call(rbind,p5.a) 1255 
#p5.mtx.a.t<-t(p5.mtx.a) 1256 
#p5.xs<-rowMeans(p5.mtx.a.t) 1257 
#p5.b<-list() 1258 
#for(i in 1:n){ 1259 
# p5.b[[i]]<-p5.x[[i]][[2]] 1260 
#} 1261 
#p5.mtx<-do.call(rbind,p5.b)  1262 
#p5.mtx.t<-t(p5.mtx) 1263 
#p5.yhat<-rowMeans(p5.mtx.t) 1264 
 1265 
p6.a<-list() 1266 
for(i in 1:n){ 1267 
 p6.a[[i]]<-p6.x[[i]][[1]] 1268 
} 1269 
p6.mtx.a<-do.call(rbind,p6.a) 1270 
p6.mtx.a.t<-t(p6.mtx.a) 1271 
p6.xs<-rowMeans(p6.mtx.a.t) 1272 
p6.b<-list() 1273 
for(i in 1:n){ 1274 
 p6.b[[i]]<-p6.x[[i]][[2]] 1275 
} 1276 
p6.mtx<-do.call(rbind,p6.b)  1277 
p6.mtx.t<-t(p6.mtx) 1278 
p6.yhat<-rowMeans(p6.mtx.t) 1279 
 1280 
p7.a<-list() 1281 
for(i in 1:n){ 1282 
 p7.a[[i]]<-p7.x[[i]][[1]] 1283 
} 1284 
p7.mtx.a<-do.call(rbind,p7.a) 1285 
p7.mtx.a.t<-t(p7.mtx.a) 1286 
p7.xs<-rowMeans(p7.mtx.a.t) 1287 
p7.b<-list() 1288 
for(i in 1:n){ 1289 
 p7.b[[i]]<-p7.x[[i]][[2]] 1290 
} 1291 
p7.mtx<-do.call(rbind,p7.b)  1292 
p7.mtx.t<-t(p7.mtx) 1293 
p7.yhat<-rowMeans(p7.mtx.t) 1294 
 1295 
p8.a<-list() 1296 
for(i in 1:n){ 1297 
 p8.a[[i]]<-p8.x[[i]][[1]] 1298 
} 1299 
p8.mtx.a<-do.call(rbind,p8.a) 1300 
p8.mtx.a.t<-t(p8.mtx.a) 1301 
p8.xs<-rowMeans(p8.mtx.a.t) 1302 
p8.b<-list() 1303 
for(i in 1:n){ 1304 
 p8.b[[i]]<-p8.x[[i]][[2]] 1305 
} 1306 
p8.mtx<-do.call(rbind,p8.b)  1307 
p8.mtx.t<-t(p8.mtx) 1308 
p8.yhat<-rowMeans(p8.mtx.t) 1309 
 1310 
p9.a<-list() 1311 
for(i in 1:n){ 1312 
 p9.a[[i]]<-p9.x[[i]][[1]] 1313 
} 1314 
p9.mtx.a<-do.call(rbind,p9.a) 1315 
p9.mtx.a.t<-t(p9.mtx.a) 1316 
p9.xs<-rowMeans(p9.mtx.a.t) 1317 
p9.b<-list() 1318 
for(i in 1:n){ 1319 
 p9.b[[i]]<-p9.x[[i]][[2]] 1320 
} 1321 
p9.mtx<-do.call(rbind,p9.b)  1322 
p9.mtx.t<-t(p9.mtx) 1323 
p9.yhat<-rowMeans(p9.mtx.t) 1324 
 1325 
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p10.a<-list() 1326 
for(i in 1:n){ 1327 
 p10.a[[i]]<-p10.x[[i]][[1]] 1328 
} 1329 
p10.mtx.a<-do.call(rbind,p10.a) 1330 
p10.mtx.a.t<-t(p10.mtx.a) 1331 
p10.xs<-rowMeans(p10.mtx.a.t) 1332 
p10.b<-list() 1333 
for(i in 1:n){ 1334 
 p10.b[[i]]<-p10.x[[i]][[2]] 1335 
} 1336 
p10.mtx<-do.call(rbind,p10.b)  1337 
p10.mtx.t<-t(p10.mtx) 1338 
p10.yhat<-rowMeans(p10.mtx.t) 1339 
 1340 
p11.a<-list() 1341 
for(i in 1:n){ 1342 
 p11.a[[i]]<-p11.x[[i]][[1]] 1343 
} 1344 
p11.mtx.a<-do.call(rbind,p11.a) 1345 
p11.mtx.a.t<-t(p11.mtx.a) 1346 
p11.xs<-rowMeans(p11.mtx.a.t) 1347 
p11.b<-list() 1348 
for(i in 1:n){ 1349 
 p11.b[[i]]<-p11.x[[i]][[2]] 1350 
} 1351 
p11.mtx<-do.call(rbind,p11.b)  1352 
p11.mtx.t<-t(p11.mtx) 1353 
p11.yhat<-rowMeans(p11.mtx.t) 1354 
 1355 
p12.a<-list() 1356 
for(i in 1:n){ 1357 
 p12.a[[i]]<-p12.x[[i]][[1]] 1358 
} 1359 
p12.mtx.a<-do.call(rbind,p12.a) 1360 
p12.mtx.a.t<-t(p12.mtx.a) 1361 
p12.xs<-rowMeans(p12.mtx.a.t) 1362 
p12.b<-list() 1363 
for(i in 1:n){ 1364 
 p12.b[[i]]<-p12.x[[i]][[2]] 1365 
} 1366 
p12.mtx<-do.call(rbind,p12.b)  1367 
p12.mtx.t<-t(p12.mtx) 1368 
p12.yhat<-rowMeans(p12.mtx.t) 1369 
 1370 
p13.a<-list() 1371 
for(i in 1:n){ 1372 
 p13.a[[i]]<-p13.x[[i]][[1]] 1373 
} 1374 
p13.mtx.a<-do.call(rbind,p13.a) 1375 
p13.mtx.a.t<-t(p13.mtx.a) 1376 
p13.xs<-rowMeans(p13.mtx.a.t) 1377 
p13.b<-list() 1378 
for(i in 1:n){ 1379 
 p13.b[[i]]<-p13.x[[i]][[2]] 1380 
} 1381 
p13.mtx<-do.call(rbind,p13.b)  1382 
p13.mtx.t<-t(p13.mtx) 1383 
p13.yhat<-rowMeans(p13.mtx.t) 1384 
 1385 
p14.a<-list() 1386 
for(i in 1:n){ 1387 
 p14.a[[i]]<-p14.x[[i]][[1]] 1388 
} 1389 
p14.mtx.a<-do.call(rbind,p14.a) 1390 
p14.mtx.a.t<-t(p14.mtx.a) 1391 
p14.xs<-rowMeans(p14.mtx.a.t) 1392 
p14.b<-list() 1393 
for(i in 1:n){ 1394 
 p14.b[[i]]<-p14.x[[i]][[2]] 1395 
} 1396 
p14.mtx<-do.call(rbind,p14.b)  1397 
p14.mtx.t<-t(p14.mtx) 1398 
p14.yhat<-rowMeans(p14.mtx.t) 1399 
 1400 
p15.a<-list() 1401 
for(i in 1:n){ 1402 
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 p15.a[[i]]<-p15.x[[i]][[1]] 1403 
} 1404 
p15.mtx.a<-do.call(rbind,p15.a) 1405 
p15.mtx.a.t<-t(p15.mtx.a) 1406 
p15.xs<-rowMeans(p15.mtx.a.t) 1407 
p15.b<-list() 1408 
for(i in 1:n){ 1409 
 p15.b[[i]]<-p15.x[[i]][[2]] 1410 
} 1411 
p15.mtx<-do.call(rbind,p15.b)  1412 
p15.mtx.t<-t(p15.mtx) 1413 
p15.yhat<-rowMeans(p15.mtx.t) 1414 
 1415 
 1416 
p16.a<-list() 1417 
for(i in 1:n){ 1418 
 p16.a[[i]]<-p16.x[[i]][[1]] 1419 
} 1420 
p16.mtx.a<-do.call(rbind,p16.a) 1421 
p16.mtx.a.t<-t(p16.mtx.a) 1422 
p16.xs<-rowMeans(p16.mtx.a.t) 1423 
p16.b<-list() 1424 
for(i in 1:n){ 1425 
 p16.b[[i]]<-p16.x[[i]][[2]] 1426 
} 1427 
p16.mtx<-do.call(rbind,p16.b)  1428 
p16.mtx.t<-t(p16.mtx) 1429 
p16.yhat<-rowMeans(p16.mtx.t) 1430 
 1431 
p17.a<-list() 1432 
for(i in 1:n){ 1433 
 p17.a[[i]]<-p17.x[[i]][[1]] 1434 
} 1435 
p17.mtx.a<-do.call(rbind,p17.a) 1436 
p17.mtx.a.t<-t(p17.mtx.a) 1437 
p17.xs<-rowMeans(p17.mtx.a.t) 1438 
p17.b<-list() 1439 
for(i in 1:n){ 1440 
 p17.b[[i]]<-p17.x[[i]][[2]] 1441 
} 1442 
p17.mtx<-do.call(rbind,p17.b)  1443 
p17.mtx.t<-t(p17.mtx) 1444 
p17.yhat<-rowMeans(p17.mtx.t) 1445 
 1446 
p18.a<-list() 1447 
for(i in 1:n){ 1448 
 p18.a[[i]]<-p18.x[[i]][[1]] 1449 
} 1450 
p18.mtx.a<-do.call(rbind,p18.a) 1451 
p18.mtx.a.t<-t(p18.mtx.a) 1452 
p18.xs<-rowMeans(p18.mtx.a.t) 1453 
p18.b<-list() 1454 
for(i in 1:n){ 1455 
 p18.b[[i]]<-p18.x[[i]][[2]] 1456 
} 1457 
p18.mtx<-do.call(rbind,p18.b)  1458 
p18.mtx.t<-t(p18.mtx) 1459 
p18.yhat<-rowMeans(p18.mtx.t) 1460 
 1461 
p19.a<-list() 1462 
for(i in 1:n){ 1463 
 p19.a[[i]]<-p19.x[[i]][[1]] 1464 
} 1465 
p19.mtx.a<-do.call(rbind,p19.a) 1466 
p19.mtx.a.t<-t(p19.mtx.a) 1467 
p19.xs<-rowMeans(p19.mtx.a.t) 1468 
p19.b<-list() 1469 
for(i in 1:n){ 1470 
 p19.b[[i]]<-p19.x[[i]][[2]] 1471 
} 1472 
p19.mtx<-do.call(rbind,p19.b)  1473 
p19.mtx.t<-t(p19.mtx) 1474 
p19.yhat<-rowMeans(p19.mtx.t) 1475 
 1476 
p20.a<-list() 1477 
for(i in 1:n){ 1478 
 p20.a[[i]]<-p20.x[[i]][[1]] 1479 
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} 1480 
p20.mtx.a<-do.call(rbind,p20.a) 1481 
p20.mtx.a.t<-t(p20.mtx.a) 1482 
p20.xs<-rowMeans(p20.mtx.a.t) 1483 
p20.b<-list() 1484 
for(i in 1:n){ 1485 
 p20.b[[i]]<-p20.x[[i]][[2]] 1486 
} 1487 
p20.mtx<-do.call(rbind,p20.b)  1488 
p20.mtx.t<-t(p20.mtx) 1489 
p20.yhat<-rowMeans(p20.mtx.t) 1490 
 1491 
p21.a<-list() 1492 
for(i in 1:n){ 1493 
 p21.a[[i]]<-p21.x[[i]][[1]] 1494 
} 1495 
p21.mtx.a<-do.call(rbind,p21.a) 1496 
p21.mtx.a.t<-t(p21.mtx.a) 1497 
p21.xs<-rowMeans(p21.mtx.a.t) 1498 
p21.b<-list() 1499 
for(i in 1:n){ 1500 
 p21.b[[i]]<-p21.x[[i]][[2]] 1501 
} 1502 
p21.mtx<-do.call(rbind,p21.b)  1503 
p21.mtx.t<-t(p21.mtx) 1504 
p21.yhat<-rowMeans(p21.mtx.t) 1505 
 1506 
p22.a<-list() 1507 
for(i in 1:n){ 1508 
 p22.a[[i]]<-p22.x[[i]][[1]] 1509 
} 1510 
p22.mtx.a<-do.call(rbind,p22.a) 1511 
p22.mtx.a.t<-t(p22.mtx.a) 1512 
p22.xs<-rowMeans(p22.mtx.a.t) 1513 
p22.b<-list() 1514 
for(i in 1:n){ 1515 
 p22.b[[i]]<-p22.x[[i]][[2]] 1516 
} 1517 
p22.mtx<-do.call(rbind,p22.b)  1518 
p22.mtx.t<-t(p22.mtx) 1519 
p22.yhat<-rowMeans(p22.mtx.t) 1520 
 1521 
#p23.a<-list() 1522 
#for(i in 1:n){ 1523 
# p23.a[[i]]<-p23.x[[i]][[1]] 1524 
#} 1525 
#p23.mtx.a<-do.call(rbind,p23.a) 1526 
#p23.mtx.a.t<-t(p23.mtx.a) 1527 
#p23.xs<-rowMeans(p23.mtx.a.t) 1528 
#p23.b<-list() 1529 
#for(i in 1:n){ 1530 
# p23.b[[i]]<-p23.x[[i]][[2]] 1531 
#} 1532 
#p23.mtx<-do.call(rbind,p23.b)  1533 
#p23.mtx.t<-t(p23.mtx) 1534 
#p23.yhat<-rowMeans(p23.mtx.t) 1535 
 1536 
p24.a<-list() 1537 
for(i in 1:n){ 1538 
 p24.a[[i]]<-p24.x[[i]][[1]] 1539 
} 1540 
p24.mtx.a<-do.call(rbind,p24.a) 1541 
p24.mtx.a.t<-t(p24.mtx.a) 1542 
p24.xs<-rowMeans(p24.mtx.a.t) 1543 
p24.b<-list() 1544 
for(i in 1:n){ 1545 
 p24.b[[i]]<-p24.x[[i]][[2]] 1546 
} 1547 
p24.mtx<-do.call(rbind,p24.b)  1548 
p24.mtx.t<-t(p24.mtx) 1549 
p24.yhat<-rowMeans(p24.mtx.t) 1550 
 1551 
p25.a<-list() 1552 
for(i in 1:n){ 1553 
 p25.a[[i]]<-p25.x[[i]][[1]] 1554 
} 1555 
p25.mtx.a<-do.call(rbind,p25.a) 1556 
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p25.mtx.a.t<-t(p25.mtx.a) 1557 
p25.xs<-rowMeans(p25.mtx.a.t) 1558 
p25.b<-list() 1559 
for(i in 1:n){ 1560 
 p25.b[[i]]<-p25.x[[i]][[2]] 1561 
} 1562 
p25.mtx<-do.call(rbind,p25.b)  1563 
p25.mtx.t<-t(p25.mtx) 1564 
p25.yhat<-rowMeans(p25.mtx.t) 1565 
 1566 
#plot PDPs 1567 
 1568 
 1569 
pdf("RFs_rooting_depth_PDPs.pdf") 1570 
par(mfrow=c(5,5)) 1571 
#plot(p1.yhat[1:8]~p1.xs[1:8],type="l",xlab="species",ylab="Mean rooting depth",main="(a) 1572 
species",cex.main=0.8,cex.lab=0.8) 1573 
plot(p2.yhat[1:8]~p2.xs[1:8],type="l",xlab="site",ylab="Mean rooting depth",main="(b) 1574 
site",cex.main=0.8,cex.lab=0.8) 1575 
plot(p3.yhat[1:8]~p3.xs[1:8],type="l",xlab="slope_deg",ylab="Mean rooting depth",main="(c) 1576 
slope_deg",cex.main=0.8,cex.lab=0.8) 1577 
#plot(p4.yhat[1:8]~p4.xs[1:8],type="l",xlab="aspect_deg",ylab="Mean rooting depth",main="(d) 1578 
aspect_deg",cex.main=0.8,cex.lab=0.8) 1579 
#plot(p5.yhat[1:8]~p5.xs[1:8],type="l",xlab="curvature",ylab="Mean rooting depth",main="(e) 1580 
curvature",cex.main=0.8,cex.lab=0.8) 1581 
plot(p6.yhat[1:8]~p6.xs[1:8],type="l",xlab="av_crown_spread_cm",ylab="Mean rooting 1582 
depth",main="(f) av_crown_spread_cm",cex.main=0.8,cex.lab=0.8) 1583 
plot(p7.yhat[1:8]~p7.xs[1:8],type="l",xlab="sp_cm2",ylab="Mean rooting depth",main="(g) 1584 
sp_cm2",cex.main=0.8,cex.lab=0.8) 1585 
plot(p8.yhat[1:8]~p8.xs[1:8],type="l",xlab="Aro_cm2",ylab="Mean rooting depth",main="(h) 1586 
Aro_cm2",cex.main=0.8,cex.lab=0.8) 1587 
plot(p9.yhat[1:8]~p9.xs[1:8],type="l",xlab="aboveground_biomass_g",ylab="Mean rooting 1588 
depth",main="(i) aboveground_biomass_g",cex.main=0.8,cex.lab=0.8) 1589 
plot(p10.yhat[1:8]~p10.xs[1:8],type="l",xlab="belowground_biomass_g",ylab="Mean rooting 1590 
depth",main="(j) belowground_biomass_g",cex.main=0.8,cex.lab=0.8) 1591 
plot(p11.yhat[1:8]~p11.xs[1:8],type="l",xlab="soil_wetness_g",ylab="Mean rooting 1592 
depth",main="(k) soil_wetness_g",cex.main=0.8,cex.lab=0.8) 1593 
plot(p12.yhat[1:8]~p12.xs[1:8],type="l",xlab="mositure_grav_per",ylab="Mean rooting 1594 
depth",main="(l) mositure_grav_per",cex.main=0.8,cex.lab=0.8) 1595 
plot(p13.yhat[1:8]~p13.xs[1:8],type="l",xlab="dry_bulk_density_g_cm3",ylab="Mean rooting 1596 
depth",main="(m) dry_bulk_density_g_cm3",cex.main=0.8,cex.lab=0.8) 1597 
plot(p14.yhat[1:8]~p14.xs[1:8],type="l",xlab="porosity",ylab="Mean rooting depth",main="(n) 1598 
porosity",cex.main=0.8,cex.lab=0.8) 1599 
plot(p15.yhat[1:8]~p15.xs[1:8],type="l",xlab="soc_per",ylab="Mean rooting depth",main="(o) 1600 
soc_per",cex.main=0.8,cex.lab=0.8) 1601 
plot(p16.yhat[1:8]~p16.xs[1:8],type="l",xlab="pH",ylab="Mean rooting depth",main="(p) 1602 
pH",cex.main=0.8,cex.lab=0.8) 1603 
plot(p17.yhat[1:8]~p17.xs[1:8],type="l",xlab="soil_skeleton_per",ylab="Mean rooting 1604 
depth",main="(p) soil_skeleton_per",cex.main=0.8,cex.lab=0.8) 1605 
plot(p18.yhat[1:8]~p18.xs[1:8],type="l",xlab="clay_per",ylab="Mean rooting depth",main="(p) 1606 
clay_per",cex.main=0.8,cex.lab=0.8) 1607 
plot(p19.yhat[1:8]~p19.xs[1:8],type="l",xlab="fine_silt_per",ylab="Mean rooting 1608 
depth",main="(p) fine_silt_per",cex.main=0.8,cex.lab=0.8) 1609 
plot(p20.yhat[1:8]~p21.xs[1:8],type="l",xlab="coarse_silt_per",ylab="Mean rooting 1610 
depth",main="(p) coarse_silt_per",cex.main=0.8,cex.lab=0.8) 1611 
plot(p21.yhat[1:8]~p21.xs[1:8],type="l",xlab="coarse_sand_per",ylab="Mean rooting 1612 
depth",main="(p) coarse_sand_per",cex.main=0.8,cex.lab=0.8) 1613 
plot(p22.yhat[1:8]~p22.xs[1:8],type="l",xlab="fine_sand_per",ylab="Mean rooting 1614 
depth",main="(p) fine_sand_per",cex.main=0.8,cex.lab=0.8) 1615 
#plot(p23.yhat[1:8]~p23.xs[1:8],type="l",xlab="texture_USDA",ylab="Mean rooting 1616 
depth",main="(p) texture_USDA",cex.main=0.8,cex.lab=0.8) 1617 
plot(p24.yhat[1:8]~p24.xs[1:8],type="l",xlab="field_capacity",ylab="Mean rooting 1618 
depth",main="(p) field_capacity",cex.main=0.8,cex.lab=0.8) 1619 
plot(p25.yhat[1:8]~p25.xs[1:8],type="l",xlab="wilting_point",ylab="Mean rooting 1620 
depth",main="(p) wilting_point",cex.main=0.8,cex.lab=0.8) 1621 
dev.off() 1622 
 1623 
 1624 

 1625 


