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We show that, in semi-abelian action accessible categories (such
as the categories of groups, Lie algebras, rings, associative algebras
and Poisson algebras), the obstruction to the existence of exten-
sions is classified by the second cohomology group in the sense
of Bourn. Moreover, we describe explicitly the obstruction to the
existence of extensions in the case of Leibniz algebras, comparing
Bourn cohomology with Loday–Pirashvili cohomology of Leibniz
algebras.
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1. Introduction

Given an extension of groups as below, the conjugation in X determines an action of X on K , and
consequently a homomorphism φ : Y → Aut K

Inn K = Out K , called the abstract kernel of the extension:

0 K
k

X
f

Y

φ

0

0 Inn K Aut K Out K 0

(1)

It is a classical problem to establish whether, given a morphism φ as above, there exists an extension
having φ as its abstract kernel. A first solution to this problem was given by Schreier in [33,34]:
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he associated with any abstract kernel φ an obstruction, that vanishes if and only if there exists an
extension inducing φ.

Twenty years later, Eilenberg and Mac Lane in [19] described the obstruction in terms of cohomol-
ogy (for a more detailed account see also [28]): with any abstract kernel φ it is possible to associate
an element of the third cohomology group H3

φ
(Y , Z K ), where Z K is the centre of K and φ is the

(unique) action of Y on Z K induced by φ. They proved that an extension with abstract kernel φ

exists if and only if the corresponding element in H3
φ
(Y , Z K ) is 0.

This result was then generalized to other algebraic structures, such as rings [27], associative al-
gebras [20] and Lie algebras [21]. Analogous results, expressing the obstruction in terms of triple
cohomology, were obtained by Barr for commutative associative algebras [1] and by Orzech for cate-
gories of interest [30].

Then the natural question arose whether it is possible to unify the different treatments of obstruc-
tion theory for all these algebraic examples. A first answer in this direction was given by Bourn in
[10]: in that paper the author developed obstruction theory in Barr-exact action representative cate-
gories [3] in terms of the cohomology theory expressed via n-groupoids [6]. In action representative
categories, actions over a fixed object K can be described as morphisms into a representative ob-
ject (such as Aut K for groups), and there exists a canonical exact sequence determined by K (as the
bottom row of diagram (1)). This is what happens, for example, in the categories of groups and Lie
algebras (explaining the strong analogies between the cohomology theories of these two structures),
but not in the other examples mentioned above.

In fact, it turns out that the representability of actions is not necessary in order to develop ob-
struction theory, provided we replace the canonical exact sequence and the notion of abstract kernel
with suitable ones. The present article extends the results of [10] about obstruction theory to the
context of action accessible categories [13]. As shown in [29], this context includes all the algebraic
structures above (even those which are not covered by the action representative case, such as rings
and associative algebras) and some new ones, such as Poisson algebras, Leibniz algebras [23], associa-
tive dialgebras [24] and trialgebras [26]. As an example, we describe explicitly obstruction theory for
Leibniz algebras, comparing, in this context, Bourn cohomology with the Leibniz algebras cohomology
described by Loday and Pirashvili in [25].

The paper is organized as follows. After recalling some background material in Section 2, Section 3
is devoted to recalling the categorical theory of extensions, as developed in [14]. In Section 4 we
describe the obstruction to the existence of extensions with fixed abstract direction in the context of
action accessible categories. In Section 5 we describe obstruction theory for Leibniz algebras over a
field.

2. Background material

2.1. Pretorsors

In this section we recall from [10] some definitions and results that will be used in the subsequent
sections.

Definition 2.1. A regular category C is said to be efficiently regular when any equivalence relation T
on an object X , with T a subobject of an effective equivalence relation R on X by a regular monomor-
phism (i.e. an equalizer in C), is itself effective.

This categorical setting was introduced by Bourn in [9], as an intermediate notion between those
of regular and Barr-exact category. Efficiently regular categories are stable under formation of slice
and coslice categories. As a leading example, the category GpTop (resp. AbTop) of topological groups
(resp. topological abelian groups) is efficiently regular, but not Barr-exact. The main point here is that
when C is efficiently regular and when there is a discrete fibration S → R between two equivalence
relations, then S is effective as soon as R is effective. Let us also observe that any Barr-exact category
is efficiently regular.
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We recall here the notion of pretorsor, following [31], where they are called pregroupoids (see also
[10], Definition 1.3).

Definition 2.2. (See [31].) A pretorsor in an efficiently regular category C is a pair of regular epimor-

phisms X
f
� W

g
� Y such that [R[ f ], R[g]] = 0, i.e. R[ f ] and R[g] centralize each other in the sense

of Smith (see also [12] for details).

From now on in this section, let us suppose that C is efficiently regular and Mal’tsev.
Pretorsors owe their name to the fact that they canonically determine categorical bitorsors. Bourn

showed in [11] that these can be described in terms of regularly fully faithful profunctors. Actually,

given a pretorsor X
f
� W

g
� Y , we can consider the following diagram, where the upper left-hand

side part is the centralizing double equivalence relation of the pair ([R[ f ], R[g]]):

R[g] ×W R[ f ]
p1

π0

π1p0

R[ f ]
d1d0

g1
Y1

y1y0

R[g]
d1

d0

f1

W

f

g
Y

X1

x1

x0

X .

(2)

One can show that the upper horizontal equivalence relation and the vertical one on the left-
hand side are effective and admit quotients g1 and f1. This construction produces two groupoids
δ0( f , g) = X1 and δ1( f , g) = Y 1, which are called the domain and the codomain of the pretorsor. They
are in fact the domain and codomain of a (regularly fully faithful) profunctor ( f , g) : X1 � Y 1. By
abuse of notation, we indicate with the same symbol the pretorsor and the corresponding profunctor.

Actually, as shown in [11], pretorsors (or, to be more precise, their counterpart: regularly fully
faithful profunctors) can be seen as morphisms of a bigroupoid RF(C) whose objects are internal
groupoids. Let us denote by RF(C) its classifying groupoid, in the sense of Bénabou [2].

Let Z 1 be any internal groupoid. The canonical (regular epi, mono) factorization of the map
〈z0, z1〉 : Z1 → Z0 × Z0 gives rise to an equivalence relation Σ Z 1:

Z1 �Σ Z 1 � Z0 × Z0,

which is called the support of the object Z 1 in the fibre GpdZ0
(C) with respect to the fibration ()0 :

Gpd(C) →C. Following [10], we say that the groupoid Z 1 has effective support when the equivalence
relation Σ Z 1 is effective.

When the Mal’tsev category C is not only efficiently regular, but also Barr-exact, any groupoid has
effective support. When Z 1 is a groupoid with effective support, we denote by qZ 1 : Z0 � π0 Z 1 the
coequalizer of this effective support.

Proposition 2.3. (See [10], Proposition 1.5.) Suppose C is Mal’tsev and efficiently regular. Let ( f , g) : X1 � Y 1
be a pretorsor. Then X1 has effective support if and only if Y 1 has effective support. If Y 1 has effective support,
there is a unique dashed arrow which makes the following square commutative:
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W
g

f

Y

qY 1

X
qX1

π0 X1 = π0Y 1

It is the quotient map qX1 , and it produces a regular pushout (i.e. such that the factorization of the pair ( f , g)

through the pullback is a regular epimorphism).

In [7], Bourn observed that, given a finitely complete Barr-exact category E (but the same consider-
ations hold if E is efficiently regular), it is possible to define a direction functor d : AutM(Eg) → Ab(E)

from the category of objects in E with global support endowed with an autonomous Mal’tsev op-
eration to the category of abelian group objects in E. The fibers of d are endowed with a closed
symmetric monoidal structure. In [8] the same author showed that, if C is finitely complete and
Barr-exact, then the category E = GpdX0

(C) of internal groupoids in C with fixed object of ob-
jects X0 is finitely complete and Barr-exact, too. Moreover, if C is Mal’tsev, then any internal
groupoid in C is endowed with an autonomous Mal’tsev operation. Therefore, the direction func-
tor d : AutM(GpdX0

(C)g) → Ab(GpdX0
(C)) associates with any connected groupoid X1 (i.e. an object

with global support in GpdX0
(C)) an abelian group object d(X1) in GpdX0

(C). Furthermore, if the
object of objects X0 of X1 has global support (and in this case X1 is said to be aspherical), then there
is an equivalence of categories (see Theorem 9 in [8]):

Ab
(
GpdX0

(C)
) ∼= Ab(C),

and then the direction functor gives rise to a functor

d1 : AsphGpd(C) → Ab(C)

from the category of aspherical groupoids in C to the category of abelian groups in C.
This construction can be applied to groupoids with effective support. Indeed any such groupoid

Z 1 is aspherical when considered as an internal groupoid in the slice category C ↓ π0 Z 1. The above
functor d1, applied to this situation, yields a groupoid which is called global direction in [10, Definition
1.5]. The global direction of Z 1 is the totally disconnected groupoid d1 Z 1 produced on the right-hand
side by the following pushout of solid arrows:

R[〈z0, z1〉]
p1p0

d1 Z 1

Z1

〈z0,z1〉

π0 Z 1

Z0 × Z0

(3)

Notice that the maps p0 and p1 provide the same retraction of π0 Z 1 → d1 Z 1 since they are coequal-
ized by the lower horizontal map. The following strong property relates the domain and the codomain
of a pretorsor:
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Proposition 2.4. (See [10], Proposition 1.6.) Suppose C is Mal’tsev and efficiently regular. Let ( f , g) be a
pretorsor such that Y 1 (or, equivalently, X1) has effective support. Then the global directions of X1 and Y 1 are
the same.

2.2. Action accessible categories

Most of the notions and the results of this section are borrowed from [13].
Let C be a pointed protomodular category. Fixed an object K ∈ C, a split extension with kernel K

is a diagram

0 K
k

A
p

B
s

0,

such that ps = 1B and k = ker(p). We denote such a split extension by (B, A, p, s,k). Given another
split extension (D, C,q, t, l) with the same kernel K , a morphism of split extensions

(g, f ) : (B, A, p, s,k) → (D, C,q, t, l) (4)

is a pair (g, f ) of morphisms:

0 K
k

1K

A

f

p

B

g

s
0

0 K
l

C
q

D
t

0

(5)

such that l = f k, qf = gp and f s = tg . Let us notice that, since the category C is protomodular, the
pair (k, s) is jointly (strongly) epimorphic, and then the morphism f in (5) is uniquely determined
by g .

Split extensions with fixed kernel K form a category, denoted by SplExtC(K ), or simply by
SplExt(K ).

In many algebraic contexts, a split extension as above induces an action of B on K . By considering
the faithful actions one can obtain a notion of faithful extension, as introduced in [13]:

Definition 2.5. (See [13].)

• An object in SplExt(K ) is said to be faithful if any object in SplExt(K ) admits at most one mor-
phism into it.

• Split extensions with a morphism into a faithful one are called accessible.
• If, for any K ∈ C, every object in SplExt(K ) is accessible, we say that the category C is action

accessible.

Example 2.6. In the case of groups, faithful extensions are those inducing a group action of B on K
(via conjugation in A) which is faithful. Every split extension in Gp is accessible and a morphism into
a faithful one can be performed by taking the quotients of B and A over the centralizer C(K , B), i.e.
the (normal) subobject of A given by those elements of B that commute in A with every element
of K .

The notion of action accessible category generalizes that of action representative category [4]. In
fact, in an action representative category every category SplExt(K ) has a terminal object:
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0 K K � [K ] [K ] 0,

where the object [K ] is called the actor of K . Examples of this situation are the categories Gp of
groups (where the actor is Aut K ) and R-Lie of R-Lie algebras, with R a commutative ring (where the
actor is the Lie algebra Der K of derivations). The category Rng of (not necessarily unitary) rings is
action accessible [13] but not action representative, as shown in [4]. In [29] it is shown that every
category of interest, in the sense of [30], is action accessible. This family of examples includes Poisson
algebras, Leibniz algebras [23], associative dialgebras [24] and trialgebras [26].

A variation of the notion of action accessible category is that of groupoid accessible category. We
recall that, in a Mal’tsev category, a reflexive graph (B, A,d0, s0,d1) is a groupoid if and only if
[R[d0], R[d1]] = 0, i.e. R[d0] and R[d1] centralize each other in the sense of Smith (see [12]).

Fixed K ∈ C, by a groupoid structure on an object (B, A, p, s,k) in SplExt(K ) we mean a morphism
u : A → B such that us = 1B and [R[p], R[u]] = 0; the system (B, A, p, s,k, u) is then called a K -
groupoid. K -groupoids form a category, in which a morphism

(g, f ) : (B, A, p, s,k, u) → (D, C,q, t, l, v)

is a morphism (g, f ) : (B, A, p, s,k) → (D, C,q, t, l) in SplExt(K ) such that v f = gu.
As for the corresponding notions concerning split extensions, we introduce the following ones for

internal groupoids.

Definition 2.7. (See [13].) Let K be an object in C. We denote by GpdC(K ) (or simply Gpd(K )) the
category of K -groupoids in C, morphisms in Gpd(K ) are called K -morphisms.

• A K -groupoid is said to be faithful if any K -groupoid admits at most one K -morphism into it.
• A K -groupoid is said to be accessible if it admits a K -morphism into a faithful K -groupoid.
• If, for any K ∈C, every K -groupoid is accessible, then we say that C is groupoid accessible.

In [13] it is shown that if C is homological, then it is action accessible if and only if it is groupoid
accessible.

Moreover, when C is a homological action accessible category, given a morphism

(g, f ) : (B, R, r0, s,k, r1) → (D, C,q, t, l, v)

in Gpd(K ), where the domain is an equivalence relation and the codomain is faithful, then the kernel
pair R[g] of g is the centralizer of the relation R , i.e. the largest equivalence relation S on B such
that [R, S] = 0 (see [13], Theorem 4.1). The normalization of R[g] is the centralizer C(K , B) of K in
B . In particular, the normalization of the centralizer of the total relation ∇K is the centre Z K of K .

3. Extensions in action accessible categories

In this section we recall the categorical theory of extensions, as developed in [14]. The reader can
refer to that paper and to the references therein for a more detailed account. Throughout this section,
C will be a Barr-exact action accessible category, which is then also groupoid accessible.

In this setting there exists a canonical faithful groupoid associated with any equivalence rela-
tion. More precisely, it is possible to show that, given a K -morphism with faithful codomain and an
equivalence relation as domain, then it factors through a specified regular epimorphism with faithful
codomain.

Consider now any extension

0 K
k

X
f

Y 0.



A.S. Cigoli et al. / Journal of Algebra 385 (2013) 27–46 33
Denoting by T 1 f the canonical faithful K -groupoid associated with the kernel relation R[ f ], let
(q f , Q f ) = (qT 1 f ,π0T 1 f ) and consider the diagram:

R[ f ]
k1 f

f0 f1

T1 f

τ0 τ1

X

f

k f
T0 f

q f

Y
φ

Q f

(6)

Since q f k f f0 = q f k f f1, there exists a unique arrow φ : Y → Q f making the lower square commuta-
tive. It is immediate to show that this square is a pushout.

Definition 3.1. We call the pair (T 1 f , φ) the abstract direction of the extension f (an indexation in
[14]), and we denote by

Ext(T 1 f ,φ)(Y , K )

the set of (isomorphism classes of) extensions of Y via K inducing the abstract direction (T 1 f , φ).

Remark 3.2. For the reader who is not familiar with the categorical theory of extensions, it may be
useful to briefly examine the situation in the action representative category of groups. In fact, the
discussion below is element free, so that it applies to any Barr-exact action representative category.

In the case of groups, diagram (6) above can be obtained as a factorization of the one involving
the automorphisms group. Actually, the normal subgroup K determines a (conjugation) action

X Aut K ,

that is the object component of the internal functor into the action groupoid of K , i.e. the groupoid
with group of objects Aut K , and with group of arrows the semi-direct product K � Aut K (the
holomorph group of K ). This induces a homomorphism Φ into the connected components of that
groupoid, the group Out K of outer homomorphisms, i.e. Φ is the classical abstract kernel of [28].
Hence diagram (6) above takes part in the following factorization:

R[ f ]
k1 f

f0 f1

T1 f

τ0 τ1

K � Aut K

X

f

k f
T0 f

q f

Aut K

qK

Y

Φ

φ
Q f Out K
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When K is abelian, the map qK is an isomorphism, so that the abstract kernel gives an actual action
of Y on K . The totally disconnected groupoid given by this action is called the direction of the extension
(see [10]). From this comes the name abstract direction of Definition 3.1.

Let us return to the general case. The pullback along φ clearly induces a change of base. This yields
the groupoid D1φ := φ∗(T 1 f ) and the factorization k1 f = d1φ · f 1φ of K -discrete fibrations:

R[ f ]
f0 f1

k1 f

f1φ

D1φ

d0 d1

d1φ

T1 f

τ0 τ1

X

k f

fφ

f

Dφ

qφ

dφ

T0 f

q f

Y
φ

Q f

The map fφ is a regular epimorphism whose kernel is the centre Z K of K , and the kernel pair of f1φ

is a centralizing double relation for R[ f ] and R[ fφ], so that [R[ f ], R[ fφ]] = 0. Hence the extension
we started with determines a pretorsor ( fφ, f ). This can be identified with a profunctor

D1φ � E1φ,

where E1φ is the direction of D1φ in C ↓ Y (notice that the groupoid D1φ is aspherical in C ↓ Y ).
The codomain of the profunctor can be constructed as follows. First we observe that K is a subob-

ject of the centralizer C(Z K , X), which is, by construction, the kernel of k fφ . This implies that there
is a regular epimorphism

c f : Y = X
K

X
C(Z K ,X)

= T0 fφ

such that c f · f = k fφ . Then the pullback of the totally disconnected groupoid T 1 fφ gives E1φ, and
then the desired discrete fibration, as shown in the following diagram:

R[ fφ]

k1 fφ

λ
E1φ

eφ

T1 fφ

X
f

k fφ

Y

sφ

c f
T0 fφ
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As a matter of fact, the profunctor

D R[ fφ] λ
E1φ

eφ

R[ f ]
f1φ

X
f

fφ

Y

sφ

D1φ Dφ,

determined by the pretorsor ( fφ, f ) is characteristic of the isomorphism class of the extension.
Moreover, one can verify that profunctor composition induces a simply transitive action

RF(C)(D1φ, E1φ) × RF(C)(E1φ, E1φ) → RF(C)(D1φ, E1φ)

of the abelian group RF(C)(E1φ, E1φ) on the set RF(C)(D1φ, E1φ).
Finally, the connection with the classical theory of extensions is given by the fact that the kernel

of eφ is (isomorphic to) Z K , and that one can identify RF(C)(E1φ, E1φ) with the abelian group
Exteφ (Y , Z K ) of extensions of Y via Z K having E1φ as direction, where the group operation is the
Baer sum which is available in homological categories (see [9]). This gives the following result (see
[14], Theorem 4.1, and [11], Theorem 4.11).

Theorem 3.3 (Schreier–Mac Lane extension theorem). Let C be a semi-abelian action accessible category.
Given an extension

0 K
k

X
f

Y 0,

with abstract direction (T 1 f , φ), on the set Ext(T 1 f ,φ)(Y , K ) there is a simply transitive action of the abelian
group Exteφ (Y , Z K ).

4. Obstruction to extensions in action accessible categories

Given any faithful K -groupoid

K T1

τ1

τ0

T0

and any morphism φ : Y → Q , where Q is the coequalizer of τ0 and τ1, we want to characterize the
situations where the set Ext(T 1,φ)(Y , K ) is not empty. In the case of groups, with any such morphism
φ is associated a cohomology class in H3

φ
(Y , Z K ), φ being the action on Z K induced by the abstract

kernel.
Intrinsically, H3

φ
(Y , Z K ) corresponds to a second cohomology group in the sense of Bourn, as ex-

plained below.
In a finitely complete Barr-exact category E, Bourn cohomology is constructed using n-groupoids

(following [6]). In particular, given an abelian group object A in E, we are interested in the group
H2
E

A, which is given by the component classes of aspherical groupoids X1 with global direction K1(A)
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(aspherical means a connected groupoid such that X0 has global support, while K1(A) is the groupoid

A 1). In this way, any internal groupoid necessarily determines an element in the second

cohomology group with coefficients in its global direction. It turns out that H3
φ
(Y , Z K ) corresponds

to H2
C↓Y (A), where A is the abelian group in C ↓ Y given by the split extension Z K �φ Y Y .

Now we can make more precise Proposition 2.4:

Proposition 4.1. (See [10], Proposition 3.5.) Suppose C is Mal’tsev and efficiently regular. Let ( f , g) : X1 � Y 1
be a pretorsor such that Y 1 has effective support. Then not only the global directions of X1 and Y 1 are the same

(let us say (v, u), with V 1

v
V = π0Y 1

u
), but also the two groupoids X1 and Y 1 determine the same

element in the cohomology group H2
C↓V V 1 .

The groupoid D1φ of Section 3 determines then a cohomology class in H2
C↓Y E1φ, where E1φ is its

global direction. We are now ready to state our result, which transfers to action accessible categories
the “obstruction part” of the classical Schreier–Mac Lane theorem on extensions with non-abelian
kernel.

Theorem 4.2. Let C be a Barr-exact action accessible category. Given any faithful groupoid

K T1

τ1

τ0

T0

and any morphism φ : Y → Q , where Q is the coequalizer of τ0 and τ1 , the set Ext(T 1,φ)(Y , K ) is not empty
if and only if the cohomology class of the groupoid D1φ in H2

C↓Y E1φ is 0.

Proof. The following proof is inspired by the one given in [10] for action representative categories.
Suppose first that there exists an extension f of Y via K with abstract direction (T 1, φ). Then we
know that with f it is associated a pretorsor ( fφ, f ), whose domain is D1φ and whose codomain is
its global direction E1φ, as proved in Proposition 2.4. Moreover, thanks to Proposition 4.1, we know
that D1φ and E1φ determine the same element in the cohomology group H2

C↓Y E1φ. Clearly E1φ

represents the zero element of this group, and then the thesis follows.
Conversely, suppose that D1φ lies in the zero class of H2

C↓Y E1φ. According to Theorem 12 in [8],

in a Barr-exact category E an aspherical groupoid Z 1 with direction A lies in the zero class of H2
E

A
if and only if there is an object H with global support and a ()0-cartesian functor from ∇H × K1(A)

to Z 1. This is the same thing as the existence of a functor from ∇H to Z 1. In our context, where

E = C ↓ Y , an aspherical groupoid amounts to a groupoid H1

d

c

H in C, together with a

regular epimorphism h : H → Y , such that hd = hc and 〈d, c〉 : H1 → R[h] is a regular epimorphism.
The ()0-cartesian functor above is a functor l1 : R[h] → D1φ between groupoids in C ↓ Y .

Since the category C ↓ Y is Barr-exact, we can construct, according to Theorem 4 in [5], a factor-
ization

l1 = m1n1 : R[h] → X1 → D1φ

such that m1 is a discrete fibration and n1 is a final functor. Since R[h] is an equivalence relation, the
groupoid X1 is actually an equivalence relation S on X = X0 (see Proposition 1.4 in [10]). Moreover,
since n1 is final, the quotients of R[h] and S are isomorphic. Accordingly, we get S = R[ f ] for some
regular epimorphism f such that f n = h. Consider now the following diagram:
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R[h]
h0 h1

n1
R[ f ]

f0 f1

m1
D1φ

d0 d1

d1φ

T1

τ0 τ1

H
n

h

X
m

f

Dφ

qφ

dφ

T0

q

Y
φ

Q

Since the functors m1 and d1φ are discrete fibration, also their composition is. Moreover, dφm and
d1φm1 are regular epimorphisms. This means that T 1 is the canonical faithful groupoid associated
with R[ f ]. Hence we have an extension:

0 K
k

X
f

Y 0,

whose abstract direction is (T 1, φ), since the morphism dφm clearly induces the factorization
φ : Y → Q . �
5. Obstruction to extensions for Leibniz algebras

In this section, as an example of action accessible category which is not action representative,
we consider the case of Leibniz algebras, introduced by Loday in [23]. In this setting we develop an
obstruction theory by means of Loday–Pirashvili cohomology (see [25]). We are led to Theorem 5.11,
that turns out to be an instance of the more general Theorem 4.2.

5.1. Preliminaries

We will refer to the category of right k-Leibniz algebras (k-Leib from now on), which are vector
spaces on a fixed field k, endowed with a bilinear operation [−,−] satisfying the following identity
(Leibniz identity):

[[x, y], z
] = [[x, z], y

] + [
x, [y, z]].

We recall here from [25] only the necessary tools in order to deal with obstruction theory.

Definition 5.1. (See [25], Definition (1.6).) An action of a Leibniz algebra Y on another Leibniz algebra
K is given by a pair of bilinear maps:

[−,−] : Y × K → K ,

[−,−] : K × Y → K

satisfying the following identities (for all a,k1,k2 ∈ K and b, y1, y2 ∈ Y ):

[[k1,k2], y
] = [[k1, y],k2

] + [
k1, [k2, y]], [[k, y1], y2

] = [[k, y2], y1
] + [

k, [y1, y2]
]
,[[k1, y],k2

] = [[k1,k2], y
] + [

k1, [y,k2]
]
,

[[y1,k], y2
] = [[y1, y2],k

] + [
y1, [k, y2]

]
,[[y,k1],k2

] = [[y,k2],k1
] + [

y, [k1,k2]
]
,

[[y1, y2],k
] = [[y1,k], y2

] + [
y1, [y2,k]].
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Observe that the notion of action of a Leibniz algebra Y on another Leibniz algebra K is an instance
of those introduced by Orzech [30], in the context of categories of interest, under the name of “derived
actions”, i.e. actions induced by split extensions:

0 K X Y 0.

At a purely categorical level, via the semi-direct product construction (which is available in any semi-
abelian category), they correspond to internal object actions in the sense of Borceux, Janelidze and
Kelly [4]. The use of the same symbol to denote the action and the bracket operation is justified by
the fact that, in the semi-abelian case, actions can always be interpreted as conjugations (in the semi-
direct product) and in k-Leib the conjugation is exactly the bracket operation. So it becomes clear that
the properties listed above are inherited from the Leibniz identity.

Definition 5.2. (See [25], Definition (1.6).) A crossed module in k-Leib is a morphism K
μ→ Y , together

with an action of Y on K , such that, for all k,k1,k2 ∈ K and y ∈ Y :

{ [μ(k), y] = [k, y]
[y,μ(k)] = [y,k] (precrossed module condition),

[
μ(k1),k2

] = [k1,k2] = [
k1,μ(k2)

]
(Peiffer identity).

The notion of crossed module of Leibniz algebras is again an instance of a more general one, intro-
duced by Porter [32] in the context of groups with operations; in the same article, the author proved
the equivalence between crossed modules and internal categories in any category of groups with oper-
ations. Actually, in [22] Janelidze introduced a categorical notion of crossed module, based on internal
actions, and proved that the same equivalence holds in the context of semi-abelian categories.

In [25], Loday and Pirashvili defined cohomology groups for Leibniz algebras over a commutative
ring k. They proved that, given an abelian Leibniz algebra A (i.e. with trivial bracket operation) and
another Leibniz algebra Y with a fixed action on A, their second cohomology group H L2(Y , A) is
isomorphic to the abelian group of (isomorphism classes of) extensions of Y via A which are split
extensions of k-modules and induce the given action of Y on A. On the other hand, Bourn first
cohomology group H1(Y , A) is isomorphic to the abelian group of (isomorphism classes of) extensions
of Y via A inducing the given action, which are not necessarily split as k-linear maps. In the case
where k is a field, as in the present paper, the two cohomology groups are obviously isomorphic.
Moreover, the results of this section will show that also H L3(Y , Z K ) and Bourn second cohomology
group H2(Y , Z K ) give the same classification of obstructions to the existence of extensions with non-
abelian kernel K .

Obstruction theory for Leibniz algebras over a field was already studied by Casas in [15]. In that
paper, the author defined an action of a Leibniz algebra Y on a Leibniz algebra K as a morphism of
Leibniz algebras

σ : Y → Bider(K ),

where Bider(K ) is the subalgebra of the Leibniz algebra Bider(K ) of biderivations of K (see [23])
defined by:

Bider(K ) = {
(d, D) ∈ Bider(K )

∣∣ Dd′ = D D ′, for all
(
d′, D ′) ∈ Bider(K )

}
.

We recall that a biderivation of a Leibniz algebra K is a pair (d, D) of k-linear maps satisfying, for any
x, y ∈ K , the following conditions:
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i) d([x, y]) = [d(x), y] + [x,d(y)];
ii) D([x, y]) = [D(x), y] − [D(y), x];

iii) [x,d(y)] = [x, D(y)].

However, Casas’s definition does not include all derived actions, as the following example shows.

Example 5.3. Let k be any field. It is easy to see that the following operation in L = k3:

[
(x1, y1, z1), (x2, y2, z2)

] = (
0, (x1 + z1)(x2 + z2),0

)
satisfies the Leibniz identity, so (L,+, [, ]) is a Leibniz algebra.

Let now A and B be the same Leibniz algebra, given by k as a vector space, with bracket operation
[x, y] = 0 for all x, y ∈ k. We can construct two derived actions, of A and B respectively, on L in the
following way:

[−,−] : A × L → L,
[
a, (x, y, z)

] = (−ax,0,ax),

[−,−] : L × A → L,
[
(x, y, z),a

] = (ax,0,−ax),

[−,−] : B × L → L,
[
b, (x, y, z)

] = (−b(x + z),0,−b(x + z)
)
,

[−,−] : L × B → L,
[
(x, y, z),b

] = (2bx,4by,2bz).

These two actions induce biderivations that are not compatible with each other, indeed it is not
true that for all a ∈ A, b ∈ B and (x, y, z) ∈ L:

[
a,

[
(x, y, z),b

]] = −[
a,

[
b, (x, y, z)

]]
,

since

[
a,

[
(x, y, z),b

]] = (−2abx,0,2abx),

−[
a,

[
b, (x, y, z)

]] = (−ab(x + z),0,ab(x + z)
)
.

Hence, denoting

[−,a] = −da, [a,−] = Da,

[−,b] = −d′
b, [b,−] = D ′

b,

we have that Dad′
b �= Da D ′

b if a and b are not 0.
This means that the action of A on L defined above is a derived action that cannot be expressed

as a morphism into Bider(L).

This example shows that there are extensions of Leibniz algebras with which it is impossible to
associate an abstract kernel in the sense of [15]. Indeed, considering the semi-direct product L � A of
L and A defined by the action of A on L above, we obtain an extension of Leibniz algebras

0 L L � A A 0,

actually a split extension, such that the conjugation action of L � A on L does not give rise to a
morphism L � A → Bider(L).
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On the other hand, every derived action of a Leibniz algebra Y on a Leibniz algebra K can be seen
as a morphism Y → Bider(K ). However, there are in general morphisms into Bider(K ) that do not
give rise to derived actions (see Example 5.4 below). This implies that Bider(K ) is not an actor, as
observed in [16], where the authors give necessary and sufficient conditions for a Leibniz algebra to
have an actor.

Example 5.4. Given a field k with characteristic different from 2, consider the Leibniz algebra K ,
whose underlying k-vector space is k itself, and whose bracket is the trivial one: [x1, x2] = 0 for all
x1, x2 ∈ K . Define a morphism ϕ : K → Bider(K ) in the following way:

ϕ(a) = (da, Da), where da(x) = −ax, Da(x) = ax.

This defines an action of K on itself which is not derived: indeed, denoting

[−,a] = −da, [a,−] = Da,

we have:

[
a, [b, x]] = abx �= −abx = −[

a, [x,b]].
Hence, according to Theorem 5.5 in [16], K does not admit an actor.

This example also shows that, if we define the actions of Y on K as morphisms Y → Bider(K ),
we can construct crossed modules which are not crossed modules in the sense of [25], hence their
equivalence classes do not correspond to elements of the third cohomology group. For example, if K
is the Leibniz algebra defined above, the zero morphism K → K , with the non-derived action defined
above, gives rise to a crossed module which is not a crossed module in the sense of Definition 5.2
and it cannot be seen as an element of Loday–Pirashvili third cohomology group.

In conclusion, for a Leibniz algebra K , if we consider all the morphisms ϕξ : Y → Bider(K ) induced
by any derived action ξ of any Leibniz algebra Y on K , the subset S of Bider(K ) given by the union
S = ⋃

(Y ,ξ) Im(ϕξ ) satisfies the following chain of inclusions:

Bider(K ) ⊆ S ⊆ Bider(K ),

which are all proper in general, as shown in Examples 5.3 and 5.4. It follows from Theorem 5.5 in
[16] that S is a subalgebra if and only if Bider(K ) = Bider(K ), and in this case Bider(K ) is an actor
for K .

Our approach permits to define abstract kernels without using actors, and it fixes the problems
highlighted above, because it allows to associate an abstract kernel with any extension, and to prove
that an abstract kernel has trivial obstruction class if and only if there is an extension associated with
it.

5.2. Obstruction theory

Definition 5.5. (See [25], Definition (1.8).) Let a Leibniz algebra Y be given, together with a represen-
tation of it (i.e. an abelian Leibniz algebra A with an action ξ of Y on A). Denote:

Cn(Y , A) := Homk
(
Y ⊗n, A

)
,
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(
dn

ξ f
)
(x1, . . . , xn+1) := [

x1, f (x2, . . . , xn+1)
] +

n+1∑
i=2

(−1)i[ f (x1, . . . , x̂i, . . . , xn+1), xi
]

+
∑

1�i< j�n+1

(−1) j+1 f
(
x1, . . . , xi−1, [xi, x j], xi+1, . . . , x̂ j, . . . , xn+1

)
.

Then (C∗(Y , A),dξ ) is a cochain complex, whose cohomology is called the cohomology of the Leibniz
algebra Y with coefficients in A:

H L∗
ξ (Y , A) := H∗(C∗(Y , A),dξ

)
.

Notice that, differently from the original notation adopted in [25] for the cohomology groups H L,
we use the subscript ξ in order to keep track of the action.

The following result is part of Theorem 8 in [18], which was generalized in [17] to the case of
Leibniz n-algebras. Here we give an alternative proof, that will be used later on.

Proposition 5.6. Every crossed module A
μ→ B in k-Leib is associated with a cohomology class in

H L3
ξ (Coker(μ),Ker(μ)).

Proof. Consider the following diagram:

N
n

A
μ

q

B
p

Q
s

μ(A)

m

t

where N = Ker(μ), Q = Coker(μ), (q,m) is the (regular epi, mono) factorization of μ, s and t are
any fixed k-linear sections of p and q respectively (i.e. ps = 1Q and qt = 1μ(A) as linear maps). As a
consequence of the definition of crossed module, q is a central extension and m = ker(p). The action
of B on A induces an action ξ of Q on N:

for all (x, y) ∈ Q × N: [x, y] := [sx,ny] and [y, x] := [ny, sx].
The choice of s determines a k-linear map f : Q ⊗ Q → μ(A) defined by the following equality for
all (x1, x2) ∈ Q ⊗ Q :

[sx1, sx2] = mf (x1, x2) + s[x1, x2],
which measures the extent to which s is not a morphism in k-Leib. By the Leibniz identity it is easy
to show that for all (x1, x2, x3) ∈ Q ⊗3:

[
sx1,mf (x2, x3)

] + [
mf (x1, x3), sx2

] − [
mf (x1, x2), sx3

]
− mf

([x1, x2], x3
) + mf

([x1, x3], x2
) + mf

(
x1, [x2, x3]

) = 0. (7)

Notice that this “cocycle” equation does not mean that f is a “true” 2-cocycle since the bracket
operation in B does not induce any action of Q on μ(A), unless μ(A) is abelian. By lifting f via the
chosen t , the equality above no longer holds, but the distance of t f from being a (true) 2-cocycle is
measured by an element of N (apply q to obtain (7)):
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ng(x1, x2, x3) = [
sx1, t f (x2, x3)

] + [
t f (x1, x3), sx2

] − [
t f (x1, x2), sx3

]
− t f

([x1, x2], x3
) + t f

([x1, x3], x2
) + t f

(
x1, [x2, x3]

)
.

In fact, some calculation shows that d3 g ≡ 0, so that the equation above defines a 3-cocycle
g : Q ⊗3 → N . Moreover, it is possible to show that different choices of the k-linear sections s and t
give rise to a 3-cocycle cohomologous to g . �

We are now ready to deal with extensions with non-abelian kernel. Given an extension of Leibniz
algebras:

0 K
i

X
p

Y
s

0, (8)

that is a pair of morphisms as above, such that i = ker(p) and p = coker(i), it is always possible
to choose a k-linear section s of p. As in the proof of Proposition 5.6, we can see that this choice
produces a k-linear map f : Y ⊗ Y → K defined by the following equality for all (y1, y2) ∈ Y ⊗ Y :

[sy1, sy2] = i f (y1, y2) + s[y1, y2],

and satisfying the following equation for all (y1, y2, y3) ∈ Y ⊗3:

[
sy1, i f (y2, y3)

] + [
i f (y1, y3), sy2

] − [
i f (y1, y2), sy3

]
− f

([y1, y2], y3
) + f

([y1, y3], y2
) + f

(
y1, [y2, y3]

) = 0. (9)

Observe that if the section s is a morphism in k-Leib, then f ≡ 0, Y acts on K by conjugation in X
via s and X is isomorphic to the semi-direct product K � Y in k-Leib, that is the Leibniz algebra with
underlying vector space K ⊕ Y and with bracket operation:

[
(k1, y1), (k2, y2)

] = ([k1,k2] + [k1, sy2] + [sy1,k2], [y1, y2]
)
.

In the general case, s is not a morphism and X is isomorphic to a Leibniz algebra whose underlying
vector space is again K ⊕ Y and the bracket operation is perturbed by f :

[
(k1, y1), (k2, y2)

] = ([k1,k2] + [k1, sy2] + [sy1,k2] + f (y1, y2), [y1, y2]
)
.

The conjugation in X via s does not induce any action of Y on K , in general, but an action of Y on
the centre Z K of K .

Lemma 5.7. The crossed module associated with any faithful internal K -groupoid in k-Leib has the centre Z K
of K as its kernel.

We call faithful any crossed module associated with a faithful internal groupoid.

Proof. Let be given an internal K -groupoid in k-Leib:

K
i

A
d

c

B.e
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Then, by the already mentioned equivalence between internal categories and crossed modules, the
composite ci gives rise to a crossed module. By the Peiffer identity, the kernel of ci is contained in
the centre Z K of K .

Suppose now the groupoid (A, B,d, c, e) to be faithful. This implies that the action of B on K
induced by conjugation in A is faithful (see Proposition 4.6 in [29]), i.e.:

(
for all x ∈ K , [b, x] = [

e(b), i(x)
] = 0 = [

i(x), e(b)
] = [x,b]) ⇔ b = 0.

Since for all z ∈ Z K and x ∈ K :

[
ci(z), x

] = [z, x] = 0 = [x, z] = [
x, ci(z)

]
,

where the first equality depends on the Peiffer identity and the second one holds because z ∈ Z K
(and similarly for the other two equalities), then ci(z) = 0 and this proves that Z K = ker(ci). �
Lemma 5.8. Every extension

0 K
i

X
p

Y 0

in k-Leib is endowed with a morphism into a canonical faithful crossed module:

0 K
i

X
p

Y

φ

Z K K
μ

E Q

Proof. Let an extension (p, i) as above be given. Since the category is groupoid accessible, there is a
morphism from the kernel pair R[p] of p to a canonical faithful K -groupoid, which yields the desired
crossed module morphism. �

Thanks to the previous lemma, the following one is a special case of Definition 3.1:

Definition 5.9. We call the pair (μ,φ) the abstract kernel of the extension (p, i), and we denote by

Ext(μ,φ)(Y , K )

the set of (isomorphism classes of) extensions of Y via K inducing the abstract kernel (μ,φ).

Indeed, the abstract kernel (μ,φ) above is associated with an action φ of Y on Z K , which is
simply the pullback along φ of the action of Q on Z K induced by μ (see the proof of Proposition
5.6). The following theorem, which turns out to be a particular case of Theorem 4.1 in [14] (see also
Theorem 3.3 herein), holds:

Theorem 5.10 (Schreier–Mac Lane extension theorem). Given an extension

0 K
i

X
p

Y 0
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in k-Leib, with abstract kernel (μ,φ), there is a simply transitive action of the group H L2
φ
(Y , Z K ) on the set

of equivalence classes of extensions of Y via K inducing the abstract kernel (μ,φ).

Proof. We give here only a sketch of the proof, explaining the (very simple) way H L2
φ
(Y , Z K ) acts on

the set of extensions.
As above, any extension E of Y via K is associated with a bilinear map f : Y ⊗ Y → K for any

chosen section of p. An element of H L2
φ
(Y , Z K ) acts on E by the sum f + g , where g is a 2-cocycle

in the given class of H L2
φ
(Y , Z K ). Indeed, f + g : Y ⊗ Y → K is a bilinear map satisfying an equation

like (9) and, with the same construction as in the paragraph after Proposition 5.6, it allows to turn
K ⊕ Y into a Leibniz algebra. �

Suppose now that a morphism Y
φ→ Q is given, where Q is the cokernel of a faithful crossed

module μ:

Z K
n

K
μ

q

E
p

Q
s

μ(K )

m

t

(10)

Then, as in Proposition 5.6, we can associate with μ a linear map g : Q ⊗3 → Z K , which represents an
element of H L3

ξ (Q , Z K ). Simply composing with φ we obtain a 3-cocycle gφ⊗3 : Y ⊗3 → Z K , whose
cohomology class is independent from the choice of s and t . In this way we have associated with the
pair (μ,φ) an equivalence class in H L3

φ
(Y , Z K ) (where φ is the action of Y on Z K induced by φ).

The following theorem is the counterpart of Theorem 4.2 for the special case of Leibniz alge-
bras. Here obstructions to the existence of extensions of Y via K are classified by means of the
Loday–Pirashvili cohomology group H L3

φ
(Y , Z K ), while in Theorem 4.2 they are classified by groupoid

cohomology. This shows that these two approaches give the same classification of obstructions to ex-
tensions in k-Leib.

Theorem 5.11. Given a morphism Y
φ→ Q , where Q is the cokernel of a faithful crossed module μ:

Z K
n

K
μ

E
p

Q ,

the set Ext(μ,φ)(Y , K ) is not empty if and only if the associated cohomology class in H L3
φ
(Y , Z K ) is 0.

Proof. With the notation of the previous paragraph, consider the vector space F = K ⊕ Y endowed
with a bracket operation:

[
(k1, y1), (k2, y2)

] = ([k1,k2] + [sφ y1,k2] + [k1, sφ y2] + t f (φ y1, φ y2), [y1, y2]
)
.

A simple calculation shows that:

[[
(k1, y1), (k2, y2)

]
, (k3, y3)

] = [[
(k1, y1), (k3, y3)

]
, (k2, y2)

]
+ [

(k1, y1),
[
(k2, y2), (k3, y3)

]]
+ (

ng(φ y1, φ y2, φ y3),0
)
,
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thus F is a Leibniz algebra if and only if gφ⊗3 ≡ 0, or, in other words, if and only if t f (φ ⊗φ) satisfies
an equation like (7). In that case, with the obvious inclusion and projection, we obtain an extension
in k-Leib:

0 K
j

F Y 0.

Moreover, the map u : F → E (where E is as in diagram (10)), with u(k, y) = μ(k) + sφ(y), is a
morphism of Leibniz algebras, which induces a morphism of crossed modules

0 K
j

F

u

Y

φ

Z K K
μ

E Q

showing that the abstract kernel associated with the extension above is the original one.
If gφ⊗3 is not identically zero, but still a 3-cocycle cohomologous to 0, i.e. gφ⊗3 = d2

φ
α for some

2-cochain α in C2(Y , Z K ), then it is sufficient to replace t f (φ ⊗ φ) with t f (φ ⊗ φ) − α to turn F into
a Leibniz algebra and to have again an extension of Y via K .

Conversely, as shown in Lemma 5.8, any extension of Y via K is endowed with a morphism into a
canonical faithful crossed module:

0 K
i

X
p

Y

φ

Z K K
μ

E Q

The corresponding cochain gφ⊗3 : Y ⊗3 → Z K actually lifts to the upper row, thus being identi-
cally 0. �
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