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A measurement of the Higgs boson Yukawa coupling to the top quark is presented using proton-proton
collision data at

ffiffiffi
s

p
¼ 13 TeV, corresponding to an integrated luminosity of 137 fb−1, recorded with the

CMS detector. The coupling strength with respect to the standard model value, Yt, is determined from
kinematic distributions in tt̄ final states containing ee, μμ, or eμ pairs. Variations of the Yukawa coupling
strength lead to modified distributions for tt̄ production. In particular, the distributions of the mass of the tt̄
system and the rapidity difference of the top quark and antiquark are sensitive to the value of Yt. The
measurement yields a best fit value of Yt ¼ 1.16þ0.24

−0.35 , bounding Yt < 1.54 at a 95% confidence level.

DOI: 10.1103/PhysRevD.102.092013

I. INTRODUCTION

Since the discovery of the Higgs boson in 2012 [1,2],
one of the main goals of the CERN LHC program has been
to study in detail the properties of this new particle. In the
standard model (SM), all fermions acquire their mass
through the interaction with the Higgs field. More specifi-
cally, the mass of a given fermion, mf , arises from a
Yukawa interaction with coupling strength gf ¼

ffiffiffi
2

p
mf=v,

where v is the vacuum expectation value of the Higgs field.
Among all such couplings, the top quark Yukawa coupling
is of particular interest. It is not only the largest, but also
remarkably close to unity. Given the measured top quark
mass [3,4], the mass-Yukawa coupling relation implies a
value of the Yukawa coupling gSMt ≈ 0.99 when evaluated
near the energy scale of mt. Physics beyond the SM, such
as two Higgs doublet and composite Higgs boson models,
introduce modified couplings that alter the interaction
between the top quark and the Higgs field [5,6]. This
makes the interaction of the Higgs boson with the top quark
one of the most interesting features of the Higgs field to
study at the LHC today, especially because it is exper-
imentally accessible through multiple avenues, both direct
and indirect.
For the purpose of this measurement, we define for the

top quark the parameter Yt ¼ gt=gSMt , which is equivalent

to the modifier κt introduced in the κ-framework [7]. We
consider only the case where Yt ≥ 0, though certain
specific techniques are sensitive also to the sign of the
Yukawa coupling (for example, Ref. [8]). Recent efforts
have had notable success in directly probing gt via the
production of a Higgs boson in association with a top quark
pair (tt̄H) [9,10]. Currently, the most precise determination
comes from the κ-framework fit in Ref. [11], which yields
Yt ¼ 0.98# 0.14 by combining information from several
Higgs boson production and decay channels. These mea-
surements, however, fold in assumptions of the SM
branching fractions via Higgs couplings to other particles.
Another way to constrain gt, which does not depend on
these couplings, was presented in the search for four top
quark production in Ref. [12], yielding a limit of Yt < 1.7
at a 95% confidence level (C.L. ). However, it is also
possible to constrain gt indirectly using the kinematic
distributions of reconstructed tt̄ pair events, a technique
that has been recently used by CMS to derive a similar limit
of Yt < 1.67 at 95% C.L. in the leptonþ jets tt̄ decay
channel [13]. The measurement presented in this paper
follows this last approach, but in the dilepton final state.
Current commonly used Monte Carlo (MC) simulations

of tt̄ production include next-to-leading-order (NLO) pre-
cision in perturbative quantum chromodynamics (QCD).
Subleading-order corrections arise from including electro-
weak (EW) terms in the perturbative expansion of the
strong coupling αS and the EW coupling α. Such terms
begin to noticeably affect the cross section only at loop-
induced order, α2Sα, and are typically not included in the
current MC simulation. While these terms have a very small
effect on the total cross section, they can alter the shape of
kinematic distributions to a measurable extent. Such
changes become more noticeable if the Yukawa coupling
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affecting the loop correction (Fig. 1) is anomalously large.
Therefore, these corrections are of particular interest in
deriving upper limits on gt. For example, the distribution of
the invariant mass of the tt̄ system, Mtt̄, will be affected
significantly by varying Yt. Doubling the value of Yt can
alter theMtt̄ distribution by about 9% near the tt̄ production
threshold, as described in Ref. [14]. Another variable
sensitive to the value of Yt is the difference in rapidity
between the top quark and antiquark,Δytt̄ ¼ yðtÞ − yðt̄Þ. In
tt̄ production, Mtt̄ and Δytt̄ are proxies for the Mandelstam
kinematic variables s and t, respectively, which span the
event phase space and can thus be used to include the EW
corrections in previously generated event samples via
reweighting. The effects of these corrections are shown
for differential cross sections of Mtt̄ and Δytt̄ in Fig. 2.
These are computed by reweighting simulated tt̄ events at
the generator level using predictions from the HATHOR

software package [15].
After calculating the dependence of these corrections on

Yt, a measurement is performed. We use events in the
dilepton final state (ee, μμ, or eμ), for which this type of
measurement has not yet been performed. While this decay
channel has a smaller branching fraction than the leptonþ
jets channel studied in Ref. [13], it has lower backgrounds
due to the presence of two final-state high-pT leptons.
However, two neutrinos are also expected in this final state,

which escape detection and pose challenges in the kin-
ematic reconstruction. For this reason, we do not perform a
full kinematic reconstruction as was done in the previous
measurement in the leptonþ jets channel. This measure-
ment also utilizes a much larger data set with an integrated
luminosity of 137 fb−1 collected during run 2 at the LHC
from 2016 to 2018, allowing us to achieve comparable
precision to that in Ref. [13] for a decay channel with a
much lower branching fraction.
In this paper, we will first briefly describe the CMS

detector (Sec. II), and then discuss the data and MC
samples (Sec. III), followed by the methods for event
selection (Sec. IV) and reconstruction (Sec. V). We then
present an outline of the measurement technique (Sec. VI)
and the contributing sources of uncertainty (Sec. VII), and
conclude with the results of the measurement (Sec. VIII)
and the summary (Sec. IX).

II. THE CMS DETECTOR

The central feature of the CMS detector is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
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FIG. 1. Sample Feynman diagrams for EW contributions to gluon-induced and quark-induced top quark pair production, where
Γ stands for neutral vector and scalar bosons.
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FIG. 2. Effect of the EW corrections on tt̄ differential kinematic distributions for different values of Yt, after reweighting of simulated
events. The effect is shown on the distribution of the invariant mass,Mtt̄ (left), and the difference in rapidity between the top quark and
antiquark, Δytt̄ (right).
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of a barrel and two end cap sections. Forward calorimeters
extend the coverage provided by the barrel and end cap
detectors. Muons are measured in gas-ionization detectors
embedded in the steel flux-return yoke outside the solenoid.
The particle-flow (PF) algorithm [16] aims to reconstruct

and identify each individual particle in an event, with an
optimized combination of information from the various
elements of the CMS detector. The energy of photons is
obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined
by the tracker, the energy of the corresponding ECAL
cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron
track. The energy of muons is obtained from the curvature
of the corresponding track. The energy of charged hadrons
is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for zero-suppression effects and
for the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained
from the corresponding corrected ECAL and HCAL
energies.
Events of interest are selected using a two-tiered trigger

system [17]. The first level (L1), composed of custom
hardware processors, uses information from the calorim-
eters and muon detectors to select events at a rate of around
100 kHz within a time interval of less than 4 μs. The second
level, known as the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction
software optimized for fast processing and reduces the
event rate to around 1 kHz before data storage.
A more detailed description of the CMS detector,

together with a definition of the coordinate system and
relevant kinematical variables, can be found in Ref. [18].

III. SIMULATION OF TOP QUARK PAIR
PRODUCTION AND BACKGROUNDS

The production of tt̄ events is simulated at the matrix-
element (ME) level with NLO QCD precision, using the
POWHEG 2.0 (hvq) generator [19–22]. The calculation is
performed with the renormalization and factorization
scales, μR and μF, set to the transverse top quark mass,
mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t þ p2
T

p
, where pT is the transverse momentum

of the top quark and the quantity is evaluated in the tt̄ rest
frame. The default value ofmt is set to 172.5 GeV. The ME
calculations obtained from POWHEG are combined with the
parton shower simulation from PYTHIA 8.219 [23], using the
underlying-event tune M2T4 [24] to simulate data taken in
2016, and PYTHIA 8.226 using the tune CP5 [25] to simulate
data taken in 2017 and 2018. The parton distribution
function (PDF) set NNPDF3.0 at NLO [26] is used for
2016 and updated to NNPDF3.1 [27] at next-to-NLO
(NNLO) for 2017 and 2018. These samples are normalized
to a tt̄ cross section calculated at NNLO in QCD including

resummation of next-to-next-to-leading logarithmic (NNLL)
soft gluon terms with TOP++ 2.0 [28]. The calculation uses the
PDF4LHC prescription [29] with the MSTW2008 NNLO
[30,31], CT10 NNLO [32,33] and NNPDF2.3 [34] PDF sets
used to generate an envelope of uncertainty with the
midpoint of the envelope used for the central predictions.
The PDF uncertainty is then summed in quadrature with the
scale uncertainty to arrive at an overall uncertainty of ≈5%
on the nominal value of 832 pb. The shape effects associated
with the PDF uncertainty are considered separately in
Sec. VII.
A high purity of tt̄ events can be obtained in the dilepton

channel, as shown in Sec. IV. A small contamination is
expected to result from background processes, which are
modeled by simulation. In particular, we account for
dilepton production due to Drell-Yan type processes and
single top quark production. Other SM processes, such
as W boson production, were investigated and found to
have negligible contributions. Diboson production is also
included, although its expected contribution is minute due
to the small total cross section of the process.
About 1% of the events identified as tt̄ dilepton decays

are misidentified tt̄ leptonþ jets decays. EW corrections
are applied to all tt̄ events, even misidentified ones, so their
kinematic distributions remain dependent on Yt. Thus,
these events are still considered as signal, even though
their contribution to the measurement sensitivity is greatly
diminished relative to dilepton events.
Single top quark events are simulated at NLO with

POWHEG in combination with PYTHIA, while diboson events
are simulated with PYTHIA at leading-order (LO) QCD
precision. Drell-Yan production is simulated at LO using
MadGraph5_aMC@NLO version 2.2.2 for 2016 and version
2.2.4 for 2017 onwards [35], with up to four additional
partons, interfaced to PYTHIA using the MLM matching
algorithm [36,37].
The detector response to all simulated events is modeled

with the GEANT4 software toolkit [38]. In addition, the
effects of multiple proton-proton interactions per event are
included in simulations and the distribution of these pileup
interactions is reweighted to the vertex multiplicity dis-
tribution in the data.

A. Simulation of electroweak corrections

Contributions to the top quark pair production arising
from QCDþ EW diagrams are evaluated using the HATHOR

package [15], which is used to compute a double-
differential cross section as a function of Mtt̄ and Δytt̄
including LO QCD diagrams and certain EW diagrams
of order α2Sα. These diagrams involve massive boson
exchange and examples are shown in Fig. 1. The contri-
butions from photon-mediated interactions are not
included. Contributions from diagrams involving virtual
photon exchange should not be assessed individually, as
they are partially canceled not only by real emission
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diagrams but also by contributions from gγ production [39].
A complete assessment would require the modeling of
photon content within protons. This was not performed
here, as the net effect is fairly small. For example, Ref. [39]
cites a 1% effect from photon-mediated contributions to the
tt̄ cross section at the LHC with detector-based kinematic
cuts. Thus, we include only diagrams involving massive
vector and scalar boson interactions, which are the dom-
inant EW diagrams at this order.
The ratio of this double-differential cross section is

evaluated with respect to the LO QCD computation, in
order to obtain a multiplicative weight correction
wðMtt̄;Δytt̄Þ. Applying this weight at parton level to MC
samples produced at NLO QCD approximates the inclusion
of EW corrections in the simulation. This multi-
plicative approach to including EW corrections was used
previously in Ref. [13] and has the benefit of approximating
the inclusion of diagrams at order Oðα3SαÞ. Because EW
corrections factorize in some kinematic regimes, this is a
better-motivated approach than the alternative additive
approach, in which one adds the fixed-order result at order
Oðα2SαÞ while ignoring all potential contributions of order
Oðα3SαÞ (see Ref. [40] for a more detailed discussion). In
other words, the additive approach applies the EW correc-
tion factor only to the proportion of POWHEG events present
at LO QCD, while any interplay between EW corrections
and higher-order QCD simulation is ignored. Although the
multiplicative approach is clearly favored, neither approach
can account for the effects of two-loop contributions near
the tt̄ production threshold. To account for the lack of
knowledge of such terms, we take the difference between
the two predictions as a modeling uncertainty in this
regime, as suggested in Ref. [14]. The estimation of this
uncertainty is discussed further in Sec. VI.
The EW correction weights are calculated for discrete

integer values of Yt ¼ 0; 1;…; 5. Since the dependence of
the production rate on Yt is exactly quadratic, these discrete
values are sufficient to parametrize event yields as a
continuous function of Yt (as discussed in Sec. VI). This
allows us to measure which value of Yt best describes
the data.

IV. EVENT AND OBJECT SELECTION

Events are selected using single-electron or single-muon
triggers. Data taking at the LHC was interrupted by
technical stops at the end of each year, leading to some
changes in configuration and modeling between 2016,
2017, and 2018. For events selected by the single-electron
trigger, we require a trigger pT threshold of 27 GeV with
the exception of 2018, where a threshold of 32 GeV is used.
In the case of the single-muon trigger, we select events with
a trigger pT threshold of 24 GeV, which is raised to 27 GeV
only for 2017 due to high event rates.
We ensure that all electrons and muons are within the

silicon tracker coverage by requiring a pseudorapidity

jηj < 2.4. To operate well above the trigger threshold,
we then require at least one isolated electron or muon
reconstructed with pT > 30 GeV, except in 2018, where
we require leading pT electrons to have pT > 34 GeV in
accordance with the trigger threshold. The same lepton
isolation criteria described in Ref. [41] are used. After
selecting the leading pT lepton, a second isolated electron
or muon with pT > 20 GeV is required. Events with three
or more isolated leptons with pT > 15 GeV are discarded.
Jets are clustered from PF objects via the anti-kT

algorithm [42,43] with a distance parameter of 0.4. The
jet momentum is calculated as the vectorial sum of the
momenta of its constituents. Corrections to the jet energy
are derived as a function of jet pT and η in simulation and
improved by measurements of energy balance in data [44].
We select jets with jηj < 2.4 and pT > 30 GeV.
Jets originating from b quarks are identified using the

DeepCSV algorithm [45]. The algorithm provides three
working points: loose, medium, and tight, in order of
decreasing efficiency and increasing purity. The b identi-
fication efficiencies (and light quark misidentification
rates) are 84 (11)%, 68 (1.1)%, and 50 (0.1)%, respectively.
For an initial selection, we consider events with a minimum
of two b jet candidates passing the loose working point of
the algorithm. When applied to simulated tt̄ dilepton
decays, we find that this initial selection of b jets will
correctly include both b jets originating from top quark
decays in 87% of events. In around 9% of simulated tt̄
dilepton events passing this initial selection, there are more
than two jets passing the loose working point, leading to an
ambiguity in jet assignment. If such events have exactly
two jets passing a higher working point (medium or tight),
then those two jets are considered the viable candidates for
b jets originating from a top quark decay, and the ambiguity
is resolved without using kinematic properties of the event.
The small fraction of events with more than two viable b jet
candidates, making up 4% of the initially selected tt̄
dilepton events, are discarded. After this selection pro-
cedure, each event remaining in the sample has exactly two
b jet candidates, which together are correctly identified in
85% of simulated tt̄ dilepton events.
In order to remove Drell-Yan background events in the

ee and μμ channels, we reject events in which the two
leptons have an invariant mass below 50 GeV or within
10 GeV around the Z boson mass of 91.2 GeV.
The missing transverse momentum vector (p⃗miss

T ),
defined as the negative vector sum of all transverse
momenta, is generally of large magnitude in dilepton
decays because of the two undetected final-state neutrinos.
To further aid in removing Drell-Yan events, we impose an
additional selection requirement on the magnitude of the
missing transverse momentum, requiring pmiss

T > 30 GeV
in all events with ee or μμ in the final state.
The breakdown of expected signal and background

yields, summed over the three channels (ee, μμ, eμ), is
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shown by year in Table I. The Drell-Yan background is
estimated to be about 2%. Single top quark production
accounts for roughly another 2% of the estimated sample
composition.

V. EVENT RECONSTRUCTION

The EW corrections are calculated based on Mtt̄ and
Δytt̄. However, to evaluate these quantities it is necessary
to reconstruct the full kinematic properties of the tt̄
system, including the two undetected neutrinos. While it
is possible to completely reconstruct the neutrino momenta
in the on shell approximation, such a reconstruction is
highly sensitive to pmiss

T , which introduces large resolution
effects and additional systematic uncertainties. We observe
that using the proxy variables Mbbll ¼ Mðbþ b̄þ lþ l̄Þ
and jΔyblblj ¼ jyðbþ l̄Þ − yðb̄þ lÞj, where l represents
a final-state electron or muon, results in a more precise
measurement.
Unlike Mbbll, the accurate reconstruction of jΔyblblj

requires that each of the two b jets is matched to the correct
lepton, i.e., both originating from the same top quark decay.
In order to make this pairing, we utilize the information
from the kinematic constraints governing the neutrino
momenta.
If one assumes the top quarks and W bosons to be on

shell, the neutrino momenta are constrained by a set of
quadratic equations arising from the conservation of four-
momentum at each vertex. We refer to these kinematic
equations, collectively, as the mass constraint. The mass
constraint for each top quark decay results in a continuum
of possible solutions for neutrino momenta, which geo-
metrically can be presented as an intersection of ellipsoids
in three-dimensional momentum-space [46]. For certain
values of input momenta of b jets and leptons these
ellipsoids do not intersect at all, such that the quadratic
equations have no real solution. In these scenarios, the mass
constraint cannot be satisfied.
In cases where the mass constraint can be satisfied, one

could also constrain pmiss
T in the event to equal the pT sum

of the two undetected neutrinos. We call this the pmiss
T

constraint. This constraint reduces the remaining solutions

to a discrete set, containing either two or four possibilities
that fully specify the momenta of both neutrinos. Similar to
the case of the mass constraint, there are some values of the
input parameters for which the pmiss

T constraint cannot be
satisfied.
When looking at simulated events where both b jets are

correctly reconstructed and paired, we find that the mass
constraint can be satisfied in 96% of all cases, while the
mass and pmiss

T constraints can be simultaneously satisfied
in 55% of cases. In contrast, if the b jets are correctly
reconstructed but incorrectly paired to leptons, the mass
constraint can be satisfied in only 23% of cases, while both
mass and pmiss

T constraints can be met in only 18% of cases.
Pairings with no solution to the mass constraint are thus

frequently incorrect. When the mass constraint can be
satisfied, pairings with a solution to the pmiss

T constraint are
more likely to be correct. This information is used as part of
the pairing procedure, which has three steps.
(1) The mass constraint is checked for both possible

pairings. If only one pairing is found to satisfy the
mass constraint, that pairing is used. If both pairings
fail to satisfy the mass constraint, the event is
discarded. If both pairings satisfy the mass con-
straint, we check the pmiss

T constraint.
(2) If only one pairing allows for the pmiss

T constraint
while the other does not, the pairing yielding an
exact solution to the pmiss

T constraint is used.
(3) If the kinematic variables of the neutrinos do not

suggest a clear pairing, the b jets, b1 and b2, are
paired with the leptons (l, l̄) by minimizing the
quantity,

Σ1ð2Þ ¼ ΔRðb1ð2Þ;lÞ þ ΔRðb2ð1Þ; l̄Þ

among the two possible pairings, where ΔRðb;lÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηb − ηlÞ2 þ ðφb − φlÞ2

p
and φ is the azimuthal

angle in the transverse plane.
In simulation, this procedure discards 7% of the signal
sample, targeting events which generally involve an
improperly assigned or misidentified b jet (at a rate of
72%). This raises the fraction of events that successfully
identify both b jets from a top quark decay to 89% in

TABLE I. Simulated signal, background, and data event yields for each of the three years and their combination.
The rightmost column shows the fraction of each component relative to the total simulated sample yield across the
full data set. The statistical uncertainty in the simulated event counts is given.

Source 2016 (36 fb−1) 2017 (41 fb−1) 2018 (60 fb−1) All (137 fb−1) % total MC

tt̄ 140 830# 130 170 550# 100 259 620# 150 571 010# 220 96.2%
Drell–Yan 1920# 50 2690# 80 4960# 130 9840# 170 1.7%
Single t 3020# 30 3520# 20 5830# 30 12 370# 50 2.1%
Diboson 140# 10 150# 10 250# 20 540# 20 0.1%

Total 145 940# 150 177 400# 120 270 660# 200 593 760# 280
Data 144 817 178 088 264 791 587 696
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simulation. After these steps, we obtain the correct b jet
pairing in 82% of simulated dilepton tt̄ events for which
both b jets originating from top quark decays were
correctly identified, and thus 73% of simulated dilepton
tt̄ events overall.
The sensitivity of our chosen kinematic variables to Yt,

before and after reconstruction, is shown in Fig. 3. We see
that, in the chosen proxy variables, not much sensitivity
is lost in the reconstruction process. This is especially
true for the proxy mass observable, Mbbll, providing an
advantage over Mtt̄, which cannot be reconstructed as
accurately.

A. Comparison between data and simulation

Comparisons between data and simulation are shown in
Fig. 4, where tt̄ events are broken into four categories:
events with correctly identified leptons and jets in which
jets are correctly assigned (tt̄ correct jets), events with
correctly identified leptons and jets in which jets are
incorrectly assigned (tt̄ swapped jets), events with correctly

identified leptons where the two b jets originating from top
quark decays are not identified correctly (tt̄ wrong jets),
and lastly events where the identified leptons are not those
from W decay vertices (tt̄ wrong leptons). The majority
of events in the last category are tt̄ dilepton decays where
a W boson decay produces a τ lepton which itself decays
leptonically, with a small fraction being misidentified
decays in the leptonþ jets channel (1% of the total tt̄
signal). Though all tt̄ events are subject to EW corrections
and thus considered as signal, the sensitivity of the
reconstructed kinematic variables is generally decreasing
among the four categories.
Various observations can be made from Fig. 4. The

agreement between data and simulation appears generally
to be within the total uncertainty (discussed further in
Sec. VII), and the small overall background rate is
apparent. Most events are seen to be associated with zero
or one additional jet (beyond the two b jets). The effect of
the pmiss

T selection requirement can be seen, removing
events in the ee and μμ final states in a regime with high
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FIG. 3. The ratio of kinematic distributions with EW corrections (evaluated for various values of Yt) to the SM kinematic distribution
(Yt ¼ 1) is shown, demonstrating the sensitivity of these distributions to the Yukawa coupling. The plots on the left show the
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Drell-Yan background rates. Single top quark production
background rates are seen to vary less steeply as a function
of pmiss

T . Looking at the leading lepton pT, we see that the
additional use of a dilepton trigger would not yield a
substantial increase in sensitivity.
A slope is apparent in the ratio of data to the MC

prediction in the pT distributions of leptons and b jets. The
trends may be related to a previously observed feature of
the nominal POWHEG+PYTHIA simulation, in which a harder
top quark pT distribution is observed than in data (as
discussed, e.g., in Ref. [41]). This behavior is the subject of
much discussion in the top quark physics community, so we
remark on it in this paper despite the fact that we are
primarily concerned with other kinematic variables. Fixed-
order NNLO calculations are available that generally

show a softer top quark pT spectrum than in the
POWHEG+PYTHIA simulation, which could be seen as
evidence that the discrepancy arises from mismodeling
in simulation. However, the modeling of Mtt̄ does not
appear to suffer such issues [41], and we see no evidence
that the kinematic variables used in this measurement are
not well-described within the included modeling uncer-
tainties. Further discussion of the top quark pT spectrum in
POWHEG+PYTHIA and its relation to fixed-order NNLO
calculations can be found in Sec. VII.

VI. MEASUREMENT STRATEGY AND
STATISTICAL METHODS

After reconstruction, events are binned coarsely in
jΔyblblj and more finely in Mbbll. The binning is chosen
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FIG. 4. Data-to-simulation comparisons for the jet multiplicity (upper left), pmiss
T (upper right), lepton pT (lower left), and b jet pT

(lower right). The uncertainty bands are derived by varying each uncertainty source up and down by 1 standard deviation (as described in
Sec. VII) and summing the effects in quadrature. The signal simulation is divided into the following categories: events with correctly
identified leptons and jets in which jets are correctly assigned (tt̄ correct jets), events with correctly identified leptons and jets in which
jets are incorrectly assigned (tt̄ swapped jets), events with correctly identified leptons where the two b jets originating from top decays
are not identified correctly (tt̄ wrong jets), and lastly events where the identified leptons are not those from W boson decay vertices
(tt̄wrong leptons). The lower panels show the ratio of data to the simulated events in each bin, with total uncertainty bands drawn around
the nominal expected bin content.
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to ensure each bin in each data-taking year contains at least
on the order of 10 000 events, as seen in Fig. 5, leading
to a low statistical uncertainty and improved uncertainty
estimation.
In each bin, the expected yield is parametrized as a func-

tion of Yt. The effect is exactly quadratic, as a consequence
of the order at which EW corrections are evaluated. We
perform a quadratic fit to extrapolate the effect of the EW
corrections on a given bin as a continuous function of Yt
(Fig. 6). This correction for each bin can be applied as a rate
parameter REW affecting the expected bin content.
We construct a likelihood function L,

L ¼
" Y

bin∈ðMbbll;jΔyblbljÞ
Lbin

#
pðϕÞ

Y

i

pðθiÞ; ð1Þ

where ϕ and fθig are the suite of nuisance parameters
associated with individual sources of systematic uncer-
tainty. The distributions pðϕÞ and pðθiÞ are penalty terms
which assign probability distributions that encode the
likelihood the parameters vary from their prior values, as
discussed further below. Each bin has an individual Poisson
likelihood distribution,

Lbin ¼ Poisson½nbinobsjsbinðfθigÞRbin
EWðYt;ϕÞ þ bbinðfθigÞ';

ð2Þ

describing the probability of a bin content to vary from
statistical fluctuations. Here nbinobs is the total observed bin
count, with the expected bin count being the sum of the
predicted signal yield sbin and background yield bbin. The
number of expected signal events is modified by the
additional rate parameter REW, which depends on the
Yukawa coupling ratio Yt and a special nuisance parameter
ϕ that encodes the uncertainty associated with the multi-
plicative application of EW corrections derived at order
Oðα2SαÞ. The full expression for the rate Rbin

EW, including this
uncertainty term in the bins near the tt̄ production thresh-
old, is given by

Rbin
EWðYt;ϕÞ ¼ ½1þ δbinEWðYtÞ'½1þ δbinQCDδ

bin
EWðYtÞ'ϕ; ð3Þ

where we have defined

δbinEW ¼
nbinHATHOR − nbinLOQCD

nbinLOQCD
;

δbinQCD ¼
nbinPOWHEG − nbinLOQCD

nbinPOWHEG
: ð4Þ

In the nominal case, we have Rbin
EWðYtÞ ¼ 1þ δEWðYtÞ.

Intuitively, δEW represents the marginal effect of EW
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corrections included in HATHOR relative to the LO QCD
calculation, while δQCD represents the marginal effect of
higher-order terms included in the POWHEG sample relative
to the LO QCD calculation. The multiplicative approach to
including EW corrections assumes that these two correc-
tions factorize. The quantity δbinQCDδ

bin
EW represents the cross

term arising from the difference in multiplicative and
additive approaches. The Gaussian-distributed nuisance
parameter ϕ modulates the uncertainty generated by this
cross term, inducing a bin yield which varies according to a
log-normal distribution. We note that the uncertainty in the
EW corrections is unique because it depends on the value of
Yt at which the EW corrections are evaluated. Thus, it is
described by its own term and nuisance parameter ϕ,
separate from other systematic uncertainties. For bins away
from the threshold where EW corrections decrease as a
function of Yt, we do not include this uncertainty. These
bins do not contribute much sensitivity to the measurement
and enter a kinematic regime in which this method of
uncertainty estimation is no longer meaningful. At the large

values of the Mandelstam variable s that correspond to
these bins, the dominant terms contributing to δEW are
Sudakov logarithms resulting from W and Z boson
exchange. These terms factorize well and do not contribute
to the uncertainty we wish to model [40].
Each nuisance parameter θj corresponding to an

overall normalization uncertainty, such as the uncer-
tainty in the integrated luminosity or in cross section
values, is assumed to follow a log-normal distribution
pðθjÞ. Uncertainties with shape effects associated to
nuisance parameters fθig are handled by generating up
and down variations of the bin content sbin for each θi.
These variations result from changing the underlying
theoretical/experimental sources, which are outlined in
Sec. VII, usually by one standard deviation (σ) based on
the uncertainty in our best estimates. These up and
down variations are then enforced to correspond to the
bin modifiers associated with θi ¼ #1, while θi ¼ 0
corresponds to the nominal estimate. The nuisance
parameter θi is then taken to follow a Gaussian
distribution pðθiÞ with mean μ ¼ 0 and variance σ2 ¼
1 in the likelihood. The collection of bin modifiers for
these up and down variations are referred to as tem-
plates, with examples shown in Sec. VIII. A vertical
template morphing is applied to alter the shape as a
function of the underlying nuisance parameter θi, where
in each bin the modifier is interpolated as a sixth-order
polynomial spline for values of θi ∈ ½−1; 1' and linearly
outside of that region, assuring that sbinðθiÞ remains
continuous and twice differentiable.
The measurement of Yt is then performed via a profile

likelihood scan, as described in Ref. [47]. By repeating a
maximum likelihood fit over a fine array of fixed values of
Yt and comparing to the likelihood at the best fit value, we
can use the properties of the maximum likelihood test
statistic to evaluate intervals at 68% and 95% C.L. around
the best fit value.

VII. EXPERIMENTAL AND THEORETICAL
UNCERTAINTIES

A. Sources of uncertainty

The list of uncertainties considered is very similar to
that of the previous measurement presented in Ref. [13].
The main differences are the lack of QCD multijet back-
ground and the use of data from the full run 2 data-taking
period. Full or partial correlations are imposed on the
underlying uncertainty sources between data-taking peri-
ods where appropriate, as discussed further in Sec. VII B.
Uncertainties that do not alter the shape of the final
distribution are treated as normalization uncertainties,
while all others are treated as shape uncertainties on the
binned data. Shape effects are considered for the
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distributions of tt̄ events only, as the contribution of
background events is small. Correlations of the uncertain-
ties between different data-taking periods are treated on a
case-by-case basis. Because the measurement is more
sensitive to shape effects than normalization effects, the
uncertainties with the largest magnitude do not necessarily
have the largest impact on the measurement sensitivity. By
repeating the measurement with any given nuisance param-
eters frozen at their postfit values, we are able to evaluate
what fraction of the measured uncertainty on Yt is
associated to those nuisance parameters.
The dominant experimental uncertainty in this analysis

comes from the calibration of the detector jet energy
response. Corrections to the reconstructed jet energies
are applied as a function of pT and η. We follow the
standard approach outlined in Ref. [44] to consider 26
separate uncertainties that are typically involved in deter-
mining these calibrations. In this approach, the uncertainty
in the resolution of the jet reconstruction is also considered
in addition to the energy response. The effect of these
uncertainties is propagated to the reconstruction of pmiss

T .
These effects account for approximately 7% of the total
uncertainty on Yt in the final measurement.
Other experimental sources of uncertainty are compa-

ratively minor. The overall uncertainty in the integrated
luminosity of 2.5%, 2.3%, and 2.5% is included as a
normalization uncertainty applied to all signal and back-
ground events in 2016, 2017, and 2018, respectively
[48–50]. The uncertainty in the number of pileup events
included in simulation is assessed by varying the inelastic
cross section, 69.2 mb, by 4.6% [51].
Efficiencies in b jet identification and misidentification

are corrected to match data [45]. While this source is treated
as a shape effect, the uncertainty manifests approximately
as an overall normalization effect on the signal of around
3% and contributes only about 1% of the final uncertainty
on Yt.
Similarly, scale factors are applied in bins of pT and η to

correct simulated efficiencies of lepton reconstruction,
identification, isolation, and triggers to match data.
These are derived from a fit using the tag-and-probe
method using Z boson decays [52–54]. This fit accounts
for the uncertainty from the limited number of events in the
data sample as well as differences in performance based on
the jet multiplicity. Overall, the effect is assessed to be
below 2%.
As a standard technique to estimate the contributions of

higher-order QCD terms at the ME level, the renormaliza-
tion scale μR and factorization scale μF are each varied up
and down in the POWHEG simulation by a factor of 2.
Templates are generated for the individual variation of μR
and μF, as well as an additional template for the simulta-
neous variation of the two scales together (up and down),

leading to three separate shape uncertainties in total. Since
an NNLO tt̄ cross section is already used to improve the
normalization of the MC simulation, the normalization
effect induced by the scale variations is overestimated.
As we include a separate uncertainty on the cross section
normalization, the overall normalization effect is therefore
removed entirely from the scale variation templates, which
are normalized to the nominal sample. The resulting shape
effects remain significant and these are among the limiting
uncertainties in the fit, contributing about 7% of the total
measurement uncertainty.
A 5% normalization uncertainty is assumed in the tt̄

cross section, which covers expected contributions from the
higher-order terms not included in the NNLOþ NNLL
cross section calculation [28], giving a more realistic
normalization uncertainty than the variation of μR and μF
in POWHEG. The backgrounds in this analysis are small
enough (≈2% sample composition each) that we do not
generate templates for their response to individual system-
atic uncertainties. A 15% normalization uncertainty is
included on single top quark MC samples, which covers
the expected ME scale variation and the jet energy
correction uncertainties associated with these samples.
The Drell-Yan and diboson MC samples are assigned a
30% normalization uncertainty, to cover the larger ME
scale variation uncertainties associated with these LO
simulations. The background normalizations can alter
slightly the expected shape of the data but are not among
the most impactful uncertainties.
We include an uncertainty in the EW corrections,

based on our methods for generating and applying these
additional terms, as outlined in Secs. III and VI. Like the
scale variations, this uncertainty is designed to cover
higher-order effects at the ME level, specifically those
arising from diagrams of order α3Sα. It places an uncer-
tainty on Rbin

EW of 10%–40% in the applicable bins, which
translates to a small overall uncertainty in bin rate unless
the corrections are evaluated at a value of Yt far from the
SM expectation. This helps ensure that we do not fit an
artificially high value of Yt by ignoring higher-order
diagrams. This represents one of the most significant
uncertainties in the fit, accounting for approximately 8%
of the final measurement uncertainty. It is also observed
to primarily affect the lower bound of the measurement,
thus reducing our ability to distinguish between values
of Yt < 1.
The uncertainty in modeling the initial- and final-state

radiation in the parton shower algorithm is assessed by
varying the value of the renormalization scales in the initial-
and final-state radiation by a factor of 2. These are among
the most limiting modeling uncertainties in the measure-
ment, contributing about 8% of the total measurement
uncertainty. Uncertainties for other parameters in the parton
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shower description are considered separately. The hdamp

parameter, which controls the ME to parton shower
matching in POWHEG+PYTHIA, is set to the nominal value
of hdamp ¼ 1.58 mt (1.39 mt) in 2016 (2017–2018).
Dedicated MC samples are generated with this parameter
varied down to 1 mt (0.874 mt) and up to 2.24 mt
(2.305 mt) in 2016 (2017–2018), in order to estimate the
effect of this uncertainty. Dedicated MC samples are also
generated with variations of the PYTHIA underlying-event
tune. The uncertainties due to the choice of hdamp and the
underlying-event tune are very minor compared to the
parton shower scale variations.
Dedicated MC samples are generated with the top quark

mass varied up and down by 1 GeV from the nominal value
mt ¼ 172.5 GeV to estimate the effect of the uncertainty in
the measured mass value. While this uncertainty has a
significant shape effect, it ultimately accounts for only
about 1% of the total measurement uncertainty. It should be
noted that, although the mass and Yukawa coupling are
generally treated as independent in this measurement,
varying the mass will slightly modify the definition of
Yt ¼ 1. However, this effect, which is below 1%, is much
smaller than the sensitivity of the measurement and can
therefore be ignored.
The NNPDF sets [26] contain 100 individual variations

as uncertainties. Following the approach in Ref. [13],
similar variations are combined to reduce the number of
variations to a more manageable set of ten templates. The
variation of the strong coupling αS used by NNPDF is
treated separately from the other PDF variations. The effect

of uncertainties in the PDF set is typically smaller than 1%,
and together they account for roughly 2% of the total
measurement uncertainty.
The branching fraction of semileptonic b hadron decays

affects the b jet response. The effect of varying this quantity
within its measured precision [55] is included as an
uncertainty, which has a small effect relative to other
modeling uncertainties.
The momentum transfer from b quarks to b hadrons

is modeled with a transfer function dependent on xb ¼
pTðb-hadronÞ=pTðb-jetÞ. To estimate the uncertainty, the
transfer function is varied up and down within uncertainty
of the Bowler–Lund parameter [56] in PYTHIA. The
resulting effect is included by modifying event weights
to reproduce the appropriate transfer function. This has a
noticeable shape effect of the order 4%, but was not found
to be a leading uncertainty in the fit.
In some measurements performed strictly in the context

of the SM (for example, in Ref. [57]), an additional
uncertainty is included to account for an observed differ-
ence in the top quark pT distribution between data and
POWHEG+PYTHIA simulation. As the measurement pre-
sented here is sensitive to anomalously high values of
Yt, we do not want to include any additional uncertainties
which explicitly enforce agreement between SM simulation
and the data, as this could reduce our sensitivity to
deviations from the SM.
With this in mind, studies were performed comparing

different simulations to assess whether top quark pT
modeling disagreements necessitated the inclusion of any

TABLE II. The effect of all significant normalization (norm.) and shape uncertainties is summarized.
Uncertainties are grouped into categories based on their physical origin, and the approximate effect on sample
yield is stated. Additionally, the fit is repeated with each category frozen to their postfit values, in order to assess the
reduction of total fit uncertainty resulting from their removal (rightmost column). Minor uncertainties with <1%
effect on sample yield are excluded from this summary.

Uncertainty category Type Effect on yield Reduction in fit uncertainty

tt̄ cross section Norm. 5% <1%
Background norm. Norm. 0%–1.5% ≈1%
Luminosity Norm. 2.3%–2.5% <1%
Jet energy corrections Shape 0%–4% 7.4%
EW correction unc. (ϕ) Shape (0%–40%) δEW 7.6%
ME scales Shape 0%–5% 7.3%
Parton shower scales Shape 0%–4% 7.7%
NNPDF uncertainties Shape 0%–3% 1.9%
Top quark mass Shape 0%–2.5% 1.3%
b tagging efficiency Shape 2%–2.5% ≈1%
b mistagging efficiency Shape 0%–0.5% <1%
Lepton scale factors Shape 0%–2% ≈1%
b fragmentation Shape 0%–5% <1%
b hadron branching frac. Shape 1%–2% <1%
Pileup Shape 0%–0.5% <1%
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additional uncertainties. Fixed-order calculations were
studied for tt̄ production at NNLO, which generally show
better agreement with the top quark pT spectrum observed
in data (see, for example, Refs. [41,58]). Specifically,
differential cross sections in top quark pT and Mtt̄ were
studied using publicly available FASTNLO tables [59,60], as
well as multidifferential cross sections [61]. Such NNLO
calculations use a different choice of dynamical scale
in evaluating the top quark pT versus other kinematic
variables, lending them an edge in precision over full
event simulation. We find that the predictions from
POWHEG+PYTHIA samples are consistent with the differ-
ential and multidifferential cross sections from Refs. [59–61]
involving Mtt̄ and Δytt̄, within modeling uncertainties.
These distributions appear consistent with the data as well,
as previously observed in Ref. [41]. By comparison, the
top quark pT distribution evaluated at NNLO from
Refs. [59,60] shows more substantial disagreement with
POWHEG+PYTHIA simulations. We conclude that the variables
relevant to our measurement technique appear sufficiently
well described by POWHEG+PYTHIA simulations, and
differences with relevant NNLO calculations should be
covered by the standard uncertainty estimation techniques.
However, analyses that are more specifically sensitive to the
top quark pT distribution should take care in addressing this
discrepancy when using POWHEG+PYTHIA samples.
Information about the magnitudes and effects of signifi-

cant uncertainties can be found in Table II.

B. Treatment of systematic uncertainties

In this analysis, the effect of the parameter of interest Yt
manifests itself as a smooth shape distortion of the
kinematic distributions, as shown in Fig. 7. Although the
nuisance parameters describing the sources of uncertainty
should induce smooth shape effects as well, their effects are
sometimes obscured by statistical noise or imprecise
methods of estimation. This is noticeable for the uncer-
tainties associated with the jet energy scale, jet energy
resolution, parton shower modeling, pileup reweighting,
and top quark mass. For these templates only, we apply a
one-iteration LOWESS algorithm [62] to smooth the
templates and remove fluctuations that may disturb the
fit. The underlying-event tune and hdamp uncertainties in
the parton showering are small enough for their shapes to
disappear into statistical noise and are therefore treated only
as normalization uncertainties.
Most templates are also symmetrized, by taking the

larger effect of the up and down variations in each bin
and using this magnitude for both. This step helps ensure
a stable minimum in the likelihood fit but is skipped for
the templates whose natural shape effect is notably
asymmetric. In the few cases where this may be an
overly conservative approach, it nonetheless guarantees
the performance and reliability of the minimization
procedure and has little effect on the final result.

Full or partial correlations between the 2016, 2017, and
2018 data analyses are assumed for many uncertainties.
In general, the theoretically motivated uncertainties are
considered fully correlated between years. Exceptions are
made in cases where modeling differed between years.
The PDF uncertainties cannot be correlated between 2016
and other data-taking periods, as the PDF sets used for
simulation were changed to a newer version. Due to
changes in the PYTHIA tune following 2016, the nominal
scales used initial-state radiation and final-state radiation
differ after 2016, so those uncertainties are treated as only
partially correlated between 2016 and other data-taking
periods. The modeling of these uncertainties differs in the
2016 simulation, so the associated nuisance parameter in
this year is either partially or fully decorrelated from those
in the other years. Additionally, uncertainties whose effects
disappear into statistical noise due to limited MC sample
size (underlying-event tune and hdamp) are converted to
uncorrelated normalization uncertainties.
Some experimental uncertainties can be broken into

components, which are either fully correlated or uncorre-
lated between years (large jet energy scale contributions
and integrated luminosity). The uncertainty in the number
of pileup events is considered fully correlated as it is
evaluated by varying the total inelastic cross section. For
minor uncertainties from jet and lepton scale factors,
which have both correlated and statistical components, a
50% correlation is assumed between years. Lastly, the jet
energy resolution uncertainties are treated as uncorrelated
between years.
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VIII. RESULTS

We obtain a fit result of Yt ¼ 1.16þ0.07
−0.08ðstatÞþ0.23

−0.34ðsystÞ
and an approximate upper limit at 95% C.L. of
Yt < 1.54, where the latter is determined from the point
at which −2 lnðLðYtÞÞ increases by an amount of 1.642

relative to the minimum value. For comparison, the
standard model expectation based on simulated Asimov
data [63] is Yt ¼ 1þ0.30

−0.57ðtotÞ with Yt < 1.47 at 95% C.L.
The scan of the profile likelihood test statistic used to
build these intervals is shown in Fig. 8, along with a
comparison to the expected behavior based on simulated
Asimov data sets. We also show the agreement of data
and simulation after performing the fit in Fig. 9. The
minimum of the negative log likelihood occurs at a
configuration with good agreement between data and
simulation. The result is seen to be clearly limited by
systematic uncertainties rather than statistical uncertainty.
The templates for the four uncertainties with the greatest
effect on the fit are shown in Fig. 10.
This result is in agreement with the previously obtained

measurement in the leptonþ jets final state in Ref. [13],
while obtaining a slight increase in sensitivity. Using a
different decay channel and a larger data set provides a
measurement complementary to the previous result.
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IX. SUMMARY

A measurement of the Higgs Yukawa coupling to the top
quark is presented, based on data from proton-proton
collisions collected by the CMS experiment. Data at a
center-of-mass energy of 13 TeV are analyzed from the
LHC run 2, collected in 2016–2018 and corresponding to
an integrated luminosity of 137 fb−1. The resulting best fit
value of the top quark Yukawa coupling relative to the

standard model is given by Yt ¼ 1.16þ0.24
−0.35. This measure-

ment uses the effects of virtual Higgs boson exchange on tt̄
kinematic properties to extract information about the
coupling from kinematic distributions. Although the sen-
sitivity is lower compared to constraints obtained from
studying processes involving Higgs boson production in
Refs. [9,11], this measurement avoids dependence on
other Yukawa coupling values through additional branch-
ing assumptions, making it a compelling independent

E
ve

nt
s 

/ b
in

20000

30000

40000

50000  (central)tt

)σ+1iθ (tt
)σ-1iθ (tt

CMS Simulation  (13 TeV)-1137 fb

Final state radiation

b b
y∆ < 1.0 > 1.0

b b
y∆

10
0-

21
0

21
0-

23
0

23
0-

25
0

25
0-

27
0

27
0-

29
0

29
0-

31
0

31
0-

34
0

34
0-

38
0

38
0-

44
0

44
0-

30
00

10
0-

28
0

28
0-

32
0

32
0-

36
0

36
0-

40
0

40
0-

46
0

46
0-

56
0

56
0-

30
00

range [GeV]bbM

0.04−

0.02−

0

0.02

0.04

E
ve

nt
s 

/ b
in

20000

30000

40000

50000  (central)tt

)σ+1iθ (tt
)σ-1iθ (tt

CMS Simulation  (13 TeV)-1137 fb

Jet energy corrections

10
0-

21
0

21
0-

23
0

23
0-

25
0

25
0-

27
0

27
0-

29
0

29
0-

31
0

31
0-

34
0

34
0-

38
0

38
0-

44
0

44
0-

30
00

10
0-

28
0

28
0-

32
0

32
0-

36
0

36
0-

40
0

40
0-

46
0

46
0-

56
0

56
0-

30
00

range [GeV]M

0.04−

0.02−

0

0.02

0.04

bb

b b
∆y 0 < 1.  > 1.0

b b
∆y

E
ve

nt
s 

/ b
in

20000

30000

40000

50000  (central)tt

)σ+1iθ (tt
)σ-1iθ (tt

CMS Simulation  (13 TeV)-1137 fb

Factorization scale

10
0-

21
0

21
0-

23
0

23
0-

25
0

25
0-

27
0

27
0-

29
0

29
0-

31
0

31
0-

34
0

34
0-

38
0

38
0-

44
0

44
0-

30
00

10
0-

28
0

28
0-

32
0

32
0-

36
0

36
0-

40
0

40
0-

46
0

46
0-

56
0

56
0-

30
00

range [GeV]M

0.02−

0.01−

0

0.01

0.02

b b
∆y 0 < 1.  > 1.0

b b
∆y

bb

E
ve

nt
s 

/ b
in

20000

30000

40000

50000  (central)tt

)σ+1iθ (tt
)σ-1iθ (tt

CMS Simulation  (13 TeV)-1137 fb

Renormalization scale
10

0-
21

0

21
0-

23
0

23
0-

25
0

25
0-

27
0

27
0-

29
0

29
0-

31
0

31
0-

34
0

34
0-

38
0

38
0-

44
0

44
0-

30
00

10
0-

28
0

28
0-

32
0

32
0-

36
0

36
0-

40
0

40
0-

46
0

46
0-

56
0

56
0-

30
00

range [GeV]M

0.04−

0.02−

0

0.02

0.04

b b
∆y 0 < 1.  > 1.0

b b
∆y

bb

)t
R

el
at

iv
e 

un
ce

rt
ai

nt
y 

(t )t
R

el
at

iv
e 

un
ce

rt
ai

nt
y 

(t

)t
R

el
at

iv
e 

un
ce

rt
ai

nt
y 

(t

)t
R

el
at

iv
e 

un
ce

rt
ai

nt
y 

(t

FIG. 10. Templates are shown for the uncertainties associated with the final-state radiation in PYTHIA (upper left), the jet energy
corrections (upper right), the factorization scale (lower left), and the renormalization scale (lower right). Along with the intrinsic
uncertainty in the EW corrections, these are the limiting uncertainties in the fit. The shaded bars represent the raw template information,
while the lines show the shapes after smoothing and symmetrization procedures have been applied. In the fit, the jet energy corrections
are split into 26 different components, but for brevity only the total uncertainty is shown here. Variation between years is minimal for
each of these uncertainties, although they are treated separately in the fit.
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measurement. This measurement also achieves a slightly
higher precision than the only other Yt measurement that
does not make additional branching fraction assumptions,
performed in the search for production of four top quarks.
The four top quark search places Yt < 1.7 at a 95% con-
fidence level [12] while this measurement achieves an
approximate result of Yt < 1.54.
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H. He,195 M. Herndon,195 A. Hervé,195 U. Hussain,195 A. Lanaro,195 A. Loeliger,195 R. Loveless,195

J. Madhusudanan Sreekala,195 A. Mallampalli,195 D. Pinna,195 T. Ruggles,195 A. Savin,195 V. Shang,195 V. Sharma,195

W. H. Smith,195 D. Teague,195 S. Trembath-reichert,195 and W. Vetens195

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria

3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
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