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SUMMARY
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like)
phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and
interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG)
inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away
from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and
vessel normalization, effects known todecrease tumor growth andmetastasis and to enhance chemotherapy.
Skewing of TAMpolarization by HRG relies substantially on downregulation of placental growth factor (PlGF).
Besides unveiling an important role for TAMpolarization in tumor vessel abnormalization, and its regulation by
HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
INTRODUCTION

Angiogenesis and inflammation are hallmarks of cancer. Tumor

vessels are irregular, disorderly structured, and inefficiently

perfused, thereby impairing perfusion and drug delivery (Jain,

2005). The resulting hypoxia creates a hostile milieu from where

cancer cells escape through a leaky endothelium (Mazzone

et al., 2009). Traditional antiangiogenic ‘‘vessel pruning’’ agents
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regulates tumorigenesis. In nonprogressing or regressing

tumors, TAMs are biased to a classic macrophage activation

M1-like program, characterized by proinflammatory activity,

antigen presentation and tumor lysis. In malignant tumors,

TAMs resemble alternatively activated macrophages

(M2-type), that increase angiogenesis and tumor cell intra/

extravasation and growth; they suppress antitumor immunity

by preventing activation of dendritic cells (DCs), cytotoxic

T lymphocytes (CTLs), and natural killer (NK) cells (Mantovani

and Sica, 2010; Qian and Pollard, 2010). It is unknown if TAMs

regulate tumor vessel abnormalization.

TAMs consist of distinct subsets (Mantovani and Sica, 2010;

Qian and Pollard, 2010), which coexist in tumors, adapt to the

changing milieu, and can be re-educated by immunoregulatory

cues (Movahedi et al., 2010; Pucci et al., 2009). This has primed

interest in developing therapies, aimed at skewing TAMs to an

M1-like phenotype (De Palma et al., 2008). Nonetheless, only few

molecules have been identified to orchestrate this process so far.

In this study, we explored if histidine-rich glycoprotein (HRG),

a host-produced antiangiogenic and immunomodulatory factor,

regulates tumor vessel abnormalization and inflammation, for

various reasons. First, HRG is a multidomain protein that binds

thrombospondins (TSPs), heparin, FcgR receptors and other

molecules, implicated in tumorigenesis (Blank and Shoenfeld,

2008; Jones et al., 2005). Second, HRG is deposited in the tumor

stroma from plasma or platelets (Klenotic et al., 2010; Thulin

et al., 2009), but tumor HRG levels have been only analyzed in

a few human cancers (Klenotic et al., 2010; Simantov et al.,

2001). Third, binding of HRG to its ligands is facilitated by Zn2+

and low pH, conditions found in the tumor milieu. Fourth, HRG

stimulates phagocytosis of dying cells (Poon et al., 2010a), but

it is unknown if it regulates TAM polarization. Fifth, HRG inhibits

tumor growth (Dixelius et al., 2006; Karrlander et al., 2009;

Olsson et al., 2004), but its precise mechanisms remain incom-

pletely understood. Moreover, a role for HRG in metastasis has

not been documented yet.

HRG’s antitumor activity has been ascribed to effects on

tumor vessels, but these reports are not unequivocal. Indeed,

by inhibiting antiangiogenic agents, HRG may stimulate angio-

genesis (Klenotic et al., 2010; Simantov et al., 2001). On the other

hand, HRG inhibits endothelial cell (EC) responses. It blocks

binding of FGFs to heparan sulfate, prevents release of angio-

genic factors from the matrix (Jones et al., 2004; Poon et al.,

2010b), and inhibits growth factor-induced EC migration

(Dixelius et al., 2006). Binding of HRG to tropomyosin has also

been proposed to underly its antiangiogenic activity (Guan

et al., 2004). In tumors, HRG counteracts PDGF-driven angio-

genesis (Karrlander et al., 2009), while HRG deficiency increases

angiogenesis (Thulin et al., 2009). Nonetheless, it has not been

established if these in vitro mechanisms underlie the in vivo anti-

angiogenic effects of HRG in tumors. This is a relevant question,

as HRG affects other cell types, such asmacrophages, known to

regulate angiogenesis. Whether HRG regulates tumor angiogen-

esis indirectly through TAMs has not been explored.

The goal of this study was to identify mechanisms mediating

the antitumor effects of HRG, with focus on its previously docu-

mented immune modulatory function (Blank and Shoenfeld,

2008), and to reveal molecular links betweenHRGand regulators

of pathological angiogenesis.
2 Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc.
RESULTS

Expression of HRG in Human Cancer
We immunostained samples from 20 healthy and malignant

human tissues. HRG was prominent in healthy liver and less

abundant around vessels, macrophages, and other cell types

in healthy tissues (Figure 1A). Consistent with reports that HRG

binds to cell surfaces (Hulett and Parish, 2000), a HRG immuno-

reactive signal was detected on other cell types. This signal was

weaker in malignant than healthy cells (especially in hepatocel-

lular carcinoma cells) and weaker in stromal cells of tumors

compared to healthy tissues (Figure 1B; see Figures S1A–S1D

and Table S1 available online). Only in brain tumors was the

HRG signal somewhat stronger than in healthy brain, consistent

with another report (Klenotic et al., 2010), likely because plasma

HRG leaked through the disrupted blood-brain barrier (Fig-

ure S1D). Overall, HRG levels are decreased in human cancer.

Genetic Gain-of-Function Strategy to Study the Role
of HRG in Tumors
To study the role of HRG in cancer, we used a gain-of-function

approach to overcome the decreased tumor HRG levels.

Reasoning that overexpression of HRG by tumor cells would

result in stromal deposition, we transduced T241 fibrosarcoma,

Panc02 pancreatic tumor and 4T1 breast tumor lines with a lenti-

viral vector, encoding human HRG (hHRG+) and GFP; control

cells were transduced with a vector expressing only GFP (Ctrl).

GFP expression was controlled by an internal ribosomal entry

site and therefore not detected by direct fluorescence, neither

on HRG+ nor on Ctrl tumor sections. None of the HRG+ tumor

lines expressed mouse HRG (not shown), but produced hHRG

in vitro (HRG+ T241 tumor: 991 ng/107 cells/24 hr) (Figure 1C).

hHRG was deposited in HRG+ but not in control T241 tumors

grown in mice (Figures 1D and 1E). When tumors grew to larger

sizes, the HRG+ signal becameweaker (Figures S1E–S1G), while

plasma levels of humanHRGdecreased (from�100 mg/ml at day

14 to �5 mg/ml at day 21). Since GFP remained detectable

by anti-GFP antibodies, it raised the question whether HRG

became degraded by tumor cell-produced proteases; HRG is

indeed partially degraded to inactive fragments by tumors (not

shown). To avoid any confounding interpretation due to degra-

dation of HRG, tumor studies were performed during the window

of HRG expression. RT-PCR showed that murine HRG was

undetectable in cancer-associated fibroblasts (CAFs), TAMs

and tumor ECs (tECs), sorted from intact tumors (not shown).

HRG Inhibits Tumor Growth and Metastasis
When implanted in wild-type (WT) mice, HRG+ tumors grew

slower and metastasized less. HRG reduced the growth of

subcutaneous T241 fibrosarcomas, orthotopic Panc02 pancre-

atic tumors and 4T1 breast tumors by 62%, 26%, and 36%,

respectively (Figures 1F–1I). HRG also decreased Panc02 lymph

node metastasis by 62% (Figure 1J) and 4T1 lung metastasis by

90% (Figure 1K). As HRG decreased the metastatic index

(nodules per gram tumor), the reduced tumor spread was partly

independent of tumor growth inhibition. Since metastatic nodule

formation was reduced, but lodging to the lung was unaffected

(Figure S1H), the decreased metastasis is attributable to

reduced escape from the primary tumor. However, delayed
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Figure 1. Reduction of Tumor Growth by HRG

(A and B) HRG immunostaining, showing stronger HRG+ signal in healthy liver than in hepatocytocellular carcinoma (HCC). Bars: 20 mm.

(C) Production of HRG by HRG+ but not control (Ctrl) T241 cells.

(D and E) HRG immunostaining (green) of T241 tumors, showing expression of HRG in HRG+ (E) but not control (D) tumors. Bars: 50 mm.

(F and G) T241 model, showing slower growth of HRG+ tumors (F; n = 13; ***p < 0.001); similar findings for end-stage tumor weight (G; n = 20; **p < 0.01).

(H and I) Panc02 (H; n = 13; **p < 0.01) and 4T1 (I; n = 8; **p < 0.01) model, showing slower growth of HRG+ tumors.

(J and K) Reduced metastasis of HRG+ tumors in Panc02 model (J; n = 13; ***p < 0.001; lymph node metastasis) and 4T1 model (K; n = 8; *p < 0.05; pulmonary

metastasis).

(L–N) PHH3 staining, revealing fewer proliferating tumor cells in HGR+ (M) than control (L) T241 tumors; (N) proliferation index (PHH3+/total cells) (n = 5; *p < 0.05).

Bars: 20 mm.

Data represent mean ± SEM; statistical significance was assessed by t test. See also Figure S1.
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growth of HRG+ metastases also contributed to the decreased

metastatic burden (Figure S1I). Staining for phosphohistone-

H3 showed that proliferation was reduced in HRG+ T241 tumors

(Figures 1L–1N). As HRG+ tumor cell proliferation was normal

in vitro (Figure S1J), stromal rather than tumor cell autonomous

mechanisms accounted for the decreased tumor cell prolifera-

tion in vivo. We thus focused on vessel normalization and

antitumor immunity, known to regulate tumor growth andmetas-

tasis (Mantovani and Sica, 2010; Mazzone et al., 2009).

HRG Promotes Vessel Normalization and Improves
Tumor Perfusion
We first studied angiogenesis in HRG+ tumors, not only because

the reduced growth of HRG+ tumors might be caused by

blockage of angiogenesis, but also because the decreased

metastasis of HRG+ tumors might be due to ‘‘normalization’’ of
tumor vessels. Staining for the EC marker CD31 showed that

vessel density and average vessel area were comparable in

control and HRG+ T241 tumors (Figures 2A–2D). When analyzing

the distribution of vessel size, we observed a shift toward smaller

vessels (Figure S2A). Since these parameters do not necessarily

correlate with vessel function, we studied perfusion by delivery

of FITC-conjugated lectin. Nearly double the number of vessels

was perfused in HRG+ T241 tumors (Figures 2E–2G). HRG+

tumors were less hypoxic, as assessed by pimonidazole

(PIMO) staining at early (12 days) and late stage (19 days)

(Figures 2H–2J), and displayed smaller necrotic and hemor-

rhagic areas (Figures 2K–2N). MRI confirmed that HRG+ tumors

were less necrotic (Figures S2B and S2C). HRG+ tumors were

also less apoptotic (Figures 2O–2Q). Since pericyte coverage

improves vessel maturation, we double stained for CD31 and

the pericyte marker a-smooth muscle actin (aSMA) and
Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc. 3
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Figure 2. HRG Improves Tumor Vessel Maturation and Normalization

(A–D) Staining for CD31 (red) in control (A) and HRG+ (B) T241 tumors. (C and D) Vessel density (C) and area (D; CD31+ area, %).

(E–G) Staining for FITC-conjugated lectin (green) and CD31 (red) in control (E) and HRG+ (F) T241 tumors. (G) Increase in perfused lectin+CD31+ vessels (% of

CD31+ vessels) in HGR+ tumors (n = 6; ***p < 0.001).

(H–J) Staining for pimonidazole (PIMO; brown), revealing smaller hypoxic regions in HRG+ (I) than control (H) tumors. Morphometry (J) revealed reduced PIMO+

area (% of tumor area) in HRG+ T241 tumors (n = 8; **p < 0.01; ***p < 0.001).

(K–N) H&E staining, showing less hemorrhaging (M; arrows) and necrosis (N) in HRG+ (L) than control (K) T241 tumors. (M and N) Analysis of necrotic and hemor-

rhagic area (% of tumor area) (n = 7; *p < 0.05, **p < 0.01).
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observed an increased pericyte coverage of tumor vessels in

HRG+ tumors (Figures 2R–2T); similar numbers of PDGFRa+

cancer-associated fibroblast/myofibroblasts (CAFs) were

present (not shown). HRG+ tumor edema was also reduced

([wet-dry weight]/dry weight, 3100: 80 ± 2 for controls versus

73 ± 2 for HRG+; n = 5; p = 0.06).

Further characterization of the tumor vasculature in orthotopic

Panc02 tumors confirmed that HRG promoted vessel normaliza-

tion. HRG+ tumors contained fewer ‘‘empty sleeves,’’ i.e.,

channels with a laminin+ basement membrane devoid of

CD31+ ECs (Figure 2U). HRG also improved the stability and

tightness of the EC layer, since the junctional molecule VE-cad-

herin was continuous over longer distances and more abundant

in HRG+ tumor vessels (Figures S2D–S2G). Scanning electron

microscopy (SEM) showed that fewer vessels in HRG+ Panc02

tumors contained abnormal multilayers of disconnected ECs

with multiple protrusions (Figures 2V and 2W). Administration

of the cytotoxic agent doxorubicin at a suboptimal dose

(2.5 mg/kg, 33/wk) was ineffective in reducing growth of control

T241 tumors, but decreased HRG+ T241 tumor growth by 50%

(Figure 2X). Overall, HRG improved tumor vessel maturation

and perfusion, reduced hypoxia and improved chemotherapy.

Also, the tighter EC barrier is known to reduce metastasis (Maz-

zone et al., 2009). The improved tumor vessel normalization and

maturation could thus explain the antimetastatic activity of HRG.

Effects of HRG on Tumor-Associated Macrophage
Polarization
Since the vascular changes alone unlikely explained the inhibi-

tion of tumor growth by HRG, we explored if HRG affected the

immune response. We focused on TAMs, as their accumulation

correlates with tumor progression. However, F4/80+ TAM accu-

mulation was only slightly increased in HRG+ T241 tumors

(Figures 3A–3C), and comparable in HRG+ Panc02 (see below)

and 4T1 (not shown) models. HRG+ T241 tumors had compa-

rable numbers of myeloid cells (CD11b+ cells, percentage of

viable cells: 15 ± 3 for control versus 20 ± 1 for HRG+; n = 3;

p = 0.18) or contained slightly more CD11b+ F4/80+ macro-

phages (12 ± 2 for control versus 16 ± 0.2 for HRG+; n = 3;

p = 0.01). Levels of Ccl2 (also known as Mcp1), Csf2 (Gm-csf),

and Csf1 (M-csf), i.e., chemotactic cytokines for macrophages,

were not altered in HRG+ tumors (Figures S3A–S3C). Overall,

HRG only caused insignificant changes in the extent of myeloid

cell infiltration.

Because tumor growth was reduced despite persistent TAM

accumulation, we analyzed the phenotype of freshly isolated

TAMs. Protumoral and proangiogenic (i.e., M2-like) TAMs
(O–Q) Staining for cleaved caspase-3 (red) revealed fewer apoptotic cells in HRG

(n = 6; ***p < 0.01).

(R–T) Double staining for CD31 (red) and a-SMA (green), showing more pericyte

(a-SMA+CD31+ vessels, percentage of CD31+ vessels; n = 6; ***p < 0.001).

(U) Counting of vessels, stained for laminin and CD31, showing fewer ‘‘empty sle

(V andW) SEMmicrographs, showing abnormal tumor vessel containingmultilaye

ized vessel, lined by monolayer of cobblestone ECs in a HRG+ Panc02 tumor (W

analyzed) (n = 5; *p < 0.0.5).

(X) Doxorubicine (Doxo) treatment of T241 tumor-bearing mice, showing that a

growth of HRG+ T241 tumor growth (n = 6; *p < 0.05). In the absence of doxoru

(n=6; **p < 0.01). Bars in all tissue section panels: 10 mm.

Data represent mean ± SEM; statistical significance was assessed by t test. See
express elevated levels of themannose receptor-1 (MRC1), argi-

nase-1 (Arg1), IL-10 and the chemokines CCL22 and CCL17

(Movahedi et al., 2010; Pucci et al., 2009). Conversely, antitu-

moral and proinflammatory (i.e., M1-like) TAMs express higher

levels of inflammatory and antiangiogenic cytokines such as

IL-1, IL-6, Type I interferons (IFNs), IL-12, and CXCL9 (Mantovani

et al., 2002). TNFa marks M1- and M2-oriented TAMs (Hage-

mann et al., 2008; Movahedi et al., 2010; Qian and Pollard,

2010). We found that 2-fold fewer F4/80+ TAMs expressed

MRC1 in HRG+ T241 tumors (Figures 3A, 3B, and 3D). F4/80+

TAMs from HRG+ tumors expressed reduced levels of other

M2-type genes (Figures 3E and 3F), as well as of TNFa (pg/ml:

141 in control versus 72 in HRG+) and IL-10 (64 pg/ml for control

versus 24 pg/ml in HRG+).

Conversely, F4/80+ TAMs from HRG+ T241 tumors upregu-

lated the M1-type genes Cxcl9 (Figure 3F), IFN-b (mRNA

copies/104 Hprt mRNA copies: 2.7 ± 0.02 for control versus

8.7 ± 2.0 for HRG+; n = 4; p = 0.04) and IL-6 (pg/ml: 182 in control

versus 644 in HRG+). Expression of IL-12 also tended to be

upregulated (mRNA copies/103 Hprt mRNA copies: 3.7 ± 0.6

for control versus 24 ± 16 for HRG+; n = 5; p = 0.10). Although

IL-1b is regarded as an M1 marker, it also has angiogenic and

metastatic activity (Arteta et al., 2010); in line with the antiab-

normalization/metastatic effects of HRG, IL-1b levels were

reduced in TAMs fromHRG+ tumors (Figure 3G). Similar findings,

including downregulation of Ccl17, were obtained when

analyzing F4/80+CD11c+ cells (Figures S3D–S3F), which mostly

comprise M1-type TAMs (Movahedi et al., 2010; Pucci et al.,

2009). Overall, HRG skewed TAM polarization away from the

M2-like phenotype.

Mechanistic analysis revealed that HRG skewed TAM polari-

zation via direct effects, as exposure of peritoneal macrophages

(pMØs) to HRG upregulatedCxcl9 and IFN-b and downregulated

expression of Ccl22 and IL-10 (Figures S3G–S3J). However,

the M1-skewed TAM polarization in response to HRG was

not attributable to an increase in circulating inflammatory

(CD115+CD11b+Gr1high) over ‘‘resident’’ (CD115+CD11b+Gr1low)

monocytes (Figure S3K). Also, the lower number ofMRC1+ TAMs

inHRG+T241 tumorswas not due to apoptosis of this population,

as shown by comparable numbers of TUNEL+ or 7AAD+

MRC1+F4/80+ cells upon immunostaining of tumor sections or

flow cytometry of TAMs, respectively (Figure S3L; not shown).

Additional Effects of HRG on Tumor Immunity
HRG also promoted the host-antitumor immune response by

affecting dendritic cells (DCs). Indeed, HRG+ tumors contained

more CD11c+ cells (Figures 3H–3J; Figure S3M), the majority
+ (P) than control (O) T241 tumors; (Q) apoptotic index (caspase-3+ / total cells)

-covered tumor vessels in HRG+ (S) than control (R) tumors, quantified in (T)

eves’’ in HRG+ Panc02 tumors (n = 5; *p < 0.05).

rs of disconnected ECswith luminal protrusions in control tumor (V) and normal-

). Numbers below panels indicate fraction of abnormal vessels (% of vessels

suboptimal dose did not affect growth of control tumors (Ctrl), but inhibited

bicin, HRG+ tumor growth was significantly suppressed compared to control

also Figure S2.
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Figure 3. Effects of HRG on TAM Polarization

(A–D) Double staining for F4/80 (red) and MRC1 (green), revealing slightly more F4/80+ macrophages but fewer F4/80+MRC1+ macrophages in HRG+ (B) than

control (A) T241 tumors. (C) quantification of F4/80+ area (% of tumor area) (n = 5; *p < 0.05); (D) quantification of the F4/80+MRC1+ area (% of F4/80+ tumor

area) (n = 6; **p < 0.01). Bars: 20 mm.

(E–G) RT-PCR, revealing that FACS-sorted macrophages from HRG+ T241 tumors expressed reduced levels of Ccl22 (E), IL-10 and Arg1 (F) and IL-1b (G), while

expressing increased levels of Cxcl9 (F) (n = 5–12; *p < 0.05 and #p = 0.068).

(H–K) Double staining for CD11c (red) and CD86 (green), revealing more CD11c+ cells in HRG+ (I) than control (H) T241 tumors. (J) Quantification of CD11c+ cells

per optical field (n = 5; ***p < 0.01). (K) Higher percentage of CD11c+CD86+ cells (% of CD11c+ cells; n = 5; ***p < 0.01) in HRG+ tumors. Bars: 20 mm.

(L) Mixed leukocyte response (MLR) assay, showing higher induction of CD8+ T cell proliferation by Cd11c+F4/80+ TAMs from HRG+ than Ctrl T241 tumors.

(M–O) Staining for CD8 (green), revealing more cytotoxic CD8+ T cells in HRG+ (N) than control (M) T241 tumors; (O) quantification of CD8+ area (% of tumor area)

(n = 7; ***p < 0.001). CTL, cytotoxic T cell lymphocytes. Bars: 20 mm.

(P) Flow-cytometry, showing more NK1.1+ natural killer (NK) cells in HRG+ than control T241 tumors (n = 6; *p < 0.05). Cells were gated as viable (7AAD-) CD45+-

CD11b-NK1.1+ cells and quantified in percent of total cells after physical gating.

Data represent mean ± SEM; statistical significance was assessed by t test. See also Figure S3.
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of which coexpressed CD86 (Figures 3H, 3I, and 3K; Figure S3N)

and MHC class II (CD11c+MHC class II+, percentage of CD11b+

cells: 1.3 ± 0.5 in control versus 14.6 ± 1.7 in HRG+; n = 6;

p < 0.001), suggesting that they are activated DCs, though their

molecular signature overlaps with M1-polarized TAMs (Pucci

et al., 2009). Also, antigen-presenting cells from HRG+ T241

tumors stimulated allogeneic CD8+ T cell proliferation more
6 Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc.
than corresponding cells from control tumors (Figure 3L). HRG

stimulated DC activation indirectly, since it did not affect or

only marginally influenced the expression of the DC maturation

markers MHC class II, CD83, or CD86 (not shown).

HRG+ T241 tumors also contained higher numbers of CD8+

cytotoxic T lymphocytes (CTLs) (Figures 3M–3O; Figure S3O)

and NK1.1+ NK cells (Figure 3P), while CD4+ T cells were not
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Figure 4. Effects of Macrophage Depletion on the Effects of HRG

(A) Treatment with clodronate reduced control 4T1 tumor growth and enhanced HRG+ tumor growth (relative to vehicle liposome controls). Similar effects in T241

tumors (not shown) (n = 10; p < 0.001, 2-way ANOVA; **p < 0.01, ***p < 0.001 versus control, Bonferroni post hoc test).

(B–G) Staining for CD31 (red) and lectin (green), revealing perfused CD31+lectin+ vessels and nonperfused CD31+lectin- vessels in control (B and D) and HRG+ (C

and E) T241 tumors in mice, treated with vehicle (B and C) or clodronate (D and E) liposomes. (F) Quantification of CD31+ vessels revealed comparable density in

control and HRG+ tumors in mice receiving vehicle or clodronate liposomes. (G) Quantification of CD31+lectin+ vessels (% of CD31+ vessels) revealed a larger

fraction of perfused vessels in HRG+ tumors in mice receiving vehicle liposomes. In clodronate-treated mice, the fraction of perfused vessels was increased

comparably in control and HRG+ tumors. (F and G) n = 5; **p < 0.01 and ***p < 0.001 versus Ctrl vehicle. Bars: 50 mm.

(H–L) Immunostaining for pimonidazole (PIMO; brown), revealing PIMO+ hypoxic areas in control (H and J) and HRG+ (I,K) T241 tumors in mice, treated with

vehicle (H and I) or clodronate (J and K) liposomes. (L) Quantification of PIMO+ area (percentage of tumor area) revealed smaller hypoxic regions in HRG+ tumors

in mice receiving vehicle liposomes. In clodronate-treated mice, hypoxic tumor regions were decreased comparably in control and HRG+ tumors. (L) n = 5;

*p < 0.05, **p < 0.01 and ***p < 0.001 versus Ctrl vehicle. Bars: 100 mm.

Data represent mean ± SEM; statistical significance was assessed by t test, or as indicated. See also Figure S4.
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affected (not shown). Immunodepletion of CTLs and NK cells

showed that HRG increased their lytic activity for tumor cells.

Indeed, when administering anti-CD8 antibodies, depletion of

CTLs tended to increase the growth of control tumors by

1.6-fold (p = 0.07) as compared with CTL-complete control

tumors, treated with control IgG (Figure S3P). In contrast, CTL

depletion enhanced the growth of HRG+ T241 tumors by up to

5-fold (p = 0.01; Figure S3P). Analogous studies with anti-NK1.1

antibodies revealed that NK-depleted HRG+ tumors grew 7-fold

faster than NK-complete HRG+ tumors treated with control IgG

(Figure S3P). AlthoughHRG itself did not affect T cell proliferation

(not shown), TAMs from HRG+ tumors upregulated IL-6, IL-12,

and IFN-b, which are known activators of T cells and NK cells,

suggesting that HRG induced CTLs/immune responses indi-

rectly via skewing of TAM polarization. Overall, HRG promoted

a Th1/M1-skewed antitumor immune response, known to inhibit

tumor growth.

TAM Depletion Abrogates the Effects of HRG in Cancer
To underscore that TAM polarization inhibited tumor growth,

metastasis, and vessel abnormalization, we treated tumor-

bearing mice with clodronate liposomes to chemically deplete
TAMs (using vehicle liposomes as control), and compared its

effects in control tumors (containing more M2-skewed TAMs)

with HRG+ tumors (containing moreM1-skewed TAMs). Elimina-

tion of TAMs decreased the growth of control tumors, indicating

that TAMs were predominantly of the M2-like, tumor-promoting

phenotype in these conditions. Vehicle liposome-treated HRG+

T241 tumors were smaller, but depletion of TAMs by clodronate

liposomes enhanced their growth (Figure 4A), showing that HRG

skewed TAMs to a more tumor-inhibitory M1-like phenotype.

Clodronate also reduced dissemination of control tumors

(Figure S4), indicating that TAMs exerted a prometastatic

activity, in accordance with their M2-like phenotype. Metastasis

of vehicle liposome-treated HRG+ tumors was reduced, but TAM

depletion did not further affect metastasis (Figure S4), indicating

that M1-polarized TAMs in HRG+ T241 tumors did not (promi-

nently) regulate this process.

We also examined if TAMs participated in tumor vessel

abnormalization, and if such a role was related to their M1/M2-

like phenotype. In control tumors, clodronate improved tumor

perfusion (Figures 4B, 4D, and 4G) and oxygenation (Figures

4H, 4J, and 4L). Perfusion and oxygenation were improved in

vehicle liposome-treated HRG+ tumors, but TAM depletion failed
Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc. 7
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Figure 5. Role of PlGF in the Antitumor/Metastatic Activity of HRG

(A–C) RT-PCR, showing reduced Plgf transcript levels in pMØs treated with HRG (n = 4; **p < 0.01) (A), and in F4/80+ TAMs from HRG+ T241 tumors (n = 8–12;

*p < 0.05) (B), but not in GFP+ tumor cells (n = 8–12) (C).

(D and E) Analysis of tumor growth (D) and metastatic index (E) in Panc02 tumor model, revealing reduced growth and metastasis of HRG+ tumors in WT mice;

growth andmetastasis of control andHRG+ tumorswas reduced comparably in PlGF�/�mice (n = 17; **p < 0.01 versus control tumors inWTmice). Data in (D) and

(E) represent mean ± SEM; statistical significance was assessed by t test.

(F) Similar findings were observed in the T241 tumor model (n = 7, *p < 0.05, ***p < 0.001 by 2-way ANOVA). See also Figure S5.
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to further affect these parameters (Figures 4C, 4E, 4G, 4I, 4K,

and 4L), showing that M1-polarized TAMs did not (prominently)

regulate tumor vessel abnormalization. No effects on vessel

density were observed in either condition (Figure 4F). Thus, the

antivessel abnormalization activity of HRG relied on its ability

to skew TAM polarization away from the M2-like provessel ab-

normalization phenotype.

HRG Downregulates the Expression of PlGF by TAMs
We then searched for a possible downstream target of HRG that

mediates TAM polarization, and analyzed the expression of

candidate genes by treating pMØs with HRG. HRG decreased

the expression of Plgf (Figure 5A), but not of other angiogenic

regulators (Figure S5A). This downregulation was also observed

in TAMs, freshly isolated fromHRG+ T241 tumors (Figure 5B), but

it was cell type specific, as HRG failed to alter Plgf levels in ECs,

CAFs, or tumor cells (Figure 5C; not shown). Not unexpectedly,

the profile of other genes, such as Vegf and Pdgfb, in pMØs

treated with HRG differed from that in TAMs from HRG+ tumors,

as the latter sensed not only the direct effect of HRG but also the

indirect environmental changes induced by HRG (Figure S5B).

Role of PlGF in the Antitumor/Antimetastatic Activity
of HRG
To investigate if downregulation of TAM-derived PlGF mediated

the antitumor activity of HRG, we compared control and HRG+

Panc02 tumor cells in WT and PlGF-deficient (PlGF�/�) mice.

In WT mice, growth of HRG+ tumors was impaired (Figure 5D).

Growth of control tumorswas slower in PlGF�/�mice (Figure 5D),
8 Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc.
in accordance with findings that stromal PlGF promotes tumor

growth (Carmeliet et al., 2001). However, in PlGF�/� mice,

growth of HRG+ and control Panc02 tumors was reduced to

the same extent (Figure 5D), indicating that HRG did not further

suppress tumor growth in the absence of host-derived PlGF.

Similar observations weremadewhen analyzingmetastasis (Fig-

ure 5E). Use of the T241 tumor model confirmed that growth of

control and HRG+ tumors was comparably reduced in PlGF�/�

mice (Figure 5F). Thus, HRG inhibited tumor growth and metas-

tasis, but only if stromal cells expressed PlGF.

To explore if a myeloid cell type in the tumor stroma was the

responsible PlGF producer, we examined if PlGF in bone

marrow-derived myeloid cells (BMCs) was required for the anti-

tumor activity of HRG and therefore transplanted PlGF�/� bone

marrow in irradiated WT hosts (KO/WT) and, as control, WT

bone marrow in WT recipients (WT/WT). Compared with

WT/WT mice, growth and metastasis of control Panc0 tumors

were reduced in KO/WT mice (Figures S5C–S5E) to the same

extent as for HRG+ tumors in WT/WT mice or in KO/WT

mice. Thus, HRG overexpression phenocopied the BMC-

specific loss of PlGF, and HRG could not further affect tumor

growth and spreading in the absence of BMC-produced PlGF,

indicating that HRG blocked tumorigenesis via downregulation

of TAM-produced PlGF.

Role of PlGF in TAM Polarization by HRG
We then investigated if PlGF mediated HRG’s effects on TAM

polarization. Confirming the lack of an effect by HRG on TAM

infiltration, F4/80+ TAM accumulation was comparable in control
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Figure 6. HRG Attenuates the Proangiogenic M2 Gene Profile

(A-F) Staining of Panc02 tumors for F4/80 (green) andMRC1 (red), revealingMRC1+/F4/80+ (yellow) macrophages in control (A and C) and HRG+ (B andD) tumors

in WT (A and B) and PlGF�/� (C and D) mice. (E and F) Quantification revealed similar F4/80+ TAM accumulation (E; F4/80+ area, percentage of tumor) in each

condition, but fewer MRC1+/F4/80+ TAMs in HRG+ tumors in WT mice (F); infiltration of MRC1+/F4/80+ TAMs was comparably reduced in control and HRG+

tumors in PlGF�/� mice (F; n = 5; **p < 0.01 and ***p < 0.001 versus control tumors in WT mice). Bars: 20 mm.

(G–I) RT-PCR, showing lower expression of Ccl22 (G), IL-10 (H), and Arg1 (I) in flow-sorted F4/80+ TAMs from HRG+ than control (Ctrl) T241 tumors in WT mice;

expression of these genes was comparably decreased in control and HRG+ tumors in PlGF�/� mice (n = 5–10; #p = 0.07; *p < 0.05; **p < 0.01, versus control

tumors in WT mice).

(J–N) Staining of Panc02 tumors for CD11c (red), revealing dendritic cells in control (J and L) and HRG+ (K and M) tumors in WT (J and K) and PlGF�/� (L and M)

mice. (N) Quantification revealedmore CD11c+ cells (CD11c+ area, percentage of tumor area) in HRG+ tumors inWTmice; infiltration of CD11c+ cells was compa-

rably increased in control and HRG+ tumors in PlGF�/� mice (N; n = 5; *p < 0.05, **p < 0.01 versus control tumors in WT mice). Bars: 20 mm.

(O) Flow sorting of NK1.1+ cells, revealing larger fraction of NK cells in HRG+ T241 tumors in WT mice; infiltration of NK1.1+ cells was comparably increased in

control and HRG+ tumors in PlGF�/� mice (n = 6; *p < 0.05).

(P and Q) RT-PCR, showing reduced expression ofCcl22 (P) and IL-10 (Q) in HRG-treatedWT pMØs; expression was comparably reduced in Ctrl or HRG-treated

PlGF�/� pMØs (n = 3–6; *p < 0.05, **p < 0.01 versus control WT).

(R) RT-PCR, showing upregulation of Cxcl9 in HRG-treated WT pMØs; expression of Cxcl9 was comparably increased in control or HRG-treated PlGF�/� pMOs

(n = 4; **p < 0.01 versus control WT).

Data represent mean ± SEM; statistical significance was assessed by t test.
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and HRG+ tumors in PlGF�/� mice (Figures 6A, 6C, and 6E).

In contrast, loss of stromal PlGF affected TAM polarization. In

control tumors, MRC1 was expressed in fewer F4/80+ TAMs in

PlGF�/� mice (Figures 6A, 6C, and 6F), but the number of F4/

80+MRC1+ TAMs was reduced to the same extent in control

and HRG+ tumors in PlGF�/� mice (Figures 6B, 6D, and 6F).

F4/80+ TAMs, sorted from control tumors in PlGF�/� mice or

HRG+ tumors in WT mice, expressed lower levels of the M2

genes Ccl22, IL-10, and Arg1; this profile was not further altered
in HRG+ Panc02 tumors in PlGF�/� mice (Figures 6G–6I). Similar

findings were obtained when analyzing F4/80+CD11c+ cells (Fig-

ures S3D–S3F). In accordance with findings that the increased

infiltration of DCs and NK cells in HRG+ T241 tumors in WT

mice resulted from TAM polarization, more of these cells infil-

trated control tumors in PlGF�/� mice (Figures 6J, 6L, 6N, and

6O), showing that PlGF deficiency altered tumor immunity.

However, HRG overexpression did not further affect the infiltra-

tion of these cells in PlGF�/� mice (Figures 6K, 6M–6O).
Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc. 9
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Figure 7. Improved Tumor Vessel Maturation and

Normalization in PlGF–/– Mice

(A and B) Immunostaining for CD31, revealing similar

vessel density (A) and area (B; CD31+ area, percentage

of tumor area) in control and HRG+ Panc02 tumors in WT

or PlGF�/� mice (n = 5).

(C–G) Double staining for CD31 (red) and a-SMA (green),

revealing pericyte-coated CD31+aSMA+ vessels in control

(C and E) and HRG+ (D and F) tumors in WT (C and D) and

PlGF�/� (E and F) mice. (G) Quantification revealed more

CD31+aSMA+ vessels (percentage of CD31+ vessels) in

HRG+ tumors in WT mice; the fraction of CD31+aSMA+

vessels was comparably increased in control and HRG+

Panc02 tumors in PlGF�/� mice (n = 7; *p < 0.05,

**p < 0.01 versus control tumor in WT).

(H) Counting of vessels, double stained for laminin and

CD31 showed fewer ‘‘empty sleeves’’ (laminin+ structures

devoid of a CD31+ EC lining) in HRG+ tumors in WT mice;

the fraction of empty sleeves was comparably decreased

in control and HRG+ Panc02 tumors in PlGF�/� mice

(laminin+CD31– vessels, percentage of laminin+ vessels;

n = 5; *p < 0.05 versus control tumor in WT).

(I–K) SEM micrographs, showing normalized vessel, lined

by monolayer of cobblestone-like ECs, in a control (I)

and HRG+ (J) Panc02 tumor in PlGF�/� mice. (K) Quantifi-

cation revealed fewer abnormalized vessels (percentage

of vessels analyzed) in HRG+ than control tumors in WT

mice; the fraction of abnormalized vessels was compa-

rably decreased in control and HRG+ tumors in PlGF�/�

mice (n = 5; *p < 0.05 **p < 0.01 versus control tumors in

WT mice).

(L–P) Staining for CD31 (red) and perfusion dye FITC-

conjugated lectin (green), revealing perfused CD31+lectin+

vessels and nonperfused CD31+lectin- vessels in control

(L and N) and HRG+ (M and O) Panc02 tumors in WT

(L and M) and PlGF�/� (N and O) mice. (P) Quantification

showed more CD31+lectin+ vessels (percentage of

CD31+ vessels) in HRG+ tumors in WT mice; the fraction

of CD31+lectin+ vessels was comparably increased in

control and HRG+ tumors in PlGF�/� mice (n = 5;

*p < 0.05 versus control tumors in WT mice).

Data represent mean ± SEM; statistical significance was

assessed by t test. Bars: 10 mm in C–F, I, J; 50 mm in

L–O. See also Figure S6.
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We also assessed if autocrine production of PlGF by TAMs

controlled their polarization. PlGF�/� pMØs expressed lower

levels of Ccl22 and IL-10 (Figures 6P and 6Q; Figures S3I and

S3J), but higher levels of Cxcl9 and IFN-b (Figure 6R; Figures

S3G and S3H). Moreover, WT pMØs treated with anti-PlGF anti-

bodies displayed a similar M1-skewed profile as PlGF�/� pMØs

(Figures S3G–S3J). HRG did not further affect the expression of

M2- or M1-specific genes in PlGF�/� pMØs or in WT pMØs

treated with anti-PlGF (Figures 6P–6R; Figures S3G–S3J). Over-
10 Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc.
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all, genetic loss or pharmacologic blockage of

PlGF as well as downregulation of PlGF by

HRG skewed polarization of pMØs/TAMs

away from the M2-like phenotype.

Role of PlGF in HRG-Mediated Vessel
Normalization
We also explored if PlGF downregulation acted

downstream of HRG in regulating vessel
ormalization. Vessel density and average size were comparable

WT and PlGF�/� mice, both for control and HRG+ Panc02

mors (Figures 7A and 7B). Also, the same changes in the distri-

ution of vessel area detected in HRG+ tumors in WT mice were

bserved both in control and HRG+ tumors in PlGF�/�mice (Fig-

re S2A). Blocking stromal- or tumor-produced PlGF inhibits

mor angiogenesis and TAM accumulation (Fischer et al.,

007; Van de Veire et al., 2010); however, the normal vessel

ensity and infiltration of TAMs in the absence of stromal PlGF
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Figure 8. Macrophage Polarization by HRG

Inhibits EC Responses

(A) ECs were stimulated in vitro with medium, conditioned

by vehicle- or HRG-treated WT pMØs (pMØ-WT and

pMØ-WT+HRG, respectively), or by vehicle- or

HRG-treated PlGF�/� pMØ (pMØ-PlGF�/� or pMØ-

PlGF�/�+HRG, respectively). EC proliferation was only

minimally affected by HRG directly (not shown), but in-

hibited by medium conditioned by pMØ-WT+HRG,

pMØ-PlGF�/�, and pMØ-PlGF�/�+HRG. y axis: number

of ECs, percentage of ECs stimulated with medium condi-

tioned by pMO-WT (n = 4; *p < 0.05, **p < 0.01,

***p < 0.001).

(B) Similar results were obtained when analyzing direct

and indirect effects of HRG on EC migration. y axis:

number of ECs per optical field (OF) (n = 3; **p < 0.01

***p < 0.001).

Data represent mean ± SEM; statistical significance was

assessed by t test. See also Figure S7.
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were likely rescued by production of PlGF (or other factors) by

tumor cells (Coenegrachts et al., 2010); also, angiogenesis and

TAM infiltration in certain tumor models are PlGF independent

(Van de Veire et al., 2010).

However, other parameters of vessel function in control

tumors were affected by stromal loss of PlGF, similar as in

HRG+ Panc02 tumors in WT mice. Indeed, in control tumors in

PlGF�/� mice, vessel maturation was improved, while vessel re-

modeling was reduced (Figures 7C, 7E, 7G, and 7H). Similar

changes were observed in HRG+ Panc02 tumors in PlGF�/�

mice, indicating that HRG was unable to further regulate these

processes in the absence of stromal PlGF (Figures 7C–7H).

Also, SEM revealed that the fraction of vessels, lined by an

abnormal EC layer, was comparably decreased in control and

HRG+ Panc02 tumors in PlGF�/� mice, to the same extent as

in HRG+ tumors in WT mice (Figures 7I–7K; see Figures 2V and

2W for comparison). Similar findings were made when analyzing

the number of perfused vessels (Figures 7L–7P) and the tight-

ness of the EC barrier (Figure S6).

Bone marrow transplantation studies revealed that PlGF in

BMCs was the target of HRG’s activity to improve vessel perfu-

sion. Indeed, the decrease in hypoxia in HRG+ tumors in WT/

WTmice also occurred in control tumors in KO/WTmice, while

hypoxia was not further decreased in HRG+ tumors in KO/WT

mice (Figure S7). Thus, loss of stromal BMC-derived PlGF phe-

nocopied the effects of HRG overexpression in WT mice, but

HRG did not further affect these processes in PlGF�/� or KO/

WT mice, suggesting that PlGF acted downstream of HRG in

regulating vessel abnormalization.

Finally, in vitro experiments established that HRG affected

ECs indirectly via TAMpolarization in a PlGF-dependent manner.

Indeed, HRG did not affect EC proliferation or migration, while

these responses were reduced by conditioned medium from

HRG-treated WT pMØs and from PlGF�/� pMØs (Figures 8A

and 8B) or from anti-PlGF-treated WT pMØs (all M1 skewed;

not shown). EC migration and proliferation were not further

reduced by HRG treatment of PlGF�/� pMØs (Figures 8A and

8B). Overall, HRG induced vessel normalization primarily via indi-

rect effects through TAM polarization, rather than via direct

effects on ECs, and PlGF acted downstream of HRG in this

process.
DISCUSSION

Here, we report that HRG, a host-produced protein deposited in

the tumor stroma, combats tumor progression and dissemina-

tion by enforcing the anticancer immune response and

promoting tumor vessel normalization, respectively. Critically

underlying these activities is the ability of HRG to skew TAM

polarization away from their proangiogenic /immune-suppres-

sive M2-like phenotype.

HRG Induces Changes in TAM Phenotypes
Macrophage depletion showed that TAMs mediated the anti-

tumor effects of HRG. While not affecting infiltration, HRG

skewed TAM phenotypes. Indeed, depletion of TAMs decreased

progression of control tumors, while increasing growth of HRG+

tumors, implying that TAMs acquired a tumor-suppressive M1-

like phenotype when exposed to HRG. Expression profiling

and immunophenotyping confirmed TAMskewing byHRG,while

in vitro experiments showed that HRG affected polarization via

direct effects. In the tumor milieu, HRG might also influence

TAM polarization indirectly via effects on oxygenation. Since

hypoxia stimulates M2-like polarization (Lewis et al., 2007),

improved oxygenation in HRG+ tumors can provide a self-rein-

forcing stimulus for further polarizing TAMs away from an M2-

like phenotype.

Rather than reprogramming TAMs to an ‘‘M1-only’’ profile in

an all-or-none fashion, HRG induced a ‘‘HRG-specific’’ polariza-

tion signature. Indeed, HRG downregulated established M2

markers (Arg1, IL-10, MCR1, CCL17, CCL22), but also induced

changes in gene expression, that at first sight may appear

more atypical. For instance, HRG reduced the expression of

TNFa and IL-1b, cytokines with a proinflammatory activity.

However, M1-TAMsmay express reduced levels of TNFa (Hage-

mann et al., 2008; Movahedi et al., 2010) and IL-1b (Mantovani

and Sica, 2010), in line with our findings. Moreover, since IL-1b

promotes angiogenesis and metastasis (Arteta et al., 2010), its

reduced levels in HRG+ tumors could contribute to the

decreased metastasis and enhanced vessel normalization.

Overall, the HRG-induced polarization signature endowed

TAMs with an ability to inhibit tumor (vessel) growth and

metastasis.
Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc. 11
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HRG Improves Tumor Vessel Normalization
Untreatable metastasis is often the cause of mortality in cancer

patients. A prominent environmental stimulus of tumor dissemi-

nation is hypoxia, resulting from poorly functioning abnormalized

tumor vessels. Our findings suggest that HRG inhibited metas-

tasis in part by altering vessel morphology. These changes,

ranging from an increased pericyte coverage, tightened EC

barrier and smoother EC layer, promoted vessel normalization,

perfusion, and oxygenation. Hence, by creating a less hypoxic

milieu, HRG diminished the need for tumor cells to escape. In

addition, by tightening the EC layer, HRG likely created a more

impenetrable barrier for tumor cells to intravasate and spread

to distant tissues.

A noteworthy finding was that the changes in vessel function

were accompanied by subtle changes in vessel numbers,

possibly because vessel branching is more sensitive to changes

in TAM accumulation, which was not affected by HRG. Nonethe-

less, the clodronate studies indicate that depletion of the

predominantly M2-skewed TAMs from control tumors normal-

ized the tumor vasculature, while elimination of the mainly M1-

skewed TAMs from HRG+ tumors was ineffective. This suggests

that M2-like TAMs induce vessel abnormalization, while M1-like

TAMs are not/less involved. Although TAMs promote tumor

angiogenesis (De Palma et al., 2007; Qian and Pollard, 2010),

we here link TAM polarization to vessel abnormalization. We

speculate that M2-polarized TAMs render vessels abnormal by

expressing increased amounts or different sets of angiogenic

factors. Also, upregulation of angiogenic M2-cytokines (IL-10,

CCL22, IL-1b, TNFa) or downregulation of angiostatic M1-cyto-

kines (IFN-b, CXCL10, IL-12) could contribute to vessel abnorm-

alization. Though HRG can counteract vessel abnormalization

via direct effects on ECs as well as indirectly via effects on

TAM polarization, the finding that depletion of TAMs abrogated

the vascular effects of HRG suggest that the indirect effects of

HRG via TAM polarization are likely predominant in the tumor

microenvironment in situ.

HRG Promotes Tumor Immunity
HRG also increased the host-antitumor immune response.

Indeed, HRG not only increased tumor infiltration by antigen pre-

senting DCs, cytolytic NK cells and cytotoxic T-lymphocytes, but

also enhanced their antigen presentation and tumor cell lysis

potential, immune changes known to inhibit tumor growth

(Mantovani and Sica, 2010). Even though HRG binds to T cells

and stimulates their adhesion in vitro, it is unknown if these

changes activate T cells. Since HRG did not affect T cell prolifer-

ation in vitro (not shown), HRG likely promoted immunity indi-

rectly via effects on TAM polarization. The observed shift in cyto-

kine/chemokine profile is consistent herewith. Indeed, TAMs

from HRG+ tumors expressed lower levels of IL-10, known to

inhibit the potential of DCs and macrophages to activate

T cells (Koppelman et al., 1997), while producing higher levels

of IL-6, IL-12, and IFN-b, known to stimulate T cell proliferation

and activation of DCs and NK cells (DeNardo et al., 2010;

Mantovani and Sica, 2010). HRG may further enforce the anti-

tumor response by improving perfusion and thereby tumor influx

of immune effector cells (Hamzah et al., 2008). Moreover, by

facilitating clearance of dying tumor cells (Blank and Shoenfeld,

2008), HRG could further contribute to tumor shrinkage. Thus, by
12 Cancer Cell 19, 1–14, January 18, 2010 ª2010 Elsevier Inc.
enhancing not only the effector performance but also the influx of

immune cells, HRG fuels the host-antitumor response.

HRG and PlGF: A Molecular Link
That PlGF downregulation by HRG is relevant was evidenced by

in vitro and in vivo experiments. First, loss of PlGF phenocopied

the inhibitory effects of HRG on tumor growth, metastasis, and

vessel abnormalization. Second, conditioned medium of

PlGF�/� macrophages or anti-PlGF-treated WT macrophages

phenocopied HRG’s effects on EC responses. Third, loss or inhi-

bition of PlGF inmacrophages phenocopied the effect of HRGon

TAM polarization. Fourth, HRG was ineffective in the absence of

PlGF in the in vitro and in vivo experiments. However, while these

studies identified PlGF downregulation as a downstream mech-

anism of HRG, HRG might also engage additional pathways

given its multidomain structure and binding characteristics.

Genetic and pharmacological studies implicated PlGF in angio-

genesis and inflammation in pathological conditions (Fischer

et al., 2008; Van de Veire et al., 2010). In contrast, Hedlund

and coworkers reported that overexpression of PlGF in tumor

cells promotes tumor vessel normalization (Hedlund et al.,

2009). This is, however, only an apparent paradox, as overex-

pression of PlGF leads to formation of VEGF/PlGF heterodimers

and therefore a reduction in proangiogenic VEGF homodimers.

The present findings underscore the dual activity of PlGF on

vessels and myeloid cells, but also unveil unknown roles of

PlGF on TAM polarization.

Possible Implications
Our findings have a number of implications: (1) it is tempting to

speculate that deposition of an antiangiogenic/immunomodula-

tory molecule like HRG in the tumor stroma is a host defense

mechanism against the growing cancer and that HRG partici-

pates in the recognition of ‘‘malignant danger,’’ in line with its

presumed role as a ‘‘pattern recognition molecule’’ (Poon

et al., 2010a); the tumor, in turn, may try to escape from this

host-attack by downregulating or degrading HRG; (2) our

findings unveil a role of M2-TAM polarization in vessel abnormal-

ization and imply that re-education of TAM polarization is

a promising anticancer strategy; (3) they further highlight the

potential of antiangiogenic ‘‘vessel normalizing’’ strategies in

silencing metastasis and stress the importance of analyzing

vessel/TAM function rather than their numbers alone; how anti-

abnormalization strategies best fit in current antiangiogenic

therapy warrants further analysis; finally, (4) the data also provide

further support for PlGF-blockage strategies for the treatment of

cancer.

EXPERIMENTAL PROCEDURES

More detailed methods can be found in the Supplemental Experimental

Procedures.

Animals

C57BL/6 mice and Balb/c (8–12 weeks old) were obtained from VIB mouse

facility or from Mollegard/Bomhultgard, Denmark. PlGF-deficient (PlGF�/�)
mice were described previously (Carmeliet et al., 2001). Housing and experi-

mental animal procedures were approved by the K.U. Leuven Animal Care

and Research Advisory Committee and Uppsala University board of animal

experimentation.
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Tumor Models, Cell Depletion, and BM Transplantation

T241 fibrosarcoma and Panc02 tumor models were described (Mazzone et al.,

2009). Tumor volumes were measured with a caliper (length 3 width2 3 p /6).

TAM depletion was achieved by using clodronate as described (Mazzone

et al., 2009). CD8+ lymphocytes were depleted by the rat anti-CD8 antibody

53.6.72 (25 mg/kg; Bio X Cell) and NK cells by the mouse anti-NK1.1 antibody

PK136 (25 mg/kg; Bio X Cell). T cells purified from Balb/c splenocytes were

cultured with C57BL/6 TAMs, and proliferation was measured. Bone marrow

from PlGF�/� mice was infused in the tail vein of lethally irradiated WT mice,

and 6 weeks later, Panc02 tumor cells were injected orthotopically in the

pancreas.
Histology of Human and Mouse Tissues

Tissue microarrays (TMAs) of healthy and malignant tissues, containing

multiple samples from different humans with the same diagnosis (432 tumor

samples, 20 different cancers) produced by the Human Proteome Atlas

(HPA) facility (http://www.proteinatlas.org) were stained using anti-HRG anti-

serum (#0119) (Dixelius et al., 2006; Kampf and Ostermeyer, 2004; Olsson

et al., 2004), and stained TMA sections were scanned by high-resolution

scanners (ScanScope XT, Aperio Technologies), separated in individual spot

images, and evaluated by experienced pathologists. Ethical permit to use

anonymized, decoded (i.e., nontraceable) human fresh-frozen normal or tumor

tissue for generation of tissue slides or TMAs was granteed by the Uppsala

ethical review board in full agreement with the Swedish Ethical Review Act.

Staining, SEM, and analysis of mouse tissues were as described (Mazzone

et al., 2009).
Lentiviral Vectors

Full-length human HRG cDNA was cloned in the FUGIE lentiviral backbone,

carrying an internal ribosomal entry site; 105 tumor cells were transduced

with 106 U/ml of the specific lentivirus.
Flow Sorting

Tumors were minced in RPMI medium + 0.1% collagenase I (1 hr; 37�C),
passed through a 19 G needle, and filtered and cells were centrifuged (5

min; 1000 rpm). After RBC lysis, cells were centrifuged and washed with

PBS, incubated with 10% FCS and with anti-F4/80, CD31, CD45, PDGFRa

antibody for 30 min. Tumor cells were sorted as F4/80-/GFP+ cells, TAMs as

F4/80+/CD45+ cells, tECs as CD31+/CD45- cells, CAFs as PDGFRa+ cells.

For FACS analysis, collagenase-digested tumor cells were incubated with

rat anti-mouse FcgIII/II receptor (CD16/CD32) blocking antibodies (4 mg/ml)

to block unspecific binding, labeled with 7-amino-actinomycin D (7-AAD) to

stain nonviable cells and then with the proper antibodies.
pMØS

pMØS were extracted by peritoneal lavage, counted, and plated overnight and

stimulated with appropriate reagents for 4 or 16 hr.
Protein and mRNA Assays

Protein extraction and immunoblot analysis were described (Olsson et al.,

2004); RT-PCR was described (Fischer et al., 2007). For cytokine measure-

ments, ELISAs were performed according to the manufacturer’s instructions.
Tumor Hypoxia, Perfusion, Edema, and Necrosis

Tumor hypoxia (pimonidazole staining) and perfusion (FITC-labeled lectin)

were analyzed as described (Mazzone et al., 2009). Tumor edema was

measured as the wet and dry tumor weight. Tumor necrosis was scored on

H&E-stained sections. We also used MRI to evaluate tumor edema and

necrosis on viable animals at different time points.
Statistics

Data represent mean ± SEM of representative experiments unless otherwise

stated. Statistical significance was calculated by t test unless otherwise stated

(Prism v4.0b), considering p < 0.05 as statistically significant.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and one table and can be found with this article online at

doi:10.1016/j.ccr.2010.11.009.
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