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ABSTRACT
We present 2D magnetohydrodynamics numerical simulations of tearing-unstable current sheets coupled to a population of
non-thermal test particles, in order to address the problem of numerical convergence with respect to grid resolution, numerical
method, and physical resistivity. Numerical simulations are performed with the PLUTO code for astrophysical fluid dynamics
through different combinations of Riemann solvers, reconstruction methods, and grid resolutions at various Lundquist numbers.
The constrained transport method is employed to control the divergence-free condition of magnetic field. Our results indicate
that the reconnection rate of the background tearing-unstable plasma converges only for finite values of the Lundquist number
and for sufficiently large grid resolutions. In general, it is found that (for a second-order scheme) the minimum threshold for
numerical convergence during the linear phases requires the number of computational zones covering the initial current sheet
width to scale roughly as ∼

√
S̄, where S̄ is the Lundquist number defined on the current sheet width. On the other hand, the

process of particle acceleration is found to be nearly independent of the underlying numerical details inasmuch as the system
becomes tearing-unstable and enters in its non-linear stages. In the limit of large S̄, the ensuing power-law index quickly converge
to p ≈ 1.7, consistently with the fast reconnection regime.

Key words: acceleration of particles – instabilities – magnetic reconnection – MHD – plasmas – methods: numerical.

1 IN T RO D U C T I O N

The study of the dynamics of high-energy plasmas is of utmost
relevance for the interpretation of the phenomenology of high energy
astrophysical sources capable of releasing powerful electromagnetic
radiation from the radio to the optical, X-ray, and gamma-ray
wavebands such as as blazar jets, (see Böttcher 2007; Giannios
2013), gamma-ray bursts (see e.g. Giannios 2008; McKinney &
Uzdensky 2012; Beniamini & Piran 2014; Beniamini & Giannios
2017), pulsar wind nebulae (see e.g. Bucciantini, Arons & Amato
2011; Cerutti et al. 2014; Kargaltsev et al. 2015; Olmi et al. 2016),
and supernova remnants (see e.g. Amato & Blasi 2009; Morlino et al.
2013; Caprioli & Spitkovsky 2014), among others.

In these astrophysical environments, the electromagnetic field is a
key component because, on the one hand, it drives, accelerates, and
partially collimates relativistic outflows from astrophysical black
holes, neutron stars, and their accretion discs, while, on the other
hand, magnetic reconnection and dissipation are thought to be
responsible for bright thermal and non-thermal emission from these
flows (Komissarov 2007). During the magnetic reconnection process,
fields of opposite polarities rapidly annihilate and the magnetic
energy is converted into kinetic and thermal energy of the plasma
becoming, at the same time, available in creating a non-thermal
population of accelerated particles. For this mechanism to operate,
the plasma cannot be ideal and the Alfvén theorem does not hold:
field lines should be able to change their topology.

� E-mail: eleonora.puzzoni@edu.unito.it

Albeit astrophysical plasmas are essentially ideal, the flow evolu-
tion may lead to the formation of localized regions of large gradients
and electric currents, where resistivity cannot be any longer neglected
since its role becomes essential in the energy and momentum balance
(Mignone et al. 2019). The formation of strong and localized current
sheets favours reconnection events during which the magnetic field
topology may break becoming favourable to resistive instabilities
such as the tearing one. The Sweet–Parker model describes magnetic
reconnection, although it predicts reconnection rates that are several
orders of magnitude slower than the observed ones, especially when
the Lundquist number S = LvA/η is large (here L is the characteristic
length of the system, vA is the Alfvén velocity and η is the resistivity).
It is in fact a well-known fact that, for astrophysical or laboratory
highly conducting plasmas, S � 1 (e.g. S = 1012 in the solar corona)
and classical steady-state models fail to predict the observed bursty
phenomena such as solar flares or tokamak disruptions, which occur
instead on a non-negligible fraction (say not less than ∼ 10 per cent)
of the ideal (Alfvénic) time-scales (see, e.g. Marcowith et al. 2020).
A different picture emerges, however, when magnetic reconnection
occurs as a time-dependent and unstable process triggered by the
tearing mode instability. In this case, an initially neutral layer tends
to fragment into a number of X-points (where the magnetic field has
null point) and O-points (or plasmoids) corresponding to regions of
high current density. Following Loureiro & Uzdensky (2016), it is
now generally accepted that the tearing instability radically changes
magnetohydrodynamics (MHD) reconnection, which becomes in-
trinsically time dependent, bursty, and fast compared to the Sweet–
Parker steady-state model. The precise criteria for the onset of the fast
reconnection regime, in which the tearing instability occurs basically
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on the Alfvénic time-scales, has been numerically investigated in
various regimes by Landi et al. (2015; MHD), Del Zanna et al.
(2016; relativistic MHD), and Papini, Landi & Del Zanna (2019;
Hall–MHD). We also note that, in addition to the tearing instability,
other MHD instabilities triggering turbulence may be equally or
more effective in inducing fast magnetic reconnection (as originally
claimed by Lazarian & Vishniac 1999), such as the current-driven
kink instability (see e.g. Singh, Mizuno & de Gouveia Dal Pino 2016;
Striani et al. 2016; Tchekhovskoy & Bromberg 2016; Kadowaki et al.
2021) or the Kelvin–Helmholtz (see e.g. Kowal et al. 2020).

In this respect, the last decade has provided a wealth of investi-
gation, mostly through particle in cell (PIC) numerical simulations,
indicating relativistic magnetic reconnection as a very promising
candidate in the process of particle acceleration. Particle energization
via magnetic reconnection can either occur by a direct acceleration
in electric fields in the current sheet, or by the antireconnection
electric field due to the merging of plasmoids (see e.g. Oka et al.
2010; Sironi & Spitkovsky 2014; Nalewajko et al. 2015), or because
of Fermi first-order acceleration (first proposed and quantified by de
Gouveia dal Pino & Lazarian 2005) in the plasma converging towards
the reconnection zone or if particles are trapped in a contracting
magnetic islands (see e.g. Drake et al. 2010; Guo et al. 2014,
2015; Petropoulou & Sironi 2018; Hakobyan et al. 2021). Sironi &
Spitkovsky (2014), and likewise Petropoulou & Sironi (2018), found
that the accelerated particles populate a power-law distribution with
a spectral slope p = −dlog N/dlog γ ∼ 2 for magnetizations σ = 10
in a pair plasma.

Such studies have been widened to the fluid regime using MHD
in conjunction with a test-particle approach (see e.g. Liu et al. 2009;
Gordovskyy, Browning & Vekstein 2010a,b; Kowal, de Gouveia Dal
Pino & Lazarian 2011; de Gouveia Dal Pino & Kowal 2015; Ripperda
et al. 2017a,b; Ripperda, Porth & Keppens 2019), finding results
similar to those obtained with PIC simulations in terms of particle
acceleration. This has been suggested, e.g. by Kowal et al. (2011),
who have found that in 2D MHD models during an island contraction,
in this case due to the merger with other islands, a particle trapped
in it can accelerate and increase its energy exponentially in a non-
relativistic scenario, which is similar to what Drake et al. (2010)
have found with a PIC approach. This bulk of evidence suggests
that magnetic reconnection can be more efficient and universal when
compared to other mechanisms, such as varying magnetic fields in
compact sources, stochastic second-order Fermi process in turbulent
interstellar and intracluster media, and the first-order Fermi process
behind shocks (Kowal et al. 2011).

The fluid plus test particles approach offers the advantage of
being applicable to larger scales when compared to the restrictions
imposed by typical PIC simulations, such as resolve the electron skin
depth which, in most cases, is several orders of magnitude smaller
than the overall size of the astrophysical system, and therefore it
would be too expensive in terms of computational cost (see e.g.
Bai et al. 2015; Mignone et al. 2018). Test particles acceleration
in MHD is usually studied by using frozen snapshots (see e.g. Liu
et al. 2009; Gordovskyy et al. 2010a; Kowal et al. 2011; de Gouveia
Dal Pino & Kowal 2015; Ripperda et al. 2017a) in which the fluid
provides a background, static configuration on top of which particles
are allowed to evolve.

With the exception of very few works (see e.g. Kowal et al. 2009;
Santos-Lima et al. 2010; Rembiasz et al. 2017), however, the vast ma-
jority of these studies largely overlooks the impact of the numerical
method on the simulation results, it scarcely addresses the problem
of convergence with respect to grid resolution and it often neglects
the effect of a physical resistivity on the evolution of the instabilities.

Classical and relativistic MHD numerical simulations have, in fact,
shown that when the Lundquist number S is greater than a certain
threshold value, plasma instabilities in the current sheet trigger a fast
reconnection regime with time-scales comparable to the observed
ones. However, the grid resolution must be sufficiently large to ensure
that the dissipation scale is regulated by physical resistivity and not
by numerical diffusion. This requirement together with the low-
resistivity (or high S, typically S > 103) typical of astrophysical
plasma can indeed demand very fine mesh spacing in proximity of
the current sheet. This determines the numerical convergence of the
simulation and eventually regulates the correct reconnection rate,
once proper numerical resolution is achieved.

Based on these considerations, in this work we intend to address
a number of unresolved issues by assessing the impact of numerical
method, grid resolution, and physical resistivity on the magnetic
reconnection process as well as their implications in the particle
acceleration mechanisms. We will start by considering a test-particle
approach using 2D non-relativistic MHD numerical computations
carried out with different Riemann solvers, spatial reconstruction
both in the ideal and resistive MHD regimes at different values of
the Lundquist number. The relativistic extension will be considered
in a companion paper. In addition and contrary to most previous
investigations, test particles and MHD fluid will be evolved simulta-
neously with the advantage of studying the acceleration mechanism
in response to the dynamical evolution of the system, as done by
Gordovskyy et al. (2010b), Kowal, de Gouveia Dal Pino & Lazarian
(2012), and Ripperda et al. (2017b, 2019).

The paper is organized as follows. The classical MHD equations
describing the evolution of the fluid and the particle equations
of motion are discussed in Section 2, along with the numerical
set-up. The results obtained for the fluid case only, and which
therefore include the comparison between the spatial reconstructions
and the Riemann solvers, are shown in Section 3. Instead, the
results obtained for the particles, including the impact on particle
acceleration properties of the grid resolution and resistivity, are
shown in Section 4. A summary is given in Section 5.

2 R ELEVANT EQUATI ONS AND MODEL S ET-UP

2.1 The resistive MHD equations

MHD describes an electrically conducting single fluid, assuming
low frequency and large scales. MHD provides indeed the basic
description of a plasma at the macroscopic level by neglecting
kinetic effects and electron physics, approximations commonly used
for applications to laboratory, space, and astrophysical plasmas.
The resistive non-relativistic MHD equations, which include the
continuity, momentum, induction, and energy conservation laws are,
respectively,

∂ρ

∂t
+∇ · (ρvg) = 0 , (1)

∂m
∂t

+∇ ·
[

mvg − B B + I
(
p + B2

2

)]
= 0 , (2)

∂ B
∂t

+∇ × (cE) = 0 , (3)

∂Et

∂t
+∇ ·

[(
ρv2

g

2 + ρe + p
)

vg + cE × B
]

= 0 , (4)

where ρ is the mass density, m = ρvg is the momentum density, vg

is the gas velocity, p is the gas (thermal) pressure, B is the magnetic
field (a term

√
4π is included in the definition of B), and Et is the
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total energy density:

Et = ρe + m2

2ρ
+ B2

2
, (5)

where, for an ideal gas, we have ρe = p/(	 − 1). The relative
importance of thermal (gas) and magnetic pressures is quantified by
the β parameter, defined as

β = p

B2/2
. (6)

If β � 1 the magnetic field dominates the dynamics while, in the
opposite limit, gas motion drags the field lines so that the magnetic
field behaves essentially in a passive way.

The magnetic field evolution is governed by Faraday’s law (equa-
tion 3) where E is the electric field defined by

cE = −vg × B + η

c
J, (7)

where, the first term in equation (7) is the convective term while the
second one corresponds to the resistive electric field (i.e η denotes
the scalar resistivity) with the current density defined as

J = c∇ × B. (8)

The presence of the resistive term in equation (7) is of crucial
importance in triggering tearing-driven magnetic reconnection as
well as in the process of particle acceleration (Li, Wu & Lin 2017).
While in ideal MHD no electric field is present in the fluid rest
frame, a resistive plasma is still capable of accelerating particles at
stagnation points, provided a large current is formed. In reconnecting
current sheet, this condition is manifestly evident at X-points where
the condition |E| > |B| can easily occur.

Equation (7) introduces two time-scales, namely, the convective
one (τ c = L/vg), and the diffusive one (τ d = L2/η), where L represents
the typical system length-scale. The relative importance of the two
terms can be quantified by the magnetic Reynolds number, defined
by the ratio of these, Rm = τ d/τ c = vgL/η or, more conveniently, by
the Lundquist number

S = vAL

η
, (9)

where vA denotes the Alfvén speed

vA = B√
ρ

. (10)

While the magnetic field topology is generally preserved in the ideal
MHD regime (S → ∞) owing to the frozen-in condition, this is
not the case for finite values of S and diffusion of magnetic field is
possible. Indeed, even if astrophysical plasmas are typically highly
conductive (e.g. S � 1), fast magnetic reconnection (Giannios 2013;
Del Zanna et al. 2016) can become an effective process in localized
dissipation regions featuring very thin current sheets. This process
is ultimately driven by the tearing instability and is responsible for
their fragmentation into a large number of plasmoids.

Finally, Faraday’s law is complemented with the solenoidal con-
dition of magnetic field,

∇ · B = 0, (11)

so that, if true initially, it must be preserved during the subsequent
time evolution.

2.2 Particle equations of motion

Particles are defined in terms of their spatial coordinates xp and
velocity vp, which are governed by the equation of motion⎧⎪⎪⎨
⎪⎪⎩

dxp

dt
= vp

d(γ v)p

dt
=

( e

mc

)
p

(cE + vp × B)
, (12)

where γ = 1/
√

1 − v2
p/C

2 is the Lorentz factor while (e/mc)p is

the particle charge to mass ratio. The suffix p will be used to
label a single particle. In the MHD equations the actual speed of
light does not explicitly appears therefore the artificial value C
is used. In this paper, we have set C = 104vA (where vA is the
Alfvén speed) since, for consistency reasons, it must be much larger
than any characteristic signal velocity. The electric and magnetic
fields E and B are computed from the magnetized fluid and are
properly interpolated at the particle position, following the approach
of Mignone et al. (2018).

We solve the particle equations of motion using the Boris in-
tegrator, which is time reversible and features good conservation
properties for long time simulation. For computational efficiency,
the particle mass is taken to be equal to the mass of the particles
composing the fluid so that, when written in code units, the charge to
mass ratio in equation (12) becomes unity. In other words, our results
are equally applicable to protons embedded in protons + electron
thermal fluid or to a electron–positron pair plasma.

As discussed in Mignone et al. (2018), the particle time-step can
be constrained either by (the inverse of) their gyration frequency
or by the maximum number of computational zones that can be
crossed during a single time-step. In our simulations, both are
found to be smaller than the fluid time-step by a factor of ∼5
at nominal resolutions. While gyration dominates the time-step
restriction at low-grid resolutions, the opposite situation is found
as the mesh becomes finer, since the most energetic particles can
cross increasingly more cells in a single time-step.

2.3 Initial and boundary conditions

Our initial configuration considers a 2D rectangular domain of size
L × L/2 where L = 2C/ωp = 2 × 104 vA/ωp and ωp represents
the plasma frequency, which naturally arises when equation (12)
is scaled-down to the MHD equations. The equilibrium magnetic
field follows a Harris-sheet profile:

Bx(y) = B0 tanh
(y

a

)
, (13)

where a denotes the initial width of the current sheet, which we set to
a = 250 vA/ωp in all the simulations, while B0 denotes the magnetic
field strength, normalized such that our unit velocity is the Alfvén
speed (ρ0 = B0 = 1 in code units).

The guide field is not present (Bz = 0) and an initial equilibrium
condition is obtained by counteracting the Lorenz-force term with a
thermal pressure gradient,

p(y) = 1

2
B2

0 (β + 1) − 1

2
B2

x (y) , (14)

so that the total pressure remains constant through the sheet. In
all simulations we use β = 0.01. For convenience, resistivity is
prescribed from S̄, i.e. Lundquist number corresponding to the
current sheet width:

S̄ = aS

L
= vAa

η
, (15)
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where vA is set to one. Boundary conditions in the x-direction are
periodic, while in the y-direction are reflective.

The system is perturbed by introducing a fixed number of small-
amplitudes modes with different wavenumbers k. This is best
achieved by redefining the vector potential as Az(x, y) = A0(y)
+ δAz(x, y), where A0(y) = aB0log (cosh (y/a)) corresponds to the
equilibrium field (equation 13), while

δAz(x, y) = εB0

Nm

Nm∑
m=0

1

k
sin(kx + φm) sech

(y

a

)
(16)

is the perturbed term, Nm is the number of modes (20 in our case),
ε = 10−3 is the perturbation amplitude, φm are random phases and
k = (m + 1)k0 = 2π (m + 1)/L.

Unless otherwise stated, we choose our final integration time as
ωptf = 6 × 105, enough for all models to capture both the linear stages
as well as the non-linear evolution. Notice that, for convenience, time
can also be measured in units of the Alfvén time-scale τ̄A = a/vA =
250/ωp. In practice, the corresponding Alfvén time can be obtained
from the simulation time (in units of 1/ωp) as t/τ̄A = ωpt/250.

Test particles are evenly assigned to grid zones (we use 1 parti-
cle/cell) and their velocities follow a Maxwellian distribution with
standard deviation σ = √

p0/2ρ0, where p0 = p(∞) in equation (14).

2.4 Chosen numerical methods

Equations (1)–(4) are solved numerically using the PLUTO code
for computational plasma physics, see Mignone et al. (2007) and
Mignone et al. (2012). PLUTO employs a finite volume formulation
whereby the integral form of the equations is discretized and
conserved variables (density, momentum and energy) are evolved in
terms of their volume averages (rather than point values) inside the
computational zone. The magnetic field divergence-free condition is
satisfied to machine precision using the constrained transport (CT)
method, originally introduced by Evans & Hawley (1988) and later
extended to Godunov type schemes by Balsara & Spicer (1999),
Londrillo & del Zanna (2004), and Gardiner & Stone (2005) to
name just a few. CT methods entail to a staggered discretization
of magnetic field components so that a discrete version of Stoke’s
law can be applied when solving the induction equation. In PLUTO,
the line average electric field (the electromotive force or emf) is
constructed using the information available from 1D, face-centred
Riemann solver, and we refer the reader to the recent work of
Mignone & Del Zanna (2021) for a thorough description of different
algorithms employed in the present context.

As we are aiming at quantifying the impact of the numerical
scheme on simulation results, we compare three different numerical
schemes based on different combinations of the base Riemann solver
and the EMF averaging/reconstruction scheme, namely,

(i) the HLL Riemann solver with the UCT-HLL reconstruction
(Londrillo & del Zanna 2004; Del Zanna et al. 2007);

(ii) the Roe Riemann solver (Cargo & Gallice 1997) with the
CT-Contact emf averaging scheme of Gardiner & Stone (2005);

(iii) the HLLD Riemann solver of Miyoshi & Kusano (2005)
with the more recent UCT-HLLD emf averaging scheme;which, for
brevity, will be shortened as HLL (i), Roe (ii), and HLLD (iii). A
detailed inter-scheme comparison is presented in Mignone & Del
Zanna (2021). The first two schemes are being ordinarily employed
in numerical simulations of MHD flows and differ in the amount of
numerical diffusion (the former being more diffusive than the latter).
The third scheme (HLLD) is more recent and presents excellent

stability properties and reduced numerical dissipation when applied
to time-dependent magnetized current sheets.

While the code retains a global second-order accuracy, the amount
of numerical dissipation can be further controlled by the spatial
reconstruction of fluid variables inside each grid zone. For this rea-
son, we consider both second-order piecewise linear reconstruction
and the fifth-order WENO-Z algorithm (see e.g. Borges et al. 2008;
Mignone, Tzeferacos & Bodo 2010). A third-order Runge–Kutta
time-stepping is used to advance the equations in time. Test particles
are also evolved together with the fluid using the Boris algorithm.

We conduct numerical simulations using different values of the
Lundquist number S̄ (equation 15), namely, S̄ = 103, 104, 105, and
S̄ = ∞ (ideal case) with varying grid resolutions, starting from Nx =
192 (which corresponds to a/�x ∼ 2.5 zones on the initial current
sheet width a) up to Nx = 3072 (a/�x ∼ 40). Correspondingly, the
number of particles varies from 18,432 (at the lowest resolution) and
reaches 4,718,592 (at the largest one).

3 C O N V E R G E N C E S T U DY FO R T H E
BAC K G RO U N D P L A S M A

We now focus on the dynamical evolution of the tearing-unstable
current sheet and proceed to assess the impact of the numerical
method on the simulation results.

Fig. 1 shows the temporal evolution of the plasma density obtained
with the HLLD scheme and S̄ = 104 at the largest grid resolution
(Nx = 3072). For 105 � ωpt � 2.1 × 105 (upper left-hand panel)
the current sheet starts to shrink at the edges of the computational
domain and the tearing-mode heads its linear phase. The process
continues as the current sheet becomes thinner and thinner for 2.1 ×
105 � ωpt � 3.4 × 105 (upper right-hand panel) therefore we call
this phase the second linear phase. Subsequently, at about 3.4 × 105

� ωpt � 4.6 × 105 the current sheet starts to fragment into plasmoids
that begin to merge (lower left-hand panel). Eventually, for ωpt �
4.6 × 105, the system reaches a saturation phase where plasmoids
merged into a single large island with a large filling factor (lower
right-hand panel).

Regardless of the numerical scheme, these four evolutionary stages
are observed at all resolutions, albeit the beginning of each phase
may occur at a different time. In our experience, we have found that
a convenient way to label the different evolutionary stages can be
quantified by counting the number of X-points formed over time.
The algorithm, based on locating the null points of |B|, is illustrated
in Appendix A and is compatible with the one developed by Zhdankin
et al. (2013).

As an additional diagnostic tool, we also provide a quantitative
measure of the growth rate γTM, obtained as

γTM = f (t2) − f (t1)

t2 − t1
, (17)

where t1 and t2 correspond to two simulation snapshots, while

f (t) = 1

2
log

(
1

L2

∫
B2

y (t) dx dy

)
. (18)

Equation (17) is employed to evaluate the growth rate within the first
and second linear phases in what follows.

3.1 The effect of spatial reconstruction

We plot, in the top panels of Fig. 2, the temporal evolution of the
spatially averaged transverse component of magnetic field at different
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Figure 1. Plasma density (colour bar) snapshots at four simulation snapshots, obtained with a grid resolution Nx = 3072, the UCT-HLLD scheme and the
HLLD Riemann solver with S̄ = 104 and the WENO-Z scheme. Time is expressed in units of both the inverse plasma frequency and the Aflvénic time scale (in
parenthesis).

Figure 2. Top panels: spatially averaged transverse component of magnetic field as a function of time at different grid resolutions, using linear (left-hand panel)
and WENO-Z (middle panel) reconstructions. The rightmost panel compares the two reconstruction at the largest resolution Nx = 3072 (right-hand panel). Note
that time is expressed in units of the inverse plasma frequency and it can be converted to Alfvénic time units using t/τ̄A = ωpt/250. Bottom panels: number of
X-points formed over time at higher resolutions using linear (left-hand panel) and WENO-Z (middle panel) reconstruction with a comparison of these at Nx =
3072 (right-hand panel). We used S̄ = 104 and the HLLD Riemann solver with the UCT-HLLD scheme in all cases.

resolutions using linear reconstruction (top left) and WENO-Z fifth-
order reconstruction (top middle). The bottom panels give the
corresponding number of X-points at the largest resolutions (768
≤ Nx ≤ 3072). For the sake of comparison, results with both

reconstruction schemes at Nx = 3072 are superimposed in the
rightmost panels.

For this case, we set S̄ = 104 and employ the HLLD Riemann
solver with the UCT-HLLD reconstruction scheme for EMF com-
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Table 1. Average growth rates (for S̄ = 104 case) for the tearing mode
instability, γTM, measured from the simulations at different grid resolutions
(left column) using HLLD with linear and WENO-Z reconstructions. These
are calculated within what we call the first (105 < ωpt < 2.1 × 105 or,
equivalently, 400 < t/τ̄A < 840) and the second linear phase (2.1 × 105 <

ωpt < 3.4 × 105 or, equivalently, 840 < t/τ̄A < 1360).

First linear phase Second linear phase
γTM (10−5ωp) γTM (10−6ωp)

Resolution a/�x Linear WENO-Z Linear WENO-Z

192 × 96 ∼2.5 0.80 1.29 6.38 9.24
384 × 192 ∼5 1.40 1.68 8.93 9.14
768 × 384 ∼10 1.76 1.88 9.58 9.80
1536 × 768 ∼20 1.88 1.89 10.2 8.85
3072 × 1536 ∼4 1.89 1.90 12.3 12.2

putation at cell edges. The different evolutionary stages, described
above, have been marked by the vertical dashed lines. During the
linear phases, we expect perturbations to grow exponentially at the
rate of the fastest growing mode, as predicted by linear theory, see
Section 3.3.

The same does not hold during the subsequent phase where a
variation of the magnetic energy is visible depending on the chosen
scheme and grid size. In fact, during the second phase the width
of the current sheet continues to decrease, eventually leading to
its fragmentation through the formation of X-points. In order to
accurately capture this phase, an even larger resolution is needed for
resolving the increasingly thinner sheets.

A direct inspection of the top and corresponding bottom panel
reveals that the growth of the perturbation raises with the number of
newly formed X-points. Since this process occurs more rapidly as the
numerical diffusion is reduced, higher resolution runs with WENO-Z

reconstruction evolve towards the growth of saturation earlier. On
the contrary, at low resolutions, the saturation stage is attained at
later times or may not be reached at all by the end of the simulation,
specially with linear reconstruction where numerical diffusion is
larger. Focusing on the linear phases, convergence is eventually
reached for Nx � 1536 (a/�x � 20) for the linear reconstruction
case and Nx � 768 (a/�x � 10) using WENO-Z. At the highest
resolution, both linear and WENO-Z schemes show similar growths
(see rightmost top panel).

Growth rates for the first and second linear phases, computed
using equation (17), are reported in Table 1. During the first
linear stage, both computations eventually converge to the same
result, albeit the employment of WENO-Z favours faster convergence
(approximately half the resolution is needed), owing the reduced
numerical dissipation. The second linear phase takes place more
rapidly and starts earlier as the numerical dissipation is reduced
(either with the reconstruction order or with a finer mesh spacing).

3.2 The impact of the Riemann solver and emf averaging

Next, we determine the influence of the Riemann solver as well as
the emf-averaging scheme on the computations. Fig. 3 shows the
evolution over time of the spatially averaged transverse component
of magnetic field at different grid resolutions for selected Riemann
solvers and emf-averaging schemes (see Section 2.4). Resistive (S̄ =
104) and ideal (S̄ = ∞) cases are shown in the upper and lower
panels, respectively.

In the resistive case, using the HLL and Roe schemes (top left-hand
and middle panels, respectively), the growth rate flattens as the mesh
becomes finer and convergence during the first and second linear

phases is achieved for Nx � 768. Conversely, computations using
the HLLD method (top right) reveal a more homogeneous profile
where the different evolutionary phases are clearly distinguished at
(nearly) all resolutions giving comparable growth and convergence
properties. This behaviour has to be attributed to the reduced amount
of numerical dissipation of the HLLD + UCT-HLLD scheme, as
discussed in section 6.2 of Mignone & Del Zanna (2021), for which
the diffusive flux terms eventually contributing to the EMF evaluation
are proportional to the jump in magnetic fields alone.

We remind the reader that, in the ideal case (S̄ = ∞, bottom
panels), the equilibrium condition given by equation (14) is a
stationary solution of the ideal MHD equations and any dissipative
process should be absent. In practice, however, the discretization
process introduces a numerical viscosity/resistivity which allows the
current sheet to reconnect to some extent. Generally speaking, the
rate at which field dissipation occurs should depend on the amount of
numerical diffusion: more dissipative schemes or lower resolutions
will trigger reconnection events earlier. This is clearly the case for
the Roe (+ CT-Contact) and HLL schemes for which convergence
will never be reached owing to the resolution-dependent numerical
resistivity. The employment of HLLD scheme reveals, once more,
an unexpected benefit: the system remains stable with minimal
dissipation at all resolutions and no perturbation growth, as one
would expect for an ideal system. The same behaviour has been
witnessed in simulations of ideal current sheets, as described by
Mignone & Del Zanna (2021; see section 6.2 of that paper).

This proves that the introduction of a physical resistivity is abso-
lutely essential to ensure convergence with respect to the numerical
method and mesh size in simulations of reconnecting current sheets.
This is remarkably true during the linear phase(s), although a word
of caution is noteworthy. For the sake of comparison, in fact, Fig. 4
plots the spatially averaged transverse component of magnetic field
over time at the two largest resolutions for the selected schemes.
While convergence is reached during the first linear phase (ωpt �
2.6 × 105), the same does not hold during the subsequent phase
where a variation of the magnetic energy is visible depending on the
chosen scheme and grid size. In fact, during the second phase the
width of the current sheet continues to decrease, eventually leading
to its fragmentation through the formation of X-points. In order to
accurately capture this phase, an even larger resolution is needed for
resolving the increasingly thinner sheets.

From these results, we conclude that the HLLD combination
scheme with WENO-Z reconstruction seems to produce the most
accurate results and it will be employed as our fiducial numerical
scheme.

3.3 Dependence on the Lundquist Number

Fig. 5 shows the spatially averaged transverse component of magnetic
field over time for different values of S̄ and grid resolutions. Note
that the saturation phase occurs at later times when S̄ increases, i.e.
as the physical resistivity decreases. For this reason, when S̄ = 105,
the final simulation time has been extended to ωptstop ≈ 1.8 × 106,
i.e. three times than for the previous cases. Our results indicate that
the system evolution converges at increasingly larger grid resolution
depending, as expected, on the relative magnitude between numerical
and physical resistivity, scaling as ηnum ∼ O(�x2) and η ∼ 1/S̄,
respectively.1 As an order of magnitude estimate we expect therefore

1Note that, albeit the employment of fifth-order accurate reconstruction, our
computations remain second-order accurate.
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Numerical methods and magnetic reconnection 2777

Figure 3. Spatially averaged transverse component of magnetic field as a function of time for different resolutions and selected numerical schemes, with
S̄ = 104 (top panels) and S̄ = ∞ (bottom panels). The WENO-Z reconstruction is used for all computations. Convergence refers to the first linear phase only
(larger resolution is needed to resolve smaller current sheets forming after the fragmentation phase).

Figure 4. Same as Fig. 3 but with 1D plots from different numerical methods
overlapping at the two largest resolutions (S̄ = 104). As before, convergence
refers to the first linear phase only.

the resolution threshold for convergence to scale approximately as
a/�x ∼ 10

√
S̄/104 for a second-order accurate scheme. Indeed,

for S̄ ≈ 103 convergence is observed at all resolutions (a/�x � 3).
On the contrary, at S̄ = 105, convergence is fully attained only at
Nx ∼ 3072, while the low-resolution simulation (Nx = 192) shows
that the linear growth proceed slowly and the saturation phase is
not even reached by the end of the simulation (ωptf ≈ 1.8 ×
106).

It is interesting to compare the measured growth rate for the first
linear phase with the theoretical expectation (Del Zanna et al. 2016)

according to which, in the limit of large S, one has

γmaxτA � 0.6S−1/2(a/L)−3/2, (19)

where γ max is the growth rate of the most unstable mode, τA = L/vA

is the Alfvénic time defined on L and S is the Lundqusit number
defined according to equation (9). Fig. 6 shows the growth rate
obtained from equation (19) compared with that obtained from the
simulations (equation 17) for different values of S = LS̄/a with S̄ =
103, 104, 105. We find that γTMτA approaches the asymptotic value
γ max τA as S increases. In fact, for S̄ = 105 we obtain γTMτA ≈ 0.149
and γ max τA ≈ 0.152.

4 TEST PARTI CLE AC CELERATI ON

We now turn our attention to the impact of the numerical method and
resistivity on the dynamics and energetics of relativistic test particles
which evolve concurrently with the fluid.

4.1 Particle acceleration and energetics

Fig. 7 (top panel) shows the kinetic energy history of the most
energetic particle, Ekin = u2

p/(γ + 1) where up and γ represent
the module of the particle’s four-velocity and its Lorentz factor,
respectively. Notice that, for our choice of C = 104, particles remain
non-relativistic for the entire evolution (γ max ∼ 1). A sharp increase
is first observed for ωpt � 3.6 × 105, when the particle enters one
of the small magnetic islands after crossing an X-point (panel a)
where a strong electric field boosts the particle velocity. Secondary
acceleration events occur and continues concurrently with the process
of repeated island merging (panel b) until the merger (panel c) with
a large final plasmoid, inside that most energetic particles remain
trapped (panel d). Island mergers can lead to an extra particle energy
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2778 E. Puzzoni, A. Mignone, and G. Bodo

Figure 5. Spatially averaged transverse component of magnetic field over time for different values of S̄ at different resolutions. The HLLD scheme with WENO-Z

reconstruction has been used. The vertical dashed lines mark the temporal range of the first linear phase during which convergence is reached.

Figure 6. Comparison between the theoretical growth rate obtained from
equation (19), in red, and that obtained from the simulations, in black, for
different values of S.

boost, due to the antireconnection electric field2 at the secondary
current sheet that forms perpendicular to the main one, at the interface
between both islands (Oka et al. 2010; Sironi & Spitkovsky 2014;
Nalewajko et al. 2015; Cerutti 2019). Once the particle enters the
larger magnetic island, it undergoes a sharp acceleration inside
the magnetized ring around the plasmoid center within which it
is trapped. The particle increases its kinetic energy through the first-
order Fermi process, since the hosting plasmoid compresses while it
merges with smaller islands while accreting particles and magnetic
flux (Drake et al. 2010; Kowal et al. 2011; Guo et al. 2014; de Gouveia
Dal Pino & Kowal 2015; Guo et al. 2015; Petropoulou & Sironi 2018;
Hakobyan et al. 2021). When major mergers no longer occur and
the plasmoid stabilizes, the particle energy remains approximately
constant in time. Note that other energetic particles are also subject
to the same acceleration mechanisms. As an illustrative example,
Fig. 8 shows a map of the magnetic field module (normalized to its
maximum value), together with the position of the most energetic
particles at the end of the simulation overplotted. As also found
by Petropoulou & Sironi (2018), this figure indeed highlights that

2The relative importance of the resistive and convective term of the electric
field in equation (7) in the particle acceleration process will be the subject of
a companion paper.

particles dominating the high-energy spectral cut-off reside in a
strongly magnetized ring around the plasmoid core.

Fig. 9 (top panel) shows the temporal evolution of the particles
energy distribution (initially set to follow a Maxwellian one). For
convenience, we break the energy range into three portions identified
with the low-energy end (10−3 � Ekin � 10−1), the power-law section
dN/dEkin ∝ E

−p

kin with slope p ≈ 1.7 (10−1 � Ekin � 102) and the
high-energy cut-off (102 � Ekin � 104). The spectrum reaches an
almost asymptotic shape during the saturation phase when ωpt � 4.4
× 105 (t/τ̄A � 1760, see top right-hand panel of Fig. 3). Note that
all spectra shown in this paper are normalized to the total number
of particles, which varies with the grid resolution. Fig. 9 (middle
and bottom panel) shows the particles spatial distribution at ωpt ≈
4 × 105 and ωpt ≈ 6 × 105 coloured by the chosen energy ranges.
The low-energy end of the spectra (the blue region) is determined
by most of the particles in the domain which do not experience sig-
nificant acceleration. These particles are predominantly found in the
regions outside the plasmoids with spatial and velocity distributions
remaining close to the initial values. Particles populating the power-
law component of the spectrum (orange region), on the contrary, are
found in proximity of the current sheet or settle in the outermost
rings of the magnetic islands. Their number increase in time as the
acceleration mechanism produces more energetic particles. Particles
with the highest energy approximately, (red regions) are settled
inside the current sheet as reconnection begins and then gradually
fill the central regions of the plasmoids as they form and merge
with each other. At the end of the computation (bottom panel), we
find that approximately ∼ 51 per cent of particles fill the low-energy
domain, ∼ 47 per cent particles populate the power-law section
of the spectrum while ∼ 2 per cent is represented by high-energy
particles.

4.2 Dependence on grid resolution and numerical method

We now assess the impact of grid resolution and physical resistivity
on the particle energy distribution.

A comparison between particles energy spectra at the end of the
simulation (ωpt ≈ 6 × 105) at different resolutions is shown in the
left-hand and right-hand panels of Fig. 10, in the resistive (S̄ = 104)
and ideal (S̄ = ∞) simulation cases, for the most and least diffusive
numerical schemes, HLL (lower panels) and HLLD (upper panels),
respectively. Table 2 shows the corresponding spectral index p of the
power-law part of the spectrum.

In the presence of a physical resistivity (left-hand panels), the
spectrum remains almost unchanged once Nx � 768 (a/�x � 10),
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Numerical methods and magnetic reconnection 2779

Figure 7. Top panel: Evolution over time of the kinetic energy of the most energetic particle, where the points represent the four instants of time corresponding
to the plots in the lower panels. Middle and bottom panels: Overplot of the position of the most energetic particle, coloured according to its Lorentz γ -factor,
on the plasma density (colourbar) snapshots in four main moments of its evolution, obtained with a grid resolution Nx = 3072 and S̄ = 104.

Figure 8. Position of the most energetic particles on the snapshot of the
magnetic field module, normalized to its maximum value, at the end of the
simulation obtained with a grid resolution Nx = 3072 and S̄ = 104.

and it quickly converges to a power-law with index 1.8 � p �
1.7 for both numerical methods, as shown in the first column of
Table 2, indicating that once the tearing instability is triggered and
the reconnection cascade commences, the acceleration properties
are virtually independent of the numerical resolution and numerical
diffusion.

However, if we consider an ideal plasma (right-hand panels), the
results differ depending on the chosen numerical method. For the
HLLD scheme, which has least dissipation, the tearing instability
is gradually quenched (as already discussed in Section 3.2) as the
resolution increases and no significant particle acceleration takes
place so that the particle energy distribution remains close to the
initial Maxwellian (top right in Fig. 10). Conversely, the presence of
a larger numerical diffusion in the HLL scheme, triggers magnetic
reconnection even in the ideal limit, thus spawning a spectral
distribution with power-law index p ≈ 2.0 (see the last column of
Table 2). We remind the reader that, in this case, fluid convergence
(in the sense discussed in Section 3.2) could not be achieved (see
Fig. 3).

While the spectral index obtained in the ideal case is not signif-
icantly different from the resistive case, our results indicate that
the outcome of ideal MHD computations should be interpreted
with some caution as the mechanisms triggering resistive insta-
bility may be driven in a rather unpredictable way by numerical
diffusion rather than by actual physical effects. This conclusion
may differ if we consider the case of fast reconnection driven by
turbulence.
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Figure 9. Top panel: temporal (colourbar) evolution of particles energy
spectrum and the p-index of the power law to which it converges (red dashed
line). Middle and bottom panel: Spatial distribution of the particles, coloured
according to their energy (colourbar), at two different instants of time. The
energy ranges of the colourbar correspond to the three different parts of the
spectra shown in the top panel. The graphs are obtained with a grid resolution
Nx = 3072 and with S̄ = 104.

4.3 Spectral distribution versus Lundquist number

Next, we repeated the resolution study by varying the value of the
redefined Lundquist number S̄. Fig. 11 shows a comparison between
the particle energy spectra during the saturation phase, for different
values of S̄ and grid resolutions. As shown in Fig. 5, the beginning
of the saturation phase is delayed as S̄ increases, for this reason the
spectra shown in Fig. 11 correspond to different computational times.
Also, for higher value of the Lundquist number (S̄ = 105) we omit
results from low-resolution simulation (Nx = 192, i.e. a/�x � 2.5),
since, as mentioned in the Section 3.2, magnetic reconnection at that
time has just started.

From the figure it appears that the power-law index weakly
depends on the Lundquist number and it converges to a value 1.5

� p � 1.7 again for grid resolutions at around Nx � 768 (a/�x �
10). A quantitative measure of the p-index is provided, for different
values of S̄, in Table 3 at the largest grid resolution (Nx = 3072, i.e.
a/�x � 40). Note that it remains substantially the same for S̄ � 104

(or S � 8 × 105), a result that may be connected to the onset of the
fast reconnection regime (Landi et al. 2015).

These results lead us to conclude that, once magnetic reconnection
has started, the amount of resistivity – either of numerical or physical
origin – has a weak (or almost negligible) impact on the particle
energization process. Similar findings have been established, for
instance, for particle acceleration in MHD turbulence-induced fast
reconnection systems with different driving processes of turbulence
(see e.g. Kowal et al. 2012; del Valle, de Gouveia Dal Pino & Kowal
2016; Medina-Torrejón et al. 2021).

Our results favourably compare to previous works using test
particles in MHD snapshots, in particular with Gordovskyy et al.
(2010a), Gordovskyy et al. (2010b) who found a power-law index p ≈
1.5 − 3.0 at the end of reconnection (O-point stage). In addition, PIC
simulations of merging plasmoids reveal a spectral index compatible
with our results, that is p ≈ 1.5 (see, for instance, Drake et al. 2010;
Drake, Swisdak & Fermo 2013; de Gouveia Dal Pino & Kowal 2015).

5 SUMMARY AND DI SCUSSI ON

In this work, we have presented high-resolution 2D numerical
simulations of tearing-unstable MHD current sheet embedding a
non-thermal population of test particles evolving along with the fluid.
The initial condition for the thermal plasma consists of a pressure-
balanced magnetized (β = 0.01) Harris current sheet with constant
resistivity. Computations are performed using the PLUTO code for
different Lundquist numbers. We do not limit particle integration to
frozen MHD snapshots (as done, for instance, by Liu et al. 2009;
Gordovskyy et al. 2010a,b; Kowal et al. 2011; Ripperda et al. 2017a)
but, rather, they account for the concurrent evolution of both fluid and
particles (without mutual feedback) similarly to Gordovskyy et al.
(2010b) or Ripperda et al. (2017b).

Our goal aimed at quantifying the impact of the numerical method,
grid resolution and physical resistivity on both (i) the current-sheet
evolution and its convergence properties as well as (ii) on the
spectral properties of non-thermal test particles evolving within the
background thermal plasma.

In the first part of the paper, we initially focused only on the fluid
evolution, identifying four main temporal phases characterized by
a growing number of newly forming X-points. After (i) an initial
first linear phase characterized by a shrinking of the initial current
sheet (t/τ̄A � 840); (ii) a second linear phase (ending at t/τ̄A ≈
1360), marks the evolution of smaller current sheets, resulting from
the breaking of the initial one,; (iii) a more rapid fragmentation
phase leads to the appearance of several X- and O-points feeding the
formation of dynamically interacting plasmoids (t/τ̄A � 1840); and
(iv) a final non-linear saturated phase is accompanied by the presence
of one large magnetic island.

Several simulations using different numerical methods and mesh
resolutions have demonstrated that convergence during the initial
linear stages of the evolution can be achieved only for finite values
of the Lundquist number S̄ = avA/η, where a, vA, and η are,
respectively, the initial current sheet width, Alfvén velocity, and
physical resistivity. The minimum resolution at which convergence
is attained depends on the amount of numerical diffusion inherited
from the underlying discretization method. Below this resolution,
the linear growth phase is dominated by spurious numerical effects
which, as a general trend, are likely to delay the onset of the tearing
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Numerical methods and magnetic reconnection 2781

Figure 10. Comparison of particle energy spectra at the end of the simulation (ωpt = 6 × 105) for different grid resolutions in the case of a resistive with
S̄ = 104 (left-hand panels) and an ideal (right-hand panels) plasma. The HLLD (+ UCT-HLLD) scheme is used in the upper panels, with the HLL (+ UCT-HLL)
one is used in the lower panels. The grey-dashed lines represents the power law to which the spectra converge, with the corresponding p-index. In all the cases
the WENO-Z reconstruction has been used.

Table 2. p-index of the power-law part of the spectra (referring to Fig. 10)
at different resolutions for different combinations of schemes in the case of
resistive (S̄ = 104) and ideal (S̄ = ∞) plasma. The ideal HLLD + UCT-
HLLD case is not shown as magnetic reconnection does not start.

Power-law index p
Resolution a/�x HLLD HLL HLL

(S̄ = 104) (S̄ = 104) (S̄ = ∞)

192 × 96 ∼2.5 1.5 1.3 1.5
384 × 192 ∼5 1.6 1.7 2.2
768 × 384 ∼10 1.7 1.8 2.4
1536 × 768 ∼20 1.7 1.8 2.2
3072 × 1536 ∼40 1.7 1.8 2.0

instability as the resolution become coarser. In this respect, we
have found that the combination of the HLLD Riemann solver
and the UCT-HLLD emf averaging scheme of Mignone & Del
Zanna (2021), together with fifth-order WENO-Z reconstruction,
yields the best performance achieving convergence already at a/�x
� 10 when S̄ = 104. This is about half the grid resolution when

compared to either linear reconstruction or more diffusive numerical
methods based on more approximate Riemann solvers (e.g. HLL, see
Del Zanna et al. 2007, and reference therein) or second-order emf
averaging schemes (e.g. CT-Contact, see Gardiner & Stone 2005) for
which convergence is ensured when a/�x � 20.

For larger (smaller) values of the Lundquist number the mesh
size has to be increased (decreased) at the point where numerical
diffusion falls below the physical one. For a globally second-order
accurate scheme we have shown that this is expected to hold if
the number of computational zones covering the initial current
sheet width scales approximately as a/�x ∼ 10

√
S̄/104. We also

have verified that the linear growth rate matches the theoretical
prediction for asymptotically large S̄. Conversely in the ideal case
(S̄ = ∞), we have observed that the discretization scheme introduces
a grid-dependent numerical resistivity that still allows the current
sheet to reconnect, although convergence can never be actually
achieved. This is easily explained by the fact that a change in grid
resolution tantamount to a different problem with another value
value of the (spurious) resistivity. Only with the employment of
the HLLD + UCT-HLLD the system remained stable as one would
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Figure 11. Comparison of particle energy spectra in the saturation phase at different S̄ for several grid resolutions, obtained using the HLLD + UCT-HLLD
with the WENO-Z scheme.

Table 3. p-index of the power-law part of the spectra (referring to Fig. 11)
at at the highest grid resolution (Nx = 3072) for different values of S̄.

Power-law index p
Resolution a/�x S̄ = 103 S̄ = 104 S̄ = 105 S̄ = ∞
3072 × 1536 ∼40 1.5 1.7 1.7 –

expect for an ideal current sheet. Based on this results, we have picked
the HLLD scheme (with fifth-order WENO-Z spatial reconstruction)
as our optimal numerical method. Future studies will probably take
advantage of genuine fourth-order schemes.

Once the system enters in its non-linear stage, the spatially aver-
aged transverse component of the magnetic field reaches the same
value regardless of the Lundquist number. This result is analogous
to the turbulent situation (Lazarian & Vishniac 1999; Kowal et al.
2009), in which the properties of the system do not depend on the
Lundquist number but only on the properties of turbulence as long
as the inertial range is captured.

In the second part of this work, we have examined how tearing-
unstable current sheets become favourable to particle acceleration
and energization. Particles that reach the highest energies at the
end of the simulation share the same acceleration mechanisms.
They initially cross an X-point and enter inside a small plasmoid
that begins to merge with the adjacent ones. During the merger
process, the antireconnection electric field brought at secondary
current sheets from merging plasmoids (Oka et al. 2010; Sironi &
Spitkovsky 2014; Nalewajko et al. 2015; Cerutti 2019) is responsible
for the first acceleration step. Particles eventually remain trapped
inside plasmoid mergers and continue to gain energy through a first-
order Fermi mechanism (Drake et al. 2010; Kowal et al. 2011; Guo
et al. 2014; de Gouveia Dal Pino & Kowal 2015; Guo et al. 2015;
Petropoulou & Sironi 2018; Hakobyan et al. 2021). As also found by
Petropoulou & Sironi (2018), the most energetic particles at the end of
the simulation (102 � Ekin � 104) reside in a strongly magnetized ring
around the plasmoid core. On the contrary, the low-energy particles
(10−3 � Ekin � 10−1) are predominantly found in the regions outside
the plasmoid, and they did not experience significant acceleration.
In between, particles populating the power-law component of the
spectrum (10−1 � Ekin � 102) are found in proximity of the current
sheet or settle in the outermost rings of the plasmoid.

Several computations at different grid resolutions indicate that
the particle energy distribution remains almost unchanged for a/�x
� 10 and it quickly converges to a power law with index ≈1.7,
when S̄ � 104. Different values of the Lundquist number, in fact,
appear to have a weak influence on the power-law index, once the

fast reconnection regime (S̄ � 104) has been reached. These results
do not generally depend on the integration method or its numerical
diffusion but seem to have a general validity inasmuch the magnetic
reconnection process is operating. Indeed, we have found that this
holds even for ideal MHD (S̄ = ∞, albeit with a different spectral
index) for which the island formation process, when present, could
be triggered solely by numerical resistivity. This has been clearly
observed in the presence of more dissipative scheme such as the HLL
Riemann solver (for which p ≈ 2), but it does not appear with the
more accurate HLLD Riemann solver/emf averaging combination.

Our conclusion is that, in the context of reconnection-driven
test-particle acceleration, there is no need to reach very high grid
resolutions and that the amount of resistivity has very weak or almost
negligible impact on the particle energization process. Note that our
results are compatible with several studies of turbulence-driven fast
reconnection with or without explicit resistivity, see e.g. Kowal et al.
(2011, 2012), del Valle et al. (2016), and Medina-Torrejón et al.
(2021).

In a companion paper, we will consider the extension to the
relativistic (fluid) case as well as the impact of the guide field (which
is still a matter of debate; see e.g. Drake et al. 2010; Kowal et al.
2011) as well as of a static background magnetic configuration (i.e.
particles evolving on fluid snapshots) on the particle acceleration
process. In addition, the relative importance of the advective and
resistive electric fields in the particle energization will be thoroughly
discussed.
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APPENDI X A : X -POI NTS NUMBER
A L G O R I T H M

We illustrate the algorithm employed to locate X-point from our
simulation results.

Since, at an X-point, the magnetic field |B| vanishes (and so do the
Bx and By components), we first identify computational zones hosting
a local minimum of |B| over a stencil of 3 × 3 zones. These zones,
therefore, may potentially contain a null point. Let (i, j) be the indices
of a zone hosting a local minimum of |B|. A bilinear interpolation is
used to represent the Bx and By components of magnetic field inside
a square delimited by the four corner points (xi ± 1, yj ± 1):

H (x̂, ŷ) = Hi−1,j−1(1 − x̂)(1 − ŷ) + Hi+1,j−1x̂(1 − ŷ) +
+Hi−1,j+1(1 − x̂)ŷ + Hi+1,j+1x̂ŷ, (A1)

where H (x̂, ŷ) denotes either the x- or y-component of B while x̂

and ŷ are normalized coordinate in [0,1].
We then require that both Bx(x, y) and By(x, y) have a root:{
Bx(x̂, ŷ) = a0 + a1x̂ + a2ŷ + a3x̂ŷ = 0
By(x̂, ŷ) = b0 + b1x̂ + b2ŷ + b3x̂ŷ = 0,

(A2)

where the coefficients a0, a1,..., b3 are readily found from equa-
tion (A1). Equation (A2) leads to a quadratic equation whose
solutions are considered null points only if they fall inside the unit
square.
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