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In the TMD approach, the average transverse momentum of the unpolarised TMD PDFs and FFs
is crucial not only to reproduce unpolarised cross sections and hadron multiplicities, but also for
the understanding of azimuthal and spin asymmetries. Information on these transverse momenta
is nowadays obtained mainly by fitting multiplicities data for SIDIS, where the intrinsic motion in
the initial parton distributions and in the hadronisation process are strongly correlated and difficult
to estimate separately without ambiguities. In this contribution we discuss the consequences of
this correlation effects on the predictions for the Sivers and Collins asymmetries measured in
SIDIS and e+e− annihilations, and under active investigation for Drell-Yan processes at RHIC
and at CERN by the COMPASS experiment. We show that these effects may be relevant and can
sensibly modify the size of the predicted asymmetries. Therefore, they must be taken into careful
account when investigating other aspects of TMDs, like the evolution properties of the Sivers and
Collins functions and the expected process dependence of the Sivers function.
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1. Introduction

The transverse momentum dependent (TMD) formalism is nowadays the most accredited the-
oretical approach aiming at explaining a wealth of interesting and puzzling experimental results,
collected over the last years, on single spin and azimuthal asymmetries in semi-inclusive deep
inelastic scattering (SIDIS), Drell-Yan, and e+e− → h1h2 +X processes (see e.g. Ref. [1] for an
introduction to the subject). In this approach, a new class of transverse momentum dependent par-
ton distributions (TMD PDFs) and fragmentation functions (TMD FFs), also known collectively as
TMDs for short, are ultimately responsible for the azimuthal asymmetries measured at the hadronic
level. At leading twist, for a spin 1/2 hadron like the proton, there are 8 independent TMD PDFs.
Three of them survive in the collinear configuration and correspond to the well-known unpolarised,
longitudinally polarised, and transversely polarised quark parton distribution functions. In the frag-
mentation sector, for (pseudo)scalar particles, like pions and kaons, there are at leading twist only
2 independent TMDs, the unpolarised fragmentation function (surviving in the collinear configu-
ration) and the Collins FF.

Among the TMDs, besides the unpolarised functions, the Sivers distribution [2] and the Collins
FF [3] are of special relevance. In fact, they can be responsible, alone or in combination, for many
of the most interesting spin and azimuthal asymmetries observed. We will limit our considerations
to these two TMDs in the sequel.

A crucial point in the TMD approach is the phenomenological parametrisation of the explicit
transverse momentum dependence of TMD PDFs and FFs. To this end, a simple Gaussian shape,
or combinations of Gaussian shapes multiplied by appropriate powers of the transverse momen-
tum, are commonly adopted. For unpolarised TMDs, the most relevant parameter is the average
square transverse momentum, ⟨k2

⊥⟩ and ⟨p2
⊥⟩, respectively for PDFs and FFs. The choice of these

parameters affects subsequent predictions for the spin and azimuthal asymmetries.
At present most of the information on the unpolarised TMDs, and on the Sivers and Collins

functions and the related spin and azimuthal asymmetries, comes from (un)polarised data for SIDIS
processes, ℓp → ℓ′h+X . However, in this case the transverse momentum dependences of the TMD
PDFs and FFs are strongly correlated. In fact, the trasverse momentum of the observed hadron,
PPPT , is kinematically related to a combination of kkk⊥ and ppp⊥. In particular, at leading order in a
k⊥/Q power expansion (here k⊥ is used generically for any intrinsic transverse motion and Q for
the large energy scale in the process), PPPT ≃ ppp⊥+zkkk⊥, where z is the light-cone momentum fraction
in the fragmentation process. As a consequence of this strong correlation, comparably good fits of
SIDIS data can be obtained with even very different combinations of the parameters ⟨k2

⊥⟩ and ⟨p2
⊥⟩.

However, these comparable fits to SIDIS data may lead to sensibly different predictions of single
spin and azimuthal asymmetries when used in Drell-Yan processes, where only kkk⊥ effects in the
initial PDFs are present, or, alternatively, in e+e− → h1h2 +X processes, where only ppp⊥ effects in
the fragmentation sector play a role. In the rest of this contribution we will summarize a detailed
analysis aiming at clarifying these aspects of TMD phenomenology.

2. Theoretical approach

In order to avoid unessential complications and single out the main qualitative results of inter-
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est here, we work in a simplified scheme. We adopt a TMD factorization approach at leading order
and leading twist, considering factorised longitudinal and transverse momentum dependences in
all (un)polarised TMDs involved. The longitudinal component is taken proportional to the corre-
sponding unpolarised collinear function times a further x (or z) dependent term, while for the k⊥ (or
p⊥) dependent component we adopt flavour-independent, Gaussian (or Gaussian-like) functional
forms, respecting known positivity bounds. Moreover, all (un)polarised cross sections (the numer-
ators and denominators of the spin and azimuthal asymmetries) are integrated over the transverse
momentum of the observed hadron(s) (for SIDIS and e+e− processes), or of the lepton pair (for
Drell-Yan processes) in the range of validity of the TMD approach, PT ,qT ≃ 1−2 GeV ≪Q, where
Q refers generically to the large energy scale involved in the process. Notice that from the mathe-
matical point of view, all integrations over k⊥ and p⊥ are performed in the full range [0,+∞). Due
to the Gaussian shapes adopted, however, the main contribution to the integrals is confined inside
the above region of phenomenological interest and validity of the TMD approach.

In this scheme, cross sections and spin/azimuthal asymmetries factorize into a collinear term
and a simple, transverse momentum integrated, component. All details and intermediate steps can
be found in Ref. [4]. Here we limit ourselves to show the essential ingredients and the final results.

The unpolarised TMD PDFs and FFs are parameterised as follows:

fq/p(x,k⊥) = fq/p(x)
e−k2

⊥/⟨k2
⊥⟩

π⟨k2
⊥⟩

, Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

. (2.1)

The quark transversity distribution, the Sivers function and the Collins fragmentation functions are
analogously parameterised in the following way:

hq
1(x,k⊥) = hq

1(x)
e−k2

⊥/⟨k
2
⊥⟩T

π⟨k2
⊥⟩T

, (2.2)

∆N fq/p↑(x,k⊥) = ∆N fq/p↑(x)
√

2e
k⊥
MS

e−k2
⊥/M2

S
e−k2

⊥/⟨k2
⊥⟩

π⟨k2
⊥⟩

≡ ∆N fq/p↑(x)
√

2e
k⊥
MS

e−k2
⊥/⟨k2

⊥⟩S

π⟨k2
⊥⟩

, (2.3)

∆NDh/q↑(z, p⊥) = ∆NDh/q↑(z)
√

2e
p⊥
MC

e−p2
⊥/M2

C
e−p2

⊥/⟨p2
⊥⟩

π⟨p2
⊥⟩

≡ ∆NDh/q↑(z)
√

2e
p⊥
MC

e−p2
⊥/⟨p2

⊥⟩C

π⟨p2
⊥⟩

,

(2.4)
where

⟨k2
⊥⟩S =

⟨k2
⊥⟩M2

S

⟨k2
⊥⟩+M2

S
⟨p2

⊥⟩C =
⟨p2

⊥⟩M2
C

⟨p2
⊥⟩+M2

C
. (2.5)

Of interest here are the transverse momentum integrated expressions of the Sivers asymmetry
(for SIDIS and Drell-Yan processes) and of the Collins asymmetry (for SIDIS and e+e−→ h1h2+X
processes). Again, we report below the final results. All details can be found in Ref. [4].

2.1 PT−integrated Sivers asymmetry for the SIDIS process ℓp↑ → ℓ′h+X

Asin(ϕh−ϕS)
UT (x,z) = AS

DIS(x,z)F
S
DIS(z) , with AS

DIS(x,z) =
∑q e2

q ∆N fq/p↑(x)Dh/q(z)

2 ∑q e2
q fq/p(x)Dh/q(z)

, (2.6)
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F S
DIS(z,ρS,ξ1) =

√
eπ
2

[
ρ3

S (1−ρS)

ρS +ξ1/z2

]1/2

, ξ1 =
⟨p2

⊥⟩
⟨k2

⊥⟩
, ρS =

⟨k2
⊥⟩S

⟨k2
⊥⟩

=
1

1+ ⟨k2
⊥⟩

M2
S

. (2.7)

2.2 PT−integrated Collins asymmetry for the SIDIS process ℓp↑ → ℓ′h+X

Asin(ϕh+ϕS)
UT (x,y,z) = AC

DIS(x,y,z)F
C
DIS(z) , AC

DIS(x,y,z) =
1− y

1+(1− y)2

∑q e2
q hq

1(x)∆NDh/q↑(z)

∑q e2
q fq/p(x)Dh/q(z)

,

(2.8)

FC
DIS(z,ρC,ξ1/ξT ) =

√
eπ
2

[
ρ3

C(1−ρC)

ρC + z2(ξT/ξ1)

]1/2

, ξT =
⟨k2

⊥⟩T

⟨k2
⊥⟩

, ρC =
⟨p2

⊥⟩C
⟨p2

⊥⟩
=

1

1+ ⟨p2
⊥⟩

M2
C

.

(2.9)

2.3 PT−integrated Sivers asymmetry for the Drell-Yan process h↑1h2 → ℓ−ℓ++X

ADY
N (y,M) = AS

DY(x1,x2)F
S
DY , AS

DY(x1,x2)≡ AS
DY(y,M) =

∑q e2
q ∆N fq/h↑1

(x1) fq̄/h2(x2)

2∑q e2
q fq/h1(x1) fq̄/h2(x2)

, (2.10)

F S
DY(ρS,ξ21) =

√
eπ
2

[
ρ3

S (1−ρS)

ρS +ξ21

]1/2

, ξ21 =
⟨k2

⊥2⟩
⟨k2

⊥1⟩
, ρS =

⟨k2
⊥⟩S

⟨k2
⊥1⟩

=
1

1+ ⟨k2
⊥1⟩

M2
S

. (2.11)

2.4 PT−integrated Collins asymmetry for e+e− → h1h2 +X (hadronic-plane frame)

Ph1h2
0 (z1,z2;θ) = Ah1h2

ee (z1,z2;θ)FC
ee , FC

ee(ρC) = 2eρ2
C(1−ρC) , (2.12)

Ah1h2
ee (z1,z2;θ) =

1
4

sin2 θ
1+ cos2 θ

z1z2

z2
1 + z2

2

∑q e2
q ∆NDh1/q↑(z1)∆NDh2/q̄↑(z2)

∑q e2
q Dh1/q(z1)Dh2/q̄(z2)

. (2.13)

Notice that for simplicity we are assuming here that the hadrons h1,2 are both pions or kaons.
Cases like πK pairs would in general require two different values of ⟨p2

⊥⟩. Similar results can be
obtained adopting the thrust-axis frame.

3. Phenomenological results

In order to clarify our discussion and reduce the number of free parameters, we will perform
some additional simplifying assumptions: a) Concerning the transversity distribution, we will as-
sume that ⟨k2

⊥⟩T = ⟨k2
⊥⟩, that is ξT ≡ 1; b) We only consider Drell-Yan processes in proton-proton

collisions; this amounts to take ⟨k2
⊥1⟩ = ⟨k2

⊥2⟩ ≡ ⟨k2
⊥⟩, and ξ21 ≡ 1 in the sequel; The inclusion of

the COMPASS case, for DY in π p collisions, would require two independent values for the average
square transverse momentum in the initial pion and proton beams.

In this simplified but realistic scheme, the transverse momentum integrated components of
the asymmetries (the functions F S,C in Eqs. (2.6)-(2.13)) depend only on three parameters: 1)

3
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ξ1 = ⟨p2
⊥⟩/⟨k2

⊥⟩, estimated by fitting unpolarised observables (multiplicities, the Cahn effect); 2)
ρS,C, that are fixed, using ξ1, by fitting available data on spin/azimuthal asymmetries. Notice that
in the SIDIS case there is a residual dependence on z, the light-cone momentum fraction in the
fragmentation process.

A few comments on these crucial parameters are in order here. From the mathematical point
of view, 0 < ξ1 <+∞, the lower (upper) limit corresponding respectively to a completely collinear
configuration in the fragmentation (distribution) sector. Physically, these limiting values are quite
extreme and highly unrealistic. A phenomenologically plausible range of values is 0.15 < ξ1 < 2.2
(see e.g. Fig. 9 of Ref. [5]). Concerning the parameters ρS,C, they govern, in our scheme, the trans-
verse momentum dependence of the Sivers and Collins functions w.r.t. that of the corresponding
unpolarised functions. Mathematically 0 < ρS,C < 1, however also in this case the limiting values
are phenomenologically unrealistic.

Now the crucial point of our analysis is the following: How do our predictions on the Sivers
and Collins asymmetries in SIDIS, Drell-Yan and e+e− annihilation processes depend on the choice
of specific values for ξ1 and consequently ρS,C?

The most general way to answer this question is to study how the transverse components of the
asymmetries, the F S,C functions, change when we move along a generic trajectory in the (ξ1,ρ)
parameter space, starting from some fixed point (ξ̂1, ρ̂), corresponding to a phenomenological
reference fit of unpolarised observables, and subject to possible constraints dictated by the avail-
able experimental data on spin/azimuthal asymmetries. In particular, we want to study how these
changes reflect on the collinear components of the Sivers and Collins functions and, ultimately, on
our predictions for the corresponding asymmetries.

3.1 The Sivers asymmetry in SIDIS and Drell-Yan processes

Let us to this end concentrate first on the Sivers case, and consider, to be definite, two different
and comparably good parameterisations of the quark Sivers functions delivered by the Cagliari-
Torino group:

1. The fit of Ref. [6], referred as FIT09 in the sequel, for which

⟨k2
⊥⟩= 0.25GeV2, ⟨p2

⊥⟩= 0.20GeV2, M2
S = 0.34GeV2 , (3.1)

that implies
ξ̂ (09)

1 = 0.80, ρ̂(09)
S = 0.58 . (3.2)

2. The fit of Ref. [7], referred as FIT16 in the sequel, for which

⟨k2
⊥⟩= 0.57GeV2, ⟨p2

⊥⟩= 0.12GeV2, M2
S = 0.80GeV2 , (3.3)

implying
ξ̂ (16)

1 = 0.21, ρ̂(16)
S = 0.58 . (3.4)

All details on the fitting procedures adopted and on the extraction of all parameters (including
those for the collinear component of the quark Sivers functions, not mentioned here) can be found
in the quoted references.
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Notice that we can always reformulate the general expressions of the functions F S,C(ξ1,ρ) in
the (ξ1,ρ) parameter space through a rescaling factor times their value in the fixed starting point,
F̂ S,C(ξ̂1, ρ̂). More in detail, for the asymmetries of interest, we can write:

F S
DIS(z,ξ1,ρS) = RS

DIS F̂ S
DIS(z, ξ̂1, ρ̂S) , RS

DIS =

[
ρ3

S (1−ρS)

ρS +ξ1/z2
ρ̂S + ξ̂1/z2

ρ̂3
S (1− ρ̂S)

]1/2

(3.5)

F S
DY(ξ21 = 1,ρS) = RS

DY F̂ S
DY(ρ̂S) , RS

DY =

[
ρ3

S (1−ρS)

ρS +1
ρ̂S +1

ρ̂3
S (1− ρ̂S)

]1/2

(3.6)

FC
DIS(z,ξ1,ρC) = RC

DIS F̂C
DIS(z, ξ̂1, ρ̂C) , RC

DIS =

[
ρ3

C(1−ρC)

ρC + z2/ξ1

ρ̂C + z2/ξ̂1

ρ̂3
C(1− ρ̂C)

]1/2

(3.7)

FC
ee(ρC) = RC

ee F̂C
ee(ρ̂C) , RC

ee =
ρ2

C(1−ρC)

ρ̂2
C(1− ρ̂C)

. (3.8)

Let us now consider in more detail the Sivers case. Almost all data available come from
SIDIS, mainly from the HERMES and COMPASS experiments. Therefore, we will assume that all
acceptable trajectories in the (ξ1,ρS) parameter space are bound to preserve the value of the total
Sivers asymmetry:

AS
DIS(x,z)F

S
DIS(z,ξ1,ρS)≃ ÂS

DIS(x,z)F̂
S
DIS(z, ξ̂1, ρ̂S) , (3.9)

or, equivalently,

F S
DIS = RS

DIS F̂ S
DIS , AS

DIS ≃ 1
RS

DIS
ÂS

DIS with RS
DIS =

[
ρ3

S (1−ρS)

ρS +ξ1/z2
ρ̂S + ξ̂1/z2

ρ̂3
S (1− ρ̂S)

]1/2

,

(3.10)
On the contrary, since only very few, low-statistic data are presently available for the Sivers

asymmetry in Drell-Yan processes, they are not used in the fits of the Sivers function. As a result,
the full DY Sivers asymmetry is not constrained like the SIDIS one. However, given that both the
SIDIS and DY asymmetries depend linearly on the Sivers function, we may reasonably assume that

AS
DY

ÂS
DY

≃
AS

DIS

ÂS
DIS

⇒ AS
DY ≃

( AS
DIS

ÂS
DIS

)
ÂS

DY ≡ 1
RS

DIS
ÂS

DY . (3.11)

Bearing in mind Eq. (3.6), we can then write the full DY asymmetry as

ADY
N = AS

DYF S
DY ≃

(
RS

DY

RS
DIS

)
ÂS

DYF̂ S
DY = RN

DYÂDY
N , with RN

DY =

[
ρS +ξ1/z2

ρ̂S + ξ̂1/z2

ρ̂S +1
ρS +1

]1/2

.

(3.12)
Now, let us come back to the two reference fits for the quark Sivers functions, FIT09 and

FIT16, see respectively Eqs. (3.2) and (3.4). As we said, both sets reproduce comparably well the
SIDIS Sivers asymmetry data. Notice however that, while ρ̂(09)

S ≃ ρ̂(16)
S ≃ ρ̂S ≃ 0.58, due to the

5
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strong correlation between ⟨k2
⊥⟩ and ⟨p2

⊥⟩ and the corresponding uncertainties, the values of ξ̂ (09)
1

and ξ̂ (16)
1 are sizably different. From Eq. (3.12), we therefore see that the predictions of the two

reference sets for the Sivers asymmetry in Drell-Yan processes are related as follows:

ADY
N (ρ̂S, ξ̂

(16)
1 )≃

[
ρ̂S + ξ̂ (16)

1 /z2

ρ̂S + ξ̂ (09)
1 /z2

]1/2

ÂDY
N (ρ̂S, ξ̂

(09)
1 ) . (3.13)

Using the values for the ξ̂1, ρ̂S parameters given above for the two sets, one finds that the
rescaling factor in Eq. (3.13) varies in the range [0.52,0.68] for 0.1 < z < 0.7. Since the SIDIS data
utilized in the fits are dominated by the small-z region, we find that

ADY
N (ρ̂S, ξ̂

(16)
1 )≃ 1

2
ÂDY

N (ρ̂S, ξ̂
(09)
1 ) . (3.14)

The main outcome of this study is therefore that, because of the unavoidable strong corre-
lations between the parameters ⟨k2

⊥⟩ and ⟨p2
⊥⟩, comparably good fits to the Sivers asymmetry in

SIDIS may lead to very different estimates for the same asymmetries in Drell-Yan processes. Since
the Drell-Yan process is crucial in order to study the process dependence and the evolution prop-
erties of the Sivers function, this effect should be taken into careful account, before drawing any
conclusion concerning these aspects.

The formalism presented in the previous pages can be generalised and applied to different sce-
narios for the Sivers effect and to the Collins asymmetry in SIDIS and e+e− annihilation processes.

As an example, instead of fixing the full SIDIS Sivers asymmetry as a whole, when enough
data on the transverse momentum dependence of the asymmetry will be available, one could think
of fixing separately both the collinear (AS

DIS) and the PT -integrated (F S
DIS) components of the asym-

metry. From Eq. (3.10), we see that this corresponds to require RS
DIS = 1 (the Sivers scenario 2 of

Ref. [4]). Under this constraint, the allowed values of ρS as a function of ξ1 for z = 0.2, and the
resulting rescaling factor for the Drell-Yan Sivers asymmetry, are shown respectively in Figs. 1 and
2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Ξ1

Ρs

æ Sivers Fit 2009

Scenario 2 - z = 0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Ξ1

Ρs

æ Sivers Fit 2016

Scenario 2 - z = 0.2

Figure 1: Sets of values of ρS and ξ1 which leave unchanged F S
DIS(z = 0.2), see Eq. (2.7). The black dots

correspond to the fits of Ref. [6] (left plot, FIT09) and of Ref. [7] (right plot, FIT16). Notice that for each
value of ξ1 one finds two possible values of ρS. Similar results are found for z = 0.4 or 0.6.
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Figure 2: Change in the Drell-Yan qT -integrated Sivers asymmetry ADY
N , Eqs. (2.10) and (2.11), as functions

of ξ1, in correspondence of the ρS values shown in Fig. 1. The rescaling factor RN
DY is defined in Eq. (3.12).

In this scenario Asin(ϕh−ϕS)
UT , Eq. (2.6), does not change, together with its components AS

DIS and F S
DIS.

Hopefully, in the near future, when more data on the DY Sivers asymmetry will be available
from COMPASS and RHIC, one could try to constrain the allowed values of the ξ1 and ρS param-
eters by requiring to reproduce both the SIDIS and Drell-Yan Sivers asymmetries at the same time.
These more general scenarios are discussed in depth in Ref. [4], to which we refer the reader for
further details.

3.2 The Collins asymmetry in SIDIS and e+e− annihilation processes

The treatment of the Collins asymmetry is more complicated than the Sivers case. First of all,
the Collins fragmentation function enters linearly in the SIDIS Collins asymmetry, convoluted with
the transversity distribution, while it appears “quadractically" (as a convolution of two Collins FFs)
in the e+e− case. Therefore, changes in the value of ξ1 can affect only the transversity distribu-
tion, or only the Collins function or, more probably, both of them simultaneously, leaving room to
more different possible scenarios. Moreover, in contrast to the Sivers case, detailed experimental
information is available both for SIDIS and e+e− processes.

Also in this case, we have considered two comparable reference fits for the transversity distri-
bution and the Collins FF with similar values of ρC but very different values of ξ1, see Ref. [4]. The
detailed analysis of several possible scenarios, covering all possibilities mentioned above, shows
that also in the Collins case the estimates of the collinear components of the transversity distri-
bution and the Collins function may vary as a function of ξ1. However, these changes seem to
be milder than in the Sivers case, apart from some marginal configurations (see Ref. [4] for more
details).

4. Concluding remarks

All present parameterisations of the most interesting and most studied TMDs, the quark transver-
sity and Sivers distributions and the Collins fragmentation function, originate mainly from SIDIS
data, to some extent from e+e− data and only marginally from Drell-Yan results.

In this contribution we have investigated, in a simple but general TMD approach, to what
extent the unavoidable strong correlations between the average transverse momenta for the TMD
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PDFs and FFs, as estimated from unpolarized SIDIS data, may affect the extraction of the collinear
component of the polarized TMDs and, ultimately, the predictions for spin/azimuthal asymmetries
in Drell-Yan and e+e− → h1h2 +X processes.

We have shown that comparably good fits of the SIDIS Sivers and Collins azimuthal asym-
metries can be obtained with (even very) different values of the ratio ξ1 = ⟨p2

⊥⟩/⟨k2
⊥⟩. As a conse-

quence, the corresponding estimates for the Sivers asymmetry in Drell-Yan processes can differ by
a factor of up to 2.

Concerning the extraction of the Collins fragmentation function and of the transversity distri-
bution from SIDIS and e+e− annihilation data, the uncertainty on ξ1 seems to have milder (but still
not negligible) effects, except for some marginal cases.

This analysis shows that a more precise knowledge of ⟨k2
⊥⟩, ⟨p2

⊥⟩ and ξ1 is crucial. This
is particularly true since we are entering a new stage in the exploration of the 3D structure of
hadrons, aiming at a more precise determination of the functional shapes of the TMD PDFs and
FFs, the understanding of their process dependence and a full implementation of TMD evolution.
For this, new experimental results from RHIC, Jlab, COMPASS and the future planned Electron
Ion Collider will be crucial.
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