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1 Introduction

Modern studies of high energy QCD processes are based on factorization theorems, that
play a pivotal role in the study of strong interactions, as they allow to write the cross sec-
tions of hadronic processes in a form suitable for phenomenological analyses. Perturbative
QCD alone is not sufficient to exploit the whole theory’s predictive power since, even at
lowest orders, several physical observables are affected by uncanceled infrared divergences.
Through the factorization procedure, the divergent contributions are separated from the
finite, computable parts and are collected into universal factors, as they can be extracted
from a small set of experimental data and then used to predict any other observable that
requires their contribution. Crucially, if universality is preserved, then the theory can be
predictive. Therefore, research in this field has a double purpose: in addition to the pure
theoretical investigation, aimed to provide a solid proof of factorization of the processes
that still lack of a proper factorization theorem, the phenomenological applications of the
theory are fundamental in the extraction of universal non-perturbative factors.

If Q is some typical hard energy scale for a certain process (c.m. energy, momentum
transfer, etc. . . ), then, at the cost of an error suppressed by powers of m/Q, where m is a
typical low energy hadronic mass scale (typically around ∼ 1GeV), a factorization theorem
recasts the cross section in terms of a convolution of hard, collinear and soft contributions.

As long as the physical observables are not sensitive to the transverse motion of the
partons inside their parent hadron, the factorization procedure can be carried out rather
simply, giving solid factorization theorems for a large set of processes. Since the informa-
tion on the transverse motion of partons is neglected, such theorems are often labeled as
“collinear”. Many well known observables obey a collinear factorization theorem, like the
cross section of Deep Inelastic Scattering (DIS) and e+e− annihilation [1–6]. In all of these
cases the contribution of the soft part is trivial. In particular, any time in addition to the
collinear partons there are real emissions with large transverse momentum (compared to Q),
the soft factor fully factorizes and its value reduces to unity. This is due to the fact that the
soft gluons are kinematically overpowered, and do not correlate the collinear parts anymore:
then each collinear cluster of partons is totally independent from any other. As a conse-
quence, only hard and collinear contributions appear explicitly in the final cross section.

When the 3D-motion of partons is considered, finding a way to properly separate
the various contributions becomes a very tough task. On the other hand, Transverse
Momentum Dependent (TMD) observables show a much richer structure, that may disclose
some of the inner properties of hadronization and confinement. When the information on
transverse motion survives in the final result, the corresponding factorization theorem is
usually labeled as “TMD”. In such cases, the soft factor does not reduce to unity, and
soft gluons have a non-trivial impact on the cross section, as they correlate the collinear
parts. This correlation originates from momentum conservation laws in the transverse
direction. In fact, with no real emission carrying large transverse momentum entering into
the game, the low transverse momentum components of soft and collinear particles cannot
be neglected anymore. As a consequence, it is not possible to associate a PDF or a FF to
the collinear contributions: parton densities are now related to different and more general
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objects, known as Transverse Momentum Dependent parton functions, either TMD PDFs
or TMD FFs, depending on whether they refer to an initial or a final state hadron.

The factorization procedure proposed by Collins, Soper and Sterman in the ’80s [7–
9] has become a benchmark for successive approaches designed to provide factorization
theorems for hadronic processes. The most recent and complete form of such factorization
procedure was devised by John Collins in ref. [10] and in the following we will refer to this
scheme as the “Collins factorization formalism”. It correctly reproduces the well-known
collinear factorization theorems; in addition, and most importantly, it can successfully be
applied to develop the TMD factorization theorems for three different processes: e+e−

annihilation into two back-to-back hadrons, SIDIS and Drell-Yan, in the proper kinematic
regions. In ref. [11] we showed how these processes belong to the same hadron-class,
called the “2-h class” as it includes all reactions involving two observed hadron states. An
urgent question is whether this factorization scheme can be extended to other processes,
which do not belong to the same hadron-class [11, 12]. Until the end of 2018, one of the
processes that were still lacking of a solid factorization theorem was e+e− annihilation
into a single hadron, sensitive to the transverse momentum of the detected hadron with
respect to the axis of the jet of particles to which it belongs. At the beginning of 2019,
the BELLE collaboration at KEK published the results of the measurements of this cross
section [13], with the transverse momentum of the observed hadron measured with respect
to the thrust axis. This is one of the measurements which go closer to being a direct
observation of a partonic variable, the transverse momentum of the hadron with respect to
its parent fragmenting parton. As such, it has indeed triggered a great interest of the high
energy physics community, especially among the experts in the phenomenological study of
TMD phenomena and factorization [11, 12, 14–19]. In this paper, we apply the Collins
factorization formalism to such a QCD process and we show how to properly factorize
it in each of the kinematic region in which it can occur. In particular, we show that, if
the size of the transverse momentum of the detected hadron is neither too large to affect
significantly the topological configuration of the final state nor too small to be sensitive
to the deflection due to soft radiation, then the cross section of e+e− → hX factorizes in
the convolution of a partonic cross section, fully computable in perturbation theory, and a
TMD Fragmentation Function. This is a new kind of structure, never encountered before in
any known factorization theorem. It is a sort of hybrid of TMD and collinear factorization,
and for this reason it will be dented as “collinear-TMD factorization theorem”. One of its
most relevant features is related to the treatment of rapidity divergences. These arise as
unregulated infinities into soft and collinear parts and they are due to the approximations
introduced by the factorization procedure. Despite the various long-distance contributions
are rapidity divergent, the full factorized cross-section is finite. Therefore, the rapidity
divergences must cancel in the convolutions of the final result. There are many ways
to regulate them. In the Collins factorization formalism, they are regulated by tilting
the Wilson lines associated to the soft contributions off the lightcone. This operation is
totally analogous to the insertion of a sharp rapidity cut-off that prevents the integral on
rapitidities to diverge. Clearly, regardless of the chosen regulator, the final cross section
should not depend on it. However, for the collinear-TMD factorization theorem devised
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for e+e− → hX this does not happen. One could claim that this is a symptom of non-
consistency of the corresponding factorization theorem (see for instance ref. [18]). We do
not interpret this as a failure of the factorization itself, but rather as a limit of the Collins
factorization formalism in this particular process. In fact, as we have shown in ref. [16]
and we will discuss in more detail in the following, the rapidity cut-off is intimately related
to thrust, T , which in the case of e+e− → hX is measured. Hence, as we will show, it
acquires a physical meaning, beyond the role of a mere divergence regulator.

Like other hadronic processes, also e+e− → hX can occur in different kinematic
regions. In particular, we will show that there are three of them, each associated to a dif-
ferent factorization theorem. In particular, when the transverse momentum of the detected
hadron is extremely small and sensitive to the deflection caused by the soft radiation, the
resulting factorization theorem has a structure very similar to the TMD factorization [10].
Instead, when the transverse momentum of the detected hadron is large enough to signifi-
cantly affect the topology of the final state (and, ultimately, the measured value of thrust)
the factorization theorem does not involve a TMD FF anymore, and it shares many of
the features of collinear factorization. We will call these two kinematical ranges Region 1
and Region 3, respectively. The intermediate region discussed in the previous paragraph,
called Region 2, is the widest in terms of phase space and also the most interesting from the
point of view of the factorization theorems, as it embeds the properties of both TMD and
collinear factorization schemes. This matches with the nomenclature introduced in ref. [18].

The framework presented in this paper not only includes the well-known TMD fac-
torization theorems developed for e+e− annihilation into two back-to-back hadrons, SIDIS
and Drell-Yan into a more general context, but it also extends the investigation of TMD
physics beyond these benchmark processes, by developing proper factorization theorems for
e+e− → hX. Furthermore, it can potentially be applied to a much wider set of processes,
also involving more than two TMD functions. For these reasons, this approach looks very
promising and it might be one of the future keys to fundamental QCD issues.

2 Kinematic requirements and region decomposition

One of the features that make the e+e− → hX cross section, as measured by BELLE [13],
particularly relevant for TMD physics is the determination of the thrust axis, with respect
to which the transverse momentum PT of the detected hadron is measured. The thrust
axis is the direction ~n that maximizes the thrust T , defined as:

T =
∑
i |~P(c.m.), i · n̂|∑
i |~P(c.m.), i|

, (2.1)

where the sum runs over all the detected particles in the c.m. frame (e.g. the LAB frame).
The variable T describes the topology of the final state and it ranges from 0.5 to 1, where
the lower limit corresponds to a spherical distribution of final state particles, while the
upper limit realizes a pencil-like event. In the following, the thrust axis will be identified
with the axis of the jet to which the hadron h belongs, coinciding with the direction of
the fragmenting parton, eventually tilted by soft radiation recoil. Notice that the choice
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(a) (b)

Figure 1. Pictorial representation of 2-jet configurations in which the kinematic requirements H.1
in (a) andH.2 in (b) do not hold true. In (a) the detected hadron is rather close to the jet boundary,
causing a significant spread of the jet which affects the final state configuration, and ultimately the
measured value of T . In (b) the detected hadron momentum is very close the thrust axis as its
transverse momentum is extremely small. In this case, the soft radiation affects significantly the
final measured PT .

of including or leaving out the effects of soft recoiling affects the direction identified as
the thrust axis and, consequently, the structure of the final factorization theorem [20].
Whether or not the soft recoiling needs to be included is then a consequence of the choice
of the measurement, that specifies the proper kinematic region (or which jet algorithm has
to be used). Anyway, the identification of the thrust axis with the jet axis is crucial to
relate ~PT with the transverse momentum ~kT of the fragmenting parton with respect to the
direction of h, which is the variable appearing in explicit perturbative computations. In
fact, the two vectors are related as:

~PT

[
1 +O

(
P 2
T

Q2

)]
= −z ~kT (2.2)

where z = P+/k+ is the collinear momentum fraction of the detected hadron with respect
to the fragmenting parton. For a detailed description of the kinematics of this process we
refer to ref. [16].

Moreover, the cross section is differential also in the fractional energy zh of the detected
hadron, defined as:

zh = 2 P · q
q2 = P+

q+ = 2Ec.m.
Q

(2.3)

where Ec.m. is the energy of the detected hadron in the center of mass frame.
All particles associated to the same jet of the detected hadron, including h itself, are

characterized by a small transverse momentum (relative to the thrust axis) and a large and
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positive rapidity. However, this general features are not enough to determine uniquely the
kinematics and, ultimately, the proper factorization theorem, associated to the process. In
fact, depending on where h is located within the jet, the underlying kinematic configuration
can be remarkably different, resulting in distinct factorization theorems. The most probable
scenario occurs when the detected hadron is neither too close to the jet boundary, nor too
close to the thrust axis, which are somehow the extreme regions where it can be found.
Therefore, these two kinematic requirements can be used to identify such intermediate
configuration, to which the majority of experimental data is expected to belong to:

H.1 The detected hadron h is not extremely close to the jet boundary.
If this hypothesis does not hold true, then the detected hadron actively concurs to the
jet transverse size, affecting the final state configuration, and ultimately the measured
value of T , figure 1(a). In this case, its transverse momentum PT is moderately small:
enough to consider h as part of the jet but large if compared to the average transverse
momenta of the other particles of the jet.

H.2 The hadron detected hadron h is not extremely close to the thrust axis.
If this hypothesis does not hold true, figure 1(b), the size of PT is so small that the
soft radiation concurs actively to the transverse deviation of the detected hadron and
hence to the measured value of its transverse momentum. In this case, h belongs to
the jet mostly because it has a very small transverse momentum rather than because
of its large rapidity.

In this paper, we are primarily interested in investigating the kinematic configuration
where both H.1 and H.2 hold true, which will be labeled Region 2. The other two regions,
corresponding to the hadron h detected very close to the thrust axis or to the jet boundary
will be labeled Region 1 and Region 3, respectively. They correspond to the configurations
associated to the cases where one of the kinematic requirements above is false. In fact,
in Region 1 H.1 is still true but H.2 is false. On the other hand, in Region 3 H.2 keeps
its validity but H.1 does not hold true anymore. Notice that the two hypotheses cannot
be false together at the same time. The table 1 summarizes the relations between the
kinematic regions and the validity of the kinematic requirements defined above.

The decomposition into kinematic regions discussed above not only allows for an or-
ganized and consistent development of proper factorization theorems, but also helps to
determine the correct function to use in each case to describe the hadronization process,
even without any knowledge of the details of the factorization procedure.

Consider Region 1. Since here the soft radiation must play an important role in
the fragmentation of the parton that leads to the detected hadron, the TMD FF alone,
being associated to strictly collinear radiation, is not sufficient to describe the physics of
this region. A proper description of the hadronization process must necessarily take into
account also the non-perturbative content associated to soft gluons.

On the other hand, in Region 3 the function describing the hadronization process
must be explicitly sensitive to the topology of the final state, i.e. to the value of thrust.
Again, a TMD FF cannot provide a correct description of the physics of this region, as its
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Figure 2. Pictorial representation of the three kinematic regions in the jet in which the hadron
h is detected. In Region 1 (red) h is detected very close to the thrust axis ~n and its transverse
momentum is so small that it is significantly affected by the deflections caused by soft radiation.
In contrast, in Region 3 (green) h is detected close to the boundary of the jet, hence it actively
participates to the jet spreading, affecting the final state configuration and therefore the measured
value of thrust. The most probable configuration, however, is Region 2 (orange), where h is detected
neither extremely close to the jet’s axis, nor etremely close to the jet’s boundary.

H.1 H.2
R1 true false
R2 true true
R3 false true

Table 1. Kinematic regions and initial assumptions.

non-perturbative content1 must depend only on variables such as the collinear momentum
fraction and transverse momentum, that are associated only to the fragmenting parton and
the detected hadron, but oblivious of the rest of the process.

Therefore, the non-perturbative effects of the hadronization process can be described
by a TMD FF only in Region 2, where both the kinematic requirements H.1 and H.2 are
true. This means that the cross section in this region provides an extremely clean way to
access TMD FFs, as in this case they are the only non-perturbative objects that need to
be extracted in a phenomenological analysis. This is indeed one of most important reasons
for investigating the factorization properties of e+e− → hX, as the TMD factorization
theorems associated to the benchmark processes, besides the issues related to soft radia-
tion [11, 16], always present a convolution between two TMDs, which can be hardly dis-
entangled. Hence, the study of Region 2 is not only important for single hadro-production
in e+e− annihilation, but it also plays a crucial role in future phenomenological studies,
where data from different processes will be consistently combined within global analyzes.

1Encoded in the functions MD and gK , see appendix A.
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3 General structure of the cross section

The kinematic requirements discussed in the previous section provide an easy classification
criterion for the three kinematic regions characterizing e+e− → hX. Their implementation
into the proof of the corresponding factorization theorems is strictly related to the structure
of the cross section, and in particular to the role of its different parts in generating TMD
effects. Therefore, in this section we briefly review the main features of the cross section
of e+e− → hX. More details can be found in ref. [11].

The general structure of the cross section of e+e− → hX is given by the Lorentz
contraction of the leptonic tensor Lµ ν , corresponding to the initial state configuration,
with the hadronic tensor Wµ ν

h , which describes the strong-interaction contribution to the
process. Labeling P the momentum of the detected hadron, we have:

dσ

dzh dT dP
2
T

= zh
α2

4Q4

∫ 2π

0
dφ

∫ π

0
dθ LµνW

µ ν
H (zh, ~PT , T ), (3.1)

where the angles θ and φ of the detected hadron relative to the electron and to the x̂-axis
in the LAB-frame are integrated out. The leptonic tensor is defined as the lowest order of
the electromagnetic vertex e+e− → γ? with unpolarized leptons, and it is given by:

Lµν = lµ1 l
ν
2 + lµ2 l

ν
1 − gµν l1 · l2, (3.2)

where l1 and l2 are the momenta of the electron and the positron, respectively.
The hadronic tensorWµ ν

h depends on the momentum P of the outgoing hadron and on
the momentum q of the boson connecting the initial with the final state. Furthermore, it
encodes the whole dependence on the thrust T , as it describes the final state contribution
to the process. Its formal definition is:

Wµ ν
h (P, q, T ) = (3.3)

= 4π3 ∑
X

δ (pX + P − q) δ (T − Tdef.(pX , P )) 〈0| jµ(0)|P, X, out 〉 〈P, X, out|jν(0)| 0〉

= 1
4π

∑
X

∫
d4z eiq·zδ (T − Tdef.(pX , P )) 〈0| jµ (z/2) |P, X, out 〉 〈P, X, out|jν (−z/2) | 0〉,

where jµ are the electromagnetic currents for the hadronic fields and Tdef. corresponds to the
thrust as defined in eq. (2.1). The final state is represented as |P, X, out 〉 and corresponds
to the topology associated with the thrust value and to the measured transverse momentum
of the hadron with respect to the thrust axis. The factor 1/(4π) in the last line coincides
with the normalization used in ref. [10]. The definition of eq. (3.3) is hardly usable for
explicit computational purposes. For this reason, it is useful to decompose the hadronic
tensor in terms of Lorentz-invariant structure functions:

Wµ ν
h =

(
−gµ ν + qµqν

q2

)
F1, h +

(
Pµ − qµ P ·q

q2

) (
P ν − qν P ·q

q2

)
P · q

F2, h. (3.4)
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Then, the projections of Wµ ν
h onto its relevant Lorentz tensors are:

−gµ νWµ ν
h = 3F1, h + zh

2 F2, h +O
(
M2

Q2

)
; (3.5a)

PµPν
Q2 Wµ ν

h =
(
zh
2

)2 [
F1, h + zh

2 F2, h

]
+O

(
M2

Q2

)
, (3.5b)

much easier to compute explicitly in perturbation theory.
Given the Lorentz structures of the leptonic tensor, eq. (3.2), and of the hadronic

tensor, eq. (3.4), the full differential cross section can easily be decomposed into a transverse
(T) and a longitudinal (L) contribution

dσ

dzh d2 ~PT dT
= dσT

dzh d2 ~PT dT
+ dσL

dzh d2 ~PT dT
. (3.6)

Moreover, by exploiting eqs. (3.5), the transverse and the longitudinal components of the
cross section can be related to the structure functions of the hadronic tensor:

1
σB

dσT

dzh d2 ~PT dT
= zh F1, h(zh, ~PT , T ); (3.7a)

1
σB

dσL

dzh d2 ~PT dT
= zh

2

(
F1, h(zh, ~PT , T ) + zh

2 F2, h(zh, ~PT , T )
)
, (3.7b)

where σB is the Born cross section:

σB = 4πα2

3Q2 . (3.8)

An interesting case occurs when the projection of the hadronic tensor with respect to
Pµ Pν , eq. (3.5b), is zero (or it is so small that can be neglected). In this case, the two
structure functions are not independent anymore and F2, h = − 2

zh
F1, h. As a consequence,

the hadronic tensor can be written as:

Wµ ν
h; (T ) = Hµν

T F1, h, (3.9)

where the transverse tensor is defined as:

Hµν
T = −gµν + Pµqν + P νqµ

P · q
− q2 PµP ν

(P · q)2 . (3.10)

Furthermore, the longitudinal cross section vanishes. Hence, in this case the detection of
a hadron perpendicular to the beam axis is suppressed.

The determination of the hadronic structure functions F1, h and F2, h is obtained by
applying the factorization procedure to the hadronic tensor. The topology of the final
state is determined by the value of thrust T : the closer T to 1, the lower the number
Njets of observed jets. The minimum Njets = 2 corresponds to a 2-jet configuration while
the limit Njets →∞ is associated with an homogeneous spherical distribution of particles.
The general structure of Wµ ν

h in terms of its hard, soft and collinear contributions is
represented in figure 3, where each blob corresponds to a leading momentum region. The
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Figure 3. Leading momentum regions for the hadronic tensor Wµ ν
h . The hard subgraphs, one on

each side of the final state cut, are labeled by H. The soft subgraph, labeled by SNjets , represent
the contribution of the soft gluons. It has as many Wilson lines as the number of jets in the final
state. The collinear subgraphs are labeled by Ci, for i = 1, . . . Njets.

delta on thrust in eq. (3.3) introduces a correlation among the total collinear and soft
momenta flowing into the corresponding subgraph. As a consequence, each blob in figure 3
acquires a dependence on T . The hard subgraph H represents the production of Njets
partons dressed with all the required far off-shell virtual corrections. Its dependence on
thrust sets the value of T for the topology considered i.e. T = 1 for Njets = 2, T ∼ 2/3
for Njets = 3 and so on. Each parton exiting from the hard subgraph generates a collinear
factor which results in a jet of particles. Therefore there are, in total, Njets collinear
factors Ci, all equipped with the proper subtraction of the soft-collinear overlapping terms
as in eq. (A.15). Furthermore, there is a soft subgraph SNjets that correlates the collinear
contributions. It has as many Wilson lines as Njets.2 The thrust dependence encoded into
the soft and collinear contributions gives the deviation from the value associated to the
hard scattering that reproduces the observed topology of the final state. For instance,
in the 2-jet case T is close, but not exactly equal, to 1; this value is obtained only after
considering the proper contributions of soft and collinear emissions. Although the value
of T offers a reasonable estimate of the overall number of jets, the generalization to the
Njets > 2 case requires a more precise identification of the dependence of the thrust on
Njets, that includes also power corrections into factorization. In particular, the multi-jet
case would be better addressed by considering more appropriate inclusive event shape
variables, like the N-jettiness τN introduced in ref. [21], that ensures the validity of a
leading power factorization theorem in the limit τN � 1. The pictorial representation of

2Notice that SNjets is a matrix in color space. All its color indices are contracted with the hard subgraphs
and the whole hadronic tensor is colorless, as required.
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figure 3 corresponds to the following equation:

Wµ ν
h (zh, ~PT , T ) =

∑
Njets≥2

∑
j1

∫
dDk1
(2π)D

∑
j2

∫
dDk2
(2π)D

Njets∏
α=3

∫
dDkα
(2π)DCα(kα)jα

× TrD
{

P1C1(k1, P )j1P1Hµ
j1,...jNjets

(k̂1, . . . k̂Njets) P2C2(k2)j2P2 (H†)νj1 ...jNjets
(k̂1, . . . k̂Njets)

}
×
∫

dDkS
(2π)D SNjets; j1 ...jNjets

(kS) δ
(
q − k1 − k2 −

∑
α

kα − kS

)

× δ
(
~PT

[
1 +O

(
P 2
T

Q2

)]
+ P+

k+
1

~kT (~k1, T , ~kS, T )
)
δ (T − Tdef.(rA, rB)) , (3.11)

where Pi = /wi /wi/2wi · wi and Pi = /wi /wi/2wi · wi project the Dirac spinors associated to
the fermionic lines exiting the hard scattering and entering into the i-th collinear graph
with reference direction wi (opposite to wi) onto massless on-shell wave functions; analo-
gously, k̂i are approximated momenta where only the leading component is retained. In
particular, while the hard factor H depend only on the approximated momenta k̂i, the
collinear factors Ci and all other terms depend on the full momenta ki, where also the sub-
leading components are taken into account (see appendix A). In the last line of eq. (3.11),
the first delta function sets the relation between the measured transverse momentum ~PT
of the detected hadron and the transverse momentum ~kT of the fragmenting parton, ac-
cording to eq. (2.2). Both of them are considered with respect to the thrust axis, although
in different frames. Notice that ~kT does not necessarily coincide with the total transverse
momentum ~k1,T entering into the collinear factor C1 associated to the detected hadron. In
fact, it can also depend on the total soft transverse momentum ~kS,T , when the direction of
the thrust axis is modified by soft recoiling.

The last delta in eq. (3.11) sets the value of thrust according to its definition, eq. (2.1).
In particular, since the thrust axis identifies uniquely two hemispheres SA and SB in the
final state, eq. (2.1) is a function solely of the scaled invariant masses [22] of the momenta
kA and kB entering into each hemisphere, denoted by rA = k2

A/Q
2 and rB = k2

B/Q
2. The

momenta kA and kB are, in turn, functions involving momenta entering into collinear and
soft subgraphs. Specifically, we will assume that SA is the hemisphere in which the hadron
h is detected, hence rA is surely a function of k1. Instead, the other momenta are split
in a component flowing into SA and a component flowing into SB. Consequently, we have
kA = k1 + kA

2 + · · · + kA
Njets

+ kA
S and kB = kB

2 + · · · + kB
Njets

+ kB
S . In these regards, the

2-jet case is particularly simple, as the whole k2 flows entirely into SB and only the soft
radiation can be emitted in both directions with the same probability.

3.1 TMD-relevance

Each individual term contributing to the hadronic tensor can be expanded in series of
αS and approached within perturbative QCD. In fact, the decomposition in momentum
regions presented in eq. (3.11) can be performed explicitly, order by order, by applying
the kinematic approximators defined in ref. [10] and reviewed in appendix A. This kind of
“bottom-up” approach to factorization, based on perturbative QCD alone, makes the steps
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that lead to a factorization theorem extremely clear, as the various contributions can be
readily disentangled and made more transparent, order by order in pQCD. The downside
of this methodology is that the final result, deduced by fix order computations and then
generalized to all orders, must be properly supplemented with the non-perturbative content
of soft and collinear contributions, associated to TMD effects. Moreover, perturbative
computations may be remarkably cumbersome, especially when the formalism has to be
adapted to include one additional (observable) variable, in this case the thrust T . Finally,
the generalization to all orders is a potentially dangerous operation, as new effects may arise
at higher orders in perturbation theory. Despite this disadvantages, explicit perturbative
computations are essential for understanding the structure of factorized cross sections, and
in this paper we will extensively use them to derive consistent factorization theorems. Most
importantly, not only the kinematic requirements H.1 and H.2 can easily be implemented
in perturbative computations, they also allow to classify the relevance of the contributions
singled out by the factorization procedure to the study of TMD effects.

We will refer to the partonic counterpart of the hadronic tensor as the partonic tensor
Ŵµν
j . It describes the process γ? → j X where j represents the fragmenting parton. In

general, it could be a fermion of flavor f or a gluon g, but in a 2-jet topology it can only be
a fermion. In fact, of the two jets observed in the final state, one is initiated by the quark,
the other by the antiquark. Any further jet would be associated to an extra power of αS .
In this paper we are mainly interested in the 2-jet topology, which is the most probable
configuration. It is rather simple to derive the partonic analogue of the hadronic tensor from
its expression in eq. (3.11). This can be obtained by making the following replacements:

• The fragmenting parton plays the role of the detected hadron, hence h 7→ j, P 7→ k1
and zh 7→ z = k+

1 /q
+.

• The radiation collinear to j is generated by a parton of momentum k′1, i.e. k1 7→ k′1.
Then the collinear momentum fraction becomes ẑ = P+/k+

1 7→ ρ = k+
1 /k

′+
1 .

• The role of ~PT is played by the transverse momentum ~kT of the fragmenting parton
with respect to the thrust axis. Hence we have the replacement δ

(
~PT + ẑ ~kT

)
7→

δ
(
~kT − ~k′T

)
, where, in general, ~k′T is a function not only of ~k′1,T , but also on ~kS,T , de-

pending on whether the soft-recoiling is relevant or not for the kinematics considered.
Notice that in this case both ~kT and ~k′T are considered in the same frame.

The implementation of the kinematic requirements H.1 and H.2 into the perturbative
computation is strictly connected to the determination of the transverse momentum ~k′T
in each of the leading momentum regions: hard, soft and collinear. Since each of such
terms returns a picture of the whole process in a specific kinematic approximation, they
all somehow depend on the transverse momentum of the fragmenting parton. Sometimes
such dependence is trivial, as for the case of backward radiation in a 2-jet final state
topology, and the corresponding momentum region is irrelevant for TMD effects. In other
cases, the relevance for TMD physics depends on whether the considered term contributes
significantly to the transverse deflection of the detected hadron from the thrust axis. In
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soft* soft-collinear collinear
R1 TMD-relevant TMD-relevant TMD-relevant
R2 TMD-irrelevant TMD-relevant TMD-relevant
R3 TMD-irrelevant TMD-irrelevant TMD-relevant

Table 2. Kinematic regions and TMD-relevance. The symbol * reminds that the soft approximation
in this case only refers to gluons radiated in the same portion of space occupied by the jet in which
is detected the hadron h.

practice, when a contribution is “TMD-relevant” the transverse momentum ~k′T is non-zero
and hence it will depend explicitly on ~kT . Then it must be considered in the Fourier
conjugate space of ~kT , as this is the natural framework in which TMDs and soft factors
are defined in terms of field operators. Notice that the contributions of the momentum
region corresponding to particles moving collinearly to the fragmenting parton are always
TMD-relevant, as they embody the core and essence of the TMD effects. On the contrary,
if a term is “TMD-irrelevant” then the transverse momentum ~k′T vanishes and the Fourier
transform is reduced to an integration over the entire spectrum of ~kT , washing out the
whole information on transverse momentum. This indeed holds for virtual contributions
and also for all terms associated to radiation collinear to other direction than the thrust
axis. All these configurations do not play any role in the transverse deflection of the frag-
menting parton from the thrust axis. Therefore, the question of being TMD-relevant or
TMD-irrelevant is only pertinent to soft and soft-collinear radiations.

In particular, in Region 1 the soft radiation plays an active role in generating TMD
effects, as the deflection of the detected hadron from the thrust axis is significantly affected
by soft gluons. Hence in this case the soft approximation will contribute to the final result
as a TMD-relevant term. Clearly, this consideration only refers to soft gluons radiated in
the same portion of space occupied by the jet in which the hadron h is detected. In the
2-jet case this is one of the two-hemispheres defined by the thrust axis. Moreover, if soft
radiation is TMD-relevant, then also soft-collinear gluons must be so.

The same cannot be stated for Region 2, where soft radiation does not contribute
to the transverse momentum of the detected hadron. However, this does not exclude the
possibility that soft-collinear gluons can generate significant TMD effect. Therefore, in this
kinematic region the soft approximation produces a TMD-irrelevant term but soft-collinear
contributions are instead TMD-relevant.

Finally, in Region 3 the transverse momentum of the detected hadron is too large to
be affected either by soft and by soft-collinear radiations. Therefore, in this case both
these contributions are associated to TMD-irrelevant terms. The scheme presented in
table 2 summarizes this discussion. In this paper, we will refer to TMD-relevant (Fourier
transformed) quantities as “factors” indicating them with capital Greek letters, unless
specified differently. TMD-irrelevant quantities will be referred to as “functions” and, if
not stated differently, we will indicate them with capital italics Latin letters. The following
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scheme summarizes the notation:

TMD-relevant←→
∫
d2−2ε~kT e

i~kT ·~bT ←→ factor
(capital Greek letters)

TMD-irrelevant←→
∫
d2−2ε~kT ←→ function

(capital italics Latin letters)

We will use the variable τ = 1 − T instead of T , as it appears naturally in a 2-jet
limit. We will denote the two hemispheres defined by the thrust axis as SA and SB, where
the first is the hemisphere in which hadron h is detected. In the case of soft radiation,
the particles can be emitted either in SA or in SB with the same probability. Therefore,
the soft approximators are equipped with a further label “+” or “−” as an indication of
the hemisphere in which the particle is emitted. Finally, the subgraphs singled out by
the action of the approximators will be labeled by “A”, “B”, “S” or “H”, depending on
whether the involved particles are collinear to the fragmenting parton (A), collinear to the
backward direction (B), soft (S) or hard, i.e. far off- shell (H).

3.2 Partonic tensor structure to next to leading order

In this section, we consider the structure of the partonic tensor up to next to leading order
(NLO) for a 2-jet final state topology. We will consider the fragmentation of a quark of
flavor f .

The lowest order (LO) results was explicitly computed in ref. [16]. Let us just recall that
it corresponds to an exact, pencil-like, final state configuration. Therefore the dependence
on is simply trivially given by δ(τ). Moreover, to LO the total transverse momentum of
the radiation collinear to the fragmenting quark is trivially zero, as there is no radiation
at all. This results in a delta function δ(~kT ) in transverse momentum space. We have:

Ŵ
µν [0]
f (z, τ, ~kT ) = Ĥµν

T F̂
[0]
1, f (z, τ,~kT ), (3.13)

where the transverse tensor Ĥµν
T is defined as in eq. (3.10), but with P → k1, while the LO

partonic structure function F̂ [0]
1, f in transverse momentum space is given by

F̂
[0]
1, f (z, τ, ~kT ) = e2

f NC(1− ε) δ (1− z) δ(τ) δ(~kT ), (3.14)

with z = k+
1 /q

+ the partonic version of zh.
To NLO there is a single gluon radiated, which can be either virtual or real. The

corresponding Feynman diagrams are represented in figure 4. We will start by considering
the contribution of the virtual radiation. The squared matrix element associated to this
configuration is:

Mµ ν
f, V

[1](ε; µ) =


+ h.c.



µν

. (3.15)
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(a) (b) (c)

Figure 4. The next lowest order Feynman graphs contributing to the partonic tensor for a 2-jet
topology.

Regarding thrust and transverse momentum all the previous considerations for the LO case
calculation hold unchanged for NLO. In fact, for the virtual radiation the NLO final state
configuration is pencil-like and there are no TMD effects associated to virtual radiation.
In other words, the virtual contribution is always TMD-irrelevant. The starting point for
applying the factorization procedure is the following non-approximate partonic tensor:

Ŵ
µν, [1]
f,V

(
ε; z, τ,~kT

)
= 1

4π

∫
dDk2
(2π)D Mµ ν

f, V
[1](ε; µ) (2π)D δ(D) (q − k1 − k2) δ(τ) δ(~kT ).

(3.16)
The virtual gluon can be hard (far off-shell), soft or collinear to the fermionic lines. In full-
dimensional regularization the only non-vanishing contribution is associated to the hard
momentum region,3 obtained through the action of the approximator TH . Therefore:

Ŵ
µν, [1]
f, virtual

(
ε; z, τ,~kT

)
= TH

[
Ŵ

µν, [1]
f,V

(
ε; z, τ,~kT

)]
+ power suppressed

corrections . (3.17)

The approximator TH , applied to eq. (3.16), only acts on the squared matrix element. A
standard result is:

TH
[
Mµ ν
f, V

[1](ε; µ)
]

=

= i e2
f g

2 µ2εCF NC

∫
d4−2ε l

(2π)4−2ε
Tr
{
/k1 γ

α (/k1 − /l) γµ (/k2 + /l) γα /k2 γ
ν
}

[(k1 − l)2 + i 0] [(k2 + l)2 + i 0] [l2 + i 0] + h.c. =

= Mµ ν
f

[0] V [1](ε; µ/Q). (3.18)

The last step is obtained by decomposing the Dirac structure in its scalar, vector and tensor
parts, by using momentum conservation and the Passarino-Veltman reduction formula [23].
The 1-loop vertex function V [1] is given by:

αS
4π V

[1](ε; µ/Q) = (3.19)

= −αS4π 2CF Sε

 2
ε2

+ 2
ε

(
3
2 + log µ2

Q2

)
+ 8− π2 + 3 log µ2

Q2 +
(

log µ2

Q2

)2
+O(ε).

3The other momentum regions give vanishing contributions but they can be used to fix the necessary
UV counterterms for canceling the UV divergences associated to the real emission terms.
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Finally the virtual gluon contribution at 1-loop can be represented as:

˜̂
W

µν, [1]
f, virtual (ε; z, τ, bT ) =

∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ)δ(1− ρ)δ(τ)V [1](ε, µ/Q) + power suppressed

corrections ,

(3.20)
where?Wµν, [0]

f is the partonic tensor at LO, computed in eq. (3.13), but considered without
its (trivial) dependence on thrust and transverse momentum. The previous result holds
in bT -space. In fact, the Fourier transform is trivial, as TMD-irrelevant contributions are
proportional to δ(~kT ).

When the emitted gluon is real, the squared matrix element is given by:

M
µν; [1]
f,R (ε; µ, {ki}) = (3.21)

=


+ h.c.+ +



µν

In this case, the computations are more difficult and require non-standard mathematical
techniques. Not only because of the larger number of Feynman diagrams and a wider
available phase space for the particles in the final state, but mostly because of the further
non-trivial dependence on the thrust and on the transverse momentum of the fragmenting
parton. The starting point for the application of the factorization procedure is the following
unapproximated partonic tensor:

Ŵ
µν, [1]
f,R

(
ε; z, τ,~kT

)
= 1

4π

∫
dDk2
(2π)D

dDk3
(2π)DM

µ ν
f,R

[1](ε; µ, ki) (2π)D δ(D) (q − k1 − k2 − k3)

× δ(τ − τdef.(ki)) δ(~kT − ~k′T (ki)), (3.22)

where τdef.(ki) refers to the definition of τ = 1− T as it is given in eq. (2.1), by using the
momenta k1, k2 and k3 of the particles involved.4 The action of the kinematic approxima-
tors does not only involves the squared amplitudes in eq. (3.21), it also modifies the values
of τdef.(ki) and ~k′T (ki) according to the considered momentum region. In this regard, the
value of ~k′T (ki) is crucial to determine the TMD-relevance of the corresponding contribu-
tion and ultimately the selection of the kinematic region. The final result will be obtained
by summing together the contributions of backward and forward radiation, corresponding
to the case where the gluon is emitted in the SB and in the SA hemisphere, respectively. In
each of these configurations, the gluon can be collinear to the fermion or soft. It certainly
cannot be hard, as being a real particle it is considered on-shell. The implementation of
the kinematic requirements will be crucial in the study of the forward radiation

The rest of the paper will be devoted to the detailed analyses of the 1-loop contributions
of each of the leading momentum regions. This will lead to the determination of the
factorization theorem in each one of them.

4It is possible to show that the phase space is divided into three regions Uj . In each of these regions, the
value of the trhust τ corresponds to the variable yj = 2ki · kl/Q2, with i, l 6= j. See ref. [16] for more details.
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4 Backward radiation

In this section we will consider the contribution of the radiation emitted in the direction
opposite to the fragmenting quark, which will be denoted as backward radiation. If the
gluon is emitted in the SB-hemisphere, then there are two leading momentum regions. The
first is associated to the configuration in which the gluon is collinear to the antiquark and
is obtained through the action of the approximator TB. The other regards the emission
of a soft gluon, and it is given by applying the approximator T−S . These two momentum
regions overlap, hence we have to remove the double counting of the same contributions.
The overlapping region is associated to a gluon which can be considered soft-collinear:
it has a very small energy but also a large (and, in this case, negative) rapidity. Such
contribution is obtained by the combination of approximators TBTS ≡ TSTB. Notice that
the label “−” is redundant in such combination, as the action of TB already encodes the
information about the selection of the hemisphere.

All these approximators act on the squared matrix elements as well as on the integra-
tion of the phase space, as defined in the previous section. In particular, in a backward
approximation, there is no transverse momentum contributing to the transverse deflection
of the fragmenting parton (which is the other hemisphere), and hence ~k′T = 0. This confirms
that all the contributions associated to the backward radiation are TMD-irrelevant.

In conclusion, the 1-loop contribution of the backward radiation to the partonic tensor
can be written as:

Ŵ
µν, [1]
f, backward (ε; z, τ, kT ) =

(
T−S − TSTB + TB

) [
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
+ power suppressed

corrections .

(4.1)
In the following, the three contributions involved in the previous expression will be consid-
ered separately.

Soft approximation. The action of T−S leads to the following approximation:

T−S

[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)S[1]

− (ε; τ) δ
(
~kT
)
, (4.2)

where we used the same conventions adopted in the previous section. In the previous
expression, we have introduced the generalized soft thrust function S. Its definition is
obtained by integrating (instead of Fourier transforming) the 2-h soft factor, defined as in
eq. (A.11), with the further explicit dependence on thrust, implemented as for the usual
soft thrust function. In practice, it is defined modifying the usual soft thrust function
by introducing the rapidity divergence regulator. In the case of the Collins factorization
formalism, this is achieved by tilting the two Wilson lines off the light-cone, see appendix A.
Therefore, besides the dependence on thrust, S depends also on the rapidity cut-offs.

The label “−” associated to the generalized soft thrust function in eq. (4.2) reminds
that only the contribution associated to the hemisphere SB has to be taken into account.
This is realized by imposing that the rapidity of the backward radiations cannot be positive.
At 1-loop order, it is sufficient to set l− > l+, where l is the momentum of the radiated
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soft gluon. Therefore, we have:

S
[1]
− (ε; τ, y1, y2) =

∫
dDl

(2π)D θ
(
l− − l+

)
δ

(
τ − l+

q+

)


+ h.c.


= αS

4π 4CF Sε
(
µ

Q

)2ε
τ−1−2ε

∫ 0

−∞
dy e2εy 1 + e−2(y1−y2)(

1− e−2(y1−y)) (1− e2(y2−y)) + h.c., (4.3)

where in the last step we made a change of variables in order to expose the range of the
rapidity of the gluon y = 1

2 log
(
l+

l−

)
, which is negative as required for backward radiation.

The integration gives:∫ 0

−∞
dy e2εy 1 + e−2(y1−y2)(

1− e−2(y1−y)) (1− e2(y2−y)) = 1
2

1 + e−2(y1−y2)

1− e−2(y1−y2)
1

1− 2ε

×
{
− e−y2

[
2F1

(
1, 1 + 2ε; 2 + 2ε; e−y2

)
− 2F1

(
1, 1 + 2ε; 2 + 2ε; −e−y2

)]
+

+ e−y1
[
2F1

(
1, 1 + 2ε; 2 + 2ε; e−y1

)
− 2F1

(
1, 1 + 2ε; 2 + 2ε; −e−y1

)] }
= 1

2

(1
ε

+
(
−e2y2

)ε
Γ(−ε)Γ(1 + ε) +O

(
e−2y1 , e2y2 , e−2(y1−y2)

))
. (4.4)

Inserting this result in eq. (4.3) and neglecting the errors due to the vanishing rapidity
cut-offs, we obtain:

S
[1]
− (ε; τ, y2) = αS

4π 2CF Sε
(
µ

Q

)2ε
τ−1−2ε

(1
ε

+
(
−e2y2

)ε
Γ(−ε)Γ(1 + ε) + h.c.

)
. (4.5)

Notice that whole dependence on the rapidity cut-off y1 is suppressed in the final result.
Therefore, we dropped it from the l.h.s. of the previous equation. This is a general feature:
only the dependence on the rapidity cut-off relevant for the considered hemisphere survives.
In fact, the analogous contribution of the hemisphere SA to the generalized soft thrust
function is obtained from eq. (4.5) by replacing5 y2 with −y1:

S+ (ε; τ, y1) = S− (ε; τ, −y1) (4.6)

There is a straightforward factorization theorem that relates the contributions of the two
hemispheres to the total generalized soft thrust function:

S (ε; τ, y1 − y2) = S+ (ε; τ, y1) S− (ε; τ, y2) . (4.7)

Finally, it is interesting to point out that the result of eq. (4.5) can be equivalently written
as:

S
[1]
− (ε; τ, y2) = S

[1]
− (ε; τ) + αS

4π 2CF Sε
(
µ

Q

)2ε
τ−1−2εΓ(−ε)Γ(1 + ε)

((
−e2y2

)ε
+ h.c.

)
,

(4.8)
5Notice that this is the same replacement derived in ref. [11] in studying the behavior of the TMDs

under a Z-axis reflection.
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where S− ≡ 1
2 S is the backward radiation contribution to the usual 1-loop soft thrust

function. If we had removed the rapidity cut-offs from the very beginning in the definition
of the generalized soft thrust function, eq. (4.3), this would have been the whole final result.
However, retaining y1 and y2 in the calculation leads to an extra term depending on the
leading cut-off of the hemisphere, in this case y2. Such extra term will have to cancel out
when we will subtract the overlapping with the collinear contribution.

Soft-collinear approximation (overlapping). The action of TSTB produces the fol-
lowing approximation:

TSTB
[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)Y[1]

− (ε; τ) δ
(
~kT
)
. (4.9)

In this expression we have introduced the soft-collinear thrust functions Y±. In par-
ticular, the contribution associated to the hemisphere SB is involved in eq. (4.9). Differ-
ently from S, this functions does not have a counterpart among the usual thrust functions
reviewed for instance in ref. [16]. It is defined as the subtraction term of the TMDs,6
integrated (instead of Fourier transformed) over ~kT , and modified to include the explicit
dependence on the thrust. In practice, Y± are defined similarly to the usual soft thrust
function S, but tilting only the Wilson line pointing in the reference direction indicated by
the collinear approximator. Therefore, the soft-collinear thrust functions acquire a depen-
dence on the rapidity cut-off associated to the tilted Wilson line. At 1-loop order and for
the backward radiation contribution we have:

Y
[1]
− (ε; τ, y2) =

∫
dDl

(2π)D δ
(
τ − l+

q+

)


+ h.c.


= αS

4π 4CF Sε
(
µ

Q

)2ε
τ−1−2ε

∫ +∞

−∞
dy e2εy 1(

1− e2(y2−y)) + h.c. (4.10)

Notice that the action of TB makes the Heaviside theta that selects the (-)-hemisphere
redundant, as TBθ(l− − l+) = θ(l−). However this condition is already encoded into the
requirement that the emitted gluon is on-shell at the final state cut. As a consequence,
differently from eq. (4.3), the integration on the rapidity of the gluon is unbounded from
below. The integral in eq. (4.10) has the following solution:∫ +∞

−∞
dy e2εy 1(

1− e2(y2−y)) = 1
2
(
e2y2

)ε
[Be2y2 (−ε, 0)−Be−2y2 (1 + ε, 0)] =

= 1
2
(
−e2y2

)ε
Γ(−ε)Γ(1− ε) +O

(
e2y2

)
, (4.11)

6Here the TMDs are defined according to the factorization definition, eq. (A.15).
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where B is the incomplete Beta function. Inserting this result into eq. (4.10) we obtain:

Y
[1]
− (ε; τ, y2) = αS

4π 2CF Sε
(
µ

Q

)2ε
τ−1−2εΓ(−ε)Γ(1 + ε)

((
−e2y2

)ε
+ h.c.

)
. (4.12)

As for the soft case, the analogous contribution in the opposite hemisphere, resulting from
the action of TSTA can be easily obtained from eq. (4.12) by replacing y2 by −y1:

Y+ (ε; τ, y1) = Y− (ε; τ, −y1) (4.13)

Notice that if we had removed the rapidity cut-off from the very beginning, already in the
definition of Y in eq. (4.10), then the integration over the rapidity of the emitted gluon would
have been scaleless and hence vanishing in full dimensional regularization. This is the rea-
son for which the soft-collinear thrust functions do not have a counterpart among the thrust-
dependent functions usually encountered in the factorization of e+e− annihilation processes.

In this case, the fact that r.h.s. of eq. (4.12) is non vanishing is crucial for the success
of the subtraction mechanism. In fact, the result found for Y− is exactly equal to the extra
term, rapidity cut-off dependent, obtained in the calculation of S−, eq. (4.8). Therefore:

S
[1]
− (ε; τ, y2)− Y

[1]
− (ε; τ, y2) = S

[1]
− (ε; τ) . (4.14)

In other words, the subtracted soft contribution associated to the backward emission, ob-
tained through the action of

(
T−S − TSTB

)
, is totally independent of the rapidity cut-off y2.

Therefore, we can derive the following factorization theorems, which generalize eq. (4.14),
as well as the analogous equation holding for the SA-hemisphere, to all orders:

S+ (ε; τ) = S+ (ε; τ, y1)
Y+ (ε; τ, y1) ; (4.15a)

S− (ε; τ) = S− (ε; τ, y2)
Y− (ε; τ, y2) . (4.15b)

In conclusion, this factorization theorems, together with eq. (4.7), leads to:

S (ε; τ) = S+ (ε; τ, y1)
Y+ (ε; τ, y1)

S− (ε; τ, y2)
Y− (ε; τ, y2) . (4.16)

which encodes the relations between the usual soft thrust function and the soft and soft-
collinear thrust functions defined in this section.

Collinear approximation. Finally, the effect of the action of the TB approximator
gives:

TB
[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)J [1] (ε; τ) δ

(
~kT
)
. (4.17)

where J is the usual jet thrust function at 1 loop.7 In this case, we do not have any
rapidity cut-off, since in (unsubtracted) collinear parts the Wilson lines are defined along
the light-cone.

7In principle, in the pure Collins factorization formalism, masses cannot be neglected in the collinear
contributions. However, since in this case we are dealing with rather low scales (Q ∼ 10GeV for the BELLE
experiment) that prevent the presence of heavy quarks, we will put all masses to zero.
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Final result for backward radiation. Combining the results above and inserting them
into eq. (4.1), we can write the final expression for the contribution of the backward radi-
ation to the partonic tensor. In transverse momentum space we have:

Ŵ
µν, [1]
f, backward (ε; z, τ, kT ) = (4.18)

=
∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)

[
S

[1]
− (ε; τ) + J [1] (ε; τ)

]
δ
(
~kT
)

+ power suppressed
corrections ,

where we used eq. (4.14) to combine soft and soft-collinear contributions. The power
suppressed terms contains both the errors due to the approximations introduced by the
factorization procedure and also the terms neglected in the limit of large rapidity cut-off.
Since the dependence on ~kT is trivial, in bT -space we have simply:

˜̂
W

µν, [1]
f, backward (ε; z, τ, bT ) = (4.19)

=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)

[
S

[1]
− (ε; τ) + J [1] (ε; τ)

]
+ power suppressed

corrections .

5 Region 2: collinear-TMD factorization

Contributions associated to the radiation emitted in the same hemisphere of the detected
hadron are indeed the most interesting. They encode the whole information on the TMD
effects, hence they are the keystone for exploring the rich kinematic structure underlying
the process we are investigating. The leading momentum regions are the counterpart of
those considered in the previous section, properly modified in order to describe the emis-
sion in the SA hemisphere. Therefore, when the emitted gluon is soft, the partonic tensor
is well approximated by the action of T+

S , while for a gluon collinear to the fragmenting
quark we rely on the TA approximator. Moreover, in the soft-collinear overlapping region,
the gluon has a very low energy but also a large (and positive) rapidity and the corre-
sponding contribution is well approximated by the action of TSTA ≡ TATS . Therefore, the
1-loop contribution to the partonic tensor of the radiation emitted (forwardly) into the
SA-hemisphere can be written as:

Ŵ
µν, [1]
f, forward (ε; z, τ, kT ) =

(
T+
S − TSTA + TA

) [
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
+ power suppressed

corrections .

(5.1)
The most important difference with respect to the cases discussed in section 4 is in the role
that each of these contribution plays in the generation of significant TMD effects. In other
words, according to the nomenclature introduced in section 3.1, not all of these kinematic
configurations may be TMD relevant. Indeed, when the gluon is radiated collinearly to
the fragmenting quark, it actively contributes to the deflection of the detected hadron with
respect to the thrust axis. Therefore, as pointed out in section 3.1, the action of TA produces
a TMD-relevant term. For soft and soft-collinear gluons this is not as straightforward, first
of all because, according to power counting, their transverse momentum has a much smaller
size than that of the collinear emission.

Region 2 gathers all the kinematic configurations in which the soft radiation is not
TMD-relevant, while the soft-collinear contributions together with the collinear radiations
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Figure 5. Pictorial representation of the effect of the three kinds of radiation in Region 2. The
final PT , measured with respect to the thrust axis ~n, is not affected by the emission/absorption
of soft radiation, as the soft gluons (red) are TMD-irrelevant. Instead, soft-collinear (orange) and
collinear (green) radiations produce the deflections that lead to the size of the observed transverse
momentum.

remain TMD-relevant, as in table 2. In this case, the soft radiation does not produce any
significant TMD effect, hence it does not affect the experimentally measured value of PT .
On the other hand, soft-collinear and collinear emissions play an active role in generating
the transverse momentum of the detected hadron.

Soft approximation. Since in Region 2 soft radiation is TMD-irrelevant, the action
of T+

S leads to a result which is perfectly analogous to its counterpart in the opposite
hemisphere, found in section 4. In fact, we have:

T+
S

[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)S[1]

+ (ε; τ) δ
(
~kT
)
, (5.2)

where S+ is the contribution of the SA hemisphere to the generalized soft thrust function
at 1-loop. Thanks to eq. (4.6), we can use the solution found for S− in eq. (4.5).

Soft-collinear approximation (overlapping). In Region 2, soft-collinear radiation
plays an active role in generating significant TMD effects. The result of the action of TSTA
gives a TMD-relevant contribution:

TSTA
[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)Υ[1]

+ (ε; τ, kT ) , (5.3)

where we have introduced the soft-collinear thrust factor Υ±, whose SA-hemisphere
contribution is involved into eq. (6.1). This object is defined in the same way of the
subtraction term of the TMDs, eq. (A.15), but with an additional dependence on thrust.
Therefore, Υ± depends on the total soft-collinear transverse momentum, on the rapidity
cut-off associated to its tilted Wilson line and also on thrust. To 1-loop order, the forward
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hemisphere contribution is then defined as:

Υ[1]
+ (ε; τ, kT , y1) =

∫
dl+ dl−

(2π)D δ

(
τ − l−

q−

)


+ h.c.


= αS

4π 2CF Sε
Γ(1− ε)
π1−ε µ2ε 1

k2
T

∫ +∞

−∞
dy

1
1− e−2(y1−y) δ

(
τ − kT

Q
e−y

)
+ h.c. (5.4)

Notice that, analogously to the case of backward radiation, in soft-collinear contributions
the range of the radiated particle rapidity is unconstrained. In fact, the rapidity of the
emitted gluon in eq. (5.4) is unbounded from below. Its Fourier transform leads to:

Υ̃[1]
+ (ε; τ, bT , y1) =

∫
d2−2ε~kT e

i~kT ·~bT Υ[1]
+

(
ε; τ,~kT y1

)
= (5.5)

= αS
4π 2CF Sε

(
µ

Q

)2ε
Γ(1− ε)

(
b

c1

)ε
e−εγE τ−1−ε

∫ ∞
0

xε/2

x− e−2y1
J−ε

(
τ b√
x

)
+ h.c.

The solution to the integral in the last line of the previous equation requires advanced math-
ematical tools and non-standard techniques, which are described in detail in appendix C.
The result can be found in eq. (C.18) and it is given by:

∫ ∞
0

xε/2

x− r1
J−ε

(
τ b√
x

)
= −2 (−r1)ε/2K−ε

(
τ b√
−r1

)
+
(
τ b

2

)ε
Γ(−ε), (5.6)

where r1 = e−2y1 . This is an exact result, as there are no terms suppressed in the limit
r1 → 0. Inserting this result in eq. (5.5) we obtain:

Υ̃[1]
+ (ε; τ, bT , y1) = αS

4π 2CF Sε
(
µ

Q

)2ε
{

1
τ

(
b

c1

)2ε
e−2γE ε Γ(1− ε)Γ(−ε) (5.7)

− 2τ−1−εΓ(1− ε)
(
−e−2y1

)ε/2
K−ε

(
τb√
−e−2y1

)}
+ h.c. ,

where c1 = 2e−γE . As widely discussed in appendix B, the 2-jet limit is realized in bT -space
by the asymptotic behavior at large distances. This follows from the relation between the
thrust and the transverse momentum in kT -space, as the limit τ → 0 corresponds to the
region of small transverse momenta, at least when the kinematic requirement H.1 holds
true. The large-b asymptotic of Υ̃[1]

+ can be obtained exploiting the trick of eq. (B.6).
Notice that the two contributions in eq. (5.7) are separately divergent as τ → 0, but their
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sum is integrable. We have:

1
τ

(
b

c1

)2ε
e−2γE ε Γ(1− ε)Γ(−ε)− 2τ−1−εΓ(1− ε) (−r1)ε/2K−ε

(
τb√
−r1

)

= δ(τ) 1
2

{
(−r1)ε Γ(1− ε)Γ(1 + ε)Γ(−ε)

[
Γ(−ε)

Γ(1− ε)2 1F2

(
−ε; 1− ε, 1− ε; − b2

4r1

)

+
(
b

c1

)2ε
e−2εγE (−r1)−εG2, 0

1, 3

 b2

4r1

∣∣∣∣∣∣ 1
0, 0,−ε

]

−
(
b

c1

)2ε
e−2εγEΓ(1− ε)Γ(−ε)

(
H−ε − 2 log

(
b

c1

)
+ log r1

)}

+
(

1
τ

(
b

c1

)2ε
e−2γE ε Γ(1− ε)Γ(−ε)− 2τ−1−εΓ(1− ε) (−r1)ε/2K−ε

(
τb√
−r1

))
+

= 1
2ε2 δ(τ) + 1

ε

[
−
(1
τ

)
+

+ 1
2 log (−r1)δ(τ)

]
− 2 log

(
b

c1

) (1
τ

)
+

− δ(τ)
[
log2

(
b

c1

)
− log

(
b

c1

)
log (−r1)

]
+ terms suppressed

in the limit b→∞ +O(ε) (5.8)

Therefore, the contribution of soft-collinear gluons in a 2-jet configuration is obtained by
inserting this result into eq. (5.7). We have:

Υ̃[1],ASY
+ (ε; τ, bT , y1) =

= αS
4π 2CF Sε

{
1
ε2 δ(τ) + 1

ε

[
−2
(1
τ

)
+

+ δ(τ) log (e−2y1) + 2δ(τ) log
(
µ

Q

)]
+

+ 2 log
(
bT µ

c1

)[
−2
(1
τ

)
+

+ δ(τ)
(

log (e−2y1)− log
(
bT µ

c1

)
+ 2 log

(
µ

Q

))]}
. (5.9)

Collinear approximation. The last contribution to the partonic tensor is associated to
the radiation collinear to the fragmenting quark, obtained through the action of TA. This
is a TMD-relevant quantity by default. The approximation gives:

TA
[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) Γ[1]

q/q (ε; ρ, kT , τ) , (5.10)

where Γq/q is the quark-from-quark generalized Fragmenting Jet Function8 (GFJF), which
is diagonal in quark’s flavors. It is defined in momentum space as the unsubtracted collinear
parts, although its explicit dependence on thrust is implemented as in the usual jet thrust

8In the literature [18, 24], the GFJFs are usually indicated by G. In this paper, we will be consistent
with the nomenclature introduced in this section. Furthermore, in analogy to TMD FFs the GFJFs are
usually defined with a normalization factor of 1/z, which here is not considered.
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function. At 1-loop order it is defined9 as:

Γ[1]
q/q (ε; z, kT , τ) =

∫
dl−

(2π)D δ
(
τ − z

1− z
k2
T

Q2

)
(5.11)

× TrC
NC

TrD
4 γ+

 + h.c.+


= αS

4π 2CF Sε
Γ(1− ε)
π1−ε µ2ε 1

k2
T

( 2
1− z + (1− ε) 1− z

z

)
θ(1− z) δ

(
τ − z

1− z
k2
T

Q2

)
.

Notice that without the delta that fixes the thrust, the previous expression would have
coincided with the unsubtracted quark-from-quark TMD FF in momentum space. Its
Fourier transform gives:

Γ̃[1]
q/q (ε; z, bT , τ) =

∫
d2−2ε~kT e

i~kT ·~bTΓ[1]
q/q (ε; z, kT , τ)

= αS
4π 2CF Sε

(
µ

Q

)2ε
zε
(

2(1− z)−1−ε + (1− ε) (1− z)1−ε

z

)

× τ−1−ε
0F1

(
1− ε; −τ 1− z

z

b2

4

)
. (5.12)

The combination of τ−1−ε with the hypergeometric function 0F1 is computed in detail in
eq. (B.16) Such result holds for a function that is regular in z ∼ 1. Therefore, we can
use that solution only for computing the term proportional to (1 − z)1−ε, but not for the
term proportional to (1 − z)−1−ε. The combination (1 − z)−1−ετ−1−ε

0F1 can be treated
by using a generalized version of the trick expressed in eq. (B.6). However, the easiest way
to obtain an expansion in distributions of τ and z is to apply the usual trick of eq. (B.6)
to (1− z)−1−ε and τ−1−ε separately:

zε (1− z)−1−ε τ−1−ε
0F1

(
1− ε; −τ 1− z

z

b2

4

)

= 1
ε2 δ(τ)δ(1− z)− 1

ε

[
δ(τ)

( 1
1− z

)
+

+ δ(1− z)
(1
τ

)
+

]
+

+ δ(τ)
( log (1− z)

1− z

)
+
− δ(τ) log z

1− z + δ(1− z)
( log τ

τ

)
+

+

+
( 1

1− z

)
+

(1
τ

)
+
J0

(√
τ

1− z
z

b

)
+O(ε). (5.13)

All terms containing either δ(1 − z) or δ(τ) are trivial, since the hypergeometric function
evaluated in τ = 0 and/or in z = 1 gives just one. The only non-trivial term is the last

9The definition is obtained by neglecting all mass corrections, as in eq. (4.17).
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line of the previous equation:

( 1
1− z

)
+

(1
τ

)
+
J0

(√
τ

1− z
z

b

)
. (5.14)

Next, we will make use of the following trick, valid for functions of a variable x that varies
in the range 0 ≤ x ≤ 1, at most divergent as a simple pole at small values of x:

(1
x

)
+
f(x) = δ(x)

∫ 1

0
dα [f(α)− f(0)] +

(1
x
f(x)

)
+
. (5.15)

Proceeding in this way, we find:

( 1
1− z

)
+

(1
τ

)
+
J0

(√
τ

1− z
z

b

)
= (5.16)

=
( 1

1− z

)
+

{
− 1− z

z

b2

4 2F3

(
1, 1; 2, 2, 2; −1− z

z

b2

4

)
δ(τ) +

(
1
τ
J0

(√
τ

1− z
z

b

))
+

}
.

The contribution multiplying δ(τ) can be treated similarly:

( 1
1− z

)
+

[
−1− z

z

b2

4 2F3

(
1, 1; 2, 2, 2; −1− z

z

b2

4

)]

= δ(1− z)

G3, 0
1, 3

b2

4

∣∣∣∣∣∣ 1
0, 0, 0

− π2

6 − 2 log2
(
b

c1

)
+
(
−1
z

b2

4 2F3

(
1, 1; 2, 2, 2; −1− z

z

b2

4

))
+
. (5.17)

where G3, 0
1, 3 is a Meijer G-function. Next, we have to determine the large-b asymptotic of

Γ̃q/q in order to investigate the 2-jet limit of the collinear radiation term. At large bT , the
two terms in eq. (5.17) behaves as:

G3,0
1,3

b2

4

∣∣∣∣∣∣ 1
0,0,0

− π2

6 −2log2
(
b

c1

)
=−π

2

6 −2log2
(
b

c1

)
+terms suppressed

in the limit b→∞ ; (5.18a)

(
−1
z

b2

4 2F3

(
1,1; 2,2,2;−1−z

z

b2

4

))
+

= (5.18b)

=−2log
(
b

c1

)( 1
1−z

)
+
−
( log(1−z)

1−z

)
+

+ logz
1−z + π2

6 δ(1−z)+terms suppressed
in the limit b→∞ .

On the other hand, the contribution in the last line of eq. (5.16) has to be computed
carefully, as it shows also a non-trivial dependence on τ besides that on z. A rather simple
way to study such contribution is to investigate its action on two test functions T (τ) and
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R(z). We have:

∫ 1

0
dzR(z)

( 1
1− z

)
+

∫ 1

0
dτT (τ)

(
1
τ
J0

(√
τ

1− z
z

b

))
+

=

=
∫ 1

0
dτ
T (τ)− T (0)

τ

{
R(1)

∫ 1

0

dz

1− z

[
J0

(√
τ

1− z
z

b

)]
+

+
∫ 1

0
dz

R(z)−R(1)
1− z J0

(√
τ

1− z
z

b

)}
=

= R(1)
∫ 1

0
dτ
T (τ)− T (0)

τ

[
−2 log

(
b

c1

)
− log τ

]
+ terms suppressed

in the limit b→∞ . (5.19)

Therefore, the difficult term in eq. (5.16) can be approximated as:

( 1
1− z

)
+

(
1
τ
J0

(√
τ

1− z
z

b

))
+

=

= −δ(1− z)
[
2 log

(
b

c1

)(1
τ

)
+

+
( log τ

τ

)
+

]
+ terms suppressed

in the limit b→∞ . (5.20)

Combining together this result with eqs. (5.18), we can finally write the large-b behavior
of the combination of distributions in eq. (5.14):

( 1
1− z

)
+

(1
τ

)
+
J0

(√
τ

1− z
z

b

)
= (5.21)

= −2 log2
(
b

c1

)
δ(τ)δ(1− z)− 2 log

(
b

c1

)[
δ(τ)

( 1
1− z

)
+

+ δ(1− z)
(1
τ

)
+

]
−

−
[
δ(τ)

( log (1− z)
1− z

)
+
− δ(τ) log z

1− z + δ(1− z)
( log τ

τ

)
+

]
+ terms suppressed

in the limit b→∞ .

Notice how the last line of the previous equation cancels exactly the terms in the third line
of eq. (5.13). In fact:

zε (1− z)−1−ε τ−1−ε
0F1

(
1− ε; −τ 1− z

z

b2

4

)
=

= 1
ε2 δ(τ)δ(1− z)− 1

ε

[
δ(τ)

( 1
1− z

)
+

+ δ(1− z)
(1
τ

)
+

]
−

− 2 log2
(
b

c1

)
δ(τ)δ(1− z)− 2 log

(
b

c1

)[
δ(τ)

( 1
1− z

)
+

+ δ(1− z)
(1
τ

)
+

]
+

+ terms suppressed
in the limit b→∞ +O(ε). (5.22)
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Figure 6. The term
(

1
1−z

)
+

( 1
τ

)
+ J0

(√
τ 1−z

z b
)
in eq. (5.21) (solid, blue line) is compared to

its large-b behavior (orange, dashed line). These lines are obtained by integrating with two test
functions, Tτ (τ) = e−τ and Tz(z) = e−(1−z).

This result, together with eq. (B.16), allows to determine the large-b asymptotic of Γ̃q/q:

Γ̃[1],ASY
q/q (ε; z, bT , τ) = (5.23)

= 1
z
Z

[1]
q/q, coll. (ε; z) δ(τ)+

+ αS
4π 2CF Sε δ(1− z)

{
δ(τ)

[ 2
ε2 + 1

ε

(3
2 + 4 log

(
µ

Q

))]
+ 2
ε

(1
τ

)
+

}
+

+ αS
4π 2CF Sε

{
δ(τ)

[
2 log

(
bT µ

c1

)(
2
( 1

1− z

)
+

+ 1− 1
z

)
− 1 + 1

z
−

− 4δ(1− z) log
(
bT µ

c1

)(
log

(
bT µ

c1

)
− 2 log

(
µ

Q

))]
− 4δ(1− z)

(1
τ

)
+

log
(
bT µ

c1

)}
.

Notice that all the non-trivial z-dependence associated with the poles is encoded into the
function Zq/q, coll., which is the UV counterterm of the quark-from-quark collinear FF. This
is not a coincidence, but rather the 1-loop expression of a crucial factorization theorem.

In fact, the “pure collinear” radiation contribution is obtained after the subtraction
of the overlapping terms in the soft-collinear momentum region. Therefore, combining the
result of eqs. (5.23) and (5.9), we can write the following expression for the subtracted
collinear part:

Γ̃[1],ASY
q/q (ε; τ, z, bT )− δ(1− z) Υ̃[1],ASY

+ (ε; τ, bT , y1) = δ(τ) z D̃[1], (0)
q/q (ε; z, bT , y1) , (5.24)

where D̃(0)
q/q is the bare quark-from-quark TMD FF in bT -space. It has both its characteristic

collinear divergence, encoded into Zq/q, coll., and also the divergences that have to UV-
renormalized by adding the counterterm Zq/q,TMD. By defining the subtracted quark-
from-quark GFJF as:

Γ̃sub.
q/q (ε; z, kT , τ, y1) =

Γ̃q/q (ε; z, kT , τ)
Υ̃+ (ε; τ, bT , y1)

(5.25)
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which is perfectly analogous to the factorization definition of the TMDs introduced in
eq. (A.15), the result of eq. (5.24) can be generalized to all orders, leading to:

Γ̃sub.
q/q (ε; z, kT , τ, y1) 2-jet limit

∼ δ(τ) z D̃(0)
q/q (ε; z, bT , y1) (5.26)

This result, together with eq. (6.17), will be crucial in developing a suitable factorization
theorem for Region 2.

Final result for forward radiation in region 2. Combining all the results of this
section and inserting them into eq. (5.1), we obtain the final expression for the contribution
of the radiation emitted in the SA-hemisphere to the partonic tensor, in Region 2. In bT -
space we have:

˜̂
W

µν, [1]
f, forward (ε; z, τ, bT ) = (5.27)

=
∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q)

[
δ(1− ρ)

(
S

[1]
+ (ε; τ, y1)− Υ̃[1]

+ (ε; τ, bT , y1)
)

+ Γ̃[1]
q/q (ε; τ, ρ, bT )

]
2-jet limit
∼

∫ 1

z

dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q)δ(τ)

[
δ(1− ρ) S[1]

+ (ε; τ, y1) + ρ D̃
[1], (0)
q/q (ε; ρ, bT , y1)

]
,

where we have neglected all the power-suppressed terms. Notice that we could easily have
obtained the same result by neglecting from the very beginning, already in the transverse
momentum space, any correlation between thrust and transverse momentum in the lead-
ing momentum regions associated to TMD-relevant contributions. Since in Region 2 the
TMD-relevant terms constitute the subtracted collinear radiation, such approximation is
indeed the realization of assumption H.1. In fact, neglecting the relation between collinear
transverse momentum and thrust corresponds to the kinematic configuration in which the
detected hadron does not modify the topology of the final state and, ultimately, the mea-
sured value of T . This circumstance happens any time the detected hadron does not have
a transverse momentum large enough to cause a significant spread of the jet to which it
belongs to. The jet could well be wide, but not due to the direction of the detected hadron
which, in Region 2, remains rather far from the jet external boundary.

5.1 Factorization theorem for region 2

The bT -space expression for the partonic tensor, to 1-loop, in Region 2 follows from the
results obtained in the previous sections for the various approximations. Summing the
contributions of virtual eq. (3.20), backward eq. (4.19) and forward radiation eq. (5.27) we
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obtain:

˜̂
W

µν, [1]
f (ε; z, τ, bT ) =

= Ĥµν
T NC e

2
f

∫
dρ

ρ
δ (1− z/ρ)

[
δ(1− ρ)δ(τ)V [1](ε) + δ(1− ρ)

[
J [1] (ε; τ) + S

[1]
− (ε; τ)

]
+

+ δ(1− ρ) S[1]
+ (ε; τ, y1) + δ(τ) ρ D̃[1], (0)

q/q (ε; ρ, bT , y1)
]

=

= Ĥµν
T NC e

2
f

[
δ(1− z)

(
δ(τ)V [1](ε) + J [1] (ε; τ) + S

[1]
− (ε; τ) + S

[1]
+ (ε; τ, y1)−

− δ(τ)Zq/q,TMD(ε; y1)
)

+ δ(τ) z D̃[1]
q/q (ε; z, bT , y1)

]
, (5.28)

where we used eq. (5.24) to rearrange the combination of the large-bT asymptotic behavior
of the quark-from-quark GFJF and that of the soft-collinear thrust factor into the bare
quark-from-quark TMD FF. Moreover, we added and subtracted the UV counterterm for
the quark-from-quark TMD Zq/q,TMD. In this way, we can drop the label “(0)” from the
TMD FF and consider it as a renormalized quantity. It still has a pole in ε, but it is its
expected collinear divergence, explicit in perturbative computations.

The combination of the other terms is a finite quantity. This case be readily verified
by substituting their explicit 1-loop expressions:

δ(τ)V [1](ε) + J [1] (ε; τ) + S
[1]
− (ε; τ) + S

[1]
+ (ε; τ, y1)− δ(τ)Zq/q,TMD(ε; y1) =

= αS
4π CF

[
δ(τ)

(
−9 + 2π2

3 + log2 y1 − 6 log
(
µ

Q

)
+ 4 log y1 log

(
µ

Q

)
− 4 log2

(
µ

Q

))
−

−
(1
τ

)
+

(3 + 4 log y1)− 4
( log τ

τ

)
+

]
. (5.29)

All the UV and rapidity divergences have been canceled. Moreover, we can readily verify
the RG-invariance of the 1-loop cross section by deriving the previous expression with
respect to logµ: the result is exactly minus the anomalous dimension of the TMD to 1-
loop. However, the dependence on the rapidity cut-off is problematic. The final result
depends on y1 as eq. (5.29) cannot compensate the variation with respect to the rapidity
regulator encoded into the TMD. In fact, in the TMDs such dependence is ruled by CS-
evolution, eq. (A.16b), but clearly eq. (5.29) evolves differently, since it does not depend
on bT . This does not happen only at fix order in perturbation theory, but it will be a
characteristic of the final, all-order result.

The final factorized cross section valid in Region 2 can be obtained by generalizing the
1-loop result of eq. (5.28) to all orders. Although in general this is a potentially dangerous
operation, in this case, the generalization of the 1-loop computation gives the correct final
result. In fact, in Region 2 there is no asymmetry in the soft radiation, as it is considered
TMD-irrelevant, regardless of whether it is emitted backward or forward with respect to
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the hemispheres identified by the thrust axis. As all divergences cancel out among each
other, we will drop the ε-dependence in all terms involved in the final result.

The generalization is achieved by reversing the operations that lead to the partonic
tensor starting from its hadronic counterpart, as discussed in section 3.1. In particular, the
relation between ~PT and ~kT involves the collinear momentum fraction, which is the Lorentz
factor that relates the two frames in which the two transverse vectors are considered. As
a consequence, the z factor in front of the TMD FF found at fix order, eqs. (5.27), (5.28),
is reabsorbed in the change of variables. Therefore, the final result is:

dσR2

dzh d2 ~PT dT
= σB NC V

∫
dτS+ dτS− dτB J(τB)S−(τS−)S+

(
τS+ , ζ

)
δ(τ − τS+ − τS− − τB)

×
∫

d2~bT
(2π)2 e

i
~PT
zh
·~bT ∑

f

e2
f D̃h/f (zh, bT , ζ) , (5.30)

where the rapidity cut-off has been recast into the variable ζ, see appendix A.

5.1.1 Alternative proof

It is important to notice that the same final result of eq. (5.30) could have been ob-
tained directly by applying H.1 and H.2 in the hadronic tensor, as written in eq. (3.11).
More precisely by implementing H.1 and H.2 straight into the delta functions which con-
strain the value of thrust δ (T − Tdef.(rA, rB)), and in the two delta functions constraining
the momentum conservation and the measured transverse momentum of the final hadron,
δ(q − k1 − k2 −

∑
α kα − kS) and δ

(
~PT

[
1 +O

(
P 2
T
Q2

)]
+ P+

k+
1

~kT (~k1, T , ~kS, T )
)
, respectively.

This kind of “top-down” approach to factorization, which was adopted in ref. [11], is very
powerful, as it allows us to avoid the traps and threats of the “bottom-up” approach shown
in the previous sections, entirely based on perturbation theory. Here, we briefly sketch this
methodology and contextualize it in the more general framework presented in this paper,
especially highlighting the role of the kinematic requirements in the selection of the proper
kinematic region.

Let’s go back to eq. (3.11) and refer to the leading momentum regions of figure 3. As
discussed in refs. [11, 16], among all collinear factors, only C1 is actually relevant for study-
ing the non-perturbative effects of hadronization, while all other Ci 6=1 are effectively fully
perturbative contributions, in the same sense of the hard factors. Applying H.1 to the delta
on thrust (i.e. requiring the transverse momentum of the final hadron not to be extremely
small, so that it does not affect the measured value of thrust) allows us to remove the whole
k1 dependence from δ(T − Tdef.). As k1 is the only link that correlates C1 to the thrust,
this operation eliminates any T -dependent term from C1. In other words, if H.1 holds
true, C1 does not depend on thrust and it does not contribute to the thrust dependence of
the cross section which, in turn, is insensitive to the topology of the final state.

Much less trivial is the role of soft gluons in eq. (3.11), embedded in the soft factor
SNjets , defined similarly to eq. (A.11), but with N Wilson lines and modified to allow for
the dependence on thrust, constrained to the value that T assumes in the soft momentum
region. Luckily, the momentum delta functions combined with the requirement H.2 allows
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us to avoid its explicit, general calculation. In fact, if soft transverse momenta cannot
significantly deviate the detected hadron from the thrust axis, then any information about
~kS, T inside the delta that relates the measured PT to the transverse momentum of the
fragmenting parton can be neglected, so that in the last line of eq. (3.11) we can set
~kT ≡ ~k1, T . Moreover, ~kS, T can be deformed away from its power counting region in
momentum conservation. The consequence of this operation is that the residual dependence
of the cross section on the weak components of k1, k−1 and k1T , is relagated to C1, which
is connected to the rest of the process only through a convolution on k+

1 . Furthermore,
at this point the soft factor has to be considered a fully perturbative object, on the same
footage of the Cα factors, and the contribution of soft gluons, although non-trivial, turns
out to be totally computable in pQCD as it involves only TMD-irrelevant terms.

After applying H.1 and H.2, we can follow the same strategy used for collinear factor-
ization and gather all the perturbative contributions (hard subgraphs, Cα factors, SNjets)
in a single thrust-dependent function playing the role of the partonic cross section. The
structure of the final cross section will be the same of that obtained in a collinear factor-
ization scheme but, due to the dependence on the transverse momentum of the detected
hadron, the interpretation will be TMD. The hadronic tensor can hence be written as:

Wµ ν
h (zh, ~PT , T ) =

∑
j1

∫ P+/zh

P+
dk+

1 δ

(
~PT

[
1 +O

(
P 2
T

Q2

)]
+ P+

k+
1

~k1, T

)

×
∫
dk−1 d

D−2~k1, T
(2π)D TrD

{
P1C1(k1, P )j1, HP1Hµ νj1 (Q, k+

1 , T )
}
. (5.31)

In the above equation, all the contributions that can be totally predicted by perturbative
QCD have been collected in the factor Hµ νj1 , which is clearly strictly related to the partonic
tensor since Ŵµν

j1
= TrD{k+

1 γ
−Hµ νj1 }. The TMD FFs are obtained by applying the Dirac

projectors P1, P1 to C1.
Notice that since the partonic tensor is meant to represent the whole process at parton

level, there is also a contribution associated to the radiation collinear to the fragmenting
parton. Such term in the final cross section overlaps the collinear momentum region covered
by the TMD FF and hence Ŵµν

j1
must be equipped with a proper subtraction procedure [11,

16]. The final form of the factorization theorem for Region 2 can be written as:

dσ

dzh dP
2
T dT

= π
∑
j

∫ 1

zh

dẑ

ẑ

dσ̂j
d(zh/ẑ) dT Dj, h(ẑ, PT )

[
1 +O

(
P 2
T

Q2 ,
M2
h

Q2

)]
. (5.32)

where:
Dj, h(ẑ, PT ) = D1, h/j(ẑ, PT )∓ ẑ

Mh
ST PT D

⊥
1T, h/j(ẑ, PT ). (5.33)

Since TMDs are properly defined in the Fourier conjugate space, it is more convenient
to write the cross section using their bT -space counterparts, given by:

Dj, h(ẑ, PT )
[
1 +O

(
P 2
T

Q2

)]
=
∫

d2~bT
(2π)2 e

i
~PT

ẑ
·~bT
D̃j, h(ẑ, bT ), (5.34)
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where the factor 1/ẑ in the Fourier factor is due to the change of variables from ~kT (h-frame)
to ~PT (p-frame), as ~bT has been defined as the variable conjugate to ~kT . The factorization
theorem can also be written as:

dσ

dz dP 2
T dT

= π
∑
j

∫ 1

zh

dẑ

ẑ

dσ̂j
d(zh/ẑ) dT

∫
d2~bT
(2π)2 e

i
~PT

ẑ
·~bT
D̃j, h(ẑ, bT )

[
1 +O

(
M2
h

Q2

)]
.

(5.35)
Here the Fourier transform acts as an analytic continuation extending the TMD also be-
yond the original momentum region. This is an important effect to keep in mind when
performing any phenomenological application based on formulae like eq. (5.35). In fact, the
TMD is originally modeled in the bT -space and afterward tested on data, in the transverse
momentum space. Therefore, the cross section showed in eq. (5.35), even if formally well
defined for any value of PT , can only be trusted where PT � Q or, more precisely, where
PT � P+ = zhQ/

√
2, which is the actual condition that allows to consider the outgoing

hadron as a collinear particle, according to the power counting rules.
Notice how the expression presented in eq. (5.35) beautifully matches with the fac-

torization theorem obtained from a fully perturbative approach in eq. (5.30). In fact, by
comparing these two equations, the (subtracted) partonic cross section for the 2-jet case is
given by:

dσ̂2-jets
f

dz dτ
= σB NC V δ(1− z) e2

f

×
∫
dτS+ dτS− dτB J(τB)S−(τS−)S+

(
τS+ , ζ

)
δ(τ − τS+ − τS− − τB). (5.36)

5.1.2 Collinear-TMD factorization

The structure of the factorized cross section obtained in the previous section is analogous to
that obtained from a classic collinear factorization theorem, where all the fully perturbative
contributions are gathered in a properly subtracted partonic cross section. This represents
the full process to the parton level and is completely computable by using perturbation
theory techniques. Besides the hard subgraphs, the partonic cross section also includes all
the perturbative collinear factors associated to the production of hard jets and the soft
factor, all of them thrust-dependent functions predicted, order by order, solely by pQCD.
Differently from the usual collinear factorization theorems, however, the final cross section
is sensitive to TMD effects, encoded into the collinear subgraph associated to the detected
hadron. This contribution is therefore related to a TMD FF.

Therefore, the factorization theorem presented in eq. (5.35) can be considered as a
hybrid version of collinear and TMD factorization, that we will call collinear-TMD. The
analogies with the usual collinear factorization are summarized as follows:

Collinear factorization Collinear-TMD factorization
σ̂j ⊗ dh/j︸︷︷︸

FF

σ̂j ⊗ Dh/j︸ ︷︷ ︸
TMD FF

Collinear-TMD factorization theorems show a rather simple structure, to the benefit of phe-
nomenological analyses. However, there are two issues that have not be considered so far.
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First of all, the TMDs appearing in the factorized cross section are defined by the
factorization definition of eq. (A.15) instead of the square root definition [10, 25], commonly
used in the Collins factorization formalism. Notice that this perfectly matches the naive
expectations based on the sole kinematic analysis, as discussed in section 2. This is indeed
a general feature of collinear-TMD factorization theorems. In fact, since the soft gluon
contribution is totally perturbative, there are no other non-perturbative terms apart from
those encoded into the TMDs. In practice, the TMD model extracted from e+e− → hX

is different from that extracted from e+e− → h1 h2, since the latter contains part of the
information associated with the soft gluon emissions that correlate the two collinear parts
related to the two hadrons, i.e. a square root of the soft model MS , as explicitly shown
in ref. [11] and reviewd in appendix A. This is particularly relevant when performing a
phenomenological analysis that combines data of single- and double hadron production, or,
more generally, when comparing the TMDs extracted from a collinear-TMD factorization
theorem, eq. (5.32), to the TMDs defined for the 2-h class processes. In these regards we
refer, for example, to the two different approaches adopted in refs. [14, 19].

Secondly, in all the formulas provided above, the TMDs have been presented as de-
pending only on transverse momentum and collinear momentum fraction. However, TMDs
are also equipped with a rapidity cut-off y1 as explicitly showed in the previous pertur-
bative computations. This is required by the subtraction mechanism which removes the
overlapping between soft and collinear momentum regions, as y1 acts as a lower bound for
the rapidity of the particles described by the TMD, which are supposed to be collinear,
hence very fast moving along their reference direction. On the other hand, physical observ-
ables should not depend on the regularization procedure used to regulate the divergences
encountered in their computations. Rapidity divergences are not an exception. However,
clearly, the factorization theorems presented in this section do not satisfy this requirement,
as the TMD FFs show a very specific dependence on ζ, given by their Collins-Soper evolu-
tion equation, eq. (A.16b). The partonic cross section, whih is independent of bT , cannot
compensate for this dependence as it cannot evolve in the opposite way.

5.1.3 The role of rapidity cut-offs

The consequence of this residual dependence on the rapidity cut-off left in the final factor-
ized cross section is one of the issues, possibly the most important, related to collinear-TMD
factorization theorems. This might lead to think of an inconsistency10 of the factorization
theorem. Here, however, we will follow a different philosophy, as we are convinced that the
clear signal of the failure of a factorization procedure should be the presence of uncancelled
divergences in the final cross section, which here is not the case. A consistent interpretation
of a factorization theorem in the form of eq. (5.32) can still be obtained by reconsidering
the role of the rapidity cut-offs. In particular, we interpret their explicit presence in the
final result as an indication that they should be promoted from mere computational tools
to quantities with a deeper physical meaning.

10An inconsistency in the factorization theorem for Region 2 was already pointed out in ref. [18].
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An observable sensitive both to TMD effects and to thrust offers a beautiful chance
to proceed along this path. In fact, there must be an intrinsic relation between the rapid-
ity cut-off used in the Collins factorization formalism and the (experimentally accessible)
thrust, T . There is a simple kinematic argument that naively shows this relation. In
fact, if yP is the rapidity of the detected hadron, then, neglecting all mass corrections, its
minimum value is associated to the value of T . In fact, there is a kinematic constraint
on PT /zh, which states that it cannot be larger than

√
1− T Q, see ref. [18]. This follows

directly from the definition of thrust in eq. (2.1). Therefore:

yP = 1
2 log P

+

P−
= log zhQ√

P 2
T +M2

h

≥ −1
2 log (1− T ) +O

(
M2
h

P 2
T

)
, (5.37)

Then, thrust acts as a rapidity cut-off, since yP can be considered a good estimate for the
rapidity of all the particles belonging to the same collinear group of the detected hadron.
The thrust τ thereby introduces an additional regularization procedure that overlaps and
interferes with the action of the rapidity cut-off. This implies that y1 and τ have to be
related. However, within the Collins formalism, it is not possible to set a straightforward
relation between y1 and T . In this regard, eq. (5.37) should be considered just as a naive
argument based only on kinematics, without any claim of formal validity.

In the past, different methods to regulate rapidity divergences have been developed.
One of the most elegant is the Rapidity Renormalization Group (RRG), used mainly in
SCET-based approaches to factorization, as in refs. [26, 27], where rapidity divergences
are regularized applying a procedure totally analogous to that used for UV divergences,
i.e. by introducing an auxiliary scale ν, counterpart of µ, and taking the derivative with
respect to log ν, which introduces equations analogous to the CS evolution equations. The
collinear and TMD factorization theorems obtained with RRG match exactly those derived
within the Collins formalism [28, 29]. Therefore, collinear-TMD factorization must produce
a cross section which is not RRG-invariant and the nature of the scale ν must be deeply
different from its RG counterpart. By extension, wherever the regularization procedure
is used to treat rapidity divergences, the regulator must acquire a real physical meaning.
In general, different rapidity regulators produce different kinds of connections to thrust.
Given the physical meaning acquired by the rapidity regulator, it would be interesting to
explore how a regulator with a specific physical interpretation implemented at the level of
operator definition of the Wilson lines behaves in this context. This is a project we are
presently working on, and that will hopefully be made public very soon [30]. Collinear-
TMD factorized observables, like the cross section presented in eq. (5.35), may be the
necessary tools to investigate this important feature.

A first attempt to assign more physical significance to the rapidity cut-off can be
pursued by introducing a mechanism that allows to consider the TMDs invariant with
respect to the choice of the rapidity cut-off. This approach has been investigated in ref. [11],
where TMDs are equipped with a transformation, called Rapidity Dilation, that properly
balance their non-perturbative content with the CS-evolution factor that regulates their
dependence on y1. Such procedure should be viewed as a phenomenological tool, useful
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for the analysis of the factorized cross section of eq. (5.35) to lowest order in thrust and
keeping the TMD FF to lowest log (LL) in bT . However, within this (trivial) approximation,
the relation between the rapidity cut-off and thrust can hardly be appreciated. Rapidity
dilations can give some hint about the physical interpretation of the rapidity cut-off in the
Collins factorization formalism, but do not relate ζ with T explicitly. Furthermore, they do
not explain the cross section dependence on the rapidity cut-off beyond the lowest order.

The relation between ζ and T becomes evident to NLO and it can be made explicit
by following the procedure presented in ref. [16], where the formalism is modified by in-
troducing a topology cut-off λ that forces the partonic cross section to describe the proper
final state configuration, in this case a 2-jet topology. This is a further variable, not in-
cluded into the original Collins factorization formalism. Without this extra ingredient, a
direct relation between the rapidity cut-off and thrust cannot be recovered. The topology
cut-off λ has a double function: on one side it forces the modified partonic cross section
to describe the 2-jet region, on the other side it constrains the total transverse momentum
of the radiation collinear to the detected hadron to be in the power counting region. This
last feature is crucial, as, for on-shell particles, a constraint on transverse momentum au-
tomatically leads to a constraint on rapidity (and vice-versa). The double nature of the
topology cut-off makes it more flexible than ζ. Its direct relation to the topology of the
process can be made more explicit by exploiting the kinematic argument of eq. (5.37). In
fact, on one side kT ≤ PT /zh ≤

√
τ Q, on the other kT ≤ λ and the natural choice for

the topology cut-off is λ =
√
τ Q. Therefore, the limit λ → 0 literally corresponds to the

2-jet limit. The more y1 approaches infinity, the narrower the jet in which the hadron is
detected, approaching the pencil-like configuration.

Since in the Collins factorization formalism ζ and T are not explicitly related, the
cross section presented in eq. (5.30) cannot be properly thrust-resummed, as such operation
necessarily needs the correct relation between the rapidity cut-off and thrust. Consequently,
the result obtained for Region 2 cannot be used for values of thrust extremely close to T = 1,
where the resummation effects become significant [22, 31].

A simple way to obtain a formula valid far enough from the pencil-like configuration is
the procedure adopted in the formalism described in ref. [11], which consists in dropping the
τ = 0 terms from the fixed order computation of eq. (5.29). Notice that, differently from
ref. [16], this operation still leaves a residual dependence on the rapidity cut-off, i.e. the
logarithmic term multiplying the τ -plus distribution in the last line of eq. (5.29). Without
further constraints ζ can only be related to T through the naive kinematics argument of
eq. (5.37) and set as ζ = τQ2. Of course, this identification can only be done after removing
the τ = 0 terms, otherwise it would produce ill-defined contributions like δ(τ) log τ . This
is the same kind of trouble that would appear if y1 = +∞ is set straightforwardly in the
final factorization theorem of eq. (5.32).

Following this approach, the expression in eq. (5.29) leads to the same formula found
in the formalism shown in ref. [16]. In particular from eqs. (5.29) and (5.36), the NLO
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partonic cross section becomes:

dσ̂2-jets
f

dz dT
NLO

= − σB e2
f CF NC δ(1− z)3 + 8 log (1− T )

1− T . (5.38)

As long as the phenomenological analyses do not include data associated to very large
values of T , this formula for the partonic cross section is expected to be sufficient. An
extensive phenomenological analysis based on this approach will be presented in ref. [32].

One could legitimately ask how the result of eq. (5.38), obtained by making strong
assumptions on the correlation between thrust and the rapidity regulator, is related to
the correct expression of the final cross section. As discussed above, in Region 2 the
rapidity divergences are naturally regulated by thrust. Artificially including an additional
rapidity regulator inevitably introduces some redundancy that results in an unexpected
residual dependence on such regulator in the final result. While this does not affect the
backward radiation contribution, where the redundancy is washed away by the integration
on transverse momenta, its effect becomes clearly visible in the forward radiation term.
Most importantly, this artificial redundancy implies the existence of a relation between the
rapidity cut-off and the thrust. Once this condition is explicitly implemented and the final
result is freed of any dependence on the rapidity cut-off, our Region 2 cross section can be
compared to that of ref. [18], see section 5.1.4.

A correct derivation of this relation can be achieved in the thrust Laplace conjugate
space, defined in terms of the variable u, Laplace conjugate to τ . It is important to
stress that this does not modify any of the features of the CSS approach, but only the
interpretation of the rapidity regulator. With this in mind, we Laplace transform the cross
section of Region 2 presented in eq. (5.30) and look for a condition that fixes the correlation
between the rapidity cut-off and u, which implicitly renders the relation linking ζ to τ . This
is obtained by requiring that the CS-derivative of the factorized cross section is zero. To
one-loop, the vanishing of the CS-derivative of eq. (5.29) gives:

∂ dσ
[1]
R2

∂ log
√
ζ

= 0 −→ log
(√

ζ

Q

)
= − log

(
ue−γE

µ

Q

)
+ log

(
bT µ

c1

)
. (5.39)

When this condition is implemented in eq. (5.29) we recover exactly the same cross section
as that obtained in SCET [18], to one-loop precision. Notice that according to eq. (5.39)
ζ is linked not only to u, but also to bT . This implies that not only the TMD FF acquires
a dependence on the thrust through the rapidity cut-off, but also that the partonic cross
section acquires a dependence on PT through the same mechanism. It is important to stress
that the non-perturbative core of the TMD FF remains blind to the topology of the final
state, as the TMD model MD and gK do not depend on thrust. Therefore, the universality
of the TMDs is not undermined.

However, the connection between thrust and the rapidity regulator somehow spoils
the structure of the final cross section, as the TMD FF and the partonic cross section
are entangled in a much more complicated way than a simple convolution on z. Unfortu-
nately, such complications will inevitably have a negative impact on any phenomenological
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analysis. Therefore for our applications we opt for a simpler relation linking the rapidity
cut off to thrust, τ , obtained by mere kinematic considerations (see eq. (5.37)). Although
less rigorous, this procedure is much more suitable for the practical implementations of
this formalism. Remarkably, a proper resummation of the final cross section can only be
achieved after the all-order treatment of the condition linking the rapidity cut-off to thrust
and transverse momentum. These issues will be addressed in a forthcoming paper [33].

5.1.4 Comparison with SCET

In the SCET approach, a consistent factorization theorem for Region 2 is devised by adding
an extra mode that produces an extra contribution to the cross section (the thrust-TMD
collinear-soft function of ref. [18]) which precisely cancels the rapidity regulator depen-
dence of the TMD FF. In the Collins factorization formalism the analogous procedure
would consist in a modification of the Libby-Sterman analysis, i.e. of power counting, by
the introduction of an extra momentum scale (beside hard, soft and collinear). However
such a modification could hardly be implemented, as it would inevitably spoil the delicate
mechanism of subtraction based on the application of the kinematic approximators, which
is the core of the CSS procedure.

For a closer comparison, we start by “translating” in the Collins formalism language
the SCET cross section eq. (2.21) of ref. [18]:

dσ
Ref. [18]
R2

∼ H J Sthr. CDj→h (5.40)

By performing the following replacements:

H 7→ V ; J ←→ J ; Sthr. 7→ S C 7→ Υ̃ASY
+ Dj→h 7→ D̃h/f .

the resulting structure, translated in our formalism, becomes

dσ
Ref. [18]
R2

∼ H J Sthr. CDj→h translation
←→ V J S Υ̃ASY

+ D̃h/f = V J S���Υ̃ASY
+

Γ̃ASY
h/f

���Υ̃ASY
+

=

= V J S Γ̃ASY
h/f = V J S− S+ Γ̃ASY

h/f , (5.41)

where we recast the TMD FF as in eqs. (5.25) and (5.26). In the last step, the contributions
of the virtual (hard) radiation has been separated out from those corresponding to the
backward and the forward radiation. With the cross section written in this way, we can
now reconstruct the action of the approximators on each single part.

We consider eq. (5.41), to one-loop, leaving aside the virtual term, which is obtained
by applying the hard approximator TH and trivially coincides in the two approaches. In
the following, the kinematic approximators TH , TS , TA, TB are those defined in the Collins
factorization formalism, equipped with their specific dependence on the rapidity cut-off.
For the backward hemisphere (see section 4) we have:

J [1] + S
[1]
− = (TB − TSTB + TS)W. (5.42)

One could argue that, in this case, there is no need for introducing an external rapidity
regulator, as the contribution of the backward radiation, being an integrated quantity,
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does not suffer of any rapidity divergence. Indeed an explicit calculation confirms this
expectation, giving:

J [1] + S
[1]
− = (T ?B + T ?S)W, (5.43)

where the symbol “?” indicates that the dependence on the rapidity cut-offs has been
dropped from their definition, from the very beginning.

Extending such considerations to the forward hemisphere contributions requires special
care, as there is no integration involved here, and there are quantities that explicitly depend
on the transverse momentum. In particular we have:

S
[1]
+ + z D̃

[1]
j/f = (TA − TSTA + TS)W . (5.44)

Notice that, crucially, the above equation differs from the contribution appearing in the
(translated) SCET cross section of eq. (5.41) which rather corresponds to

S
[1]
+ + Γ̃[1],ASY

j/f = (T ?A + T ?S)W, (5.45)

i.e. the counterpart of eq. (5.43), where the approximators are defined as being independent
of the rapidity cut-offs. It is important to stress that in this case we are dealing with TMD
quantities and, at least in the Collins formalism, it is absolutely not obvious that the action
of the rapidity cut-off can be neglected at any stage of the calculation. In fact, in contrast to
the backward case, eq. (5.44) and eq. (5.45) do not coincide, as in eq. (5.44), corresponding
to the result obtained within the CSS formalism, there is an explicit dependence on the
rapidity cut-off, which is not there in the SCET result. Once the condition of eq. (5.39)
is taken into account, eq. (5.44) and eq. (5.45) coincide and the approach of ref. [18] is in
total agreement with our formalism, to one-loop precision.

6 Region 1: TMD factorization

In this section we will consider the contribution of the forward radiation in Region 1. All
the considerations on the 1-loop decomposition of the partonic tensor are the same derived
for Region 2 at the beginning of section 5. In fact, also in this case we have to compute
the various approximations presented in eq. (5.1). In particular, the results obtained for
soft-collinear and collinear radiation obtained for Region 2 extend automatically in Region
1, since also for this configurations they are TMD-relevant terms (see table 2). However,
the contribution of the forward soft radiation is deeply different, since in Region 1 it is a
TMD-relevant term as well. In fact, in this region H.2 is false and hence the size of the
transverse momentum of the detected hadron has to be very small in order to be sensitive
to soft radiation.

Clearly, the structure of the final factorization theorem derived for this region will be
different from that presented in eq. (5.32). In fact, its structure will be rather similar to
the standard TMD factorization theorems, see refs. [10, 11, 16].
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Figure 7. Pictorial representation of the effect of a TMD-relevant soft radiation. The final PT , mea-
sured with respect to the thrust axis ~n, is the result of several deflections due to emission/absorption
of radiation. When the soft gluons (red) are TMD-relevant, they deflect the detected hadron af-
fecting its transverse momentum. This effect must be added to the analogous contributions of
soft-collinear gluons (orange) and collinear gluons (green).

Soft approximation. If the soft radiation is TMD-relevant, the action of T+
S gives a

non-trivial dependence on ~kT :

T+
S

[
Ŵ

µν, [1]
f,R (ε; z, τ, kT )

]
=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) δ(1− ρ)Σ[1]

+ (ε; τ, kT ) , (6.1)

where we have introduced the soft thrust factor Σ. It is defined exactly as S̃2-h, presented
in eq. (A.11), but with an explicit dependence on thrust implemented as in the usual soft
thrust function. Therefore, Σ depends not only on the total soft transverse momentum
and on the rapidity cut-offs associated to the tilted Wilson lines, but also on τ . In eq. (6.1)
only the contribution of the soft thrust factor to the SA hemisphere is involved. To 1-loop
order it is defined in momentum space as:

Σ[1]
+ (ε; τ, kT , y1, y2) = (6.2)

=
∫
dl+ dl−

(2π)D θ
(
l+ − l−

)
δ

(
τ − l−

q−

)


+ h.c.


=

= αS
4π 2CF Sε

Γ(1− ε)
π1−ε µ2ε 1

k2
T

∫ +∞

0
dy

1 + e−2(y1−y2)(
1− e−2(y1−y)) (1− e2(y2−y))δ

(
τ − kT

Q
e−y

)
+ h.c.

Notice how the Heaviside theta enforces the gluon to be emitted in the (+)-hemisphere.
Moreover, in analogy to the generalized soft thrust function S+ defined in section 4, we
should expect that only the rapidity cut-off relevant for the considered hemisphere (in this
case y1) will contribute explicitly to the final result. The Fourier transform of the eq. (6.2)
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can be written in the following form:

Σ̃[1]
+ (ε; τ, bT , y1, y2) =

∫
d2−2ε~kT e

i~kT ·~bT Σ[1]
+ (ε; τ, kT , y1, y2) =

= αS
4π 2CF Sε

(
µ

Q

)2ε
Γ(1− ε) 1 + e−2(y1−y2)

1− e−2(y1−y2)

(
b

c1

)ε
e−γE ε τ−1−ε×

×
(
Iε
(
τ b, e−2y1

)
− Iε

(
τ b, e−2y2

))
+ h.c., (6.3)

where b = bTQ and where we have defined the integral:

Iε (a, r) =
∫ 1

0
dx

xε/2

x− r
J−ε

(
a√
x

)
(6.4)

The solution to this integral requires advanced mathematical tools and non-standard tech-
niques. From eqs. (C.15) and (C.17), the integral appearing in eq. (6.3) admit the following
solutions:

Iε(τ b, r1) =
(
τ b

2

)−ε 1
εΓ(1− ε)1F2

(
−ε; 1− ε, 1− ε;−τ

2 b2

4

)
+

+
(
τ b

2

)ε
Γ(−ε)− 2 (−r1)ε/2K−ε

(
τ b√
−r1

)
+O(r1); (6.5a)

Iε

(
τ b,

1
r2

)
= O(r2), (6.5b)

where we set r1 = e−2y1 and r2 = e2y2 . As expected, the dependence on y2 vanishes in the
limit y2 → −∞ and the final result depends only on y1.

Inserting the eqs. (6.5) into eq. (6.3), we obtain the expression for the Fourier transform
soft thrust factor to 1-loop order:

Σ̃[1]
+ (ε; τ, bT , y1) =

= αS
4π 2CF Sε

(
µ

Q

)2ε
{
τ−1−2ε

ε
1F2

(
−ε; 1− ε, 1− ε; −τ

2 b2

4

)
+

+ 1
τ

(
b

c1

)2ε
e−2γE ε Γ(1− ε)Γ(−ε)− 2τ−1−ε

(
−e−2y1

)ε/2
K−ε

(
τb√
−r1

)
+

+O
(
e−2y1 , e2y2 , e−2(y1−y2)

)}
+ h.c., (6.6)

The analogous contribution in the opposite hemisphere Σ̃− can be easily obtained from
eq. (6.6) by replacing y1 with −y2. This is a general property:

Σ̃− (ε; τ, bT , y2) = Σ̃+ (ε; τ, bT , −y2) . (6.7)

Furthermore, a generalization of the factorization theorem in eq. (4.7) holds for uninte-
grated quantities:

Σ̃ (ε; τ, bT , y1 − y2) = Σ̃+ (ε; τ, bT , y1) Σ̃− (ε; τ, bT , y2) . (6.8)

– 41 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
3

In eq. (6.6), only the first term presents the expected “soft” behavior for the thrust τ−1−2ε,
i.e. the same dependence shown by the usual soft thrust function at 1-loop order. This is of
no concern, as the extra terms will be canceled after the subtraction of the overlapping soft-
collinear contribution, similarly to what was done for the case of the backward radiation.
In fact, notice that the extra terms match exactly with the soft-collinear thrust factor Υ+
computed in eq. (5.5). Therefore, only the “pure soft”, i.e. subtracted, term remains after
elimination of the double counting:

Σ̃[1]
+ (ε; τ, bT , y1)− Υ̃[1]

+ (ε; τ, bT , y1) = Σ̃[1], sub.
+ (ε; τ, bT ) . (6.9)

which is the analogous of eq. (4.14). Such result, together with its counterpart in the
opposite hemisphere, can be generalized to all orders leading to the following factorization
theorems:

Σ̃sub.
+ (ε; τ, bT ) = Σ̃+ (ε; τ, bT , y1)

Υ̃+ (ε; τ, bT , y1)
; (6.10a)

Σ̃sub.
− (ε; τ, bT ) = Σ̃− (ε; τ, bT , y2)

Υ̃− (ε; τ, bT , y2)
. (6.10b)

Together with eq. (6.8), these factorization theorems lead to:

Σ̃sub.
+ (ε; τ, bT ) = Σ̃+ (ε; τ, bT , y1)

Υ̃+ (ε; τ, bT , y1)
Σ̃− (ε; τ, bT , y2)
Υ̃− (ε; τ, bT , y2)

. (6.11)

which is the counterpart of eq. (4.16) for unintegrated quantities.

We will now focus on the “purely soft” term, i.e. the contribution in the first line of
eq. (6.6), obtained through the subtraction in eq. (6.9):

Σ̃[1], sub.
+ (ε; τ, bT ) = αS

4π 4CF Sε
(
µ

Q

)2ε τ−1−2ε

ε
1F2

(
−ε; 1− ε, 1− ε; −τ

2 b2

4

)
, (6.12)

where we have also added its complex conjugate counterpart. Notice that without the
hypergeometric function 1F2, the subtracted soft thrust factor would be equal to the usual
soft thrust function S+, restricted to the SA hemisphere.
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Figure 8. The soft thrust factor Σ̃[1]
+ (ε; τ, bT , y1), (solid, blue line), eq. (6.3), is compared to its

behavior for large values of the rapidity cut-off, y1 → +∞ (orange, dashed line), eq. (6.6). These
lines are obtained by integrating with a test function chosen as T (τ) = e−τ .

The 2-jet limit is obtained by studying the large bT -asymptotic of eq. (6.12). Applying
the trick of eq. (B.6) we can write:

τ−1−2ε

ε
1F2

(
−ε; 1− ε, 1− ε; −τ

2 b2

4

)
= (6.13)

= δ(τ)
[
− 1

2ε2 2F3

(
−ε, −ε; 1− ε, 1− ε, 1− ε; −b

2

4

)]
+

+
(
τ−1−2ε

ε
1F2

(
−ε; 1− ε, 1− ε; −τ

2 b2

4

))
+

=

= δ(τ)
[
− 1

2ε2 + b2

8 3F4

(
1, 1, 1; 2, 2, 2, 2; −b

2

4

)]
+

+ 1
ε

(1
τ

)
+
− 2

( log τ
τ

)
+

+
(
τ
b2

4 2F3

(
1, 1; 2, 2, 2; −τ

2 b2

4

))
+

+O(ε) =

= δ(τ)
[
− 1

2ε2 + log2
(
b

c1

)]
+ 1
ε

(1
τ

)
+

+ 2 log
(
b

c1

)(1
τ

)
+

+ terms suppressed
in the limit b→∞ +O(ε)

where in the second step we ε-expanded and in the last one we extracted the asymptotic
behavior at large-b. Finally:

Σ̃[1], sub., ASY
+ (ε; τ, bT ) = αS

4π 4CF Sε
{
− 1

2ε2 δ(τ) +−1
ε

[
δ(τ) log

(
µ

Q

)
−
(1
τ

)
+

]
+ (6.14)

+ log
(
bT µ

c1

)[
2
(1
τ

)
+

+ δ(τ)
(

log
(
bT µ

c1

)
− 2 log

(
µ

Q

))]}
.

The most interesting result of this section, is that combining the result of eq. (6.14) with
eq. (5.9) we can reconstruct the large-bT behavior of the unsubtracted soft thrust factor:

Σ̃[1],ASY
+ (ε; τ, bT , y1) = Σ̃[1],ASY, sub.

+ (ε; τ, bT ) + Υ̃[1],ASY
+ (ε; τ, bT , y1) = (6.15)

= −αS4π 4CF
(1
ε
y1 + 2y1 log

(
bT µ

c1

))
δ(τ) = δ(τ) S̃[1], (0)

2-h,+ (ε; bT , y1) ,
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Figure 9. The subtracted soft thrust factor (solid, blue line), eq. (6.12), is compared to its asymp-
totic large-b behaviour (dashed, orange line), eq. (6.14). These lines are obtained by integrating
with a test function chosen as T (τ) = e−τ .

where S̃(0)
2-h,+ is the contribution of the SA-hemisphere to the bare 2-h soft factor, as defined

in eq. (A.11). From now on, it will be indicated as the (bare) forward soft factor. This
result will be crucial in devising a factorization theorem suitable for Region 1. Moreover,
thanks to the factorization theorems of eqs. (6.8) and (6.11), eq. (6.15) can be generalized
to all orders as:

Σ̃+ (ε; τ, bT , y1) 2-jet limit
∼ Σ̃ASY

+ (ε; τ, bT , y1) = δ(τ)S̃(0)
2-h,+ (ε; bT , y1) ; (6.16a)

Σ̃− (ε; τ, bT , y2) 2-jet limit
∼ Σ̃ASY

− (ε; τ, bT , y2) = δ(τ)S̃(0)
2-h,− (ε; bT , y2) , (6.16b)

where, by analogy, S̃2-h,− defines the backward soft factor. Furthermore, combining
the theorems above:

Σ̃ (ε; τ, bT , y1 − y2) 2-jet limit
∼ δ(τ)S̃(0)

2-h (ε; bT , y1 − y2) , (6.17)

where S̃2-h is the same soft factor appearing in 2-h cross sections. In fact, it is straight-
forward to show that S̃2-h is given by the product of the forward and the backward soft
factors, as shows the following factorization theorem:

S̃2-h(bT , µ, y1 − y2) = S̃2-h,+ (ε; bT , µ, y1) S̃2-h,− (ε; bT , µ, y2) . (6.18)

Final result for forward radiation in region 1. Combining all the results of this sec-
tion together with the formulae obtained for soft-collinear and collinear forward radiation
in section 5, we obtain the final expression for the contribution of the radiation emitted in
the SA-hemisphere to the partonic tensor, in Region 1. In bT -space we have:

˜̂
W

µν, [1]
f, forward (ε; z, τ, bT ) = (6.19)

=
∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q)

[
δ(1− ρ)

(
Σ[1]

+ (ε; τ, kT )− Υ̃[1]
+ (ε; τ, bT , y1)

)
+ Γ̃[1]

q/q (ε; τ, ρ, bT )
]

2-jet limit
∼

∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q)δ(τ)

[
δ(1− ρ) S̃[1], (0)

2-h,+ (ε; bT , y1) + ρ D̃
[1], (0)
q/q (ε; ρ, bT , y1)

]
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Notice that the whole dependence on the rapidity cut-off y1 is washed out in the combi-
nation of S̃2-h,+ and the TMD FF. Moreover, we could have obtain easily the same result
by neglecting from the very beginning, already in transverse momentum space, any rela-
tion between the thrust and the transverse momentum in the leading momentum regions
associated to TMD-relevant contribution, which are the whole forward radiation terms in
Region 1. In fact, in this kinematic configuration the detected hadron is so close to the
thrust axis that it cannot affect the final state topology by any means.

6.1 Factorization theorem for region 1

The whole partonic tensor in Region 1, to 1-loop order, follows easily by summing the
contributions of virtual, backward and forward radiation, computed in eqs. (3.20), (4.19)
and (6.19) respectively. In bT -space it is given by:

˜̂
W

µν, [1]
f (ε; z, τ, bT ) =

= Hµν
T NC e

2
f

∫
dρ

ρ
δ (1− z/ρ)

[
δ(1− ρ)δ(τ)V (ε) + δ(1− ρ)

[
J [1] (ε; τ) + S

[1]
− (ε; τ)

]
+

+ δ(τ)
[
δ(1− ρ) S̃[1], (0)

2-h,+ (ε; bT , y1) + ρ D̃
[1], (0)
q/q (ε; ρ, bT , y1)

] ]
=

= Hµν
T NC e

2
f

[
δ(1− z)

(
δ(τ)V (ε) + J [1] (ε; τ) + S

[1]
− (ε; τ) + δ(τ)S̃[1], (0)

2-h,+ (ε; bT , y1)
)

+

+ δ(τ) z D̃[1], (0)
q/q (ε; z, bT , y1)

]
. (6.20)

where we used eq. (5.24) to rearrange the combination of the large-bT asymptotic behavior
of the quark-from-quark GFJF and that of the soft-collinear thrust factor into the bare
quark-from-quark TMD FF. Notice that all divergences cancel out among each other,
except for the characteristic collinear divergence of the TMD FF, which cannot be dealt
with in pQCD. This can be readily verified by substituting the 1-loop expressions for each
of the terms appearing in eq. (6.20).

This result can easily be generalized to all orders, analogously to what we did for Region
2 in section 5.1.1. Because of the divergence cancellation, we can drop the ε dependence
from the various contributions appearing in the final result and also the label “(0)” from
the TMD and the forward soft factor. Therefore, the factorization theorem for Region 1 is:

dσR1

dzh dP
2
T dT

= σB πNC V

∫
dτS dτB J(τB)S−(τS)δ(τ − τS − τB)×

×
∫

d2~bT
(2π)2 e

i
~PT
zh
·~bT S̃2-h,+ (bT , ζ)

∑
f

e2
f D̃h/f (zh, bT , ζ) . (6.21)

The rapidity cut-off has been recast into the variable ζ, defined as in appendix A. Region
1 is one of the cases where the all-orders generalization has to be performed with special
care. The reason is that the contribution of the soft radiation is intrinsically asymmetric
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in this region, as the soft gluons emitted backward affects the value of thrust but not the
transverse momentum of the detected hadron, while for the soft gluons emitted forwardly
the situation is exactly the opposite. If there are more than two gluons, they can be emit-
ted either in one hemispher or in the other. The asymmetry between these configurations
produces new logarithmic terms correlating the emissions in the different hemispheres.
Such terms are usually called Non-Global Logarithms (NGLs). The problem with NGLs is
related to their resummation, which involves non-perturbative effects. Their contribution
can be included into eq. (6.21) as an extra factor, see for instance refs. [34–37]. A correct
treatment of NGLs is beyond the purpose of this article and they will not be included in
our final factorization theorems.

The same factorized cross section has been obtained within the framework of SCET in
ref. [18], adopting a completely different approach. A factorization scheme similar to that
presented in this section for Region 1, was addressed in ref. [17].

6.1.1 The role of soft radiation

The factorization theorem of eq. (6.21) is profoundly different from that devised in section 5.
First of all, the TMD FFs are not the only factors that encode non-perturbative effects.
In fact, the forward soft factor S̃2-h,+ has a non-trivial long-distance behavior as well. It
can be written explicitly in terms of its perturbative and non-perturbative contributions
in analogy to the procedure adopted for the 2-h soft factor [11]. In fact, a CS-evolution
equation for S̃2-h,+ can readily be written as:

∂

∂ log
√
ζ
S̃2-h,+ (bT , µ, ζ) = −1

2K̃ (bT , µ) . (6.22)

This is nothing but the evolution equation with respect to y1 of the 2-h soft factor,
eq. (A.12a). Notice that K̃ is the same Collins-Soper kernel appearing in the CS-evolution
of the TMDs. Therefore, by making use of the b? prescription [10], the forward soft factor
can be written as a solution of eq. (6.22):

S̃2-h,+ (bT , µ, ζ) = e
1
4 log

(
ζ

Q2

)[∫ µ
µ0

dµ′
µ′ γK(αS(µ′)) −K̃(b?T ;µ0)

]√
MS(bT ) e

1
4 log

(
ζ

Q2

)
gK(bT )

,

(6.23)
which must be compared to the corresponding expression obtained for S̃2-h in eq. (A.14).
In the previous equation, the soft model of S̃2-h,+ is assumed to be insensitive to the
hemisphere into which the soft radiation is emitted. In fact, it depends only on bT , i.e.
(simplifying) only on the transverse momentum of the soft radiation. Therefore it is com-
pletely unaware of the plus and minus components, which encode the selection of the
emission direction. For this reason, in eq. (6.23) we have simply MS+ ≡

√
MS .

Another crucial difference with collinear-TMD factorization theorems concerns the de-
pendence on the rapidity cut-off. In fact, the whole dependence on ζ disappears in the
combination S̃2-h,+ D̃h/f (zh, bT , ζ) of eq. (6.21), making the cross section in Region 1
CS-invariant. This can be directly checked by considering the solutions to the evolution
equations for the forward soft factor and the TMD FF, i.e. eq. (6.23) and (A.18), respec-
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tively. A direct check gives:

S̃2-h,+ (bT , µ, ζ) D̃h/f (zh, bT , µ, ζ) =
(
C̃j/f (b?T ; µb, ζb)⊗ dj/h(µb)

)
(zh)×

× exp
{

1
4 K̃(b?T ; µb) log Q

2

ζb
+
∫ µ

µb

dµ′

µ′

[
γC(αS(µ′), 1)− 1

4 γK(αS(µ′)) log Q
2

µ′2

]}
×

× (MC)j, h (zh, bT )
√
MS(bT )exp

{
−1

4 gK(bT ) log z2
h

Q2

M2
h

.

}
(6.24)

Despite this equation has been written for an unpolarized TMD FF, it is totally general and
can be applied to any TMD. Notice that the neat effect induced by S̃2-h,+ is a modification
of the TMD model, which is multiplied by

√
MS(bT ). This is the same modification as that

introduced in 2-h cross section in order to absorb the 2-h soft factor into the definition of
the TMDs. Such operation leads to the square root definition of TMDs [10, 25]. However,
in this case the same trick cannot be applied, despite the final results look the same. In
fact, naively, one might expect that the square root definition would correspond to the
combination appearing in the cross section relative to Region 1. This clearly cannot be
possible, as the combination of eq. (6.24) is CS-invariant, while the square root definitions
obey to the CS-evolution equations that regulate the behavior with respect to the rapidity
cut-off yn. A direct comparison shows that:

D̃sqrt
h/f (zh, bT , µ, yn) = S̃2-h,+ (bT , µ, y1) D̃h/f (zh, bT , µ, y1) exp

(
−yn2 K̃(bT , µ

)
. (6.25)

Therefore, the square root definition and the combination of eq. (6.24) coincide only if
yn = 0.

From the point of view of the phenomenological analyses, eq. (6.24) is particularly
relevant. The TMD model M sqrt

D = MD ×
√
MS as defined in the square root definition

can easily be experimentally accessed as a whole, but its two inner components cannot be
disentangled. As for the 2-h class cross sections, there are in total three unknown non-
perturbative functions, gK , MD and MS . The square root definition is useful in that it
effectively decreases the number of unknowns reducing them to M sqrt

D and gK , as usual
in the standard TMD factorization theorems. Due to these analogies, we will refer to the
cross section for Region 1, presented in eq. (6.21), as a TMD factorization theorem.

TMD and collinear-TMD factorizations do not differ only in their phenomenological
applications. They are different in spirit. In fact, the rapidity cut-off is totally irrelevant in
TMD factorization, even when thrust is measured. In this regard, notice that the kinematic
argument of eq. (5.37) widely used to discuss the role of the rapidity cut-off in collinear-
TMD factorization brakes down when PT becomes too small, which is the main feature
of Region 1. TMD factorization can play a leading role in the investigation of the role of
soft physics, as all the interesting dependence on the long-distances effects induced by soft
radiations is encoded in the TMD factorized cross section. However, it is totally blind to
the effects associated to the rapidity cut-off which, as discusses in section 5.1.3, it should
be assigned a proper physical meaning, given its relation to the measured value of thrust.
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Figure 10. Pictorial representation of the effect of the three kinds of radiation in Region 3. The
final PT , measured with respect to the thrust axis ~n, is not affected by the emission/absorption
of soft and soft-collinear radiations as the soft (red) and the soft-collinear (orange) gluons are
TMD-irrelevant. The transverse momentum of the detected hadron is generated only by collinear
radiations (green).

7 Region 3: generalized collinear factorization

The last configuration to be considered corresponds to the Region 3, where the kinematic
requirements H.1 is false and hence the transverse momentum of the detected hadron
is large enough to significantly affect the topological configuration of the final state. In
particular, PT is large enough to be insensitive also to soft-collinear emissions, other than
to soft radiation. Therefore, similarly to Region 2, the soft contribution is TMD-irrelevant,
but here the overlapping region, associated to soft-collinear radiation, is TMD-irrelevant
too. As a consequence, only collinear radiation produces significant TMD effects.

This kinematic configuration will inevitably produce yet another factorization theorem,
different from those obtained for Region 1 and 2. Most importantly, this is the only
kinematic region where the TMD effects are not described by TMD FFs, but rather by
GFJFs, which are as universal as the TMDs but have a further explicit dependence on the
invariant mass of the jet to which they are associated. In this case, the invariant mass of
the jet is related to thrust.

The explicit computation to 1-loop is straightforward, as all the necessary ingredients
have already been worked out in the previous sections. In particular, the action of T+

S gives
the same result found for Region 2, eq. (5.2). On the other hand, the soft-collinear term,
given by the action of TSTA, is totally analogous to its opposite hemisphere counterpart,
and can be easily obtained through eq. (4.13).

The main difference with the other two kinematic regions regards the only bT -
dependent quantity, i.e. the quark-from-quark GFJF defined in eq. (5.11), obtained through
the action of TA. When the detected hadron causes the jet spreading, then the whole fi-
nal state is inevitably far from the ideal pencil-like configuration, making the value of the
thrust to decrease. If this is the case, then the relation between kT and τ in eq. (B.3)
cannot be neglected anymore. Moreover, the large-bT limit is not a faithful representation
of this kinematics configuration, as the thrust cannot reach the ideal limit τ = 0 because of
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the size of kT , large enough to forbid a pencil-like final state. In this case, the final result
in bT -space is given by the Fourier transform of the gluon-from-quark GFJF of eq. (B.4).

7.1 Factorization theorem for region 3

The 1-loop order of the partonic tensor in Region 3 is given by:

˜̂
W

µν, [1]
f (ε; z, τ, kT ) =

= Hµν
T NC e

2
f

∫
dρ

ρ
δ (1− z/ρ)

[
δ(1− ρ)δ(τ)V (ε) + δ(1− ρ)

[
J [1] (ε; τ) + S

[1]
− (ε; τ)

]
+

+ δ(1− ρ)S[1]
+ (ε; τ) + Γ̃[1]

q/q (ε; ρ, bT , τ)
]

=

= Hµν
T NC e

2
f

[
δ(1− z)

(
δ(τ)V (ε) + J [1] (ε; τ) + S[1] (ε; τ)

)
+ Γ[1]

q/q (ε; z, kT , τ)
]
, (7.1)

where we used the SA-hemisphere counterpart of eq. (4.14) to reorganize the soft and the
soft-collinear terms into the forward radiation contribution to the usual thrust function,
which is then combined with its counterpart in the opposite hemisphere. Therefore, the
usual soft thrust function appears as a fundamental ingredient of the partonic tensor in
eq. (7.1). Furthermore, notice that in this region there is no trace of rapidity cut-offs, as
all the soft and soft-collinear terms are integrated over the transverse momentum.

The cross section for Region 3 is obtained by generalizing the 1-loop result for the
partonic tensor of eq. (7.1) to all orders. Then the final cross section can be written as:

dσR3

dzh dP
2
T dT

= (7.2)

= σB πNC V zh

∫
dτS dτA dτB J(τB)S(τS)

∑
f

e2
fΓh/f

(
zh,

PT
zh
, τA

)
δ(τ − τS − τA − τB),

where the presence of the zh factor is due to the unconventional normalization of the
GFJFs. Notice that the same factorized cross section has been obtained in ref. [18], within
the framework of SCET, adopting a completely different approach. The structure of this
cross section is similar to the factorization theorem devised for Region 2. In fact, naively,
eq. (7.2) can be obtained from eq. (7.1) by removing the rapidity cut-off and replacing the
TMD FFs with the corresponding GFJFs. It is interesting to notice that here the hybrid
nature of the collinear-TMD factorization theorem is “transferred” from the structure of
the cross section to its TMD part. In fact, the GFJFs have the same features of the TMD
FFs (they depend on the transverse momentum of the fragmenting parton, as well as on
the momentum fraction zh), but follow evolution equations analogous to DGLAP, involving
convolutions similar to those of the collinear FFs. However, differently from the TMDs,
GFJFs do not require a rapidity cut-off, since all the rapidity divergences are regulated
by the additional dependence on the invariant mass of the jet (a role played by thrust in
this case). Therefore, they should more properly be considered like a “generalized” version
of the usual collinear FFs, rather than an extension of the TMD FFs. For this reasons,
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the cross section presented in eq. (7.2) will be referred to as the generalized collinear
factorization theorem.

Despite the similarities, the factorization theorems of Region 2 and Region 3 are re-
markably different. In fact, the factorized cross section of eq. (7.2) is not of any use for the
investigation of the physical meaning of the rapidity cut-off, as they are defined without
any explicit rapidity regulator. Further considerations on GFJFs are beyond the purpose
of this work. For more details we refer the reader to ref. [24] and references therein.

8 Algorithm for region selection

So far, three different factorization theorems corresponding to as many different kinematics
regions have been developed: TMD factorization for Region 1 in eq. (6.21), collinear-TMD
factorization for Region 2 in eq. (5.30) and generalized collinear factorization for Region 3
in eq. (7.2). Each region corresponds to a different physical configuration and, in particular,
the transverse momentum of the detected hadron increases as we move from region 1 to
region 3. In fact, in region 1 the soft radiation contributes actively to the transverse
deviation of the hadron with respect to the thrust axis, which must then have a low
transverse momentum, otherwise it would not be sensitive to these tiny corrections. On the
other hand, in Region 3, the detected hadron has a transverse momentum large enough to
be among the causes of the spread of the jet in which it is detected, inevitably decreasing the
value of thrust. However, lacking a proper criterion to discriminate among the regions, these
three factorization theorems are hardly useful for phenomenological analyses. Moreover,
the boundaries of the three regions are not sharply defined, making the description of data
difficult, especially in the overlapping regions.

In order to define a suitable algorithm for selecting each individual region, it is useful
to review the approximations that lead to the three factorization theorems presented in
this section. Depending on the initial assumptions H.1 and H.2, organized11 as in table 1,
the leading momentum regions associated to the forward radiation contribute differently
to the observed TMD effects and hence the soft, soft-collinear and collinear terms can be
classified on the basis of their TMD-relevance, as in table 2. In other words, table 1 implies
table 2. Moreover, we have shown how the final results could have been found by neglecting
the correlation between thrust and transverse momentum from the very beginning, at the
level of definition of the various factors contributing to the forward radiation. Such further
approximations make the perturbative computations much easier, as all the issues related
to the 2-jet limit in bT -space clearly disappear when τ and kT are independent variables.

11Notice that the combination where both the initial assumptions are false does not correspond to any
kinematic regions as it is kinematically forbidden.
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In Region 1, this is equivalent to implementing the following approximations in the
definitions of the various factors in transverse momentum space, eqs. (6.2), (5.4) and (5.11):

δ

(
τ − l−

q−

)
= δ

(
τ − kT

Q
e−y

)
∼ δ(τ) both in Σ+ and in Υ+; (8.1a)

δ

(
τ − z

1− z
k2
T

Q2

)
= δ

(
τ − (1− z) z e−2y

)
∼ δ(τ) in Γq/q, (8.1b)

where y is the rapidity of the emitted gluon. Analogously, the result of Region 2 could
have been obtained by leaving S+ unchanged and setting:

δ

(
τ − l−

q−

)
= δ

(
τ − kT

Q
e−y

)
∼ δ(τ) in Υ+; (8.2a)

δ

(
τ − z

1− z
k2
T

Q2

)
= δ

(
τ − (1− z) z e−2y

)
∼ δ(τ) in Γq/q. (8.2b)

Finally, in Region 3 all the relations between thrust and transverse momentum have to be
kept into the definitions of the factors:

δ

(
τ − z

1− z
k2
T

Q2

)
= δ

(
τ − (1− z) z e−2y

)
not approximated in Γq/q. (8.3)

Eqs. (8.1), (8.2) and (8.3) follow directly from the classification of table 2.
The simplest criterion consists in comparing the size of kT to the typical scale set

according to the value of the thrust, T . In particular, in Region 1, eq. (8.1a) can be in-
terpreted as τ Q . kT , while, since in Region 3 the only TMD-relevant quantity is left
unapproximated, eq. (8.3) can be interpreted as kT ∼

√
τQ, which is also the maximum

value kinematically allowed for PT /zh. As a consequence, Region 2 covers the whole in-
termediate configuration, satisfying τ Q . kT .

√
τQ. Since kT is directly related to

the transverse momentum PT of the detected hadron by the relation PT = zhkT , these
interpretations can be transferred to hadronic quantities. In particular:

R1 −→
PT
zh
� τ Q; (8.4a)

R2 −→ τ Q .
PT
zh

.
√
τQ; (8.4b)

R3 −→
PT
zh
∼
√
τQ. (8.4c)

This criteria uses only the typical scales associated to the value of thrust, i.e. τ Q as a soft
scale and

√
τ Q as a collinear scale. In fact, these values are commonly used as reference

scales in thrust-resummed quantities, see for instance ref. [38]. Notice that this has been
proposed as a selection criterion for BELLE e+e− → hX data in ref. [18]. Moreover, since
the factorized cross sections of Regions 1 and 2 involve TMD FFs, an additional cut in PT
is necessary, since the Fourier transform acts as an analytic continuation that unnaturally

– 51 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
3

extends the TMD beyond the (physical) small transverse momentum region. In this case,
the requirement comes directly from power counting:

PT � P+ = zh
Q√

2
. (8.5)

The application of this algorithm to the BELLE data [13] in the 2-jet region, corresponding
to 0.7 ≤ T ≤ 1, produces the results shown in figure 11, where Regions 1, 2 and 3 have been
color coded to red, orange and green, respectively. The cut in PT for constraining the range
of applicability of TMDs is indicated by the blue vertical line. From the phenomenological
point of view this kind of data selection inevitably raises the issue of matching different
regions, since figure 11 shows that there are at least two different overlapping regions in
each panel. The problem of matching different kinematic regions, each corresponding to
a different factorization theorem, is not new in the context of TMD physics. This, in
fact, has recently been one of the most debated issues when dealing with phenomenological
applications of 2-h cross sections (like SIDIS and Drell-Yan), that have two distinct regimes
associated to two factorization theorems: collinear factorization at large-qT and TMD
factorization at small-qT , [39–42]. In the case of e+e− → hX there are three different
regions, making the matching even more problematic.

The set of rules devised above is not the only possible choice to obtain a valid criterion
to perform a data selection. In particular, it oversimplifies the complex structure of the
three kinematic regions, as it only considers the typical thrust scale associated to the two
leading momentum regions, soft and collinear. Most importantly, the approximations of
eq. (8.4) do not take into account the rapidity of the detected hadron, which, remarkably,
is the crucial information to discriminate between a configuration where the transverse
deflection is due to soft and soft-collinear radiation and one in which only soft-collinear
emissions play an active role in generating TMD effects. This is of course strictly connected
to the boundary between Region 1 and Region 2.

Therefore, in the following we will propose a different criterion which takes into account
also the information encoded in the hadron rapidity. It is devised on the basis of the 1-
loop computation presented in the previous sections (note that the argument of the deltas
constraining thrust and transverse momentum would be different at higher order in pQCD).

The approximations of eqs. (8.1), (8.2) and (8.3) are considered the fundamental tool
to implement the selection algorithms. The partonic quantities in the deltas are promoted
to their hadronic equivalent, i.e z 7→ zh and kT 7→ PT /zh. Then, denominating yP the
rapidity of the detected hadron, eq. (5.37), we introduce the following reference ratios:

• Soft Ratio rS , defined as:

rS = PT
zhQ

e−yP . (8.6)

• Collinear Ratio rC , defined as:

rC = zh (1− zh) e−2 yP . (8.7)
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Figure 11. BELLE data [13] selected according to the criteria of eqs. (8.4). Red bins correspond to
Region 1, orange bins to Region 2 and green bins to Region 3. The shaded areas correspond to bins
outside the TMD-regime, where eq. (8.5) is not satisfied. The purpose of this representation is to
capture at a glance how the three kinematic regions are distributed through the whole thrust spec-
trum, for a 2-jet topology. Here we do not focus on the details of each thrust bin. A more detailed
representation, together with a thorough description of each panel, can be found in appendix D.

Then, by comparing these ratios to thrust, we devise an algorithm that takes into account
also the role of soft-collinear radiation. In fact, we can write the analogue of Eqs (8.1), (8.2)
and (8.3) to hadronic level, as follows:

Region 1:
rS(zh, PT )� τ for both soft and soft-collinear radiations;
rC(zh, PT )� τ for collinear radiation.

(8.8)

Region 2:
rS(zh, PT )� τ for soft-collinear radiation;
rC(zh, PT )� τ for collinear radiation.

(8.9)

Region 3:
rS(zh, PT ) ∼ τ for both soft and soft-collinear radiation;
rC(zh, PT ) ∼ τ for collinear radiation.

(8.10)
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where the sentences “for soft/soft-collinear/collinear radiation” mean “for a detected
hadron sensitive to soft/soft-collinear/collinear radiation”. Therefore, Region 3 is the only
kinematic region where rS is never small enough to be neglected. This constitutes the first
rule:

1. If rS � τ we can either be in Region 1 or in Region 2, but not in Region 3.

Next, a small soft ratio characterizes both Region 1 and Region 2, which can be discrim-
inated according to the rapidity of the detected hadron. In particular, if the soft ratio
is small because of the size of PT /zh, regardless of the rapidity yP , then rS will be mo-
mentum dominated. In this case we are in Region 1, because the soft ratio is neglected
even if the rapidity is large, i.e. for both soft and soft-collinear radiation. If instead the
smallness of the soft ratio is due to the largeness of the rapidity yP , then rS will be denoted
as rapidity dominated. In this case we are in Region 2, as rS can be neglected only when
the rapidity is large, i.e. only for soft collinear radiation.

In order to discriminate between these two configurations, we can compare the con-
tributions of the transverse momentum and the rapidity to the soft ratio and write the
second rule:

2. If PT
zhQ

� e−yP the soft ratio is momentum dominated and we are in Region 1.
Otherwise the soft ratio is rapidity dominated and we are in Region 2.

This exhausts all the possibilities implied by the first rule. When rS ∼ τ the first rule is
violated. In this case Region 1 is automatically excluded as it is the only kinematic region
where the soft ratio is always considered small, for both soft and soft-collinar radiation.
Therefore, the third rule reads:

4. If rS ∼ τ we can only be either in Region 2 or in Region 3, but not in Region 1.

It is here that the collinear ratio comes into play, discriminating between Region 2 and
Region 3. In fact, if the collinear ratio is not small enough to be neglected, i.e. rC ∼ τ ,
then we are in Region 3. Otherwise we are in Region 2. This generates the last rule:

5. If rC � τ we are in Region 2, otherwise we are in Region 3.

A set of criteria based on kinematic ratios was proposed independently for SIDIS in
refs. [43–45] where it was observed that PT /Q and yP appear to be good proxies to as-
sess the boundaries of different kinematic regions especially when used in combination,
while considering only one or the other indicator may considerably limit the accuracy in
establishing the region boundaries.

This algorithm is represented graphically in figure 12. The purpose of this representa-
tion is to capture at a glance how the three kinematic regions are distributed through the
whole thrust spectrum, for a 2-jet topology. Here we do not focus on the details of each
thrust bin. A more detailed representation together with a thorough description of each
panel can be found in appendix D, dedicated to the comparison of the results obtained
using out algorithm to those obtained applying the criteria proposed in ref. [18]. Notice
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Figure 12. Flow-chart representation of the algorithm based on soft and collinear ratios.

how, within this criterion, Region 2 can be reached following two different routes, while
Region 1 and Region 3 can only be reached through one path (in the sense that it cor-
responds to one unique selection rule). This is in agreement with the naive expectation
that Region 2 corresponds to the widest kinematic range, as it describes the “intermediate”
situation where PT is neither extremely small, as in Region 1, nor sizeable as in Region
3. This automatically affects the data selection, showed in figure 13. Differently from the
coarse algorithm of figure 11, here there is a neat prevalence of (orange) bins corresponding
to Region 2. Moreover, and most importantly, this selection scheme shows the presence
of several monocromatic panels, where only one kinematic configuration is realized. This
offers an extraordinary advantage for phenomenological analyses, as it allows to overcome
the problem of matching, which concerns only the panels where more than one Region (i.e.
more than one color) appears.

Leaving aside Region 3 (green bins) which is not described by factorization theorems
involving TMD FFs, the great opportunity offered by the algorithm presented above is in
its application for the comparison between Region 1 and Region 2, corresponding to red
and orange bins, respectively. In fact, as discussed at the end of section 6.1, the TMD
factorization theorem devised for Region 1 allows to access the square root model, M sqrt

D =
MD

√
Ms, while the collinear-TMD factorization theorem obtained for Region 2 gives the

chance to extract directly the TMD model MD alone. A direct comparison can shed light
on the (still unknown) soft model MS , which generate a deformation of the TMD defined
by the square root definition compared to the that defined by the factorization definition.
Since the algorithm presented in this section allows to bypass the matching issues in a rather
large number of bins, this analysis can safely be carried out, and is currently under study.

Finally, it is important to stress again that the soft model is the same unknown func-
tion which appears in the 2-h cross sections of SIDIS, Drell-Yan and e+e− → h1h2X

processes. Its independent extraction from a process which belongs to another hadron
class is promisingly one of the most powerful phenomenological tools for future studies.
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Figure 13. BELLE data [13] selected according represented in figure 12. Red bins correspond to
Region 1, orange bins to Region 2 and green bins to Region 3. The shaded areas correspond to bins
outside the TMD-regime, where eq. (8.5) is not satisfied. The purpose of this representation is to
capture at a glance how the three kinematic regions are distributed through the whole thrust spec-
trum, for a 2-jet topology. Here we do not focus on the details of each thrust bin. A more detailed
representation together with a thorough description of each panel can be found in appendix D.

Indeed, the ultimate goal is the application of the above formalism to a global analysis,
combining data from all available 1-h and 2-h processes.

9 Conclusions

Explicit perturbative computations require to extend the definitions of the soft factors
and of the TMDs in order to take into account the dependence on thrust. In fact, this
operation produces a large variety of integrated and unintegrated objects that not only
generalize the definitions of soft factors and TMDs, but also include and extend the usual
thrust-dependent functions, commonly encountered in the study of e+e− annihilation pro-
cesses. All these new thrust-dependent operators have been defined and computed to 1-loop
accuracy in sections 5, 6 and 7.
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Within this general approach we were able to recover the same collinear-TMD factor-
ization theorem obtained in ref. [16] by means of an explicit perturbative computations, in
a completely natural way. This scheme, however, is realized in a more general context and
leads to a much richer kinematic structure, where three different regions are generated,
each corresponding to a different factorization theorems. The proof of factorization has
been founded on two assumptions: the transverse momentum of the detected hadron is
neither too large to affect significantly the topology of the final state (H.1), nor too small
to be affected by the emission/absorption of soft radiation (H.2). Modifying this initial
hypothesis inevitably leads to a different factorization theorem, which corresponds to a
different kinematic region. Since these two assumptions cannot be false at the same time,
there are in total three different kinematic regions, defined as:

• Region 1, corresponding to set H.1 true and H.2 false, treated in section 6. In this
region the soft radiation participates actively to TMD effects. In fact, the resulting
factorization theorem is very similar to the standard TMD factorized cross section
known to hold in the 2-h class for processes like SIDIS, Drell-Yan and e+e− →
h1h2X. In fact, the TMD FFs describing the non-perturbative hadronization process
that generates the detected hadron appears in the cross section according to the
square root definition. Their TMD model, which describes their tipical long-distance
behavior, is contaminated by the non-perturbative content of the soft radiation by a
square root of the soft model,

√
MS , confirming that in Region 1 soft emissions play

a leading role in generating TMD effects. Due to these similarities, we identify the
factorized cross section obtained for Region 1 as a TMD factorization theorem.

• Region 2, corresponding to the case in which both the hypotheses hold true, treated in
section 5. The resulting factorization theorem has the structure of collinear factorized
cross section but involves TMD FFs. Because of its hybrid nature, this factorization
theorem has been called collinear-TMD. It presents two important issues, which are
totally new features for TMD obsrvables. First of all, the TMDs appearing into the
collinear-TMD factorized cross section are defined by the factorization definition and
hence they are not contamined by any soft radiation contribution. Secondly, such
cross section requires to assign a real physical meaning to the rapidity cut-off, as it
is strictly related to the measured value of the thrust. The role of rapidity regulators
is widely discussed in section 5.1.3.

• Region 3, corresponding to set H.1 false and H.2 true, treated in section 7. Here all
the effects of soft and even soft-collinear radiation are irrelevant for TMD effects, as
their contribution can be neglected, given the (relatively large) size of the transverse
momentum of the detected hadron. Since in this case the measured value of thrust
takes part in the collinear radiation contribution, the final factorization theorem
cannot involve TMD FFs. In fact, they are replaced by the corresponding GFJFs,
defined similarly to the (unsubtracted) TMDs, but with a further dependence on the
invariant mass of the jet to which they are associated. The hybrid nature of the
collinear-TMD factorization theorems is totally encoded in these functions, which
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share both characteristics of the TMD FFs, and also of the usual FFs. However, they
are very different from TMDs, as in their definition there is no trace of any rapidity
cut-off, as all the rapidity divergences are naturally regulated by their additional
dependence on the jet invariant mass. For this reason, GFJFs should be considered
more as a generalized version of the usual FFs than an extended counterpart of the
TMDs. Therefore, the factorized cross section devised for Region 3 has been denoted
as a generalized collinear factorization theorem.

As these three kinematic regions contain different kind of information on TMD physics, it
is extremely important to devise a solid methodology to identify them unequivocally within
the large set of data provided by the BELLE Collaboration [13]. In section 8 we showed how
a standard algorithm based solely on the typical soft and collinear energy scales associated
to the value of thrust is unable to capture all the features encoded into the rich structure of
a process like e+e− → hX. Therefore, we propose a finer algorithm that allows to perform
a more refined data selection, taking into account not only soft and collinear radiation, but
also the contribution of soft-collinear emissions. These new criteria shows that a rather
large amount of data are actually described by a single factorization theorem, bypassing
all the issues related to the matching procedure to describe data at the boundaries of the
corresponding kinematic regions. This is a very promising phenomenological tool, as the
direct comparison between an extraction made in Region 1 and another made in Region 2
would shed light on the effects of the soft radiation in the standard TMD factorization.
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A Review of the factorization formalism

This appendix is a short review of the factorization formalism and of the methodologies
used throughout this paper.

We start by introducing the kinematics approximators as defined in ref. [10]. Their
definition is based on the power counting rules:

1. Given the typical (large) energy scale Q of a process, the hard, collinear and soft
momenta are weighted as:

Phard ∼ (Q,Q,Q);
Pcoll. ∼ (Q,λS , λ);
Psoft ∼ (λS , λS , λS);

(A.1)

where λ� Q is some IR energy scale and λS = λ2/Q. Such scaling allows to classify
sets of subgraphs inside a generic Feynman diagram. According to this classification,
the hard subgraph will contain particles carrying hard momenta and so on.
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2. Any extra collinear line attached to the hard subgraph gives a suppression. Here extra
means any line besides the minimal number of fermions required by the kinematics
of the process and any number of scalar polarized gluons.

3. Any soft line attached to the hard subgraph gives a suppression.

4. Any fermionic line connecting collinear and soft subgraphs gives a suppression.

All the gluons connecting soft and collinear subgraphs and hard and collinear subgraphs are
collected into Wilson lines (or gauge links). They are path-ordered exponential operators
defined as:

Wγ = P

{
exp

[
−ig0

∫ 1

0
ds γ̇µ(s)Aa(0)µ(γ(s))ta

]}
, (A.2)

where γ is a generic path and P denotes the path ordering (i.e. when the exponential is
expanded the fields corresponding to higher values of s are to be placed to the left). The
coupling constant and the gluon field are bare quantities, as indicated by the label “0”. In
the previous formula, ta are the generating matrices of the gauge group, in the appropriate
representation. The Wilson lines guarantee that PDFs and FFs (in both collinear and TMD
cases) are gauge invariant, by linking the quark to the anti-quark fields. If this direction
γµ is a straight line the Wilson line depends only on the endpoints of the path and can be
written in a compact way as:

Wn (x2, x1, n) = P

{
exp

[
−ig0

∫ x2

x1
dλnµAa(0)µ(λn)ta

]}
, (A.3)

If the strongly boosted particle is a quark, the associated Feynman rules are:

= i

k · n+ i0; (A.4)

= −ig0 n
µ ta. (A.5)

In the Collins factorization formalism, the Wilson lines associated to soft contributions are
tilted off the light-cone. In the following, w1 = (1, 0,~0T ) and w2 = (0, 1,~0T ) represent the
plus- and minus-directions respectively, while the tilted directions are defined as:

n1 = (1,−e−2y1 ,~0T ), n2 = (−e2y2 , 1,~0T ). (A.6)

The auxiliary parameters y1 and y2 acts as rapidity cut-offs and regulates the rapidity
divergences due to the Wilson lines associated to the collinear contributions, which are
straight along the light-cone.

Since we are interested in 2-jet topologies, we label the hemisphere associated with the
plus-direction as “A” and the opposite hemisphere as “B” (backward emission, along minus-
direction). Therefore, in each Feynman diagram we identify an hard subgraph, labeled as
“H”, a soft subgraph, labeled as “S” and two collinear subgraphs, labeled either “A” or
“B” depending on the leading direction of the collinear particles that flow inside them.
The classification is not unique, but depends on the kinematic configuration (or region R)
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associated to the particles involved. The operation of choosing a certain kinematic region
“R” is defined to be the action of the kinematic approximator TR. In practice, any generic
TR is based on the following recipe:

1. In the collinear subgraphs approximate the circulating soft momenta as:

k ∼ k̂ = w2
k · n1
w2 · n1

for A, k ∼ k̂ = w1
k · n2
w1 · n2

for B. (A.7)

2. In the hard subgraph neglect all the masses and approximate the circulating collinear
momenta as:

k ∼ k̂ = w1
k · w2
w1 · w2

for A, k ∼ k̂ = w2
k · w1
w1 · w2

for B. (A.8)

Notice that the circulating soft momenta are totally neglected in the hard subgraph.

3. The attachment of a soft gluon to a collinear subgraph is approximated as (Grammer-
Yennie approximation):

A(. . . , k, . . . )µS(. . . , k, . . . )µ ∼ A(. . . , k̂, . . . )µ k̂µ n1,ν
k · n1 + i0S(. . . , k, . . . )ν ,

B(. . . , k, . . . )µS(. . . , k, . . . )µ ∼ B(. . . , k̂, . . . )µ k̂µ n2,ν
k · n2 + i0S(. . . , k, . . . )ν .

(A.9)

where k̂ are the approximated momenta defined in eq. (A.7) and the i0-prescription
is correct when the momentum k flows out of the collinear subgraph.

4. The attachment of a collinear gluon to the hard subgraph is approximated as (Gram-
mer-Yennie approximation):

H(. . . , k, . . . )µA(. . . , k, . . . )µ ∼ H(. . . , k̂, . . . )µ k̂µ w2,ν
k · w2 + i0A(. . . , k, . . . )ν ,

H(. . . , k, . . . )µB(. . . , k, . . . )µ ∼ H(. . . , k̂, . . . )µ k̂µ w1,ν
k · w1 + i0B(. . . , k, . . . )ν .

(A.10)

where k̂ are the approximated momenta defined in eq. (A.8) and the i0-prescription
is correct when the momentum k flows out of the hard subgraph.

5. For a Dirac line leaving the hard subgraph and entering in the collinear-A subgraph,
insert the projector P = 1

2γ
+γ−. The same rule applies for a Dirac line leaving the

collinear-B subgraph and entering in the hard subgraph. For a quark line in the
reverse direction, insert P = 1

2γ
−γ+.

The application of the kinematic approximators allows to define each of the ingredients
appearing in final factorized cross sections. In particular, soft factors and TMDs are of
special importance.
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The 2-h soft factor appearing in the TMD factorized cross sections of the three bench-
mark processes (Drell-Yan, SIDIS, e+e− → h1 h2X ) is defined in bT -space as:

S̃2-h(bT ; µ, y1 − y2) = ZS(µ, y1 − y2) (A.11)

× TrC
NC
〈0|W (−~bT /2, ∞; n1(y1) )†W (~bT /2, ∞; n1(y1) )×

× W (~bT /2, ∞; n2(y2) )†W (−~bT /2, ∞; n2(y2) )|0〉 |NO S.I.,

where NC is the number of colors available for quarks and antiquarks (3 in QCD). The
factor ZS is the UV renormalization factor that cancels the poles generated when the
kS, T -integration associated to the Fourier transform stretches outside of the soft momen-
tum region. The rapidity-independent kernel K̃(bT ; µ), often referred to as “Collins-Soper
kernel” or “soft kernel” defined as [10] rules the evolution equation for S2-h:

lim
y2→−∞

∂ log S̃2-h(bT ; µ, y1 − y2)
∂y1

= 1
2 K̃(bT ; µ), (A.12a)

lim
y1→+∞

∂ log S̃2-h(bT ; µ, y1 − y2)
∂y2

= −1
2 K̃(bT ; µ) . (A.12b)

It has an anomalous dimension γK :

dK̃(bT ; µ)
d logµ = −γK(αS(µ)), (A.13)

where γK depends on µ through the strong coupling αS and is independent of bT . The
solution to eqs. (A.12) can be properly written by separating out the perturbative content
of S2-h from what cannot be predicted by the sole perturbative QCD. Following ref. [11]
we have:

S̃2-h(bT ; µ, y1 − y2) = e
− y1−y2

2

[∫ µ
µ0

dµ′
µ′ γK(αS(µ′)) −K̃(b?T ;µ0)

]
MS(bT ) e−

y1−y2
2 gK(bT ), (A.14)

where the separation has been obtained by introducing the b?-prescription as in ref. [10].
The functions MS(bT ) and gK(bT ) have to be committed to a phenomenological model.
The first one describes the long-distance behavior of the soft kernel and hence it is strictly
related to evolution. On the other hand, the soft modelMS(bT ) encodes the long-distance
behavior of the non-exponential part of the soft factor and can be considered as the true
fingerprint of the soft radiation contribution in the non-perturbative regime.

The TMDs are defined in order to describe the collinear radiation contributions. The
factorization procedure lead to a collinear part that overlaps with the soft momentum
region. Therefore, TMDs are defined by subtracting out the double-counting soft-collinear
terms. A generic TMD C in bT -space is then defined as:

C̃j, h(ξ, ~bT ; µ, yP − y1) = ZC(µ, yP − y1)Z2 (αS(µ)) lim
yu2→−∞

C̃
(0), uns.
j,H (ξ, ~bT ; µ, yP − yu2)

S̃(0)
2-h(bT ; µ, y1 − yu2)

.

(A.15)
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where the label “(0)” means that the corresponding factors are bare functions of bare
fields and ZC is the UV counterterm. It depends only on variables which are “intrinsic”
to the pair constituted by the reference hadron h and the reference parton of type j. In
fact, they depends only on their relative transverse momentum, expressed by its Fourier
conjugate variable bT in eq. (A.15), and by the collinear momentum fraction ξ. Moreover,
the subtraction mechanism introduces a dependence on the rapidity cut-off y1, which acts
as a lower bound for the rapidity of the particles described by the TMD.

The evolution equations for C are written with respect to both µ (RG-evolution) and
y1 (CS-evolution), recast as ζ = 2(k+)2e−2y1 . We have:

∂ log C̃j, h(ξ, bT ; µ, ζ)
∂ log

√
ζ

= 1
2K̃(bT ; µ), (A.16a)

∂ log C̃j, h(ξ, bT ; µ, ζ)
∂ logµ = γC

(
αS(µ), ζ

µ2

)
. (A.16b)

Moreover, the anomalous dimension of the TMD γC obeys:

∂γC
(
αS(µ), ζ/µ2)
∂ log

√
ζ

= −1
2γK(αS(µ)), (A.17)

Finally, it is a standard result that the solution of TMDs evolution equations
reads [10, 25, 46]

C̃j, h(ξ, bT ; µ, ζ) =
(
C̃ kj (b?T ; µ0, ζ0)⊗ ck, h(µ0)

)
(ξ)︸ ︷︷ ︸

TMD at reference scales

×

× exp
{1

4 K̃(b?T ; µ0) log ζ

ζ0
+
∫ µ

µ0

dµ′

µ′

[
γC(αS(µ′), 1)− 1

4 γK(αS(µ′)) log ζ

µ′2

]}
︸ ︷︷ ︸

Perturbative Sudakov Factor

×

× (MC)j, h (ξ, bT ) exp
{
−1

4 gK(bT ) log ζ

ζ0

}
︸ ︷︷ ︸

Non-Perturbative content

(A.18)

where the b?-prescription has been used to separate out perturbative from non-perturbative
content and the standard choices for the reference values of the scales are:

µ0 = µb = 2e−γE
b?T

; (A.19a)

ζ0 = µ2
b ; (A.19b)ζ0 = (Mh x)2 initial state;

ζ0 =
(
Mh
z

)2
final state.

(A.19c)

The non-perturbative behavior of the TMD is described by two functions. The first is
gK , the same function that appears in eq. (A.14), describing the long-distance behavior of
the Collins-Soper kernel. The second is the TMD model function (MC)j, h (ξ, bT ), that
embeds the genuine non-perturbative behavior of the TMD. It is the collinear counterpart
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Figure 14. The only 1-loop Feynman graph contributing to Ŵµν
g , when the gluon is emitted by

the quark. The emission from the antiquark line is analogous.

of the soft model but, in contrast, MC does not depend only on bT , but also on the
collinear momentum fraction ξ, the flavor of the reference parton and the type of reference
hadron associated to the collinear part.

The definition given for TMDs in eq. (A.15) is referred as factorization definition
in ref. [11]. It differs from the commonly used definition [10, 25], that combines the TMDs
with the soft factor of eq. (A.11) by naively absorbing a square root of it. For this reason,
this definition is referred as square root definition in ref. [11]. It beautifully simplifies the
factorized cross sections of the 2-h class as it makes the whole soft radiation contribution
to disappear in the final result. However, the factorization properties of processes different
from the benchmark cases involve naturally the factorization definition, where the TMDs
are not contaminated by any soft contributions. A direct comparison between the two TMD
definitions shows that the corresponding TMD models are related in the following way [11]:

M sqrt
C (ξ, bT ) = MC(ξ, bT )×

√
MS(bT ) . (A.20)

B A benchmark study: the fragmenting gluon case

The perturbative approach to the factorization procedure discussed in this paper involves
the solution of some very tough integrals, due to the non-trivial interplay between thrust
and transverse momentum dependence. The solution of such integrals require non-standard
techniques, even just for a NLO approximation. Therefore, it is convenient to show the
procedure and some of this advanced mathematical tools in the simple case of a fragmenting
gluon. This can be considered as a benchmark study for the treatment of the more relevant
case of a fragmenting fermion, which actively contributes to the final result. Clearly, we
have to recover the expected result also in this “bottom-up” approach. For a 2-jet final
state, one jet is generated by a quark, the other by its corresponding antiquark, while the
chance of a jet being produced by a gluon is strongly suppressed. Moreover, the power
counting suppresses both the configurations in which the emitting fermion reflects backward
(action of TB) and when it turns soft (action of TS), regardless of the hemisphere in which it
is directed. Therefore, the only leading momentum region is realized by the fermion being
collinear to the fragmenting gluon, obtained through the action of TA. Therefore we have:

Ŵµν, [1]
g (ε; z, τ, kT ) = TA

[
Ŵµν, [1]
g (ε; z, τ, kT )

]
+ power suppressed

corrections , (B.1)
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where the TA approximator gives:

TA
[
Ŵµν, [1]
g (ε; z, τ, kT )

]
=
∑
f

∫
dk+

k+
?Ŵ

µν, [0]
f (k+, Q) Γ[1]

g/q

(
ε; k+/k′+, kT , τ

)
=

=
∑
f

∫
dρ

ρ
?Ŵ

µν, [0]
f (z/ρ, Q) Γ[1]

g/q (ε; ρ, kT , τ) , (B.2)

where, the function Γg/q is the 1-loop gluon-from-quark generalized fragmentation jet
function (GFJF), defined as:

Γ[1]
g/q (ε; z, kT , τ) =

∫
dk−

(2π)4−2ε
TrC
NC

TrD
4


γ+


δ

(
τ− z

1−z
k2
T

Q2

)
=

= αS
4π 2CFSε

Γ(1−ε)
π1−ε

µ2ε

k2
T

θ(1−z)1+(1−z)2−εz2

z2 δ

(
τ− z

1−z
k2
T

Q2

)
. (B.3)

The Fourier transform gives:

Γ̃[1]
g/q (ε; z, bT , τ) = (B.4)

= αS
4π 2CFSε

(
µ

Q

)2ε 1 + (1− z)2 − εz2

z2

(1− z
z

)−ε
θ(1− z) τ−1−ε

0F1

(
1− ε; −τ 1− z

z

b2

4

)

where b = bT Q and the hypergeometric function can also be written as:

0F1

(
1− ε; −τ 1− z

z

b2

4

)
= Γ(1− ε)

(
b

2

√
τ

1− z
z

)ε
J−ε

(
b

√
τ

1− z
z

)
(B.5)

We may be tempted to expand the hypergeometric function in powers of τ in eq. (B.4) and
assume the lowest order in τ provides a good description of the 2-jet region. However, this
also implies that b � 1, which naively does not correspond to the power counting region
of small kT . This confirms that in the Fourier conjugate space, the 2-jet limit is much less
trivial than in the transverse momentum space. In fact, a proper treatment of this issue
involves dealing with the ε-expansion of eq. (B.4) in terms of τ -distributions. In order to
accomplish this, we will make use of a rather simple trick, that can always be exploited in
presence of functions of some variable x that varies in the range [0, 1], divergent at most
as simple poles when x approaches 0. In fact, if f(x) is a function that behaves at most
as ∼ 1/x when x→ 0, then we can recast it as:

f(x) = δ(x)
∫ 1

0
dαf(α) + (f(x))+ (B.6)

With this technique, we can reorganize the dependence on τ in eq. (B.4) and disentangle
it from the dependence on b when τ = 0. After this operation we can then safely perform
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Figure 15. The term τ−1−ε
0F1

(
1− ε; −τ 1−z

z
b2

4

)
in the first line of eq. (B.7), (solid, blue line) is

compared with its small ε-expansion (orange, dashed line) in the last line of eq. (B.7). These lines are
obtained by integrating the r.h.s. and l.h.s. of eq. (B.7) with a test function chosen as T (τ) = e−τ .

the ε-expansion.

τ−1−ε
0F1

(
1− ε; −τ 1− z

z

b2

4

)
= (B.7)

= −1
ε

1F2(−ε; 1− ε, 1− ε; −1− z
z

b2

4 )δ(τ) +
(
τ−1−ε

0F1

(
1− ε; −τ 1− z

z

b2

4

))
+

=

= δ(τ)
(
−1
ε
− 1− z

z

b2

4 2F3

(
1, 1; 2, 2, 2; −1− z

z

b2

4

))
+

J0
(
b
√
τ 1−z

z

)
τ


+

+O (ε)

where Re(ε) < 0 is required for convergence. We have pushed the expansion up to O(ε0)
since the remaining ε-dependent terms in eq. (B.4) do not present any pole in ε.

Now we are ready to consider the large-bT limit, in order to bring the result back
to the 2-jet approximation. Let’s define for simplicity a = b2

4
1−z
z . Then, since z in the

collinear region cannot be too close to 1 (large values of z, z → 1, can only be reached in
the soft approximation), the limit a → ∞ will correspond to the asymptotic behavior for
large values of b. Finding the asymptotic behavior of the term multiplying the δ(τ) in the
last line of eq. (B.7) is quite easy. In fact we have:

a 2F3 (1, 1; 2, 2, 2; −a) =

= log
(
a e2γE

)
+ 1
a3/4

1√
π

cos
(

2
√
a+ π

4

)
+O

( 1
a5/4 ×

oscillating
function

)
. (B.8)

On the other hand, a proper estimation of the asymptotic behavior of the plus distribution
in eq. (B.7) is much less trivial. Clearly, the Bessel function J0 behaves as ∼ a−1/2 for
large-a. However, such a rough estimation compromises the τ dependence, which becomes
∼ τ−5/4, not integrable anymore for any test function T (τ). Such an operation should
therefore be performed more carefully. With the help of a test function T (τ), the following
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asymptotic series can be obtained by integrating N times by parts:∫ 1

0
dτ T (τ)

(
J0 (2

√
aτ)

τ

)
+

= SN (
√
a) +RN (

√
a). (B.9)

where we have introduced:

SN (
√
a) =

N−1∑
j=0

(−1)j Jj+1(2
√
a)

a(j+1)/2
dj

dτ j

(
T (τ)− T (0)

τ

)∣∣∣∣∣
τ=1

; (B.10)

RN (
√
a) = (−1)Na−N/2

∫ 1

0
dτ

dN

dτN

(
T (τ)− T (0)

τ

)
τN/2JN (2

√
a τ). (B.11)

The series SN→∞ diverges for any value of a, however its partial sums (for finite N) can
be used to compute the integral of eq. (B.9) to any desired accuracy. In fact, RN is of
order a−(N+1)/2−1/4 and can be made small at will. Furthermore, the derivative of the test
function in eq. (B.10) can be rewritten as:

dj

dτ j

(
T (τ)− T (0)

τ

)
= (−1)jj!

τ j

T (τ)− T (0)
τ

+
j∑

k=1

(−1)k
k!

T [j](τ)
τ1−k

 . (B.12)

Hence, we can recast SN in the following form:

SN (
√
a) =

N−1∑
j=0

j! Jj+1(2
√
a)

a(j+1)/2

−T (0) +
j∑

k=0

(−1)k
k!

T [j](1)
τ1−k

 , (B.13)

which at level of distribution becomes:(
J0 (2

√
aτ)

τ

)
+

=
N−1∑
j=0

j! Jj+1(2
√
a)

a(j+1)/2

−δ(τ) +
j∑

k=0

1
k! δ

[k](1− τ)

+O
(
a−

(3+2N)
4

)
, (B.14)

where δ[k](1 − τ) is the k-th distributional derivative of δ(1 − τ), which, setting τ = 1,
produces (boundary) terms that are not contributing to the 2-jet limit and hence that
will be thrown away. Notice that the integration of each side of eq. (B.14) gives zero as
required. Now, we have a correct asymptotic expansion of the plus distribution appearing
in the last line of eq. (B.7). In the 2-jet approximation, its crudest estimation is given by:(

J0 (2
√
aτ)

τ

)
+

= −δ(τ)J1(2
√
a)√

a
+O

(1
a
× Bessel

function

)

= δ(τ) 1
a3/4

1√
π

cos
(

2
√
a+ π

4

)
+O

( 1
a5/4 ×

oscillating
function

)
(B.15)

Notice that this result cancels exactly the first correction to the logarithm in eq. (B.8). This
does not happen by chance; it can be verified at any order O

(
a−k/4

)
, for k = 3, . . . , 2N ,

for any N . Finally, the ε-expansion in the 2-jet limit for the l.h.s. of eq. (B.7) is given by:

τ−1−ε
0F1

(
1− ε; −τ 1− z

z

b2

4

)
2−jet= δ(τ)

(
−1
ε
− 2 log

(
b

c1

)
− log

(1− z
z

))
+

+O(ε) +O
(
b−

3+2N
2
)
, ∀ N = 0, 1, . . . (B.16)
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Figure 16. The distribution
(
J0(2

√
aτ)

τ

)
+
in the first line of eq. (B.15) (solid, blue line) is compared

with its large a-expansion (orange, dashed line) as obtained in the last line of eq. (B.15). These
curves are obtained by integrating with a test function chosen as T (τ) = e−τ .

where c1 = 2e−γE . Inserting this result in eq. (B.4), we can write the large-b asymptotic
behavior of Γ̃g/q, which has to be considered as its 2-jet approximation. We have:

Γ̃[1],ASY
g/q (ε; z, bT , τ) = δ(τ) z D̃[1]

g/q (ε; z, bT ) +O
(
b−

3+2N
2
)
, ∀ N = 0, 1, . . . . (B.17)

where D̃g/q[1] the 1-loop gluon-from-quark TMD FF in bT -space. Notice how the whole
dependence on the thrust has been washed away in the 2-jet approximation. Finally:

˜̂
W

µν, [1]
g (ε; z, τ, bT ) = (B.18)

=
∑
f

∫
dρ

ρ

∑
f

∫
dρ

ρ
Ŵ

µν, [0]
f (z/ρ, Q, τ)

(
ρ D̃

[1]
g/q (ε; z, bT )

)
+ power suppressed

corrections .

Notice that the δ(τ) in eq. (B.17) recreates the LO partonic tensor. The power suppresed
terms involve both the errors associated to the factorization procedure of eq. (B.1), and
also the errors associated to the 2-jet limit of eq. (B.17).

Eq. (B.18) is a crucial result. In the 2-jet limit, the 1-loop contribution of the fragment-
ing gluon turns out to be simply the gluon-from-quark TMD FF, plus a remnant which
is power suppressed. Therefore, in bT -space, the overlapping with the contribution of the
TMD FFs is self-evident. In fact, the subtraction mechanism described in refs. [11, 16] sim-
ply returns the power suppressed terms of eq. (B.17). This means that the subtracted par-
tonic tensor, which describes the “core” of the process, is power suppressed in the 2-jet limit.

C Solution of integrals through the Mellin transform technique

In this section, we present the solution of the non-trivial integral appearing in the Fourier
transform of the soft thrust factor in section 6. The Mellin transform trick is taken from
ref. [47].
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Figure 17. The gluon-from-quark GFJF in eq. (B.4), (solid, blue line) is compared to its 2-jet
limit (orange, dashed line) in the r.h.s. of eq. (B.17). The plotted lines are obtained by integrating
with a test function chosen as T (τ) = e−τ .

Let’s considerthe integral of eq. (6.4). Its solution can be obtained by exploiting the
convolution property of the Mellin transforms:∫ ∞

0
dy h(y) g(ay) =

∫ δ+i∞

δ−i∞

du

2πia
−uĥ(1− u)ĝ(u) (C.1)

where f̂ denotes the Mellin transform of the function f . The off-set δ in eq. (C.1) is a real
number that lies in the intersection of the convergence region of ĥ and ĝ.

This property can be applied to Iεa, r if we first change variable x 7→ y−2. Then:

Iε (a, r) = 2
∫ ∞

0
dy

y−1−ε

1− r y2 θ(1− y)︸ ︷︷ ︸
hε, r(y)

J−ε (ay)︸ ︷︷ ︸
gε(ay)

(C.2)

The Mellin transforms are:

ĥε, r(u) = −1
r

1
3 + ε− u2F1

(
1, 3 + ε− u

2 ; 5 + ε− u
2 ; 1

r

)
, for Re(u) < 3 + Re(ε); (C.3)

ĝε(u) = 2−1+u Γ
(
− ε

2 + u
2
)

Γ
(
1− ε

2 −
u
2
) , for Re(ε) < Re(u) < 3

2 . (C.4)

Therefore, we can choose Re(ε) < δ < 3/2. Finally:

Iε (a, r) =

= −1
r

∫ δ+i∞

δ−i∞

du

2πi

(
a

2

)−u Γ
(
− ε

2 + u
2
)

Γ
(
1− ε

2 −
u
2
) 1

2 + ε+ u
2F1

(
1, 1 + ε

2 + u

2 ; 2 + ε

2 + u

2 ; 1
r

)
=

= S1(ε, a, r) + S2(ε, a, r) (C.5)

where we have defined the two series:

S1(ε, a, r) = −1
r

∞∑
k=0

Res
u=−2k+ε fε(u, r), (C.6)

S2(ε, a, r) = −1
r

∞∑
k=1

Res
u=−2k−ε fε(u, r) (C.7)
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Figure 18. Graphical representation of the Mellin conjugate space. The integrand function in
eq. (C.8) has two sets of poles in u = −2k+ε, for k ≥ 0 and in u = −2k−ε, for k ≥ 1. The first set
is due associated with the Gamma function Γ

(
− ε2 + u

2
)
, the second to the hypergeometric function.

The green strip between ε and 3/2 is the “strip of initial definition” (SID) and coincides with the
intersection of the convergence regions of the two functions gε and hε,r. The integration path must
lie into the SID. Finally, since the hypergeometric function produces an essential singularity in
u→ +∞, we must close the contour to the left.

with:

fε(u, r) =
(
a

2

)−u Γ
(
− ε

2 + u
2
)

Γ
(
1− ε

2 −
u
2
) 1

2 + ε+ u
2F1

(
1, 1 + ε

2 + u

2 ; 2 + ε

2 + u

2 ; 1
r

)
. (C.8)

Let’s start by considering S1:

S1(ε, a, r) = −
(
a

2

)−ε
rε
∞∑
k=0

(−1)k
k!

(
a

2

)2k
r−k

1
Γ(1 + k − ε) B1/r(1 + ε− k, 0) (C.9)

If r = r1 ≡ e−2y1 , as in the first term of eq. (6.3), we are interested in the limit r1 → 0.
Since:

B1/r1(1 + ε− k, 0) = (C.10)

= −(−1)−ε+kΓ(2 + ε− k)Γ(−ε+ k)
1 + ε− k

− r−1−ε+k
1

( Γ(ε− k)Γ(2 + ε− k)
(1 + ε− k)Γ(1 + ε− k)2 r +O

(
r2

1

))
,

we have:

S1(ε, a, r1) = −(−1)−ε π

sin(επ)r
ε/2
1 J−ε

(
a
√
r1

)
−

−
(
a

2

)−ε 1
ε2Γ(−ε)1F2

(
−ε; 1− ε, 1− ε; −a

2

4

)
+O

(
r2

1

)
(C.11)

On the other hand, if r = 1/r2 ≡ e−2y2 , as in the second term of eq. (6.3) we are interested
in the limit r2 → 0. Since:

Br2(1 + ε− k, 0) = r1+ε−k
2

( 1
1 + ε− k

+O (r2)
)
, (C.12)
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Therefore:

S1

(
ε, a,

1
r2

)
= (C.13)

= −
(
a

2

)−ε 1
(1 + ε)Γ(1− ε)1F2

(
−1− ε; 1− ε,−ε; −a

2

4

)
r2 +O

(
r2

2

)
= O (r2) .

We can now move to S2:

S2(ε, a, r) = − a

4r

(
a

2

)ε
Γ(−1− ε)−

(
a

2

)ε ∞∑
k=2

1
k!

(
a

2

)2k
r−kΓ(−ε− k) =

=
(
a

2

)ε
Γ(−ε) + π

sin(επ)r
ε/2Jε

(
a√
r

)
. (C.14)

If r = r1, we cannot expand anymore the previous result around r1 ∼ 0. However, if
r = 1/r2, then S2(ε, a, 1/r2) = O(r2) and it can be neglected. Notice that all the con-
tributions involving y2 are suppressed. Hence, only y1, the leading rapidity cut-off in the
SA-hemisphere, will survive in the final result. In fact, using eqs. (C.11) (C.14), we have:

Iε(a, r1) = π

sin (επ)r
ε/2
1

[
Jε

(
a
√
r1

)
− (−1)−εJ−ε

(
a
√
r1

)]
+
(
a

2

)ε
Γ(−ε)−

−
(
a

2

)−ε 1
ε2Γ(−ε)1F2

(
−ε; 1− ε, 1− ε; −a

2

4

)
+O(r1) (C.15)

where the combination of the Bessel-J functions can be rearranged as:

π

sin (επ)r
ε/2
1

[
Jε

(
a
√
r1

)
− (−1)−εJ−ε

(
a
√
r1

)]
= −2 (−r1)ε/2K−ε

(
a√
−r1

)
. (C.16)

The other integral instead is suppressed as r2 → 0:

Iε

(
a,

1
r2

)
= O(r2). (C.17)

The solution of the integral of eq. (5.5) can be obtained through the same procedure used
to solve the integration in eq. (6.4). The result is:∫ ∞

0

xε/2

x− r1
J−ε

(
a√
x

)
= −2 (−r1)ε/2K−ε

(
a√
−r1

)
+
(
a

2

)ε
Γ(−ε), (C.18)

Notice that, differently from eqs. (C.15) and (C.17), this is an exact result.

D Color-coded representation of the kinematic regions

In this appendix we will present the same plots shown in figures 11 and 13, but from a
different perspective. Each panel corresponding to the set of criteria presented in ref. [18],
see eq. (8.4), will be directly compared to the analogue panel obtained by applying the more
refined algorithm proposed in this paper, shown in figure 12. As the size of these figures
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is augmented, all labels should result more visible and easier to read. In the following
plots, BELLE data [13] are presented according to the color-coding associated to the three
kinematic regions of e+e− → hX. Red bins correspond to Region 1, orange bins to Region
2 and green bins to Region 3. Clearly, only thrust values corresponding to a 2-jet topology
are considered, namely all bins with 0.75 ≤ T ≤ 1.0. As far as zh is concerned, all available
bins are included. The shaded areas correspond to bins for which the value of PT falls
outside of the TMD-regime. The cut-off in PT of eq. (8.5) is represented by a vertical blue
line in each panel. In the implementation of this cut, the symbol � “much smaller than” is
rendered as “less than 25%”. Instead, for the algorithm of figure 12, the symbol � “much
smaller than” is evaluated as “less than 30%”.

Some general features of the two different set of criteria for the data selections become
evident from the direct comparison. First of all, the criteria of ref. [18] suggest a strong
dominance of Region 1. Instead, with the more refined algorithm presented in this paper,
most of the BELLE data turn out to belong to Region 2, as expected, while only the lower
zh bins correspond to Region 1. This fits perfectly with the physical expectation that in
Region 1 it is much easier for soft radiation to transversely deflect a low-energetic hadron
than in Region 2. On the other hand, the distribution of the green bins, associated to
Region 3, seem not to be affected by the two different kinds of data selection. In both
cases, Region 3 starts becoming relevant for TMD studies only at very large values of
thrust. In fact, green bins appear on the left of the cut in PT only in the very last bin, for
T = 0.975. This is in agreement with the physical expectation that in Region 3 a hadron
detected near the jet boundary can hardly be associated to the “pure” TMD-regime, unless
the jet is extremely narrow, i.e. at very large values of thrust.
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Figure 19. BELLE data for thrust T = 0.750 selected according to the criteria of eq. (8.4) (upper
panel) and to the algorithm of figure 12 (lower panel). Here Region 3 (green bins) is not realized.
The criteria of ref. [18] suggest a total dominance of Region 1. Instead, with the more refined
algorithm proposed in this paper, we find that only the lower zh bins correspond to Region 1, while
most of the BELLE data belong to Region 2.
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Figure 20. BELLE data for thrust T = 0.825 selected according to the criteria of eq. (8.4) (upper
panel) and to the algorithm of figure 12 (lower panel). Here Region 3 (green bins) is not realized.
The criteria of ref. [18] suggest a total dominance of Region 1. Instead, with the more refined
algorithm proposed in this paper, we find that only the lower zh bins correspond to Region 1, while
most of the BELLE data belong to Region 2.
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Figure 21. BELLE data for thrust T = 0.875 selected according to the criteria of eq. (8.4) (upper
panel) and to the algorithm of figure 12 (lower panel). Here Region 3 (green bins) is not realized.
The criteria of ref. [18] suggest that Region 1 and Region 2 are equally distributed on the left of the
cut in PT . Therefore, a phenomenological analysis performed according to this criteria necessarily
requires a matching procedure in order to properly describe the bins at the boundaries between
Region 1 and Region 2. Instead, with the more refined algorithm proposed in this paper, we find
that only the lower zh bins correspond to Region 1, while most of the BELLE data belong to Region
2. With this selection, the issues related to the matching problem are less severe.
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Figure 22. BELLE data for thrust T = 0.925 selected according to the criteria of eq. (8.4) (upper
panel) and to the algorithm of figure 12 (lower panel). Here Region 3 (green bins) is not realized.
The criteria of ref. [18] suggest that Region 1 and Region 2 are both present on the left of the
cut in PT . Therefore, a phenomenological analysis performed according to this criteria necessarily
requires a matching procedure in order to properly describe the bins at the boundaries of Region 1
and Region 2. Instead, with the more refined algorithm proposed in this paper, we find that only
the lower zh bins correspond to Region 1, while most of the BELLE data belong to Region 2. With
this selection, the issues related to the matching problem are less severe.
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Figure 23. BELLE data for thrust T = 0.925 selected according to the criteria of eq. (8.4) (upper
panel) and to the algorithm of figure 12 (lower panel). Here Region 3 (green bins) appears together
with the other two kinematic regions. Both the criteria of ref. [18] and the more refined algorithm
proposed in this paper suggests that all three regions are relevant in all the zh-bins. Therefore, in
this case, a proper matching procedure would be necessary to appropriately describe the transitions
from one region to the following one. Notice that there are two boundaries: one between Region 1
and Region 2, and one between Region 2 and Region 3.
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