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A B S T R A C T 

We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic 
magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers 
reco v er the solution of the Riemann problem by solving a simplified or reduced set of jump conditions, whose level of 
complexity depends on the intermediate modes that are included. Five different approaches – namely the HLL, HLLC, HLLD, 
HLLEM, and GFORCE schemes – are compared in terms of accuracy and robustness against one – and multidimensional 
standard numerical benchmarks. Our results demonstrate that – for weak or moderate magnetizations – the HLLD Riemann 

solver yields the most accurate results, followed by HLLC solver(s). The GFORCE approach provides a valid alternative to 

the HLL solver being less dissipative and equally robust for strongly magnetized environments. Finally, our tests show that the 
HLLEM Riemann solver is not cost-ef fecti ve in improving the accuracy of the solution and reducing the numerical dissipation. 

Key words: MHD – relativistic processes – shock waves – methods: numerical. 
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 I N T RO D U C T I O N  

everal astrophysical phenomena such as jets and accretion flows 
round compact objects, gamma-ray bursts, and pulsar wind nebulae 
re closely connected to relativistic flows. Because of the high 
on-linearity of the Relativistic MagnetoHydroDynamics (RMHD) 
quations, a numerical approach is una v oidable in order to expand
ur theoretical understanding of such relativistic phenomena. In 
his re gard, Goduno v schemes hav e become the standard approach
n the solution of hyperbolic conservation laws because of their 
uilt-in numerical viscosity and their ability to accurately capture 
iscontinuous waves (such as shock waves). In such methods, the dis-
retization process heavily relies on the integral form of the equations 
o that conservation of mass, momentum, and energy is naturally 
nsured. A fundamental step of these shock-capturing schemes is 
he solution of the so-called Riemann problem, i.e. the decay of
wo separated and spatially constant states determines the fluxes of 
he conserved quantities at each interface. Unfortunately, due to its 
uge computational cost, an exact Riemann solver (Giacomazzo & 

ezzolla 2006 ) is not a feasible option to solve a multidimensional
roblem. Instead, approximate methods of solution are commonly 
referred. 
Over the last decades, several approximate solutions to the 

iemann problem have been developed in the context of relativistic 
HD. Roe’s type Riemann solv ers (Komissaro v 1999 ; Balsara 2001 ;
oldoba, K uznetso v & Ustyugo va 2002 ) are based on the exact
 E-mail: mattia@mpia.de 
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inearization of the equations and require the full characteristic 
ecomposition. Unfortunately, as pointed in Einfeldt et al. ( 1991 )
nd Komissarov ( 1999 ), linear solvers may not satisfy the entropy
ondition through strong rarefactions. In RMHD, a state of art of the
oe-type Riemann solvers has been developed by Ant ́on et al. ( 2010 ;
nd earlier by Koldoba et al. 2002 ), which have provided the (quite
engthy) analytical expressions for both right and left eigenvectors. 
lbeit the linearized approach of Roe is capable of accounting for

ll the sev en wav es present in the solution, we shall not consider it
ere because of its heavy numerical cost. For this reason we prefer to
ocus on incomplete Riemann solvers, which do not include in their
tructure the full set of waves. 

A second family of (approximate) Riemann solvers (of which 
he HLL solver can be considered the progenitor) dates back to the
riginal work of Harten, Lax & Leer ( 1983 ). The HLL Riemann
olver has become extremely popular because of its ease of im-
lementation, reduced computational cost, and robustness (see e.g. 
ammie, McKinney & T ́oth 2003 ; Del Zanna et al. 2007 ; Beckwith &
tone 2011 ; White, Stone & Gammie 2016 , in the context of Special
nd General relativistic MHD). The HLL scheme approximates only 
wo out of the seven waves by collapsing the full structure of the
iemann fan into a single average state. Because of this, the solver
as large numerical dissipation and has pushed the quest for more
ccurate approaches. 

An extension of the HLL scheme, able to restore the contact
 ave, w as developed originally by Toro, Spruce & Speares ( 1994 )

or the Euler equation. The so-called HLLC (where ‘C’ stands for
ontact) formulation, was later extended to RMHD by Mignone & 

odo ( 2006 ) and Honkkila & Janhunen ( 2007 ). In both Mignone &
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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odo ( 2006 ) and Honkkila & Janhunen ( 2007 ) the solution method
iffers depending on whether the normal component of the magnetic
eld vanishes or not. A solution to this problem was brought
y Kim & Balsara ( 2014 ) and then impro v ed in Balsara & Kim
 2016 ), who developed an HLLC solver which retrieves naturally
he hydrodynamical limit when the magnetic field tends to zero. 

A further step was made by Mignone, Ugliano & Bodo ( 2009 ),
ho developed an HLL-type Riemann solver able to preserve both

ontact discontinuities and Alfv ́en waves by extending the classical
olver of Miyoshi & Kusano ( 2005 ) to relativistic MHD. Despite its
omplexity, the HLLD (here ‘D’ stands for Discontinuities) is able
o reduce drastically the numerical dissipation at the cost of solving
 non-linear equation through an iterative scheme. 

Other approaches have also been attempted as well to restore the
ntermediate missing waves in the solution to the Riemann problem.
ollowing the approach of Einfeldt et al. ( 1991 ), Dumbser & Balsara
 2016 ) have proposed a solution to the Riemann problem based on
he HLLEM (called also HLLI in some papers) formulation which
estores selected antidif fusi ve flux terms on top of the HLL structure,
n order to capture selected intermediate waves. 

Finally, we also consider here the generalized First Order Centered
GFORCE) scheme, originally formulated by Toro & Titarev ( 2006 )
nd recently employed by Mignone & Del Zanna ( 2021 ) in the
ontext of Upwind Constrained Transport schemes for MHD. The
FORCE flux comes as a weighted average of the Lax–Friedriechs

nd Lax–Wendroff fluxes and has reduced numeric dissipation when
ompared to the former. It only requires the maximum characteristic
ave speed. 
The main goal of this paper is to provide an e xtensiv e quantitativ e

omparison of the aforementioned Riemann Solvers in the context
f ideal relativistic MHD. Numerical tests in 1,2, and 3 dimensions
re performed in order to assess computational speed, robustness,
nd accuracy of the Riemann solvers mentioned above. The main
apabilities of each approach are documented, providing clear recipes
bout which is the most suited Riemann Solver depending on the
ontext. 

Our paper is structured as follows. In Section 2 we briefly describe
he RMHD equations. In Section 3 we describe the Riemann solvers
tudied in the paper. In Section 4 we test the Riemann Solver through
everal numerical benchmarks. Conclusions are finally drawn in
ection 5. 

 E QUAT I O N S  O F  I D E A L  RELATIVISTIC  M H D  

e consider an ideal relativistic magnetized fluid (Lichnerowicz
976 ; Anile 2010 ) in flat space–time [with Minkowski metric tensor
μν = diag( − 1, 1, 1, 1)] described by the conservation of mass, 

 μ( ρu 

μ) = 0 , (1) 

nergy-momentum, 

 μ

[(
ρh + b 2 

)
u 

μu 

ν − b μb ν + pημν
] = 0 , (2) 

nd the Maxwell dual tensor, 

 μ( u 

μb ν − u 

νb μ) = 0 . (3) 

ere we follow the standard convention that Latin indices take
alues for spatial components, while Greek indices label space and
ime components. The quantities introduced in equations (1)–(3) are,
espectively, the fluid rest mas density ρ, the four-velocity u μ, the
elativistic specific enthalpy h , the covariant magnetic field b μ, and
he total pressure (thermal + magnetic) p = p g + | b 2 | /2. Note that,
n our units, the speed of light c = 1 and a factor 

√ 

4 π has been
NRAS 510, 481–499 (2022) 
eabsorbed in the definition of b μ. The four-vector u μ and the fluid
elocity v i are related through 

 

μ = γ (1 , v i ) , (4) 

here γ = (1 − v 2 ) −1/2 is the Lorentz factor, while the relation
etween b μ and the laboratory magnetic field B 

i is 

 

μ = γ

[
v · B , 

B 

i 

γ 2 
+ v i ( v · B ) 

]
. (5) 

he square modulus of the covariant magnetic field can be written
s 

 

2 = 

B 

2 

γ 2 
+ ( v · B ) 2 . (6) 

he system of RMHD equation is closed through an appropriate
quation of state. Throughout the paper we assume an ideal gas
quation of state, described by a constant 	 −law 

 = 1 + 

	 

	 − 1 

p g 

ρ
, (7) 

here 	 is the adiabatic exponent, although alternative equations, as
n Mignone & McKinney ( 2007 ), may be adopted. 

The system of equations (1)–(3) can be written in the standard
onservation form 

∂U 

∂t 
+ 

∑ 

k 

∂F 

k 

∂x k 
= 0 , (8) 

where k = x , y , z) together with the divergence-free condition of
agnetic field 

 · B = 0 . (9) 

he conserved variables and the fluxes along the direction k are,
espectively, 

 = 

⎛ 

⎜ ⎜ ⎝ 

D 

m 

i 

B 

i 

E 

⎞ 

⎟ ⎟ ⎠ 

, F 

k = 

⎛ 

⎜ ⎜ ⎝ 

D v k 

m 

i v k + pδik − b i B 

k /γ

v k B 

i − v i B 

k 

m 

k − D v k 

⎞ 

⎟ ⎟ ⎠ 

, (10) 

here the quantities D , m 

i , and E stand, respectively, for the
aboratory mass density, the momentum density, and the energy
ensity (net of mass contribution). 
In addition to the conserved variables U , the set of primitive

ariables V = ( ρ, v i , B 

i , p g ) is also routinely employed. While the
onv ersion from primitiv e to conserv ed variables can be reco v ered
nalytically through 

D = ργ

 

i = 

(
ρhγ 2 + B 

2 
)
v i − ( v · B ) B 

i 

E = ρhγ 2 − p g − ργ + 

B 

2 

2 
+ 

v 2 B 

2 − ( v · B ) 2 

2 
, (11) 

rimiti ve v ariables must be computed numerically from the con-
erved quantities (see e.g. Del Zanna, Bucciantini & Londrillo 2003 ;
oble et al. 2006 ; Mignone & McKinney 2007 ). 
From now on we assume a one-dimensional problem along the

 -direction. As for the non-relativistic case, the one-dimensional
ystem of the RMHD equations involv es sev en equations (since in
D, the normal component of B is constant). Integrating equation (8)
 v er the i −th cell and o v er a time-step � t , we get 

 

n + 1 
i = U 

n 
i − �t 

�x 

(
ˆ F i+ 

1 
2 

− ˆ F i− 1 
2 

)
, (12) 
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Figure 1. Riemann fan structure for the HLL, HLLC, and HLLD approaches, respectively. 
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here � x is the mesh spacing and ˆ F is the numerical flux function
hich follows from the solution of a Riemann problem at zone 

nterfaces where fluid quantities experience the discontinuity 

( x, 0) = 

{ 

U L,i+ 

1 
2 

if x < x i+ 

1 
2 

U R,i+ 

1 
2 

if x > x i+ 

1 
2 
. 

(13) 

ere U L,i+ 

1 
2 

and U R,i+ 

1 
2 

are, respectively, the left and right state 

alues on either side of the zone interface i + 

1 
2 . 

The decay of the initial discontinuity defined by equation (13) 
pawns a self-similar pattern comprised of seven waves, as in 
lassical MHD (Komissarov 1999 ). At the double end of the Riemann 
 an, tw o f ast magnetosonic waves bound the emerging pattern
nclosing a pair of rotational (or Alfv ́en) discontinuities, a pair of
low magnetosonic waves, and a contact (or tangential) discontinuity 
n the middle. Fast and slow magnetosonic disturbances can be 
ither shocks or raref action w aves, depending on the pressure jump
nd the norm of the magnetic field. Primiti ve v ariables experience
 jump across a fast or a slow shock, whereas thermodynamic 
uantities like thermal pressure and rest density remain continuous 
hen crossing a relativistic Alfv ́en wave. Contrary to its classical 

ounterpart, ho we ver, the tangential components of magnetic field 
race ellipses instead of circles and the normal component of the 
elocity is no longer continuous across a rotational discontinuity 
Komissarov 1997 ). Finally, through the contact mode, only density 
xhibits a jump while thermal pressure, velocity, and magnetic field 
emain continuous. 

 N O N - L I N E A R ,  APPROX IMATED  R I E M A N N  

OLV ERS  

.1 HLL formulation 

he HLL Riemann solver, originally devised by Harten et al. ( 1983 )
or the equations of gas-dynamics (Del Zanna & Bucciantini 2002 ; 
el Zanna et al. 2003 ), approximates the internal structure of the
iemann fan with a single state U 

hll bounded by two outermost fast
agnetotosonic waves (leftmost panel in Fig. 1 ). This single state is

equired to satisfy the jump conditions across each of the two waves 

λL 

(
U L − U 

hll 
) = F L − F 

hll , 

R 

(
U R − U 

hll 
) = F R − F 

hll . (14) 

s such, the HLL approach a v oid the full characteristic decomposi-
ion of the equations since only an estimate to the two outermost fast
aves λL and λR is needed. 
Equation (14) yield a total of 14 equations in the 14 unknowns

iven by the components of U 

hll and F 

hll (note that F 

hll �= F 

x ( U 

hll )).
he solution is readily found as 

 

hll = 

λR U R − λL U L + F L − F R 

λR − λL 

, (15) 

nd 

 

hll = 

λR F L − λL F R + λR λL ( U R − U L ) 

λR − λL 

, (16) 

here F s = F 

x ( U s ), for s = L , R . Equation (15) is also known as the
ntegral representation of the Riemann fan (Toro 1997 ). 

The outermost wave speeds λL and λR represent an upper bound 
o the actual wave speeds and can be estimated using the initial left
nd right input states (see e.g. Mignone & Bodo 2006 ). 

The actual numerical flux is finally computed as follows: 

ˆ 
 = 

⎧ ⎨ 

⎩ 

F L if λL ≥ 0 , 
F 

hll if λL ≤ 0 ≤ λR , 

F R if λR ≤ 0 . 
(17) 

The HLL approach is simple to implement, cost-ef fecti ve, and
equires only a guess to the outermost fast speed without any
articular knowledge of the solution. The major drawback, ho we ver,
s its inability to resolve contact or tangential waves 

.2 HLLC formulation 

he HLLC formulation was originally proposed by Toro et al. ( 1994 )
nd later extended to relativistic hydrodynamics by Mignone & 

odo ( 2005 ) and to relativistic MHD by Mignone & Bodo ( 2006 ),
onkkila & Janhunen ( 2007 ), Kim & Balsara ( 2014 ). The solver

ttempts to restore the intermediate contact wave thus leading to a
wo-state representation of the internal Riemann fan structure: 

( x, t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

U L if λL ≥ x/t, 

U 

∗
L if λL ≤ x/t ≤ λ∗, 

U 

∗
R if λ∗ ≤ x/t ≤ λR , 

U R if λR ≤ x/t , 

(18) 

here λ∗ is now the velocity of the middle contact wave; see also
he middle panel in Fig. 1 . Likewise, the corresponding numerical
uxes at the interface e v aluates as: 

ˆ 
 (0 , t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

F L if λL ≥ 0 , 
F 

∗
L if λL ≤ 0 ≤ λ∗, 

F 

∗
R if λ∗ ≤ 0 ≤ λR , 

F R if λR ≤ 0 . 

(19) 

ntermediate states and fluxes must satisfy the Rankine–Hugoniot 
ump conditions: 

λL ( U 

∗
L − U L ) = F 

∗
L − F L , 

λ∗( U 

∗
R − U 

∗
L ) = F 

∗
R − F 

∗
L , 

R ( U R − U 

∗
R ) = F R − F 

∗
R . (20) 
MNRAS 510, 481–499 (2022) 
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Adding together the previous equations yields the consistency
ondition 

( λ∗ − λL ) U 

∗
L + ( λR − λ∗) U 

∗
R 

λR − λL 

= U 

hll , (21) 

r, upon dividing by the corresponding λ, the equi v alent condition
n the fluxes: 

F 

∗
L λR ( λ∗ − λL ) + F 

∗
R λL ( λR − λ∗) 

λR − λR 

= λ∗F 

hll . (22) 

n general one cannot take F 

∗ = F ( U 

∗) since fewer waves in the
iemann fan are accounted for. For this reason we can look at
quation (20) as providing, in principle, 3 × 7 = 21 relations across
hree waves and a consistent solution can therefore be sought by
ntroducing 21 unkno wns. Ho we ver, if the speed of the contact mode
s chosen to coincide with the fluid normal velocity, the continuity
quation across the middle wave is trivially satisfied and the number
f equations reduces to 20 (10 per state). This allows states ( U 

∗
L/R )

nd fluxes ( F 

∗
L/R ) in the star region to be expressed in terms of the

0 unknowns, (
D, v x , v y , v z , m y , m z , B y , B z , p, E 

)∗
L/R 

, (23) 

ith the condition λ∗ = v ∗x,L = v ∗x,R . The normal component of the
omentum is not considered an independent quantity since it can be

xpressed through a combination of the previous unknowns as 

 

∗
x = ( E 

′ + p) ∗v ∗x − ( v · B ) ∗B x , (24) 

here E 

′ = E + D , which holds both for the left or the right state in
he star region. Note also that B x enters as a constant parameter in
he solution process. 

The HLLC solvers of Mignone & Bodo ( 2006 ), Honkkila &
anhunen ( 2007 ), Kim & Balsara ( 2014 ) are based on this formalism
lthough they require different conditions to be satisfied across the
iddle contact wave. In the following we describe the original ap-

roach of Mignone & Bodo ( 2006 ) and the more recent impro v ement
y Kim & Balsara ( 2014 ). 

.2.1 Solution of Mignone & Bodo ( 2006 ) 

n the approach of Mignone & Bodo ( 2006 ; henceforth HLLC-MB),
he solution of the Riemann problem differs depending on whether
he normal magnetic field vanishes or not. When B x �= 0, the following
onditions across the contact discontinuity are assumed: 

 

∗
x,L = v ∗x,R v ∗y,L = v ∗y,R v ∗z,L = v ∗z,R 
p 

∗
L = p 

∗
R B 

∗
y,L = B 

∗
y,R B 

∗
z,L = B 

∗
z,R (25) 

he solution of the Riemann problem can then be divided into the
ollowing steps: 

(i) By virtue of their continuity, the transverse components of B
re given by the HLL single state 

 

∗
y = B 

hll 
y , B 

∗
z = B 

hll 
z . (26) 

(ii) The normal component of the velocity is recovered from the
e gativ e branch of the quadratic equation 

 

(
v ∗x 
)2 + bv ∗x + c = 0 , (27) 

ith coefficients 

 = F 

hll 
E + F 

hll 
D 

− B 

hll 
⊥ 

· F 

hll 
B ⊥ , 

b = − (
F 

hll 
m 

x + E 

′ hll 
) + | B 

hll 
⊥ 

| 2 + | F 

hll 
B ⊥ | 2 , 

c = m 

hll 
x − B 

hll 
⊥ 

· F 

hll 
B , (28) 
⊥ 

NRAS 510, 481–499 (2022) 
here E 

′ = E + D , B 

hll 
⊥ 

= (0 , B 

hll 
y , B 

hll 
z ) and F 

hll 
B ⊥ = (0 , F 

hll 
B y 

, F 

hll 
B z 

). 
(iii) Compute the transverse components of the velocity from 

 x v 
∗
y = B 

∗
y v 

∗
x − F 

hll 
B y 

, B x v 
∗
z = B 

∗
z v 

∗
x − F 

hll 
B z 

. (29) 

ere the L / R subscripts have been remo v ed because of equation (25).
(iv) Reco v er the total pressure p ∗ from 

[
F 

hll 
E + F 

hll 
D 

− B 

∗
x ( v 

∗ · B 

∗) 
]
v ∗x −

(
B 

∗
x 

γ ∗

)2 

+ p 

∗ − F 

hll 
m 

x = 0 , (30) 

here v ∗ = ( v ∗x , v 
∗
y , v 

∗
z ) and B 

∗ = ( B x , B 

∗
y , B 

∗
z ). 

(v) Compute the remaining conserved hydrodynamical variables
cross the contact discontinuity: 

 

∗ = 

λ − v x 

λ − v ∗x 
D 

E 

∗ = 

λE − F E + p 

∗v ∗x − ( v ∗ · B 

∗) B 

∗
x 

λ − v ∗x 
m 

∗
x = ( E 

′∗ + p 

∗) v ∗x − ( v ∗ · B ) B 

∗
x 

m 

∗
t = 

−B 

∗
x 

[(
B 

∗
t / ( γ

∗) 2 
) + ( v ∗ · B 

∗) v ∗t 
]+ λm t − F m t 

λ − v ∗x 
(31) 

here t = y , z denotes a generic transverse component and, for the
ake of clarity, we have omitted the suffix ( L / R ). 

(vi) Derive the corresponding fluxes from the Rankine–Hugoniot
onditions of equation (20). 

While this approach is fully consistent with the integral average
f the solution across the Riemann problem (equation 21), a major
rawback is that transverse components of velocity and momentum
emain bounded, as B x → 0, only for strictly 2D configurations ( v z =
 z = 0), while this may not hold in a general 3D vector orientations,
s originally noted by Mignone & Bodo ( 2006 ). In these situations
i.e. v ∗ · v ∗ ≥ 1) we replace the HLLC flux with the the HLL flux
equation 17). 

The limit B x = 0 corresponds to a degenerate situation where
low and Alfv ́en waves propagate at the same speed of the entropy
ave. In this case, not only the density, but also the transverse

omponents of the velocity and magnetic field can experience jumps.
s a consequence, only the normal component of the velocity ( v ∗x )

nd the total pressure ( p ∗) are assumed to be continuous. The previous
teps are then modified as follows: 

(i) Find the normal velocity using equation (27) but with coeffi-
ients 

 = F 

hll 
E + F 

hll 
D 

b = −F 

hll 
m 

x + E 

′ hll 

c = m 

hll 
x (32) 

here F 

hll 
E , F 

hll 
D 

, and F 

hll 
m x 

are the energy , density , and x-momentum
omponent of the HLL flux (16). 

(ii) Derive the total pressure from 

 

∗ = F 

hll 
m x 

− (
F 

hll 
E + F 

hll 
D 

)
v ∗x . (33) 
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(iii) Compute the conserved values across the contact discontinu- 
ty from 

 

∗ = 

λ − v x 

λ − v ∗x 
D , 

E 

∗ = 

λE − F E + p 

∗v ∗x 
λ − v ∗x 

, 

 

∗
x = ( E 

′∗ + p 

∗) v ∗x , 

m 

∗
t = 

λ − v x 

λ − v ∗x 
m t , 

B 

∗
t = 

λ − v x 

λ − v ∗x 
B t , (34) 

here, again, t = y , z label a generic transverse component and we
ave omitted the suffix ( L / R ) for the clarity of exposition. 
(iv) Derive the corresponding fluxes from the Rankine–Hugoniot 

onditions of equation (20). 

Notice that, in case of vanishing magnetic field, the latter approach 
the one where B x = 0) reduces to the relativistic hydro HLLC solver
n Mignone & Bodo ( 2005 ). 

.2.2 Solution of Balsara & Kim ( 2016 ) 

he approach of Kim & Balsara ( 2014 ; henceforth HLLC-KB, later
orrected in the Appendix B of Balsara & Kim 2016 ) presents
n impro v ed v ersion of the HLLC solv er aimed at resolving the
imitations of the previous approach. For the sake of completeness, 
e revise here the fundamental steps in order to elucidate some po-

entially ambiguous aspects in the original formulation. In particular, 
quation (25) is replaced with the weaker requirement 

 

∗
x,L = v ∗x,R v ∗y,L �= v ∗y,R v ∗z,L �= v ∗z,R 
p 

∗
L = p 

∗
R B 

∗
y,L = B 

∗
y,R B 

∗
z,L = B 

∗
z,R (35) 

hat is, the transverse components of velocity are discontinuous 
cross the middle wave, while normal velocity, magnetic fields, and 
otal pressure are still continuous. 

As for the previous HLLC solver, the continuity of B y and B z leads
o the unique choice 

 

∗
y = B 

hll 
y B 

∗
z = B 

hll 
z . (36) 

By suitable algebraic manipulations, we rewrite the jump condition 
f the transverse momenta across the outermost waves as [ 
v ∗t ( m x − E 

′ λ) − p 

∗v ∗t λ + B 

∗
t ( v 

∗ · B 

∗)( λ − v ∗x ) + 

+ B x 

b t 

γ
− B x B 

∗
t 

[
1 − ( v ∗) 2 

] + m t ( λ − v x ) 
] 

S 
= 0 , 

(37) 

here, e.g. v ∗t = (0 , v ∗y , v 
∗
z ) denotes the transverse velocity vector

the same holds for B 

∗
t and b 

∗
t ) while, here and in what follows, S =

 ( S = R ) implies that the expression applies to the left (right) state.
quation (37) yields indeed a total of four equations. 
Likewise, it is possible to derive a pair of equations across the left

nd right waves involving the normal velocity and total pressure: [ (
1 − λv ∗x 

)
p 

∗ − B 

2 
x 

[
1 − ( v ∗) 2 

] + B x ( v ∗ · B 

∗)( λ − v ∗x ) + 

+ ( m x − λE 

′ ) v ∗x − m x v x + B x 

b x 

γ
+ p + λm x 

] 
S 

= 0 . 
(38) 

Equations (37) and (38) provide a closed system of six equations in
he six unknown Q = ( v ∗t,L , v 

∗
t,R , v 

∗
x , p 

∗), and, due to its non-linearity,
as to be solved numerically. As pointed in Kim & Balsara ( 2014 ), the
olution of the full set would make the HLLC solution too e xpensiv e.
or this reason, the three sets of equations – corresponding, respec- 
ively to equation (37; for the transverse velocities) for S = L and
 = R , and equation (38) for the normal velocity and total pressure –
re solved as three 2 × 2 subsystems via multidimensional Newton–
aphson algorithm. In particular, referring to the left hand sides of
quation (37) as, respectively, G y , R and G z, R , the corrections to the
ransv erse v elocities ( δv y , R , δv z, R ) are reco v ered as (
δv ∗y 
δv ∗z 

)
S 

= −
(

a 11 a 12 

a 21 a 22 

)−1 (
G y 

G z 

)
S 

, (39) 

here the matrix a is the Jacobian matrix, with elements: 

 11 = 

[ 
m x − λE 

′ − p 

∗λ + ( B 

∗
y ) 

2 ( λ − v ∗x ) + 2 B x B 

∗
y v 

∗
y 

] 
S 
, 

 12 = 

[ 
B 

∗
y B 

∗
z ( λ − v ∗x ) + 2 B x B 

∗
y v 

∗
z 

] 
S 
, 

 21 = 

[ 
B 

∗
y B 

∗
z ( λ − v ∗x ) + 2 B x B 

∗
y v 

∗
y 

] 
S 
, 

 22 = 

[ 
m x − λE 

′ − p 

∗λ + ( B 

∗
z ) 

2 ( λ − v ∗x ) + 2 B x B 

∗
z v 

∗
y 

] 
S 
. (40) 

ressure and normal velocity in this subsystem are kept at the
re vious iteration le vel and updated as ne w v alues become av ailable
uring the iteration cycle. 
Simultaneously, we solve the 2 × 2 subsystem given by equation 

38) for the left and right states. Denoting with H L and H R the left-
and side of equation (38), respectively, for the left and right state,
e get (
δv ∗x 
δp 

∗

)
= −

(
b 11 b 12 

b 21 b 22 

)−1 (
H R 

H L 

)
, (41) 

here the elements of the Jacobian matrix are 

 11 = 

[ 
− λp 

∗ + B 

2 
x ( λ + v ∗x ) − ( v ∗ · B 

∗) B x + m x + λE 

′ 
] 

R 
, 

 12 = 1 − λR v 
∗
x , 

 21 = 

[ 
− λp 

∗ + B 

2 
x 

(
λ + v ∗x 

) − ( v ∗ · B 

∗) B x + m x + λE 

′ 
] 

L 
, 

 22 = 1 − λL v 
∗
x . (42) 

s for the previous 2 × 2 subsystem, transv erse v elocities are one
teration late and are taken from equation (37). 

Finally, the initial guess to start the Newton–Raphson algorithm 

s provided by the primitive variables in the HLL state. The iterative
ycle Q 

∗, n + 1 = Q 

∗, n + δQ , where n is the iterations number,
roceeds until convergence of all the variables is reached (we require
n absolute accuracy of 10 −7 ). 

Once the intermediate velocities and total pressure are recovered, 
he intermediate conserved quantities are computed from 

 

∗ = 

λ − v x 

λ − v ∗x 
D , 

E 

∗ = 

λE − F E + p 

∗v ∗x − ( v ∗ · B 

∗) B 

∗
x 

λ − v ∗x 
, 

 

∗ = ( E 

∗ + p 

∗ + D 

∗) v ∗ − ( v ∗ · B 

∗) B 

∗ . (43) 

The numerical fluxes are then computed from the jump conditions 
f equation (20). 
When one or more variables fail to converge within 20 iterations,

e switch to the simpler HLL method (this has shown, in our
 xperience, to greatly impro v e the range of applicability of the
olver). 

We point out, ho we ver, that this formulation does not satisfy the
tate consistency condition given by equation (21), nor the flux 
ondition (equation 22). The reason for this incongruity stems from 
MNRAS 510, 481–499 (2022) 
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he assumed continuity of B 

∗ across the middle wave while keeping
 jump in the transverse velocities. As one can immediately verify,
n fact, the two assumptions are not compatible with the Rankine–
ugoniot jump conditions for the transverse components of magnetic
eld across the contact mode, e.g. 

∗ (B 

∗
y,R − B 

∗
y,L 

) �= v ∗x 
(
B 

∗
y,R − B 

∗
y,L 

) − B x 

(
v ∗y,R − v ∗y,L 

)
, (44) 

hich trivially follows from equation (35) together with the assump-
ion λ∗ ≡ v ∗x . As a matter of fact, this inconsistency extends also to
he momentum and energy jump conditions across the middle wave.

.3 HLLD formulation 

he incongruities of the HLLC formulations are fully untangled with
he fiv e wav e HLLD formulation of Mignone et al. ( 2009 ), which
rovides a consistent extension of the original solver by Miyoshi &
usano ( 2005 ) for the MHD equations to the relativistic case. 
Here, the Riemann fan is approximated by introducing fiv e wav es:

w o outermost f ast shocks, tw o rotational discontinuities, and a
ontact surface in the middle (slow waves are not considered). Since
he normal velocity is no longer constant across the rotational waves,
he solver is more elaborate than its classical counterpart. Still, proper
losure is obtained by solving a non-linear scalar equation in the
otal pressure variable which, for the chosen configuration, has to be
onstant o v er the whole Riemann fan. Hereafter, we summarize the
rocedure and refer the reader to Mignone et al. ( 2009 ) for the details
f the deri v ation. 
The system of jump conditions is written in terms of the eight

nknowns D , v x , v y , v z , B y , B z , w, p to express states and fluxes: 

U S = 

(
D, wγ 2 v k − b 0 b k , wγ 2 − p − b 0 b 0 , B k 

)
 S = 

(
Dv x , wγ 2 v x v k − b k b x + pδik , wγ 2 v x − b 0 b x , B k v x − B x v k 

)
(4

here S = L , aL , cL , cR , aR , R labels one of the possible six states
see the third panel in Fig. 1 ), while k = x , y , z is the subscript for the
patial component. If λS separates state S from state S 

′ 
(clockwise),

tate and fluxes must satisfy the jump conditions 

( λU − F ) S = ( λU − F ) S ′ . (46) 

We begin from the states immediately behind the outermost fast
aves. Dropping the indices aL or aR in the unknowns and using λ

o denote either λL or λR , the following expressions for the velocities
n the region aL and aR can be derived: 

 x = 

B x ( AB x + λC ) − ( A + G ) 
(
p + R m x 

)
X 

, (47) 

 t = 

Q R m t 
+ R B t 

[
C + B 

x 
(
λR m x 

− R E 

)]
X 

, (48) 

here v t = (0 , v y , v z ), while the different R Q ’s denote the compo-
ents of the array R = ( λU − F ) S corresponding to variable Q, with
 = L , R for the left or right fast magnetosonic wav e, respectiv ely.
he remaining quantities are defined as 

A = R m x 
− λR E + p 

(
1 − λ2 

)
, 

G = R B t · R B t , 

C = R m y 
· R B z , 

 = −A − G + ( B 

x ) 2 
(
1 − λ2 

)
, 

X = B x ( AλB x + C ) − ( A + G ) ( λp + R E ) . (49) 

Having defined the three components of velocity through the
elations (47)–(48), one immediately obtains the transverse magnetic
NRAS 510, 481–499 (2022) 
eld, total enthalpy, density, and energy from the jump conditions
cross the fast waves: 

 t = 

R B t − B x v t 
λ − v x 

, w = p + 

R E − v · R m 

λ − v x 
, (50) 

 = 

R D 

λ − v x 
, E = 

R E + pv x − ( v · B ) B x 

λ − v x 
, (51) 

hile the momentum components follow from m k = ( E + p) v k −
 v · B ) B k . 

At the Alfv ́en waves, we take advantage of the fact that the
xpressions 

 

k 
cL = K 

k 
aL = 

[
R m k 

+ pδkx − R B k S x 
√ 

w 

λp + R E − B x S x 
√ 

w 

]
L 

, (52) 

 

k 
cR = K 

k 
aR = 

[
R m k 

+ pδkx + R B k S x 
√ 

w 

λp + R E + B x S x 
√ 

w 

]
R 

, (53) 

re inv ariant, respecti vely, across λaL and λaR (Anile & Pennisi 1987 )
nd that K 

x 
aL = λaL , K 

x 
aR = λaR . In the previous expressions S x =

ign( B x ) and the R ’s are the components of equation 46 (with S = L ,
 ) computed at the outermost waves using either λ = λL or λ = λR . 
Finally, we impose continuity of the normal velocity across the

angential discontinuity, v x , cL − v x , cR = 0, yielding 

(
K 

x 
aR − K 

x 
aL 

) = B 

x 

[
1 − K 

2 
R 

S x 
√ 

w R − K R · B c 

+ 

1 − K 

2 
L 

S x 
√ 

w L + K L · B c 

]
, 

(54) 

here B c = B cL = B cR is the magnetic field in proximity of the
ontact wave, obtained from the consistency condition between the
nnermost waves 

 c = 

[ B ( λ − v x ) + B x v ] aR 

λaR − λaL 

− [ B ( λ − v x ) + B x v ] aL 

λaR − λaL 

. (55) 

quation (54) is a non-linear equation in the total pressure p and
as to be solved by means of a standard root-finder method. Once
 has been found with sufficient accuracy, the velocities across the
angential discontinuity can be found by inverting the relation that
olds between K 

k and the velocity v k . The final result is 

 k = K 

k − B k 

(
1 − K 

2 
)

±S x 
√ 

w − K · B 

, (56) 

or k = x , y , z. Finally, density, energy, and momentum are reco v ered
rom the jump conditions across λaL and λaR similarly to what was
one after equation (51). 
Once the solution has been found, we compute the final interface

ux through 

ˆ 
 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

F L if 0 < λL 

F aL if λL < 0 < λaL , 

F aL + λaL ( U cL − U aL ) if λaL < 0 < λc , 

F aR + λaR ( U cR − U aR ) if λc < 0 < λaR , 

F aR if λaR < 0 < λR , 

F R if λR < 0 , 

(57) 

here 

F aL = F L + λL ( U aL − U L ) 

 aR = F R + λR ( U aR − U R ) , (58) 

ollow from the jump conditions across the fast waves. Note that
quation (57) corrects the original equation (16) reported in Mignone
t al. ( 2009 ), which contains an erroneous speed λc in the third and
ourth cases. 

Although equation (54) may have, in some circumstances, more
han one root, the rationale for choosing the physically rele v ant
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olution is based on positivity of density and on preserving the correct 
igen value order , i.e. λaL > λL , v x , cL > λaL for the left state and λaR 

 λR , v x , cR < λaR for the right state. When one or more of these
onditions cannot be met, we revert to the simpler HLL solver. 

.4 HLLEM formulation 

he HLLEM Riemann solver has first been proposed by Einfeldt 
 1988 ), Einfeldt et al. ( 1991 ), and extended by Dumbser & Balsara
 2016 ) to non-conserv ati ve hyperbolic systems. It is an extension of
he HLL solution of the Riemann problem (Harten et al. 1983 ), where
he contribution of some selected intermediate waves is included. The 
olution of the Riemann problem can be written as three possible
tates 

(0 , t) = 

⎧ ⎨ 

⎩ 

U L i f λL ≥ 0 , 
U 

hll − U 

hllem i f λL ≤ 0 ≤ λR , 

U R i f λR ≤ 0 
. (59) 

s in the HLL formulation. The intermediate state, for the sake of
larity, has been split into the HLL component and an antidif fusi ve
erm 

 

hllem = 

∑ 

m 

R 

m 

∗ ( U ∗) δm 

∗ ( U ∗) L 

m 

∗ ( U ∗) 
λR + λL 

λR − λL 

( U R − U L ) , (60) 

here m indicates the m -th intermediate eigenvalue. The vectors R ∗
nd L ∗ are the right and left eigenvectors of the RMHD equations,
here the subscript ∗ means that they are computed from the average 
f the conserved variables, while the matrix δ∗ is computed as 
ollows: 

m 

∗ ( U) = 1 − λm, ∗ − | λm, ∗| 
2 λL 

− λm, ∗ + | λm, ∗| 
2 λR 

. (61) 

he corresponding numerical fluxes are 

ˆ 
 = 

⎧ ⎨ 

⎩ 

F L i f λL ≥ 0 , 
F 

hll − F 

hllem i f λL ≤ 0 ≤ λR , 

F R i f λR ≤ 0 , 
, (62) 

here F 

HLLEM is the antidif fusi ve term 

 

hllem = 

(
λR λL 

λR − λL 

)∑ 

m 

δm 

∗ R 

m 

∗
[
L 

m 

∗ · ( U R − U L ) 
]
. (63) 

learly, such solver becomes complete if all of the intermediate 
aves are considered, although, as pointed by Balsara & Kim 

 2016 ), Punsly et al. ( 2016 ), the eigenvectors for the fast and slow
agnetosonic waves are very expensive to e v aluate computationally. 
herefore, we consider, as in Punsly et al. ( 2016 ), the 5-wave
LLEM formulation, which captures only contact discontinuities 

nd Alfv ́en waves, with eigenvalues, respectively, 

e = v x , λa, ± = 

b x ± √ 

w T u 

i 

b 0 ± √ 

w T γ
, (64) 

here w T = ρh + b 2 is the total enthalpy. 
Finally, we note that in this paper we provide a slightly modified

trategy from Ant ́on et al. ( 2010 ) to recover the left and right
igenvectors corresponding to the contact and Alfv ́en waves. This is
hown in detail in Appendix A. 

.5 GFORCE formulation 

he generalized FORCE flux (Toro & Titarev 2006 ) is a generaliza-
ion of the First ORder CEntred (FORCE) scheme and it consists of
 conv e x av erage of the Lax–Wendroff ( F 

LW ) and Lax–Friedrichs
 F 

LF ) fluxes: 

 = ω g F 

LW + (1 − ω g ) F 

LF . (65) 

here ω g ∈ [0, 1]. Here the Lax–Wendroff flux is computed as
 

LW = F ( U 

LW ), where F is given by equation (10), and 

 

LW = 

U R + U L 

2 
− τ

2 
( F R − F L ) , (66) 

hile the Lax–Friedrichs flux is defined by 

 

LF = 

F R + F L 

2 
− 1 

2 τ
( U R − U L ) . (67) 

n the original formulation by Toro & Titarev ( 2006 ), the variable τ
which has the dimensions of inverse velocity) is set to be τ = � t / � x .
o we ver, we choose to follow the formulation of Mignone & Del
anna ( 2021 ), where τ is the inverse of the local maximum signal
elocity: 

= [ max ( | λL | , | λR | )] −1 . (68) 

The parameter ω g can be tuned according to stability and mono-
onicity criteria, as thoroughly explained in Toro & Titarev ( 2006 ),
oro ( 2009 ). While ω g = 0 reduces the scheme to the simple Lax–
ridrichs solver, the choice ω g = 1/2 yields the FORCE flux which

s precisely the arithmetic mean between the Lax–Friedrichs and 
ax–Wendroff fluxes. This scheme has reduced dissipation when 
ompared to the LF solver and it corresponds to a monotone scheme
ith the maximum region of monotonicity, without resorting to 
ave propagation information. Larger values of ω g are also possible 
ithout violating the monotonicity region by choosing 

 g = 

1 

1 + c g 
, (69) 

here c g ∈ [0, 1] is the Courant number. Equation (69) will be used
y default unless otherwise stated. 

 N U M E R I C A L  B E N C H M A R K S  

e now compare, in terms of accuracy and computational efficiency, 
he designated Riemann solvers through a set of one- and mul-
idimensional leading benchmark solutions commonly employed. 
ll computations are carried out using the PLUTO code for plasma

strophysics (Mignone et al. 2007 ), where algorithms are readily 
vailable. One-dimensional tests are performed using a 1 st -order 
cheme with flat reconstruction and explicit Euler time stepping. In 
wo- or three-dimensions we employ 2 nd -order time integration using 
 Runge–Kutta algorithm (Gottlieb, Shu & Tadmor 2001 ) and linear
econstruction with slope limiters. The divergence-free constraint of 
agnetic field is controlled using the constrained transport method 
ith the CT-Contact scheme by Gardiner & Stone ( 2005 ) to compute

he electromotive force at zone edges. Unless otherwise stated, we 
et the CFL number to 0.8, 0.4, and 0.25, respectively, for 1D, 2D,
nd 3D computations. 

.1 Isolated contact and rotational waves 

e begin our benchmark section by testing the solvers ability in
apturing isolated contact and rotational waves, as shown in Mignone 
t al. ( 2009 ). The initial conditions together with the final time and
umber of points are listed in the 1 st and 2 nd row in Table 1 . 
In the case of an isolated contact wave, the top panel in Fig. 2

hows that the numerical solutions reco v ered HLLD, HLLC, and
MNRAS 510, 481–499 (2022) 



488 G. Mattia and A. Mignone 

Table 1. Initial conditions for left and right states (columns 2–9), adiabatic index (column 10), final time (column 
11), and number of cells (column 12) for the 1D test problems. Here ‘CW’ and ‘RW’ refer to the isolated contact and 
rotational wave, while ‘ST1’–‘ST4’ corresponds to the different shock tubes. 

Case ρ p v x v y v z B x B y B z 	 eos t f N x 

CW L 10.0 1.0 0.0 0.7 0.2 5.0 1.0 0.5 5/3 1 40 

R 1.0 1.0 0.0 0.7 0.2 5.0 1.0 0.5 
RW L 1.0 1.0 0.4 −0.3 0.5 2.4 1.0 −1.6 5/3 1 40 

R 1.0 1.0 0.377 237 −0.482 389 0.424 190 2.4 −0.1 −2.178 213 
ST1 L 1.0 1.0 0.0 0.0 0.0 0.5 1.0 0.0 2.0 0.4 400 

R 0.125 0.1 0.0 0.0 0.0 0.5 −1.0 0.0 
ST2 L 1.08 0.95 0.4 0.3 0.2 2.0 0.3 0.3 5/3 0.55 800 

R 1.0 1.0 −0.45 −0.2 0.2 2.0 −0.7 0.5 
ST3 L 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0 5/3 0.4 400 

R 1.0 0.1 −0.999 0.0 0.0 10.0 −7.0 7.0 
ST4 L 1.0 5.0 0.0 0.3 0.4 1.0 6.0 2.0 5/3 0.55 800 

R 0.9 5.3 0.0 0.0 0.0 1.0 5.0 2.0 

Figure 2. Top panel: density profile at t = 1 for a single contact wave. 
Bottom panel: y -component of magnetic field at t = 1 in the case of an 
isolated rotational discontinuity. Different solvers are labelled in the legend. 
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LLEM solv ers resolv e the contact mode exactly, while HLL and
FORCE spread the discontinuity o v er sev eral zones, although the

atter performs noticeably better than the former ( ∼22 versus ∼16
ells, respectively). 

For a single rotational wave, only the HLLEM and HLLD solver
atch the correct behaviour as can be inferred from the bottom panel
f Fig. 2 showing the profile of B y . On the contrary, results obtained
ith the other solvers (i.e. HLL, HLLC, and GFORCE) present

ignificant amount of numerical diffusion by spreading the initial
ump o v er ∼10 computational zones. No difference has been found
etween HLLC-MB and HLLC-KB. 
NRAS 510, 481–499 (2022) 
.2 Shock tubes 

ext, we consider a set of shock-tube problems, by following the
ame standards adopted by Mignone et al. ( 2009 ), Ant ́on et al.
 2010 ). In order to strengthen and compare the influence of different
iemann solvers on the solution, a flat (1 st -order) reconstruction is
sed for all of them. Numerical results are compared with the exact
umerical solution available from Giacomazzo & Rezzolla ( 2006 )
y computing discrete errors in L 1-norm. 
Here we employ HLLC-MB only since HLLC-KB gives essen-

ially the same results. For completeness, we list the initial conditions
n Table 1 . 

.2.1 Shock tube 1 (ST1) 

his test, performed previously by Balsara ( 2001 ), Mignone & Bodo
 2006 ), Mignone et al. ( 2009 ), Ant ́on et al. ( 2010 ), contains only
o-planar vectors on either side of the discontinuity and thus no
otational wave can form in the solution. The approximate structure
f the Riemann fan is shown in Fig. 3 at t = 0.4 for various solvers.
LLD performs the best, by showing enhanced resolution and better

ccuracy in proximity of all waves: at the fast rarefaction tail (FW,
 ∼ 0.25), the compound wave (SW, x ≈ 0.5), the contact mode
CW, x ≈ 0.6), the right-facing slow shock (SW, x ≈ 0.65), and the
ast shock (FW, x ≈ 0.9). A zoomed view across the contact wave
top central panel), reveals that also HLLC, HLLEM, and GFORCE
apture equally well this mode, while relatively poor resolution is
bserved at the slow shock (central panel, closeup view on B y ),
here the HLLEM solver shows a slightly worse performance than

he HLLC and GFORCE Riemann solvers. This is also confirmed
rom the L 1-norm error of density and y -component of magnetic
eld (rightmost top and middle panels), indicating that the HLLD
as considerable smaller errors, followed by GFORCE, HLLC and,
lose-by, by HLLEM and HLL. 

This result should not be surprising, since the characteristic
nformation restored in the HLLEM solver is based on a linearization
rocess and can cope specifically only with those waves it was
nitially intended to resolve (contact and rotational waves in our
mplementation). On the contrary, HLLC and HLLD solvers stem
rom a non-linear approximation to the Riemann fan, in conformity
ith the integral representation of the Riemann fan where, for
athematical consistency, fewer conditions are imposed on the

nternal wave structure. This leads to a set of jump conditions where

art/stab3373_f2.eps
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Figure 3. Numerical results for the 1 st shock tube (ST1) at t = 0.4 with 400 grid zones and different Riemann solvers. Top panels (left to right): density 
profile, closeup view across the contact mode, and L 1-norm errors. Middle panels: same as before but for the y -component of magnetic field. Bottom panels: 
gas pressure, x - and y -components of velocity. 

fl
t  

d

4

T  

A  

R  

m
c  

f  

r  

w  

r
 

b
a  

w
t

s

H  

a  

G
t

 

o  

a
H  

t  

a
a
H  

w  

r

t
t
f
H  

G  

i
a  

modes. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/481/6438448 by guest on 16 February 2022
o w v ariables can experience jumps not necessarily corresponding 
o the specific wave (e.g. contact or Alfv ́en) they were originally
esigned for. 

.2.2 Shock tube 2 (ST2) 

his test, also considered in Balsara ( 2001 ), Mignone et al. ( 2009 ),
nt ́on et al. ( 2010 ), Beckwith & Stone ( 2011 ), features a non-planar
iemann problem leading to a change in orientation of the transverse
agnetic field across the Riemann fan. The emerging wave pattern 

onsists of a contact wave (CW at x ≈ 0.475) separating a left-going
ast shock (FW, x ≈ 0.13), Alfv ́en wave (AW, x ≈ 0.185), and slow
arefaction (SW, x ≈ 0.19) from a slow shock (SW, x ≈ 0.7), Alfv ́en
ave (AW, x ≈ 0.725), and fast shock (FW, x ≈ 0.88) heading to the

ight. 
Results, at t = 0.55 are shown in Fig. 4 . Now the differences

etween the chosen Riemann solvers are less pronounced. Such 
likeness is reflected in the L 1-norm errors in the right-hand panels,
here HLLD, GFORCE, and HLLC show similar accuracy, while 

he HLLEM and HLL solvers exhibit somewhat larger errors. 
The contact mode is well resolved by all solvers (although with 

purious undershoots, see the top central panel), exception made for 
LL and GFORCE which are not designed to minimize the diffusion
cross the contact wave. As for the previous test, we again note that
FORCE spreads the contact wave over fewer zones when compared 

o HLL. 
The slow modes, which are not designed to be resolved by any

f such solvers (see the central panels of the 2 nd and 3 rd rows),
re better captured by HLLD, GFORCE, and HLLC, while the 
LLEM and the HLL solvers behave in the same way. Since

he slow and the Alfv ́en modes are very close to each other, the
ccuracy of the HLLEM solver results strongly reduced despite its 
bility to capture the rotational discontinuities. Furthermore, the 
LLEM shows a non-physical o v ershoot behind the left Alfv ́en
ave (see left-hand panel of the 3-rd row), which vanishes at higher

esolution. 
The previous considerations are verified more quantitatively by 

he three error plots in the rightmost panels, again confirming 
hat the HLLD Riemann solver yields the most accurate results 
ollowed, in decreasing order of accuracy, by GFORCE, HLLC, 
LLEM, and HLL. Note that, as in the previous test, while the
FORCE and the HLLC solv ers hav e the same level of accuracy

n the density, the GFORCE performs slightly better when looking 
t other variables because of the reduce dissipation along the slow
MNRAS 510, 481–499 (2022) 
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Figure 4. Results for the 2 nd shock tube (ST2) at t = 0.55 using a 1 st -order scheme with 800 grid zones. Top row (left to right): density profile, closeup view 

across the contact wave, and L 1-norm errors. Second (third) row: y - ( z-) component of magnetic field, closeup view across the slow and Alfv ́en wave, and 
L 1-norm errors. Bottom row: profiles for gas pressure, x - and y -velocity components. 
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.2.3 Shock tube 3 (ST3) 

he initial conditions for this test problem, given in Table 1 , sets
he stage for two oppositely colliding relativistic streams. This test
roblem has been previously considered also by Balsara ( 2001 ),
ignone & Bodo ( 2006 ), Mignone et al. ( 2009 ), Ant ́on et al. ( 2010 ).
The impact generates two strong relativistic fast shocks ( x ≈ 0.23,

 ≈ 0.77) heading outwards in opposite directions about the impact
oint at x = 0.5, see Fig. 5 . Behind, two slow shocks (SW, x ≈
.44 and x ≈ 0.56) delimit a high-pressure and constant density
 c

NRAS 510, 481–499 (2022) 
egion. Similarly to ST1, this is a co-planar problem and no rotational
ode can develop in the solution. No contact wave is formed either.
ecause of the absence of contact and Alfv ́en waves, the HLLEM
nd the HLL solvers are not distinguishable in every variable (but
he density). 

We notice that the GFORCE solver suffers from negative values
f gas density and pressure caused by the strong gradients of the fast
hocks. In order to o v ercome such issue, we switched to the FORCE
ux ( ω g = 1/2), which still yields reduced numerical diffusion when
ompared to the HLL solver. 
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Figure 5. Same as Fig. 3 but for the 3 rd shock tube (ST3). 
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The spurious density dip at the initial collision point ( x = 0.5)
s a symptom of the ‘wall heating’ phenomenon occurs (Noh 
987 ; Donat & Marquina 1996 ). Because of the larger numerical
iffusion, the HLL and the FORCE solvers are less prone to such
athology (the error respect to the analytical solution at x = 0.5 is,
espectively, ∼ 8 . 4 per cent and ∼ 7 . 9 per cent ). On the other hand,
LLD, HLLC, and HLLEM feature a deeper ‘hole’ in the rest-mass
ensity (the numerical undershoot is, respectively, ∼ 25 per cent , 

32 . 3 per cent , and ∼ 32 per cent ). As a consequence, as shown in
he top right panel, the HLL and the HLLD solvers show a similar
ccuracy in the density at low resolution. As the number of grid
ells increases, this density undershoot is progressively confined to 
 smaller fraction of the computation domain, leading to a better 
ccuracy in the HLLD solver. This feature is not found in other
ariables, where the HLLD solver performs significantly better than 
he other solvers. From the error plots, we evince that the FORCE
olver performs better than the HLLEM and HLL solver with errors
omparable to the HLLC-MB. 

.2.4 Shock tube 4 

he initial discontinuity of ST4, which corresponds to the ‘Generic 
lfv ́en test’ of Giacomazzo & Rezzolla ( 2006 ), leads to solution

onsisting of seven waves: a fast rarefaction ( x ≈ 0.04), a rotational
ave ( x ≈ 0.44), a left-going slow shock ( x ≈ 0.46), a contact
iscontinuity ( x ≈ 0.52), a right-going slow shock ( x ≈ 0.57), a
otational wave ( x ≈ 0.58), and a fast shock ( x ≈ 0.97). 

Results, plotted in Fig. 6 , demonstrate that the HLLD is able to
each better accuracy than all the other solvers, as in the previous
ests. Looking at the left-going slow and rotational modes ( B y profile
n the central column, 2 nd row), we observe that the HLLD solver is
he only one able to resolve both modes, while all the other solvers
re unable to capture them. 

Again, we remark that HLLC and GFORCE solvers give compara- 
le results. In particular, the HLLC solver provides a better resolution
nly at the contact wave (giving better results for the density error),
hile fast, slow, and Alfv ́en modes are resolved with comparable

ccuracy. 
Since the Alfv ́en mode is very prominent in the z-components

f the magnetic field (central panel, 3 rd row), the HLLEM is able to
each a higher precision, comparable to the HLLD solver. In addition,
he HLLEM and the HLLD solvers are the only able to capture the
ight-going slow and Alfv ́en modes (visible from the y -component
f B , central panel, 2 nd row). Still, the HLLEM solver presents some
nphysical undershoots in the y -component of the magnetic field, 
hich (contrary to the expectation) se verely af fects the error. Such

ssue lowers at larger resolutions (see the error plots in the right panel,
 

nd column). The other solvers show some barely visible structure 
HLLC and GFORCE) or just a single blended wave (HLL solver). 
MNRAS 510, 481–499 (2022) 
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Figure 6. Same of 4 but for the 4 th shock tube (ST4). 
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.3 Circularly polarized Alfv ́en waves 

ext, we consider the propagation of large amplitude, circularly
olarized (CP) Alfv ́en waves on a two-dimensional unit square
omain, as in Del Zanna et al. ( 2007 ). The initial condition consists
f a region of uniform density and pressure ( ρ = p = 1), while
agnetic field and velocity, for a wave front propagating along the
 

′ 
direction, are given by 

 

′ = B 0 ( 1 , η cos φ, η sin φ) , v ′ = −v A 

(
0 , 

B 

′ 
y 

B 0 
, 

B 

′ 
z 

B 0 

)
, (70) 
w  

NRAS 510, 481–499 (2022) 
here φ = k 
′ 
x 

′ 
is the wave phase, k 

′ 
is the wavenumber. In

quation (70) B 0 = 1 is the (constant) magnetic field component in
he direction of propagation, η = 1 is the amplitude and the Alfv ́en
elocity v A is computed from 

 

2 
A = 

2 α

1 + 

√ 

1 − 4 η2 α2 
, where α = 

B 

2 
0 

w g + B 

2 
0 (1 + η2 ) 

, (71) 

nd w g = ρ + 	p /( 	 − 1). This yields v A ≈ 0.382 for our parameter
hoice (we use 	 = 4/3). The previous conditions provide an exact
ave solution of the RMHD equations provided φ → φ − ωt , where
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Figure 7. Left-hand panel: L 1 -norm error for v z in the circularly polarized Alfv ́en test problem after one period T = 1 / 
√ 

2 v A ≈ 1 . 851 and different Riemann 
solvers (see the legend). Right-hand panel: amplitude decay as a function of time using, respectively, 8 (dashed lines) and 16 (solid lines) zones per wavelength. 
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 = k 
′ 
v A is the angular frequency and are thus valid for arbitrary

mplitude η. 
We perform the test on a 2D Cartesian domain x ∈ [0, L x ], y ∈ [0,

 y ] with L x = L y = 1 and rotate the coordinate system by an angle α
round the z-axis so that vectors are rotated according to 

 = R q 

′ , with R = 

⎛ 

⎝ 

cos α − sin α 0 
sin α cos α 0 

0 0 1 

⎞ 

⎠ , (72) 

here q is a generic vector in the rotated (computational) frame, 
hile q 

′ is the corresponding vector in the 1D (unrotated) frame. The
av e v ector components are chosen so that exactly one wavelength
ts along the domain sizes, k = (2 π/L x ) ̂ e x + (2 π/L y ) ̂ e y (note that
is invariant under rotations). Computations are performed with 
 x × N x grid zones using a Courant number C a = 0.4. 
In the left-hand panel of Fig. 7 we measure, as a function of

he resolution N x , the accuracy of the selected Riemann solvers by
omputing, after one period T = 1 / ( 

√ 

2 v A ), the L 1 norm errors of the
ertical component of velocity v z . Second-order accuracy is obtained 
ith all solvers, although HLL has a slightly large errors at small

esolutions. 
In the right-hand panel of Fig. 7 , we compare the dissipative

roperties of the different solvers by measuring the decay of the 
ave amplitude, defined as δv z = max ( v z ) − min ( v z ) (normalized

o its initial value) up to ten revolutions, using 8 and 16 zones per
av elength, respectiv ely. Ov erall, the HLLD and GFORCE Riemann 

olvers yield the smallest dissipation, followed by HLLEM and 
LLC and lastly by HLL. At low resolution, the wave amplitudes 
ecrease approximately by ∼10 −3 of the nominal value (for the first
our solvers), while to ∼10 −5 for the HLL solver. By increasing the
esolution to 16 zones, differences are less pronounced and wave 
mplitudes drop to ∼0.37 (HLLD and GFORCE), ∼0.33 (HLLEM), 
0.30 (HLLC), and ∼0.22 (HLL). 
We point out that the smoothness of the solution allowed the 

FORCE scheme to be run with ω defined as in equation (69) with
 g = 0.4. Smaller values of ω (higher values of c g ) bias the scheme
owards a more diffusive behaviour. In the limit ω → 1/2 one retrieves
he FORCE scheme which yields results comparable with the HLLC 

olver for this problem. 
.4 Blast waves (2D, 3D) 

ylindrical and spherical explosions in Cartesian coordinates chal- 
enge the robustness of the method and its response to different kinds
f degeneracies. 
Among the several variants of this problem discussed in the 

iterature (see for instance Del Zanna et al. 2003 ; Mignone & Bodo
006 ; Del Zanna et al. 2007 ; Beckwith & Stone 2011 ; Mart ́ı 2015 ;
alsara & Kim 2016 , and reference therein) here we consider the
onfiguration given by Beckwith & Stone ( 2011 ). In the (original)
D version of the problem, the computational domain is defined by
he square x , y ∈ [ − 6, 6] initially filled with a uniform ( ρ = 10 −4 ,
 = 5 · 10 −3 ) and static ( v = 0) medium. In 3D, the domain becomes
 cube with z ∈ [ − 6, 6]. A high-pressure region is set up inside the
egion r < 0.8 having ρ = 10 −2 , p = 1, where r is the cylindrical
in 2D) or spherical (in 3D) radius. The computational domain is
hreaded with a uniform magnetic field 

 = B 0 

[
sin θ

(
cos φ ˆ e x + sin φ ˆ e y 

) + cos θ ˆ e z 
]

, (73) 

here θ and φ are the polar and azimuthal angles, respectively (we 
et θ = π /2). The grid resolution is fixed to 200 2 grid zones in 2D
nd 192 3 in 3D and computations are carried out until t = 4 using
he ideal EoS with 	 = 4/3. 

We begin by showing, in Figs 8 and 9 , the results of 2D
omputations using, respectively, φ = 0 (grid aligned) and φ = 

/4 (oblique case) and moderate magnetization B 0 = 0.5. The left
nd right halves of the figures include, respectively, a coloured 
ap of the plasma β = 2 p g / B 

2 (left half) and 1D-profiles along
he x - and y -axis (in the aligned case) or along the two diagonals
in the oblique case). The explosion is delimited by an outer fast
orward shock and the presence of a magnetic field makes the
ropagation anisotropic by compressing the gas in the direction 
arallel to the field. In the perpendicular direction the outer fast
hock becomes magnetically dominated with very weak compres- 
ion. Results between different solvers are very similar and the 
alient features of the solution are confirmed also in the oblique 
ase. 

In 3D and for stronger magnetization ( B 0 = 1), differences are
lightly more emphasized around the center where less dif fusi ve
olvers such as HLLD and GFORCE yield larger density and 
ressure peaks and smaller magnetic energies, see Fig. 10 . We point
MNRAS 510, 481–499 (2022) 
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Figure 8. Results for the 2D blast wave problem at t = 4, for B 0 = 0.5, and φ = 0 ◦. In the left half we show Coloured maps of the plasma β = 2 p / B 

2 (left) 
for different Riemann solvers while in the right half we present 1D profiles along the x -axis (solid line) and y -axis (dotted lines). Colour convention is the same 
adopted for previous tests. 

Figure 9. Same as Fig. 8 but for the inclined case ( φ = 45 ◦). 
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ut that the HLLD solver and the two fla v ors of HLLC could not
uccessfully complete the 3D case with B 0 = 1 without enabling
he corresponding ‘failsafe’ switches to HLL (see the discussion in
ections 3.2.1, 3.2.2, and 3.3). 
It should be clear by now that the stability of the computations

rucially depends on the chosen solver. Fig. 11 reports the allowed
ange of magnetization values (abo v e which computation breaks
o wn) for dif ferent Riemann solvers using different inclinations
n the x − y plane ( φ = 0 and φ = 45 ◦) in 2D as well as in
D. The histograms have been obtained by increasing B 0 in steps
f 0.1 in the range [0,10] for each computations. Overall, larger
agnetizations are attained for grid-aligned configurations ( φ =

) in both 2D and 3D, while the oblique cases appear to be more
tringent in terms of stability. In the former case, HLL, HLLEM,
NRAS 510, 481–499 (2022) 
nd GFORCE (with ω = 1/2) yield the most robust results. In the
blique cases, ho we ver, the maximum permitted v alues decrease
o values of order unity. The HLLC-MB solver seems to be more
obust than the KB version for grid-aligned configurations, while it
ecomes comparable for φ = π /4. We point out that the limits have
een obtained by quitting the computation at the first failure of the
onserv ati ve to primiti ve inversion scheme. Larger values may be
ossible by applying corrections to energy and/or momentum (see
.g. the work of Mignone & Bodo 2006 ; Beckwith & Stone 2011 ;
art ́ı 2015 ). 
The CPU time required by the different Riemann solvers on this

articular test were found to be t hll : t hllc-MB : t gforce : t hllc-KB : t hlld : t hllem 

=
: 1.07: 1.43: 1.47: 1.72: 2.43 (the CPU time for the HLLC solvers
s computed in the case with B 0 = 0.1). 
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Figure 10. Same as Fig. 8 but for the 3D case and strong magnetization B 0 = 1. Coloured maps are shown in the xz plane while 1D profiles are taken along the 
x -axis and y -axis. 

Figure 11. Permitted magnetization values for the blast wave problem. From left to right the four histograms (2D and 3D with φ = 0, 2D and 3D with φ = 

π /4) co v er the values of B 0 (in the range [0,10]) for which numerical inte gration succeeded. Each colour bar corresponds to a different Riemann solv er. The 
minmod limiter has been used. 
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.5 Kelvin–Helmholtz instability 

s a final test we choose the 2D Kelvin–Helmholtz instability (KHI)
sing the configuration of Beckwith & Stone ( 2011 ). The initial shear
elocity is given by 

 

x = sign ( y ) v sh tanh 

[
2 y − sign ( y ) 

2 a 

]
, (74) 

here a = 0.01 represents the thickness of the shear layer and v sh =
.5. The shear layer is perturbed by a non-zero y -component of the
elocity: 

 

y = sign ( y ) A 0 v sh sin (2 πx ) exp 

[ 

−
(

2 y − sign ( y ) 

2 σ

)2 
] 

, (75) 

here A 0 = 0.1 is the amplitude of the perturbation and σ = 0.1 is
he perturbation length-scale. We set an uniform initial pressure p = 

.0 and employ the ideal EoS with adiabatic exponent 	 = 4/3, while
he magnetic field is non-zero only in the x-direction B = (10 −3 , 0,
). Finally, the density distribution is set as: 

= 

1 

2 
( ρl + ρh ) + 

1 

2 
( ρh − ρl ) 

v x 

v sh 
, (76) 

ith ρh = 1.0 and ρ l = 0.01. The Cartesian domain has extension of
 ∈ [ − 0.5, 0.5], y ∈ [ − 1.0, 1.0] with periodic boundary conditions
pplied in all directions. We use a nominal resolution of 512 × 1024
rid zones and evolve the system until t = 3. Lower resolutions
128 × 256 and 256 × 512) have been employed for convergence 
urposes. 
Our results confirm and extend those obtained by Beckwith & 

tone ( 2011 ), namely, that the choice of the Riemann solver plays a
rucial role in its ability to capture the turbulence at smaller scales
eads to an increase in the ef fecti ve resolution. The density maps
hown in Fig. 12 show, in fact, that only the HLLC and HLLD
olvers are able to capture small-scale structure (i.e. the secondary 
orte x es at t = 3), while, on the contrary, the remaining solvers (HLL,
FORCE, and HLLEM) disclose a lesser amount of substructure and 
MNRAS 510, 481–499 (2022) 
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Figure 12. Density distribution of the Kelvin–Helmoltz instability test 
problem at t = 3 with different Riemann solvers. All the runs have been 
performed with 512 × 1024 grid cells. 
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Figure 14. Growth rate, defined as 〈| v y | 2 〉 computed using different solvers 
at different resolutions. Since HLL and HLLEM show the same growth rate, 
the y hav e been represented by a single line. We applied the same strategy 
also for the HLLC/HLLD solvers. 
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 larger amount of numerical dif fusion, e ven at very high resolution
not shown here). 

The same setup has been tested also employing the HLL Riemann
olver and a higher order scheme (in particular, a parabolic recon-
truction and a 3 rd -order time integration Runge–Kutta scheme have
een adopted). As shown in the bottom right panel of Fig. 12 , the
econdary vorte x es are not dev eloping. 

Interestingly, the differences between the HLL and the HLLEM
olver are almost negligible regardless of the resolution, even though
he HLLEM solver is designed to preserve the contact wave. 

In order to explain this apparently unexpected behaviour, we
rst observe that this problem is i) only weakly magnetized ( β ∼
0 5 ) and ii) strictly two-dimensional (no z component is present).
hese conditions imply that slow waves become almost degenerate
n the contact mode, while Alfv ́en waves are not present in the
olution. Thus only 3 (out of 5) waves can be accounted for by
he HLLEM solver: two outermost acoustic waves and the middle
ontact mode describing a density jump. When B x → 0, ho we ver,
he middle wave is best identified as a tangential discontinuity,
arrying jumps in the transv erse v ector components as well. These
ariations are crucial in the vortex formation process but they
annot be described and are thus smoothed out by the HLLEM
olver. On the contrary, both HLLC and HLLD solvers are able
o capture the discontinuities in the transverse components of the
 elocity, ev en if none of them is specifically designed to fully capture
low waves. Both solvers, in fact, are able to ‘detect’ a transverse
elocity jump 1 since this is inherently part of the non-linear solution
rocess. 
In order to pro v e our statement, we now show that restoration
f the slow modes in the HLLEM Riemann solver is decisive in 

 For HLLC-MB, this statement holds in the B x → 0 limit. 

c  

s  

I  

NRAS 510, 481–499 (2022) 
esolving small-scale structure. We demonstrate this by performing
he same computation in the non-relativistic regime (MHD), since
his sensibly reduces the required computational time (as shown in
nt ́on et al. 2010 ). Two sets of solvers have been considered: in the
rst case (top panel in Fig. 13 ) the HLLEM solver is designed to
apture contact and slow modes, while in the second case (bottom
anel of the same figure), the HLLEM solver resolves contact and
lfv ́en waves. A comparison between the two panels in Fig. 13

learly reveals that the former is able to resolve multiple secondary
ortices across the shear layer, while the latter completely smooths
hem out. 

Finally, we provide in Fig. 14 a measure of the instability growth
ate through the volume-integrated transverse velocity squared, at
ifferent resolutions 〈| v y | 2 〉 . While the HLLC and the HLLD solvers
onverge almost immediately, the GFORCE, HLL, and HLLEM
olv ers achiev e complete conv er gence only at lar ger resolutions.
n spite of this, the GFORCE scheme approach the nominal

art/stab3373_f12.eps
art/stab3373_f13.eps
art/stab3373_f14.eps


Approximate Riemann solvers for RMHD 497 

g  

H

5

A
n
p  

t
b
c

b
o  

a
d  

a
o  

s
b  

a

i
r  

d

i
s  

a  

h
b
n  

(
e
w  

i
c

(
p
a
R
r
v
5  

s
i  

1

c
a
p
a
m  

p  

o
o  

e
a
c
M

A

W
w

D

T  

b

R

A

A
A  

B
B
B
D
D
D
D
D
E
E  

G
G
G
G
H
H
K
K
K
K
L
M
M
M
M
M
M  

M
M
N  

N
P  

T  

T  

T
T
W

A
E

T
A  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/481/6438448 by guest on 16 February 2022
rowth rate at a somewhat faster rate when compare to HLL or
LLEM. 

 SU M M A RY  

 comparison between several non-linear approximate Riemann, 
amely, HLL, HLLC, HLLD, HLLEM, and GFORCE, has been 
resented through a series of 1, 2, and 3D numerical tests, in order
o assess their efficiency , stability , and robustness. Our conclusions, 
ased on the employment of second-order reconstruction schemes, 
an be summarized as follows: 

(i) Owing to its ability to approximate the Riemann fan structure 
y including rotational and contact discontinuities, the HLLD solver 
f Mignone et al. ( 2009 ) is able to achieve the best results in terms of
ccuracy. Despite being more computationally expensive than more 
if fusi ve Riemann solvers, its ability to converge at lower resolution
llows comparable accuracies to be achieved with a reduced number 
f grid cells (e.g. 256 × 512 versus 512 × 1024 required by HLL,
ee the the Kelvin–Helmoltz instability problem). On the other hand, 
ecause of its complex and iterative character, this solver may not be
 robust option for strong magnetizations. 

(ii) While the HLL Riemann solver showed great performances 
n terms of stability and computational efficiency, its inability of 
esolving any internal wave of the Riemann fan lead to a very
if fusi ve behaviour in all of the presented tests. 
(iii) The HLLC Riemann solver showed dissipation properties 

ntermediate between the HLLD and the HLL formulation. Since 
ev eral approaches hav e been dev eloped through the years, the
pproaches of Mignone & Bodo ( 2006 ) and of Balsara & Kim ( 2016 )
ave been compared. The former formulation (HLLC-MB) showed a 
etter performance in terms of computational efficiency, since it does 
ot require an y iterativ e c ycle. On the contrary, the second approach
HLLC-KB) involves the solution of couples systems of non-linear 
quations and it is thus more computational intensive. In addition, 
e found that the HLLC-KB solver is not fully consistent with the

ntegral form of the conservation law, failing to satisfy some jump 
ondition across the contact mode. 

(iv) The GFORCE Riemann solver shows accuracy comparable 
or slightly inferior) to the HLLC approach. Its increased stability 
roperties, which are intermediate between the HLL and the HLLD 

pproach, makes it a valid robust alternative when the HLLD 

iemann solver becomes brittle. The solver is non-iterative and it 
equires one additional conversion from conserv ati ve to primiti ve 
 ariables slo wing do wn the flux computation by approximately 
0 per cent when compared to the HLL solver. In the presence of
trong shock and/or magnetizations, the GFORCE should be reduced, 
n our experience, to the FORCE flux by tuning the parameter ω g =
/2 for safety purposes. 
(v) The HLLEM formulation, despite its ability of resolving the 

ontact and rotational discontinuities, has often shown poor accuracy 
nd numerical dissipation comparable to the HLL formulation. Better 
erformances can be obtained when Alfv ́en waves are predominant, 
lthough not superior than the HLLD formulation. Since its inter- 
ediate eigenstructure is built on top of the HLL solver, its stability

roperties are better than other less dif fusi v e Riemann solv ers. On the
ther hand, its large computational cost (related to the computation 
f left and right eigenvectors) does not make it - in our opinion - an
fficient and valid alternative in the context of relativistic MHD, 
lthough its performance may impro v e for those systems where 
onserv ed eigenv ectors are easier to compute (e.g. non-relativistic 
HD equations). 
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 1999 ), Balsara ( 2001 ), Ant ́on et al. ( 2010 ) in a more suited way
or the numerical schemes. Our method of solution follows the
pproach of Ant ́on et al. ( 2010 ), although the computation of the
eft eigenvectors slightly differs from their approach. For the sake
f clarity, we summarize here the pertinent formulas. The most
onvenient way to compute the left and right eigenvectors is to use the
o-called covariant variables ˜ U = ( u 

μ, b μ, p, s) T . The eigenvector
roblem becomes 

 A 

μφμ) ̃ r = 0 ˜ l 0 ( A 

μφμ) = 0 . (A1) 

he vector φμ = ( − λ, 1, 0, 0) describes the normal to the
haracteristic hypersurface, while the matrices A 

μ are defined by 

 

μ = 

⎛ 

⎜ ⎜ ⎝ 

w T u 

μδα
β −b μδα

β + P 

αμb β l αμ 0 α

b μδα
β −u 

μδα
β f μα 0 α

ρhδ
μ
β 0 β u 

μ/c 2 s 0 
0 β 0 β 0 u 

μ

⎞ 

⎟ ⎟ ⎠ 

(A2) 

here the index α = [0, 1, 2, 3] indicates the rows and the index
= [0, 1, 2, 3] indicates the columns. The quantities introduced

n equation A2 are P 

αμ
β = ηαμ + 2 u 

αu 

μ, l αμ = ( ρhηαμ + ( ρh −
 

2 /c 2 s ) u 

αu 

μ) / ( ρh ), f αμ = ( u 

μb α/c 2 s − u 

αb μ) / ( ρh ), while c s is the
ound speed. 

As pointed by Koldoba et al. ( 2002 ), Ant ́on et al. ( 2010 ), the
rthonormalization of the eigenvectors is provided by 

 

 0 ( λ1 ) A 

0 ˜ r ( λ2 ) = ̃

 l ( λ1 ) ̃ r ( λ2 ) = δ
λ1 
λ2 

. (A3) 

ecause of the degeneracies of the RMHD, we renormalized the left
nd right eigenvectors as already done by Ant ́on et al. ( 2010 ). We
tart with the right eigenvector associated to the entropy wave, 

˜  e = (0 α, 0 α, 0 , 1) T . (A4) 

n order to compute the right Alfv ́en eigenvectors we need some
ntermediate quantities, as 

μ
1 = γ ( v z , λa v 

z , 0 , 1 − λa v 
x ) 

μ
2 = −γ ( v y , λa v 

y , 1 − λa v 
x , 0) , (A5) 

nd 

 1 = 

1 

γ

(
B 

y + 

λa v 
y 

1 − λa v x 
B 

x 

)

 2 = 

1 

γ

(
B 

z + 

λa v 
z 

1 − λa v x 
B 

x 

)
(A6) 

here, if g 1 = g 2 = 0, we follow the prescription g 1 = g 2 = 1. The
xplicit form of the right Alfv ́en eigenvectors becomes 

˜  a, ± = ( f 1 α
μ
1 + f 2 α

μ
2 , ∓

√ 

w T ( f 1 α
μ
1 + f 2 α

μ
2 ) , 0 , 0) T , (A7) 

here 

 1 , 2 = 

g 1 , 2 √ 

g 2 1 + g 2 2 

. (A8) 

he normalized left eigenvectors in cov ariant v ariable are computed
sing equation A1, which leads to 

 

 e = (0 α, 0 α, 0 , 1) (A9) 

or the entropy eigen vector , and 

 

 a, ± = N 

⎛ 

⎜ ⎜ ⎝ 

( w T γ ± b 0 
√ 

w T )( f 1 α1 μ + f 2 α2 μ) 
−( b 0 ± √ 

w T γ )( f 1 α1 μ + f 2 α2 μ) + ( f 1 α0 
1 + f 2 α

0 
2 ) b μ

f 1 α
0 
1 + f 2 α

0 
2 

0 

⎞ 

⎟ ⎟ ⎠ 

T 

(A10
NRAS 510, 481–499 (2022) 
or the Alfv ́en eigenvectors. The renormalization factor N takes the
orm 

 = 

√ 

w T 

g 2 1 + g 2 2 

( N 1 + N 2 + N 3 ) , (A11) 

here 

⎧ ⎨ 

⎩ 

N 1 = ( B 

z v y − B 

y v z ) 2 [2( λ2 − 1) 
√ 

w T γ + b 0 
√ 

w T (2 λ2 − 1) ∓ λb x ] 
N 2 = 2( 

√ 

w T γ ± b 0 )( γ − λu x ) 2 ( g 2 1 + g 2 2 ) 
N 3 = ( B 

y v z − B 

z v y )( γ − λu x )( b z g 1 − b y g 2 ) 
. (A12) 

his normalization is well defined through the RMHD degeneracies.
In order to include the entropy and Alfv ́en waves in the HLLEM

olv er, we hav e to compute the normalized eigenv ectors in conserv ed
ariables. The conserved eigenvectors are computed as follows: 

 = 

(
∂U 

∂ ˜ U 

)
˜ r L = ̃

 l 

( 

∂ ˜ U 

∂U 

) 

. (A13) 

he transformation matrix for the right eigenvectors has a straight-
orward explicit form: 

(
∂U 

∂ ˜ U 

)
= 

⎛ 

⎜ ⎜ ⎝ 

ρ 0 j 0 0 j ρp γ ρs γ

w T u 

i w T γ δij A 

i M 

ij w p γ u 

i w s γ u 

i 

b i −b 0 δij −u 

i γ δij 0 0 
2 w T γ − ρ 0 j F C 

j G w s 

⎞ 

⎟ ⎟ ⎠ 

, (A14) 

here the intermediate quantities are 

 

ij = 2 b j γ u 

i − b 0 δij A 

i = −2 b 0 γ u 

i − b i 

C 

j = 2 b j γ 2 − b j F = −2 b 0 γ 2 − b 0 , 

G = w p γ
2 − 1 − ρp γ (A15) 

hile the partial deri v ati ves are written in a more compact form 

ρs = 

(
∂ρ

∂s 

)
p 

= − ρ

s	 

w s = 

(
∂ρh 

∂s 

)
p 

= − ρ

s	 

p = 

(
∂ρ

∂p 

)
s 

= 

ρ

	p 

w p = 

(
∂ρh 

∂p 

)
s 

= 

ρ

	p 

+ 

	 

	 − 1 
, (A16) 

ssuming an ideal equation of state. The conversion to the conserved
ariables yields 

 e = − D 

s	 

(1 , u 

x , u 

y , u 

z , γ − 1 , 0 , 0 , 0) T , (A17) 

or the entropic eigen vector , and 

 a, ± = f 1 V a, 1 , ± − f 2 V a, 2 , ±, (A18) 

or the Alfv ́en eigenvectors, where 

 a, 1 , ± = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρu z 

2 u z ( w T u 
x ± √ 

w T b 
x ) 

w T u 
y u z ± √ 

w T b 
y u z 

w T [ γ 2 + ( u z ) 2 − ( u x ) 2 ] ± √ 

w T ( b z u z + b 0 γ − b x u x ) 
0 

b y u z ± √ 

w T u 
y u z 

−b y u y ∓ √ 

w T [1 + ( u y ) 2 ] 
2 u z ( w T γ ± √ 

w T b 
0 ) − ρu z 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A19) 
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nd 

 a, 2 , ± = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρu y 

2 u y ( w T u 
x ± √ 

w T b 
x ) 

w T [ γ 2 + ( u y ) 2 − ( u x ) 2 ] ± √ 

w T ( b y u y + b 0 γ − b x u x ) 
w T u 

y u z ± w T b 
z u y 

0 
−b z u z ± √ 

w T [1 + ( u z ) 2 ] 
b z u y ± w T u 

y u z 

2 u y ( w T γ ± √ 

w T b 
0 ) − ρu y 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (A20) 

he computation of the transformation matrix is made, as in Ant ́on
t al. ( 2010 ), in two steps. The first step is to convert the eigenvectors
n primitive variables V̄ = ( u 

x , u 

y , u 

z , b x , b y , b z , p, ρ), 

 = ̃

 l 

( 

∂ ˜ U 

∂ ̄V 

) 

, (A21) 

hile, in the second step we reco v er directly the scalar product
 ∗ · ( U R − U L ), which is computed taking the scalar product between

he primitive eigenvectors ̃  l ∗ and the solution of the linear system (
∂U 

∂ ̄V 

)
X = U R − U L , (A22) 

here X is the unknown vector. The first transformation matrix has 
he form 

(
∂ ˜ U 

∂ ̄V 

)
= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

v j 0 j 0 0 
δij 0 ij 0 0 
B 

j u 

j 0 0 
∂b i 

∂u 

j 

∂b i 

∂B 

j 
0 0 

0 j 0 j 1 0 

0 j 0 j 
(

∂s 

∂p 

)
ρ

(
∂s 

∂ρ

)
p 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A23) 

here 

∂b j 

∂u 

i 
= v i B 

j − B 

i v j γ −2 − ( v · B )( v i v j − δij ) 

∂b j 

∂B 

i 
= γ −1 ( u 

i u 

j + δij ) , (A24) 
nd (
∂s 

∂ρ

)
p 

= 

s 

p 

(
∂s 

∂p 

)
ρ

= − s	 

ρ
. (A25) 

 difference between our approach and the one of Ant ́on et al.
 2010 ) is that, since the conversion matrix is less straightforward, we
o not provide an analytical expression for the left eigenvectors in
rimiti ve v ariables. On the other hand, this approach, since it converts
mmediately from the covariant magnetic field to the laboratory 

agnetic field, the latter step is much easier to compute. 
The explicit form of the latter transformation matrix is 

(
∂U 

∂ ̄V 

)
= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρv j 0 j 0 γ

∂S i 

∂u 

j 

∂S i 

∂B 

j 

	 

	 − 1 
γ u 

i γ u 

i 

0 ij δij 0 i 0 i 

∂E 

∂u 

j 

∂E 

∂B 

j 

	 

	 − 1 
γ 2 − 1 γ ( γ − 1) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (A26) 

here the partial deri v ati ves are 

∂S i 

∂u 

j 
= ( ρh − B 

2 

γ 2 
) v i u 

j − B 

i B 

j 

γ
+ 

B 

i v j 

γ
( v · B ) + ( Dh + 

B 

2 

γ
) δij 

∂S i 

∂B 

j 
= 2 v i B 

j − B 

i v j − ( v · B ) δij 

∂E 

∂u 

j 
= 2 u 

j ρh − ρv j + 

v j B 

2 − B 

j ( v · B ) 

γ
− [ v 2 B 

2 − ( v · B ) 2 ] 
v j 

γ

∂E 

∂B 

j 
= B 

j (1 + v 2 ) − v j ( v · B ) . (A27) 

e point out that the system has a trivial solution in the magnetic
eld components, therefore it can be reduced to 5 unknown values

n order to increase its speed and performance. Although the last
wo steps are performed numerically, the orthonormalization of the 
onserv ed eigenv ectors is preserv ed up to machine accurac y. 
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