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Disentangling predictive processing 
in the brain: a meta‑analytic study 
in favour of a predictive network
Linda Ficco1,2,4*, Lorenzo Mancuso1,2, Jordi Manuello1,2, Alessia Teneggi1,2, Donato Liloia1,2, 
Sergio Duca2, Tommaso Costa1,2, Gyula Zoltán Kovacs3 & Franco Cauda1,2

According to the predictive coding (PC) theory, the brain is constantly engaged in predicting its 
upcoming states and refining these predictions through error signals. Despite extensive research 
investigating the neural bases of this theory, to date no previous study has systematically attempted 
to define the neural mechanisms of predictive coding across studies and sensory channels, focussing 
on functional connectivity. In this study, we employ a coordinate-based meta-analytical approach 
to address this issue. We first use the Activation Likelihood Estimation (ALE) algorithm to detect 
spatial convergence across studies, related to prediction error and encoding. Overall, our ALE results 
suggest the ultimate role of the left inferior frontal gyrus and left insula in both processes. Moreover, 
we employ a meta-analytic connectivity method (Seed-Voxel Correlations Consensus). This technique 
reveals a large, bilateral predictive network, which resembles large-scale networks involved in task-
driven attention and execution. In sum, we find that: (i) predictive processing seems to occur more in 
certain brain regions than others, when considering different sensory modalities at a time; (ii) there is 
no evidence, at the network level, for a distinction between error and prediction processing.

According to the theory of predictive coding (PC)1–5, our brain constantly attempts to model the probability 
of its own future states, with the goal of minimizing uncertainty4. More specifically, the brain is considered a 
hierarchically organized system where, at each level of processing, higher layers try to predict the latent causes 
of the sensory input coming from lower layers6,7. Thus, neurons at higher levels encode predictions about the 
upcoming signal, which is continuously compared with the effective signal received from lower levels. Through 
this comparison, the brain either reinforces existing predictions or it updates them, if these do not match the 
incoming signal8. When predictions are violated, a prediction error signal5,9,10 is fed back to the neurons encoding 
predictions. These recursive loops of predictions and error signals ultimately allow the individual to maintain 
up-to-date representations about its own internal states11 and the surrounding external stimuli. Over the past 
two decades, PC theory has received extensive support from a vast range of theoretical and experimental stud-
ies, both in relation to primary sensory processes5,12–14 and higher level cognitive processes15,16, such as decision 
making and naturalistic speech comprehension14,17,18. Moreover, evidence has been obtained with a variety of 
methods, mostly with functional magnetic resonance imaging (fMRI), but also electroencephalography19–21, 
computational simulations22, transcranial magnetic stimulation23, and physiological recordings of single neurons 
(for a review, see24).

Since 1999, when Rao and Ballard published their seminal simulation work on predictive coding in the visual 
cortex5, there has been a proliferation of attempts to implement PC in the human brain. Initially, it was argued 
that predictive processing occurs at the cellular level25, where the activity of neural populations is modulated by 
higher-order predictions and units signalling precision of those predictions. According to Bastos and colleagues26, 
PC is a typical property of the human cerebral neocortex because its structure suits a hierarchical signal exchange 
between cortical layers. In particular, error signals seem to be computed in the granular layers (especially layer 
IV), while predictions would be encoded in layers II and III26. These mechanisms have been identified in a large 
set of brain areas, including the primary sensory and motor cortices, motor association cortices, dorsal and ven-
tral prefrontal cortices, parietal cortex, anterior cingulate cortex, insula, hippocampus, amygdala, basal ganglia, 
thalamus, hypothalamus, cerebellum and the superior colliculus27,28. However, in all these regions, neuronal 
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units producing error signals and those encoding predictions of future states are functionally separated29. This 
separation has been found empirically through computational modelling, where neurons encoding predictions 
were found to be located in cortical layers II/III and prediction error neurons in layer IV22. Based on these con-
siderations and a previous study30, in this work we consider the functions of prediction encoding and violation 
in two separate conditions.

Current views conceive brain functions as a product of the co-activity of distributed brain networks31,32. This 
shift has also influenced implementations of PC in the brain. Specifically, while earlier formulations ground PC 
mechanisms in different layers of the human cortex, more recent models of PC attribute functions of error com-
putation and prediction encoding to discrete brain regions and their long-range interconnections33–35. However, 
such models describe PC-related networks in isolated domains, such as face processing33. Thus, the question 
of whether the same network structure exists for the encoding of predictions and transmission of error signal 
across sensory modalities, domains and experimental paradigms remains open. To our knowledge, no previous 
study has addressed the existence of a predictive network with meta-analytic functional connectivity methods. 
In addition, compared to previous studies (e.g.30), we aim to include a wider variety of experimental paradigms 
and sensory modalities. First, we performed a coordinate-based meta-analysis, then we calculated the functional 
connectivity of the regions which were activated in the original studies. We formulated the following hypotheses:

(a)	 At least some of the regions involved in predictive activity might be functionally connected, revealing a 
spatially defined network. Moreover, given the dense interchange of prediction and error signals in the 
human cortex26,29, and the heterogeneous nature of our datasets, our network might involve mostly higher 
order regions.

(b)	 As regards the brain areas generally involved in predictive processing, we might only partially replicate the 
results from a recent meta-analysis30, principally due to the diversity of selection criteria. While Siman-Tov 
and colleagues30 include studies pertaining to three specific domains, we include a wider range of effects 
and sensory modalities.

(c)	 As for the areas involved in prediction error computation, a recent meta-analysis9 highlighted the role of 
striatum, insula, thalamus and fronto-medial structures, while others36 reported other regions (the bilateral 
ventral striatum, the thalamus, the left frontal operculum, the left caudate and the left IFG). We therefore 
aimed to verify whether, with different selection and categorization criteria, these results on prediction 
error computation could be replicated.

Results
Selection of studies.  Following the criteria (a–f) described in “Selection of studies”, 106 articles were col-
lected (see Fig. 1). Data from these articles were classified in a table specifying the study identification code, year 
of publication, first author’s last name, title, scientific journal, number of experimental subjects, experimental 
task, sensory modality investigated, experimental contrast, type of stimuli. A further selection based on criteria 
(g) and (h) led to 70 articles. All the peak coordinates listed for the experimental contrast, which were classi-
fied as Prediction Encoding or Prediction Violation, were reported in a separate table. The classification of each 
reported contrast in the two conditions can be found in the Supplementary Tables S1 and S2. When necessary, 

Figure 1.   Flowchart representing the process of search and selection of potentially eligible articles for the meta-
analysis and the SVC Consensus.
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we converted the peak coordinates to the Montreal Neurological Institute (MNI) space, using the icbm_spm2tal 
transform on GingerALE37,38 (http://​www.​brain​map.​org/​icbm2​tal/).

Activation likelihood estimation.  A detailed explanation of how each contrast was classified as reflecting 
the effect of prediction encoding and violation is reported in “Selection of studies”. As a first step, we performed 
ALE meta-analyses singularly on the two main conditions: Prediction Violation (45 experiments, 511 foci and 
939 subjects) and Prediction Encoding (39 experiments, 444 foci, 750 subjects). Afterwards, we run an ALE 
meta-analysis on a unified dataset, derived by pooling the coordinates relative to the two conditions (70 experi-
ments, 930 foci of activation and 1419 participants). We refer to these analyses as General Prediction. Figure 2 
shows the results of the ALE analyses at FWE, p < 0.05. Further details of the ALE results are reported in Table 1.

Prediction violation.  Two significant clusters were related to the violation of predictions (Fig. 2, red color). 
The larger cluster included the left inferior frontal gyrus, while a smaller cluster was found over the left anterior 
insular cortex, partially overlapping with the claustrum.

Prediction encoding.  No significant cluster was found for Prediction Encoding at the typically applied, con-
servative threshold of FWE, p < 0.05. Lowering the threshold to FDR, p < 0.01 still did not produce any signifi-
cant convergence. However, at an exploratory level, we report the results obtained at a more liberal threshold 
(Uncorrected, p < 0.0005). At this threshold, fourteen clusters emerged. These included the right superior and left 
inferior parietal lobules, the right superior, right middle and left inferior frontal gyri, the bilateral fusiform gyri 
and the right amygdala, and a few clusters with a size inferior to 200 mm3 (including the left amygdala, the left 
precuneus and the right cuneus, the right insula and the right superior temporal gyrus).

General prediction.  Overall, the ALE analysis of the whole dataset returned a set of cortical regions in the fron-
tal and parietal lobes (Fig. 2, green). These include the left inferior frontal gyrus, the insulae bilaterally, the right 
superior frontal gyrus, the bilateral inferior parietal lobules, and the left precuneus.

Seed‑voxel correlations consensus.  This technique highlights the regions showing correlated activ-
ity with those that were active during the tasks tapping into predictive processing (see “Seed-voxel correla-
tions Consensus”). Overall, the results from all the three conditions are remarkably similar, thus we focus 
on the results of the General Prediction condition ( SIMGeneral/Encoding = 0.78 ; SIMGeneral/Violation = 0.93 ; 
SIMEncoding/Violation = 0.68 ). Peaks are located in the left inferior frontal gyrus, the superior temporal gyrus 
bilaterally, the left thalamus, the left hippocampus and the left cerebellum. Significant voxels are shown in warm 
colors. The network emerging from negative correlations (cold colors) includes the right cerebellum (uvula), the 
left precentral gyrus and the post-central gyri bilaterally, and the right middle occipital gyrus (Fig. 3; see Table S2 
for more details). Finally, the network relative to Encoding is substantially overlapping with that of the other two 

Figure 2.   Activation Likelihood Estimation results at a FWE-corrected voxel-level threshold (p < 0.05). Green: 
condition of General Prediction; Red: condition of Prediction Violation. Two clusters are in common between 
the two conditions, one in the left anterior insula/claustrum and the other in the left inferior frontal gyrus/
precentral gyrus. The General Prediction condition also shows clusters in the right insula, right and left inferior 
parietal lobule, one in the cuneus and one in the right middle frontal gyrus.

http://www.brainmap.org/icbm2tal/
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conditions, although the map of positive values appeared to be less extended. The major regions of differential 
connectivity between this and the map of Prediction Encoding include the left insula, the left middle frontal 
gyrus, the left anterior cingulate gyrus and the inferior frontal gyrus bilaterally (Fig. S3).

Although the SVC Consensus maps indicate regions that are significantly connected to the activation foci 
reported in the literature, the relation between these foci and such maps needs to be clarified. In fact, on one hand 
it is possible that only a few foci are responsible for the connectivity maps. On the other hand, these maps might 
show areas that are not reported in the literature (thus are not primarily considered to be involved in predictive 
processing), but are systematically connected to the predictive regions, possibly providing input or output to 
them. To investigate the relation between the foci and their connectivity, we overlapped the SVC Consensus of 
the General Prediction condition to the corresponding unthresholded ALE map. Here, the unthresholded map 
can be seen as an indicator of all the activated regions in the literature. We found out that there is a substantial 
overlap between the two maps (Fig. 4), suggesting that the activated areas tend to be interconnected and to form a 
coherent functional network ( SIM = 0.56 ). Lastly, to exclude the possibility of bias due to local connectivity, the 
SVC Consensus analysis was repeated excluding proximal connections between close areas from the SVC maps. 
The resulting maps were extremely similar to those obtained with the original SVC Consensus maps, suggesting 
that activation foci are connected not only to the spatially closer areas, but also to the more distal ones (Fig. S1).

Fail‑safe technique.  To test the impact of potential selection bias, we performed a fail-safe analysis39 
(“Fail-safe technique”). In the General Prediction condition, the analysis shows that at least one of the clusters 
remains significant up to the introduction of 250% random data, suggesting their robustness against selection 
bias (Fig. 5). The analysis of the Prediction Violation dataset suggests an even greater robustness (the clusters 
remain significant up to the inclusion of 425% random data). In general, both fail-safe tests suggest the robust-
ness to bias of the two clusters that are in common for the two conditions, i.e. the left IFG/precentral gyrus and 
the left insula/claustrum.

Table 1.   Activation likelihood estimation (ALE) results. Convergent findings of brain activity related to 
predictive coding conditions. *Significant activations are set at voxel-level p < 0.05 with the Family-Wise Error 
(FWE) correction. **Significant activations are set at p < 0.0005 uncorrected for multiple comparisons.

Condition
MNI coordinates 
(x, y, z) Volume (mm3) Maximum ALE value Z score P value

Anatomical 
location 
(Brodmann area)

General Prediction*

− 46, 10, 24 1088 0.049 6.78 6.11e−12 Left inferior frontal 
gyrus (BA 9)

− 30, 24, 2 608 0.043 6.10 5.23e−10 Left insula (BA 13)

4, 14, 50 224 0.037 5.39 3.59e−8 Right superior frontal 
gyrus (BA 6)

34, 24, 2 200 0.034 5.09 1.83e−7 Right insula (BA 13)

− 28, − 64, 46 200 0.034 5.13 1.44e−7 Left precuneus (BA 19)

Prediction Encoding**

36, − 60, 50 832 0.021 4.47 3.96e−6 Right superior parietal 
lobule (BA 7)

− 50, − 44, 52 608 0.021 4.38 5.82e−6 Left inferior parietal 
lobule (BA 40)

4, 12, 50 584 0.026 4.98 3.19e−7 Right Superior frontal 
gyrus (BA 6)

− 38, − 80, − 14 528 0.023 4.67 1.49e−6 Left fusiform gyrus 
(BA 19)

48, − 64, − 8 464 0.018 3.98 3.44e− 5 Right fusiform gyrus 
(BA 19)

− 46, 8, 26 440 0.023 4.61 2.03e−6 Left inferior frontal 
gyrus (BA 9)

48, − 44, 46 328 0.020 4.19 1.41e−5 Right inferior parietal 
lobule (BA 40)

28, − 6, − 20 312 0.021 4.35 6.70e−6 Right amygdala

42, 22, 32 288 0.019 4.14 1.76e−5 Right middle frontal 
gyrus (BA 9)

− 28, − 6, − 20 224 0.020 4.25 1.05e−5 Left amygdala

− 26, − 64, 46 224 0.019 3.98 3.40e−5 Left precuneus (BA 7)

46, 18, 6 192 0.021 4.29 8.81e−6 Right insula (BA 13)

20, − 100, 6 136 0.018 3.82 6.80e−5 Right cuneus (BA 17)

66, − 22, 6 120 0.017 3.79 7.41e−5 Right superior tempo-
ral gyrus (BA 42)

Prediction Violation*
− 46, 10, 24 616 0.033 5.59 1.12e−8 Left inferior frontal 

gyrus (BA 9)

− 30, 24, 0 608 0.038 6.19 2.94Ee−10 Left insula (BA 13)
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Leave‑N‑out.  This analysis tests the heterogeneity of a dataset, or whether all the studies in a dataset con-
tribute to the results similarly (Section 4.5). It was performed on the condition of Prediction Encoding due to the 
lack of convergence. Figure 6 shows the results from the leave-N-out analysis. The y axis indicates the number of 
papers, while the x axis the energy (1-quadratic error/total N experiments). The diagrams show the distribution 
of energy obtained by removing 3, 5, 7, 9 and 11 articles at each run separately. When removing less than 7 ran-
dom articles at a time, no important changes are visible in the distribution. Since 7/39 (removed articles/total) 
equals to 18% of the included experiments, this suggests that the condition of Prediction Encoding is mostly 
homogeneous. Thus, it is unlikely that the absence of convergence is due to the heterogeneity in the experiments. 
Instead, it may be due to the spatial distributedness of the activation coordinates per se.

Discussion
In this study, we partially replicate convergence results from previous meta-analyses. In addition, we provide 
evidence for the existence of a network involved in PC across sensory modalities and a variety of tasks. This 
spatially extended and bilateral network overlaps with known large-scale networks supporting attention and task 
execution. Finally, although the separation between error, weighting and encoding units is supported by our ALE 
results and previous work, our findings suggest that the regions that are engaged during prediction violation and 
encoding tend to be functionally connected with the same network.

The ALE results show convergence across tasks targeting predictive processing in a set of cortical regions, in 
both the Violation and the General condition. However, we did not find convergence in the Encoding condition, 
even at more liberal thresholds. As suggested by the results of the leave-N-out analysis, this spatial heterogeneity 
does not seem to be due to the disproportionate contribution of few studies, but rather to the large variability in 
the localization of foci. A qualitative inspection further indicates that this spatial distributedness is not due to 
a larger heterogeneity in the selected tasks either. Rather, it likely reflects a wider range of effects, due to our 

Figure 3.   Surface, medial and cerebellar mapping of the SVC Consensus analysis revealing the “predictive 
network” for the condition of General Prediction. Note that this and the Prediction Violation areas overlap 
entirely. The network that shows the Prediction Encoding areas is presented in the Supplementary Materials 
(Fig. S2). Warm colors represent positive t-values (range: 4.37–14.17), cold colors are for negative t-values 
(range: 4.37–19.61), shown in arbitrary units.
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Figure 4.   Surface map showing the overlap between the results of the unthresholded ALE (blue) and the SVC 
Consensus (red) analyses, for General Prediction. The overlapping regions are presented in purple.

Figure 5.   Coronal sections showing the results of the fail-safe analysis. Upper row: General Prediction; lower 
row: Prediction Violation. The color scales represent gradually increasing added random data in percentage. 
The warmer the color of the pixels, the more random noise (representing potentially unpublished results) is 
tolerated.
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definition of prediction encoding. In fact, while the Violation condition mainly includes effects of surprise and 
stimulus randomness, that of Encoding reflects effects of item repetition, habituation/adaptation, belief updating, 
memory, high probability and, in some cases, an explicit effort to predict upcoming stimuli. However, we cannot 
exclude that the spatial heterogeneity is an intrinsic property of the process itself. For instance, it was found that 
the effect of belief updating, one of the effects we included in the Encoding dataset, did not replicate between 
different methods40. If other effects suffered from the same issue, this could perhaps explain their wide spatial 
distributedness. Another potential reason for the lack of convergence is that one of the typical effects we included 
is that of repetition suppression, which is defined as a decrease in brain activity in task-related areas41. Therefore, 
this effect is probably at least partially more task-dependent in nature, thus leading to reduced convergence. It 
is challenging to compare this result to that by Siman-Tov et al., since only results from a subtraction between 
violation and formation of prediction are reported30. Nevertheless, we compared a meta-analysis on visual repeti-
tion suppression42 with the results of a subgroup analysis on a subset of studies employing visual stimuli from the 
Encoding condition. While Kim et al. report a network including visual cortices, frontal and parietal regions and 
the caudate, we again obtained no significant convergence, at the same threshold. This further strengthens the 
idea that the effects included in the Prediction Encoding condition show strong task-dependency. Although we 
preferred not to compare such effects systematically due to low power, future meta-analyses may quantitatively 
compare different aspects of prediction encoding.

One expected site of convergence that we have not found is the cerebellum, especially when analysing the 
violations of predictions. In fact, this structure has been reported in previous works as an important hub pro-
cessing the comparison between an internal model and the current sensory input, and as a region that supports 
procedural and perceptual learning mechanisms43–45. However, there are two main reasons why few neuroimaging 
meta-analyses are able to detect convergence in the cerebellum46. First, there could be technical difficulties asso-
ciated with the detection of BOLD signal from the cerebellum, principally dependent on experiments targeting 
climbing fibres, which are poorly coupled to this signal46. Second, some experimental paradigms tend to promote 
rapid habituation in this area, which in turn produces lower neural responses46.

Overall, our analyses of the Prediction Violation condition confirm previous findings9,30,36 regarding the insula 
and the IFG, while the involvement of others, such as the striatum and the thalamus, are not replicated. Both the 
insula and the IFG have been related to the violation of predictions in previous works. In particular, the anterior 
insulae have been related to the processing of bodily sensations and awareness of subjective feelings47. Moreover, 
insular regions compute prediction error signals, especially in the interoceptive modality35,48,49. Considering that 

Figure 6.   Diagram relative to the results of the leave-N-out analysis on the articles included in the Prediction 
Encoding condition. In each section, the y-axis shows the number of articles, and the x-axis shows the energy 
(1-quadratic error/total N experiments). To calculate the standard error, each run with removal and reinsertion 
of ‘N’ articles was repeated 10 times. Since removing up to 7 articles at a time (18% or the total dataset) still did 
not introduce important changes in the distribution of energy, we conclude that the dataset is homogeneous. See 
Section 4.5 for more details.
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only a small number of included studies explicitly targeted bodily sensations, this finding deserves special atten-
tion. A tentative interpretation is that, regardless of the nature of the specific expectations that are violated in 
each task, these tend to produce an error broadly related to the self50. The insular cluster also extends to include 
the left claustrum, which produces prediction error signals in Pavlovian classical conditioning paradigms51. 
Notably, these involve a component of automatic learning, which probably most of the tasks we included contain, 
to some degree. The second cluster was located in the IFG, which is involved in risk aversion52, and in detect-
ing a mismatch between expectations and decisions53. Recent studies indicate that this region plays a role in 
the violation of expectations. For instance, a correlation was found between both IFG and insula activity with 
a prediction error model during bi-stable perception, which is a paradigm inducing strong violations of visual 
expectations54. Moreover, ERP components in both which are associated with surprise were larger than those 
related to belief updating the right IFG and the bilateral insulae55. Lastly, intrinsic connectivity between the IFG 
and the insula was predicted by the degree of intolerance of uncertainty, which further indicates their sensitivity 
to error signals56. Together, these findings and our results suggest that the insula and the IFG, and their con-
nectivity during prediction violation across modalities, are a worthy avenue for further research.

The General Prediction condition was designed to tap into the general effects of predictive processing, that 
arise from the mere fact of performing a task eliciting predictions or prediction errors. Thus, we expected the 
brain regions emerging here to be related either to one or the other process, or to both. First, convergence was 
found in two larger clusters, one in the inferior frontal gyrus/precentral gyrus, and the other bilaterally in the 
insula. Strikingly, both regions also emerged in the meta-analysis of Siman-Tov et al., who similarly pooled 
together the effects of prediction encoding and violation30. This strengthens the plausibility of this result in other 
domains than those of music, action and language perception. Further supporting the double role of both the IFG 
and the insula in PC, activity in these areas represents the building of an expectation, analysing the conjunction 
across somatosensory, visual and auditory stimulus modality57. However, evidence about the IFG is somewhat 
more mixed. In fact, its activity does not always seem to depend on the predictability of a situation58. Moreover, 
whereas some authors describe it as an area involved in the processing of “expectancy input”59, others report 
increased activity in the IFG when the stimulus probability is low, leading to larger prediction error signal60. As 
regards the anterior insulae, notably these are an important hub of the salience network61. It is plausible that this 
hub is more activated in surprising situations driving attention62, which also involve an increased gain in error 
signal computation (the relationship between predictive and attentional processes is extensively discussed in 
the following paragraphs). Lastly, the role of precuneus in the General Prediction condition is more difficult to 
relate to the existing literature. In general, it is involved in self-related cognition, episodic memory and mental 
imagery63. Interestingly, this region was responsive to deviant stimuli even during sleep64, which may indicate a 
selective sensitivity to prediction error during different states of consciousness. However, belief updating modu-
lates activity in this region as well40. Overall, these studies support our findings, and suggest that the IFG and 
the insula might be involved in both the encoding and the violation of predictions. More evidence on prediction 
violation than encoding exists in both cases, and the sensitivity of the IFG (and the less discussed precuneus) to 
stimulus probability may more strongly depend on specific task characteristics.

The SVC Consensus analysis was conducted to highlight the brain regions that tend to provide input or output 
to those involved in prediction violation and encoding. Since the resulting network is largely similar between 
conditions, we focus on the General Prediction condition.

An important aspect is that the maps relative to the Prediction Violation and Prediction Encoding conditions 
are highly similar ( SIM = 0.68 , Fig. S2). This means that the regions involved in prediction cross-modally tend 
to exchange information with the same, broad set of areas during task execution. This finding is surprising for 
several reasons. First, as previously discussed, the Prediction Encoding condition reflects a greater diversity of 
effects than that of Violation. Second, a study examining functional connectivity during temporal and spatial 
predictions found that prediction violation and fulfilment modulate connectivity in distinct networks65. Lastly, 
this finding seems to contradict the fact that prediction violation and encoding are functionally separated6,26,29. 
Our ALE results further support this functional separation. Notably, all the regions differentially connected 
during the violation of predictions (Prediction Violation > Prediction Encoding) have been reported in a meta-
analysis on prediction error during reinforcement learning51, an experimental paradigm designed to provoke a 
strong error signal. Still, despite minor differences between these two maps (Figs. S2 and S3), our results strongly 
suggest that the same network supports both functions.

A key feature of the network that we obtained in all conditions is its remarkable similarity to the so-called 
task-positive network (TPN66). The TPN is a set of areas involved in task execution, and is usually divided 
into three large-scale brain networks related to salience processing61 and the dorsal and the ventral attentional 
networks67,68.

The fact that the regions which are more involved in prediction are also part of attentional networks replicates 
the findings by Siman-Tov and colleagues30 and is of key theoretical importance. An increasing body of research 
considers prediction and attention as dissociable but strongly interdependent processes (for empirical evidences, 
see69–71; for further readings see72–75). Attention adjusts the computational weight (precision) of prediction error 
units via synaptic gain enhancement7,76,77, leading to increased error signals. While attention enhances the pro-
cessing of relevant information and regulates the overall cortical responsiveness78–80, prediction allows the brain 
to take prior information into account81. Moreover, prediction “anchors” attentional processing, meaning that 
computing predictions is necessary to subsequent attention orientation71. Thus, the overlap between our map 
and the TPN could be interpreted in several ways. First, despite being distinct processes82–85, they may share a 
common neural territory. Considering that this network relies on the original coordinates of brain activations 
during task performance, it is clearly possible that both attention to the actual stimuli and the prediction of future 
stimuli were working simultaneously. Second, when multiple modalities are considered together, the activity of 
prediction and error computation might specifically involve attentional networks more than other brain regions. 
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This has never been observed before because, for obvious practical reasons, only a limited set of modalities are 
investigated at a time, often in a rather constrained experimental setting. Finally, a third possibility is that the 
TPN emerged from our analyses merely for the effect of participants’ engagement in any attention-demanding 
task, and the selected contrasts do not reflect predictive processing at all. It is difficult to rule this possibility 
out completely, as we did not analyse an arguably non-predictive neutral control condition86. However, as we 
performed a careful selection of neuroimaging contrasts targeting the effects of interest, the overlap with the 
canonical attentional networks might imply some relationship between the two processes.

Finally, our predictive network appears to be negatively correlated with the default mode network (DMN; 
for example, see Fig. 3, negative values). Activity patterns of the DMN and those of the TPN are anticorrelated87, 
and possibly involved in different forms of cognition. In particular, the DMN is typically reported to be more 
activated during rest and mind-wandering88. Considering recent work suggesting that this network creates 
and updates internal predictive models about the self89, and that it is engaged when stimuli are temporally 
predictable90, the lack of connectivity within its key hubs is rather unexpected, especially in the Encoding con-
dition (cf.40). Moreover, since the DMN is located at the extreme end of a continuum of integration and hetero-
modal functioning within the human connectome91,92, it is even more surprising that it did not result from our 
functionally heterogeneous dataset. A possible reason for its absence could be that, under the hypothesis that 
the DMN is responsible for the integration of predictions in prior internal models—acting in a sort of “autopilot 
mode”93,94—almost no included experimental paradigm tested this kind of automatic activity. High temporal 
resolution techniques, computational, and meta-analytic approaches to functional neuroimaging data can be 
valuable tools to investigate the role of the DMN in predictive processing in the future.

While we have highlighted the theoretical relevance of our results in the previous paragraphs, the finding of a 
predictive network could also be meaningful in the clinical context. Debilitating clinical conditions seem to stem 
from alterations in the production of prediction error signals (e.g. schizophrenia, anxiety95–98), hyper-rigidity 
of prior information or inflexible precision of prediction error (e.g. autism99–101). Since psychopathology tends 
to spread in the brain exploiting existing functional connectivity patterns102–105, and our network is thought to 
reflect the connectivity between regions involved in cross-modal prediction, investigating this network in dif-
ferent psychiatric samples should be fruitful.

One potential limitation of the current work is that the selection, classification and coding of the articles 
was conducted manually by one author only. However, the coded dataset was independently cross-checked by 
another author. Moreover, a section of notes was included in the database with the aim to make the interpreta-
tion and selection processes more transparent, as suggested by recent guidelines106. Another potential flaw is 
caused by the heterogeneity of the definition of “prediction” in the literature. In fact, the concepts of prediction, 
anticipation and expectation are often used interchangeably107 and how they are operationalized in each study 
can potentially lead to confusion with other processes81,108. Lastly, the strong presence of studies employing 
visual or audio-visual tasks may have also limited the validity of the current results (Table S4). However, the 
absence of early visual areas in both the ALE and the SVC Consensus results may suggest that the impact of this 
imbalance is nevertheless limited.

Methods
Selection of studies.  We searched for publications (Pubmed, https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/) up 
to January 2019. Articles were chosen using the keywords “predictive coding” AND “fMRI”, OR “functional 
magnetic imaging” OR “functional brain imaging” in the title or in the abstract of the articles. The decision to 
choose the only term “predictive coding” instead of a variety of related terms had two purposes: on one hand, to 
select only articles explicitly explaining their results under this framework; on the other hand, we did not include 
terms as “prediction error”, “expectation” or “Bayesian brain” so that articles describing the role of expectancy in 
psychology without referring to PC could be excluded.

In the initial selection stage, the following primary inclusion criteria were applied. We included studies:

(a)	 which employed fMRI;
(b)	 which provided the peak coordinates of significant activation in stereotactic brain space (MNI, TAL). In 

some cases, we included coordinates derived from model fit or correlations with model parameters reflect-
ing the effect of interest. Peak coordinates reflecting functional connectivity were excluded;

(c)	 which were original experimental works. We excluded reviews or other meta-analytic studies;
(d)	 which reported whole-brain analysis for the contrasts of interest (i.e., contrasts which were based on a 

priori regions of interests (ROI analyses)  were excluded);
(e)	 which were based on a healthy adult sample;
(f)	 which were written in English.

Additional, more specific criteria for inclusion were the following:

(g)	 the articles had to explicitly support the PC theory, regardless of the sensory modality and the process 
investigated (i.e., only studies bringing evidence in favour of the framework were considered);

(h)	 the articles had to include experimental contrasts which reflect the violation of a prediction or the creation, 
updating or maintenance of a predictive internal model.

First, we collected the contrasts fulfilling these criteria from each experiment. Afterwards, we assigned the 
coordinates to two conditions. The first condition, that we label Prediction Violation, includes tasks where the 
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expectations of participants are unfulfilled. This effect is reflected in contrasts comparing, for instance, a deviant 
condition with an expected one, a mismatch condition with a match one, or a random condition with a regular 
one. Other studies similarly investigated prediction violation, by fitting a statistical model designed to represent 
the same effect. In general, such experimental conditions might cause a sense of surprise and increase prediction 
error signals9. The second condition, labelled as Prediction Encoding, contains a variety of effects, reflecting the 
neural encoding of expectations about upcoming stimuli or the learning of their statistical regularities109. Typi-
cally, these included contrasts between a learned and an unfamiliar condition/event, or between an expected 
and an unexpected condition. However, others target the effect of consciously trying to predict future scenes, 
those of adaptation to repeated stimuli or the comparison between high and low probability conditions. Finally, 
in order to investigate the regions involved in prediction encoding and violation, we created a third condition 
(General Prediction), obtained by merging the datasets of the other two conditions.

Importantly, since it is frequent that coordinates related to the error or the encoding effect are reported in 
the same experiments from different contrasts, we did not classify the individual studies according to the two 
conditions, but the single contrasts reported in each study. In other words, the unit of analysis was each individual 
contrast, and not the study. Furthermore, this classification not only considered the performed task, but also the 
interpretation of the results that was provided by the authors. For instance, a reduced response in some brain 
areas, related to the repetition of stimuli, is often interpreted as repetition suppression (RS), hence this effect 
would be included in our Prediction Encoding category (for a review on how PC may explain RS, see33). Finally, 
although some authors pointed out that the effects of repetition and expectation suppression are different86, note 
that we merge both effects under the category of Prediction Encoding. Figure 1 shows a flowchart representing 
the described steps of the selection process. For a detailed list of the contrasts included in the study and the 
classification of their reflected effect, see Tables S1 and S2.

Activation likelihood estimation.  Activation Likelihood Estimation (ALE) is a meta-analytic technique 
which detects areas of convergence across peak coordinates of significant activations from functional neuroim-
aging studies110–112. In short, the current version of this algorithm models a Gaussian kernel for each activation 
peak, considering these as fixed-effects within each study, whereas studies are treated as random-effects. The 
width of the kernels accounts for between-subject and between-lab variations leading to spatial uncertainty, and 
it is based on the number of participants in each study110. Then, one Modelled Activation (MA) map is calculated 
for each study, unifying all the modelled peaks. Afterwards, a union of all the MA maps is performed, where 
each voxel contains an ALE score. In order to test for statistical significance, the algorithm compares the ALE 
scores of the obtained union map with a null-distribution of ALE scores, reflecting random spatial association 
between studies. Specifically, such distribution reflects the null hypothesis that the activation foci are randomly 
distributed throughout the brain, leading to convergence only by pure chance. Lastly, a correction for multi-
ple comparisons is applied. We used GingerALE version 3.0 (http://​www.​brain​map.​org/) to perform the above 
meta-analysis. The threshold for detecting significant convergence was set at voxel-level p < 0.05, with 1000 
permutations with the family-wise error correction method (FWE), and the analyses were performed in the 
MNI152 coordinate space. Coordinates reported in TAL in the original study were converted using the icbm2tal 
transform prior to the ALE analysis38. When more contrasts in one study reflected the effect of interest in each 
condition (e.g. two contrasts reflecting different aspects of encoding), we merged their respective coordinates. 
This ensured that participants were not included in the analyses twice106.

Seed‑voxel correlations consensus.  To investigate the connectivity patterns of the areas involved in 
predictive processing, we performed a Seed-Voxel Correlations (SVC) Consensus technique, adapted to func-
tional data. This type of connectivity detects the brain regions providing input or output to those activated in the 
original studies. This technique was originally developed by Boes and colleagues113 to map the connectivity of 
brain lesions. It consists of overlapping several SVC maps, to verify if they tend to connect to a set of shared areas. 
The explicit aim of this method was to test if the spatial heterogeneity of brain lesion of a given deficit could be 
reduced to a common functional network114. Similarly, in the present work we aimed to evaluate the spatial vari-
ability of regions associated with predictive processing. Specifically, we hypothesized that the diverse activation 
foci which were reported in the literature might belong to a single brain network, and thus that they tend to be 
connected to each other. To do so, each peak that entered the ALE meta-analysis was searched in the Neuro-
synth resting-state database to obtain a functional connectivity map. This means that the voxel corresponding 
to a given coordinate of activation was taken as the seed of each SVC. Neurosynth (http://​www.​neuro​synth.​org) 
is an online database of functional meta-data which allows to easily obtain SVC maps calculated on the 1000 
subjects of the Brain Genomics Superstruct Project (https://​datav​erse.​harva​rd.​edu/​datav​erse/​GSP). Each SVC 
map was then considered as an individual subject in a second-level analysis. Then, the overlap of those maps 
was assessed by the means of a one-sample t-test on SPM12, (http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​spm12/) 
with a FWE-corrected threshold of p < 0.05. Both the positive and the negative contrasts were calculated, thus 
obtaining a map related to the shared positive correlations and one related to the negative ones. This analysis was 
carried out separately for the datasets of the three conditions (Violation, Encoding and General; for details see 
below). To facilitate the comparison between the conditions of Prediction Encoding and Violation, we perform 
a two-sample t-test on the two SVC Consensus maps (see Table S4, Fig. S3).

It should be noted that functional connectivity is partly influenced by physical closeness, so that spatially 
closer voxels tend to be connected more strongly115. As we worked with a large number of foci (930 in total), it 
may be argued that many of the seeds were close to each other, and thus their maps would display a high degree 
of overlap. Therefore, the SVC Consensus results could be biased because of the mere spatial closeness of a high 
number of peaks. To test this hypothesis, we repeated the SVC Consensus analysis of the General Prediction 
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condition using only the distant connectivity of each seed, defined as all the voxels in each SVC map that were at 
least 14 mm3 far from the seed115. Hence, local connectivity of a seed is the volume within the radius of 14 mm 
around it. For this test, all the voxels around the seed in each of the SVC maps were set to 0, before recalculating 
the t-test.

Fail‑safe technique.  The fail-safe technique allows the verification of the potential presence of selection 
bias in the dataset39. The so-called “file-drawer problem” indicates the possibility that there might have been 
studies that were not published because of null results or findings that were not consistent with the authors’ 
expectations. This problem affects both neuroimaging and standard effect-size meta-analyses116, so that unpub-
lished studies are likely to contradict the results of the meta-analysis. The fail-safe analysis39 aims to detect selec-
tion biases, estimating how many of these studies would make the results of the meta-analysis non-significant. 
This is performed in two steps. First, we introduced in our datasets a number of maps with similar features to 
those included in the meta-analysis, but random foci location (spatial noise). These maps represent potentially 
unpublished neuroimaging studies. Second, we performed the ALE analysis on the original dataset multiple 
times, using the same threshold and correction settings of the main analysis, but each time with an increasing 
number of spatial noise maps. We performed this analysis on the conditions of Prediction Violation and General 
Prediction. Since no significant cluster emerged from the condition of Prediction Encoding at voxel-level FWE 
p < 0.05, we did not perform the fail-safe analysis in this case. The results of this procedure are generally consid-
ered robust if the convergence results are maintained after adding more than 200% of random data.

Leave‑N‑out.  The leave-N-out method is a cross-validation method to test the heterogeneity of a set of 
data. In the present study, it was employed on the dataset of the Prediction Encoding condition, to check if the 
reason behind the absence of significant clusters could be the particular impact of a study or group of studies in 
the meta-analysis. This method gives us the possibility to weight the contribution of each experiment (or group 
of experiments) and estimate the presence of “outliers”, i.e. studies which contribute to the result disproportion-
ately, driving the outcome to a certain direction117. This analysis has been performed by calculating the ALE 
results each time omitting a growing number of ‘N’ experiments with reinsertion after each run. Each ‘leave-N-
out’ iteration has been repeated 10 times to calculate the standard error. The calculation of 1—quadratic error 
divided by the total number of experiments that are removed from the analysis and reinserted at each step is a 
measure called energy. This value can be interpreted as a measure of the extent to which ALE results are affected 
by the removal of the articles, indicating how much the dataset is homogeneous. In our dataset, the level of 
energy that seemed to be associated with a change in its distribution is 0.6, thus the procedure at each leave-N 
stopped when this threshold was reached.

Overlap between the unthresholded ALE map and the SVC Consensus map.  In order to test 
the overall robustness of the network, obtained with the SVC Consensus technique, we created the overlap of 
the General Prediction Consensus and the unthresholded General ALE maps. An overlap between these maps 
shows brain regions that are functionally connected to each other. We tested the degree of overlap both by 
visually analysing the map and by calculating the Cosine Similarity Index (SIM). This is a widely used metric 
to assess the similarity between two vectors, which is unsensitive to their magnitude. It is calculated as the dot 
product of two vectors (in our case, the two maps) divided by the product of the two vectors’ magnitudes. Then, 
the similarity between the two maps was calculated with the following formula:

where Ai and Bi represent the two maps’ vectors, and n the number of voxels. This index ranges from 0 to 1, 
where 1 indicates, in our case, complete similarity. We calculate the SIM to compare the SVC Consensus maps 
between each other, to quantify their overall degree of overlap.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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