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ABSTRACT

Context. Strong lensing is one of the most direct probes of mass distribution in the inner regions of galaxy clusters. It can be used to
constrain the density profiles and to measure the mass of the lenses. Moreover, the abundance of strong lensing events can be used
to constrain structure formation and cosmological parameters through the so-called “arc-statistics” approach. However, several issues
related to the use of strong lensing clusters in cosmological applications are still controversial, leading to the suspicion that several
biases may affect this very peculiar class of objects.

Aims. With this study we aim a better understanding of the properties of galaxy clusters that can potentially act as strong lenses.
Methods. We do so by investigating the properties of a large sample of galaxy clusters extracted from the N-body/hydrodynamical
simulation MARENOSTRUM UNIVERSE. We perform ray-tracing simulations with each of them and identify those objects capable of
producing strong lensing effects. We explore the correlation between the cross section for lensing and many properties of clusters,
such as mass, three-dimensional and projected shapes, their concentrations, the X-ray luminosity, and the dynamical activity.
Results. We quantify the minimal cluster mass required for producing both multiple images and large distortions. While we do not
measure a significant excess of triaxiality in strong lensing clusters, we find that the probability of strong alignments between the
major axes of the lenses and the line of sight is a growing function of the lensing cross section. In projection, the strong lenses appear
rounder within Ry, but we find that their cores tend to be more elliptical as the lensing cross section increases. As a result of the
orientation bias, we also find that the cluster concentrations estimated from the projected density profiles tend to be biased high. The
X-ray luminosity of strong lensing clusters tend to be higher than for normal lenses of similar mass and redshift. This is particularly
significant for the least massive lenses. Finally, we find that the strongest lenses generally exhibit an excess of kinetic energy within
the virial radius, thus indicating that they are more dynamically active than the usual clusters.

Conclusions. We conclude that strong lensing clusters are a very peculiar class of objects, affected by many selection biases that need
to be properly modeled when using them to study the inner structure of galaxy clusters or to constrain the cosmological parameters.
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1. Introduction

Gravitational lensing is one of the most powerful tools available
for studying the formation of cosmic structures in the universe.
The light from distant sources, traveling in space and time, is
deflected by matter along its path before being collected by ob-
servers. Thus, we measure an integrated effect that contains a
wealth of information about the cosmic structures at different
epochs.

Depending on the impact parameter on the intervening mat-
ter and on the mass of the deflectors encountered by the light
along its path, gravitational lensing manifests itself in weak and
strong regimes. In the weak-lensing regime the shapes of dis-
tant galaxies, which happen to be at large angular distances from
the highest mass concentrations on the sky, are slightly changed,
such that this effect can only be revealed though statistical mea-
surements. Nevertheless, these tiny distortions can be used for
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tracing the large-scale structure of the universe both in two and
in three dimensions (see e.g. Fu et al. 2008; Benjamin et al.
2007; Massey et al. 2007, for some recent results), from which
important cosmological constraints can be derived (Bartelmann
& Schneider 2001). This is a field of research that will extraor-
dinarily improve in the next decades thanks to some upcoming
missions (Wittman et al. 2006; Kaiser 2007; Jelinsky & SNAP
Collaboration 2006; Refregier et al. 2008). Weak lensing allows
reconstruction of the mass distribution up to the outskirts of
galaxy clusters (see e.g. Dahle 2006; Clowe et al. 2006; Hoekstra
2007).

Strong lensing is a highly nonlinear and relatively rare ef-
fect that is observable in the central regions of galaxies and
clusters. In this regime, the background sources can be imaged
many times over and/or highly distorted to form very elongated
images, the so-called “gravitational arcs”. They are powerful
cosmological probes for many reasons. First, such events can
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be used to investigate the inner regions of the lenses. Thus,
they can be used to test the predictions of the cold-dark-matter
paradigm on the inner structure of dark matter halos (Meneghetti
et al. 2001; Mao et al. 2004; Sand et al. 2004; Bartelmann
& Meneghetti 2004; Meneghetti et al. 2007b; Limousin et al.
2008). Second, they can be used to recover the mass distri-
bution in the center of the lenses, providing complementary
informations to those obtained from weak lensing (Bradac et al.
2005; Diego et al. 2005; Cacciato et al. 2006; Limousin et al.
2007; Merten et al. 2009). Lensing masses can then be used
for measuring the cluster mass function. Third, the position and
the distortions of the strongly lensed images as a function of
the source redshift reflect the geometry of the universe (Soucail
et al. 2004; Meneghetti et al. 2005b). Finally, the probability of
observing strong lensing events is deeply connected to the abun-
dance, the mass, and the formation epoch (through the concen-
tration) of the lenses. This makes statistical lensing a potentially
powerful tool for studying the structure formation (Bartelmann
et al. 1998; Li et al. 2005; Meneghetti et al. 2005a).

In this paper, we focus on the properties of the most massive
and therefore most efficient strong lenses in the universe: the
galaxy clusters. In the framework of the hierarchical scenario of
structure formation, these are the youngest bound systems in the
sky. About 85% of their mass is believed to be in the form of
cold dark matter (Gottléber & Yepes 2007). The remaining 15%
is made of a diffuse gas component, the intra-cluster-medium,
and of other baryons in the form of stars, the vast majority of
which are inside the cluster galaxies. Because they are relatively
young structures, the interaction between the baryons and the
dark matter is weaker than in older systems like galaxies. For
this reason, clusters are important laboratories for studying the
properties of the dark matter (Markevitch et al. 2004). However,
there are several issues that we need to consider when study-
ing these systems. In particular, clusters where gravitational arcs
are observed are a limited fraction of the total number (Sand
et al. 2005; Luppino et al. 1999; Gladders et al. 2003; Zaritsky
& Gonzalez 2003; Hennawi et al. 2008) and therefore a particu-
lar class of objects.

Broadly speaking they are the most massive clusters, but
there are several other properties that boost the cluster abil-
ity to produce strong lensing events. For example, we know
that substructures, asymmetries, and projected ellipticity of the
lenses all contribute to the strong lensing cross section of clusters
(Meneghetti et al. 2003b, 2007a). Both observations and simula-
tions agree that strong lenses have high concentrations (Hennawi
et al. 2007; Fedeli et al. 2007a; Kneib et al. 2003; Gavazzi et al.
2003; Broadhurst et al. 2008). Triaxiality is also relevant, be-
cause clusters seen along their major axis are more efficient
lenses (Oguri et al. 2003). Although cluster galaxies statistically
do not change the distributions of the arc properties (Meneghetti
et al. 2000; Flores et al. 2000; Hilbert et al. 2008), cD galax-
ies sitting at the bottom of the cluster potential well increase the
ability to produce long and thin arcs by ~30-50% (Meneghetti
et al. 2003a). The gas physics, in particular cooling, could also
affect the strong lensing properties of clusters (Puchwein et al.
2005; Wambsganss et al. 2008; Mead et al. 2010). Finally, Torri
et al. (2004) show that the cluster ability to produce gravitational
arcs can also be enhanced by the dynamical activity in the lens.
By studying with high time resolution how the lensing cross sec-
tion changes during an edge-on collision between the main clus-
ter clump and a substructure, these authors find that the strong
lensing efficiency is boosted by a factor of 10 during the merging
phase. Later, Fedeli et al. (2006) used semi-analytic methods to
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show that the arc optical depth produced by clusters with mod-
erate and high redshifts is more than doubled by mergers.

Although extensive work has been done in the past decade,
a better characterization of the strong lens cluster population
is mandatory. Given the complexity of clusters and the impor-
tance that many of their properties have for strong lensing, the
only reliable way to do that is through ray-tracing analysis of
a large number of simulated clusters. A first important work in
this framework was done by Hennawi et al. (2007), who ana-
lyzed a sample of 878 clusters from an N-Body pure dark-matter
cosmological simulation. Important properties like concentra-
tions, axis ratios, and substructures are discussed there. In this
work, we aim to extend the analysis of Hennawi et al. (2007)
in three ways. First, we include a much larger number of clus-
ters (now 49 366 systems), taken from a larger cosmological vol-
ume (500 A~! Mpc vs. 320 h~! Mpc). Second, the clusters used
here were obtained from an N-body-hydrodynamical simulation
where the evolution of the gas component is also considered.
Thus, we can correlate the lensing properties of clusters with
some important X-ray observables. Third, we study in detail the
possible correlations between cluster dynamics and strong lens-
ing efficiency, which has so far been made only through analyti-
cal models.

The plan of the paper is as follows. In Sect. 2 we sum-
marize the main characteristics of the cosmological simulation
MARENOSTRUM UNIVERSE. In Sect. 3 we discuss the simula-
tion methods and define several lensing quantities useful for the
following analysis. In Sect. 4 we discuss the correlation between
lens masses and strong lensing ability. Section 5 is dedicated to
the statistical analysis of the shapes and orientations of strong
lensing clusters. We discuss the biases in the concentrations in
Sect. 6. In Sect. 7 we focus on the X-ray properties of strong
lensing clusters. Finally, in Sect. 8 we correlate the strong lens-
ing efficiency with the dynamical state of the lenses, and summa-
rize the main results and the conclusions of this study in Sect. 9.

2. The MARENOSTRUM UNIVERSE simulation

The MARENOSTRUM UNIVERSE (Gottlober & Yepes 2007) is
a large-scale cosmological non-radiative SPH simulation per-
formed with the GADGET2 code (Springel 2005). We briefly
summarize the relevant characteristics here, and refer the reader
to the paper by Gottlober & Yepes (2007) for a more detailed
description of the simulation. This was run in 2005, during
the testing period of the MareNostrum supercomputer using the
WMAPI normalisation, namely Qo = 0.3, Qprp = 0.7 and
o = 0.9 with a scale invariant primordial power spectrum. After
the release of the 3-year WMAP data, the simulation was re-
peated at lower resolution with the predicted low normaliza-
tion (Spergel et al. 2007) and with a higher normalization of
os = 0.8, which better agrees with the 5-year WMAP data
(Komatsu et al. 2009). Comparing predictions from these numer-
ical simulations with recent observational estimates of the clus-
ter X-ray temperature functions Yepes et al. (2007) argue that the
low normalization cosmological model inferred from the 3-year
WMAP data results is barely compatible with the present epoch
X-ray cluster abundances. Therefore, the original WMAP1 nor-
malized version of the simulation is used in this paper. The sim-
ulation consists of a comoving box size of 500 4A~! Mpc con-
taining 10243 dark matter particles and 10243 gas particles. The
mass of each dark matter particle equals 8.24 x 10° My h~!, and
that of each gas particle, for which only adiabatic physics is im-
plemented, is 1.45 x 10° Mg, h~'. The baryon density parameter
is set to Qp o = 0.045. The spatial force resolution is set to an
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equivalent Plummer gravitational softening of 15 A~! kpc, and
the SPH smoothing length was set to the 40th neighbor to each
particle.

To find all structures and substructures within the distribu-
tion of 2 billion particles and to determine their properties, we
use a hierarchical friends-of-friends (FOF) algorithm (Klypin
et al. 1999). With a basic linking length set to 0.17 times the
mean interparticle distance, we extract the FOF objects at all
redshifts. The final catalog of identified objects contains more
than 2 million objects with more than 20 DM particles at z = 0.
The same objects and their progenitors are contained in the cat-
alogs corresponding to higher redshift outputs of the simulation.
In this sense a correlation exists between different redshift slices.
In a second step we divide the linking length by 2" (n = 1, 3) to
find substructures of the clusters. In particular, we use n = 2
to identify the highest density peak that we associate with the
center of the cluster.

All the FOF groups with mass larger than 103 h~! M,
are then stored into sub-boxes of cubic shape with side length
5 h~! Mpc for the subsequent lensing analysis.

3. Lensing properties
3.1. Ray-tracing

In this section, we illustrate the techniques used to derive the
strong lensing properties of the clusters in the MARENOSTRUM
UNIVERSE cosmological volume. The deflection angle maps
are calculated as explained in several previous papers (see e.g.
Meneghetti et al. 2000, 2005a). The particles in each cube are
used to produce a 3D density field, by interpolating their posi-
tion on a grid of 5123 cells using the Triangular Shaped Cloud
method (Hockney & Eastwood 1988). Then, we project the 3D
density field along the coordinate axes, obtaining three surface
density maps X; ;, used as lens planes in the following lensing
simulations.

The next step consists of tracing bundles of light rays
through a regular grid covering the central part of each lens
plane. We choose to set the size of this region as 1.5 X
1.5 h=2 Mpc? comoving. This choice is driven by the necessity
to study in detail the central region of the clusters, where criti-
cal curves form. However, we do this by considering the contri-
bution from the surrounding mass distribution to the deflection
angle of each ray.

We first define a grid of 256 x 256 “test” rays, and the deflec-
tion angle for each is calculated by directly summing the contri-
butions from all cells on the surface density map %, ;,
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where A is the area of one pixel on the surface density map,
and x;, and x; ; are the positions on the lens plane of the “test”
ray (h,k) and of the surface density element (i, j). Following
Wambsganss et al. (1998), we avoid the divergence when the
distance between a light ray and the density grid-point is zero by
shifting the “test” ray grid by half cells in both directions with
respect to the grid on which the surface density is given. We then
define a higher resolution grid of rays covering the same region.
We determine the deflection angle of each new ray by bi-cubic
interpolation between the four nearest test rays. The grid size is
chosen such that the resolution of the deflection angle map is
fixed at 0.2”. This results in ~2400 X 2400 rays traced through
the central region of deflectors at z; = 0.3. The number of grid

points obviously increases at lower redshift due to the combined
increase in the physical size of the grid and to the decrement of
the angular diameter distance. Conversely, the number of pix-
els decreases at higher redshifts. We selected an upper bound
of 3500 x 3500 grid points, because the time consumption and
the needed memory for the code become too demanding, and a
lower bound of 650 x 650 grid points in order to be able to fairly
capture the relevant structures in the deflector.

3.2. Strong lensing clusters

For a fixed-source redshift, a cluster can produce strong lensing
events if it develops critical lines on the lens plane. These lines
correspond to the caustics on the source plane. Only sources
within the caustics have multiple images, and only sources that
happen to lie close to the caustics are strongly distorted and mag-
nified.

A cluster can produce both tangential and radial critical lines,
where the tangential and the radial magnifications diverge, re-
spectively. The critical lines form where

K(x) = y(x) =1, (2)

where «(x) and y(x) = [y, y2] are the convergence and the shear
at the the position x on the lens plane. Both the convergence and
the shear are linear combinations of the spatial derivatives of the
deflection angle components, @ = [a}, a2]:
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It can be shown that the convergence is the surface density di-
vided by a critical surface density:

z
z"crit

, (6)

K=

which depends on the angular diameter distances between ob-
server and lens, D;, between the lens and the source, Djs, and
between the observer and the source, Dy:

s ¢ D
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It is clear that, in order to be a strong lens, the cluster conver-
gence and shear must be large enough, such that their sum is
larger than unity somewhere.

To focus on the subsample of strong lenses, we start by se-
lecting those halos that are capable of developing critical lines.
For doing this, we use the 256 X 256 test rays first. We numeri-
cally calculate the spatial derivatives of the deflection angles to
compute k and y and to determine the positions of the critical
points. If at least a critical point is found in the three cluster pro-
jections using these maps, we consider the cluster for further,
more detailed analysis. We are aware that, by using this selec-
tion criterium, all lenses whose critical lines have sizes smaller
than ~20 1~ kpc comoving, corresponding to the spatial resolu-
tion of the coarse grid, are not included in our analysis. Because
of these limitations, our results should be used with caution in
referring to small strong lensing systems. Instead, such objects
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would never produce significant image splittings and large dis-
tortions, or giant arcs, which are the most relevant strong lensing
features in this work.

As a result of this preliminary selection, it turns out that
49366 clusters produce critical curves for sources at redshift
zs = 2 in at least one of their projections. For these ob-
jects, we repeat the calculation of the deflection angles on grids
with higher spatial resolution on all three projections, obtaining
148 098 deflection angle maps.

3.3. Cross-sections for giant arcs

Once the high-resolution deflection angle maps for the three pro-
jections of each numerical cluster are computed, the strong lens-
ing efficiency for long and thin arcs was evaluated by using the
fast, semi-analytic algorithm presented in Fedeli et al. (20006).
The reader is referred to the quoted paper for details, while here
we just give a quick overview of the method. The lensing effi-
ciency is quantified by the lensing cross section for highly dis-
torted arcs o, . This is defined as the area of the region surround-
ing the caustics within which a source is mapped on the lens
plane as an image with a minimal length-to-width ratio dy. The
size of the lensing cross section is related to the expected num-
ber of arcs with a minimal distortion observed behind the cluster.
In fact, the number of arcs above a minimal surface brightness
S expected from a cluster with cross section o for sources at
redshift zg is

Nus(S0) = f f (zny(S, 2)dS dz, ®)
2 So

where n4(S, zg) is the number density of sources with surface
brightness S and redshift z;. Lensing does not change the source
surface brightness, so N,s does not depend on the magnifica-
tion, at least if the PSF size is smaller that the size of arcs. This
generally applies for extended arcs like those considered here.

When sources are much smaller than the characteristic length
over which the lensing properties of the deflector change signif-
icantly, they can be considered as pointlike. In this case the lens
mapping can be linearized and the length-to-width ratio of the
distorted images, d, is simply given by the ratio of the eigen-
values of the Jacobian matrix at image position. In this case the
cross section for arcs with a higher length-to-width ratio than
some threshold dj is by definition the area of the lens plane
where the eigenvalue ratio is greater than dy, mapped back to
the source plane. This framework can be also easily modified to
account for the extended size of real sources, by convolving the
lensing properties over the typical source domain, assumed here
to be circular with angular radius of 0.5”. Several studies have
shown that the properties of the sources are relevant for deter-
mining the shape of gravitational arcs (see e.g. Meneghetti et al.
2008; Gao et al. 2009). Our method cannot take all the effects of
source morphologies and luminosity profiles into account, how-
ever the intrinsic ellipticity of real sources is accounted for by
the elegant algorithm proposed by Keeton (2001).

Because of the huge number of cross sections computed in
this work, we only focused on a single value for the length-to-
width threshold, dy = 7.5. While a distribution of thresholds
would be preferable, we expect the change in dj to produce only
a shift in the normalization of cross sections, by leaving every
qualitative conclusion unchanged. As mentioned above, we con-
sider only one source redshift, z; = 2.

We computed the strong lensing cross sections for each of
the 49366 high-resolution deflection angle maps, produced as
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Fig. 1. The distribution of the lensing cross sections for giant arcs of all
the strong lensing clusters between z; = 0 and z; = 2.

described in Sect. 3.1. Many of them are vanishing, because,
even though the deflector is able to produce critical curves, they
are small compared to the typical source size to efficiently dis-
tort images. It turns out that only 6375 clusters have at least one
projection with nonvanishing cross section for z; = 2. In total,
the cluster projections capable of large distortions are 11,347.
The lensing cross sections range from a minimal value of 9.5 X
1078 h~2 Mpc? to a maximal value of 1.9 x 1072 42 Mpc? (the
properties of this super-lens shown in Appendix A). However,
the vast majority of the lenses capable of producing giant arcs
have cross sections larger than ~10~* 4= Mpc?, as seen in Fig. 1,
where we show the distribution of the lensing cross sections for
giant arcs among the clusters analyzed here.

Given the large number of clusters analyzed here and the
computational time required to analyze them, it was impossi-
ble to calculate the lensing cross sections for several source red-
shifts. Thus it is not easy to convert the lensing cross section into
a number of arcs using Eq. (8). Nevertheless, we can estimate
this number using some approximation. If we assume that the
lensing cross section evolves with redshift as o (zs) = 0 X f-(25),
where o is the lensing cross section for sources at zg = 2 and
f> = 0(zs)/0 is a scaling function, then the number of arcs de-
tectable behind a cluster can be expressed as

o X f f ftr(zs)”s(S, Z5)dS dzg
2 So

= 0o X I’leff(S 0)~ (9)

Narcs(S O)

In the last equation, we have introduced the effective source
number density. Apart from the dependency on the scaling of the
lensing cross section with the source redshift, which is discussed
below, the effective source number density is set by the minimal
surface brightness (i.e. flux per square arcsec) of detectable arcs.
Thus, it is determined by the characteristics of the observation,
i.e., by the throughput of the instrument and by the level of the
background. Using the optical simulator SkyLens (Meneghetti
et al. 2008, 2010), we simulated a deep exposure of 8000 s with
the Advanced Camera for Surveys onboard the Hubble Space
Telescope in the F775W filter. This code uses the morpholo-
gies, the luminosities, and the redshifts of the galaxies in the
Hubble Ultra-Deep-Field (Beckwith et al. 2006) to produce ex-
tremely realistic images of the sky including several observa-

tional noises. Setting the background level to 22.4 mag arcsec™2,
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the 1o and the 30 detection thresholds above the background
rms are S ~ 25.78 magarcsec™> and S ~ 24.58 mag arcsec”2,
respectively. The galaxy number counts per square arcmin
above the detection thresholds are shown in the left panel of
Fig. 2 as a function of redshift. Here, we use the photomet-
ric redshifts of the HUDF galaxies from the public catalog by
Coe et al. (2006).

The scaling function f, is expected to depend on several
properties of the lenses, like their redshifts, density profiles, el-
lipticity, and substructures. Therefore, adopting a universal scal-
ing law is certainly a gross approximation. On the other hand,
it is also useful to have a rough estimate of the effective num-
ber density of sources to link a quantity like the cross section,
which is not directly measurable, to something that can be ob-
served, like the number of arcs behind a cluster. To estimate the
scaling function f; for a cluster at reshift z;, we use a toy lens
model with an NFW density profile and fixed projected elliptic-
ity € = 0.2. This ellipticity is introduced in the lensing potential
as discussed in Meneghetti et al. (2003b). Using the same algo-
rithm used to analyze the deflection angle maps of numerically
simulated clusters, we measure how the lensing cross section
grows as a function of the source redshift. In the right panel of
Fig. 2, we show the scaling functions for a cluster with mass
105 h~! My, at several redshifts between z = 0.2 and z = 0.8.

The effective number counts derived as explained above are
reported in Table | for different cluster masses and redshifts. As
said above, the counts refer to an observation with HST/ACS in
the F775W filter with an exposure time of 8000 s. In each col-
umn, the biggest and the smallest number correspond to detec-
tions at 1o and at 30~ above the background rms. First, the depen-
dence on the mass is weak, which allows extending the validity
of these calculations to a broad range of masses. Second, the rise
of the scaling function for increasing lens redshift compensates
for the lower number of galaxies at high redshift. Thus the effec-
tive source number counts do not drop, but tend to increase as
the lens redshift increases. Using Eq. (9), we can finally link the
number of arcs expected for a given lensing cross section o to the
effective number density of background sources, i.e., to the depth
of the observation. For example, for a cluster with cross section
1073 h~2 Mpc?, the expected number of giant arcs varies from
0.3 to 1.6 for nes in the range [40—200]. Conversely, in Fig. 3
we show the lensing cross section required for Ny = 1 as a
function of the effective number density of background sources.
Even for very high effective number counts (or equivalently very
deep exposures), the lensing cross section needs to be very large
in order to expect at least one arc behind a galaxy cluster. For
example, for a cross section of o = 1073 42 Mpc?, the effective
number density of background sources needs to be ~130 galax-
ies per square arcmin. This number density needs to be doubled
to expect to observe two arcs, and so forth.

In the rest of the paper, we use the lensing cross sec-
tion to distinguish between lenses of different strengths.
Observationally, the lensing cross section is not a directly mea-
surable quantity. A possible method of estimating the lensing
cross section is through the detailed parametric reconstruction of
the lens potential (Meneghetti et al., in prep.). Indeed, the deflec-
tion field can be readily derived from the lensing potential and
used to measure the lensing cross section using the same method
as was adopted in our simulations. Other methods of defining the
strength of the lenses may be based on quantities that are more
directly measurable, like the angular separations of multiple im-
ages, which can be used to estimate the size of the critical lines,
etc. However, in this paper, given the huge size of the cluster
sample considered, we could not explore this other possibility.

Table 1. Effective galaxy number counts per square arcmin behind clus-
ters with different masses and redshifts.

2=02 7=04 =06 =08
M=1x10"% "' M, 154/61 14052  157/55  179/59
M=7x10%h"' M, 143/57 143/53  151/52  180/60

4. Cluster masses

The easiest way to characterize a cluster lens is through its mass.
In the following, we refer to the cluster mass as the mass con-
tained in spheres of radius Ry;. This virial radius encloses a den-
sity of Ayi:(z) times the closure density of the Universe at the
redshift of the cluster,

3H} 3
pe@) = 2 [Qn(1+27 + Q4 [,
where H is the present value of the Hubble constant, z the red-
shift, and G the gravitational constant. The virial overdensity Ay
depends on redshift (see Gunn & Gott 1972; Bryan & Norman
1998, for definitions). The corresponding mass, My, is given by

(10)

4
Myir = 37R3 pe(DA(2) -
As an alternative to the virial mass, different mass definitions are
often adopted in literature, such as the mass corresponding to a
constant overdensity A, with A = 200, 500, or 2500 times the
critical density. The general definition in this case is

(1)

My = gﬂRch(z)A.
The mass function of objects in the MARENOSTRUM UNIVERSE
is in very good agreement with the theoretical expectations
(Sheth & Tormen 2002; Gottlober et al. 2008). This is shown in
Fig. 4, where the number of halos above a minimal virial mass
is shown for different redshifts and compared to the predictions
of the Sheth & Tormen mass function at redshift z = 0. At this
redshift more than 4000 cluster-sized objects with masses higher
than 10'*A~! My, are found. About 58 000 objects have masses
higher than 10'® h~! M. At redshift z = 1 more than 30 000 ob-
jects with masses higher than 10'3 27! M, are detected.
Selecting the clusters via their strong lensing efficiency im-
plies that only the high mass tail of the distribution is properly
sampled. Indeed, since the amplitude of the gravitational deflec-
tion depends directly on the mass, strong lenses are the most
massive objects at each epoch. In particular, we expect a minimal
mass below which clusters do not develop critical lines and are
unable to produce very distorted images like gravitational arcs.
Since clusters must be located at a convenient angular diameter
distance between the observer and the sources, the number and
the typical mass of strong lensing clusters should vary as a func-
tion of both the lens and the source redshifts. Assuming a fixed
source redshift of z; = 2, the mass distribution of strong lensing
clusters in a comoving volume of 500° 43 Mpc? at different
redshifts is given in the left panel of Fig. 5. The color levels show
the number counts of critical clusters in the My;;—z plane. Lighter
(darker) colors correspond to smaller (larger) number counts.
The outer dotted contour show the limits of the distribution: no
critical clusters have been found outside the region enclosed by
this line. The two inner contours correspond to the 50% and to
the 90% of the peak of the distribution. Thus, they show how
rapidly the critical cluster counts decrease as a function of both

12)
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Fig. 2. Left panel: galaxy number counts per square arcmin in redshift bins as obtained by simulating a deep observation of 8000 s with HST/ACS
in the F775W filter. The two histograms refer to two different SExtractor detection thresholds, namely Sy = 25.78 and S = 24.58 mag arcsec™,
which correspond to 1o~ and 30 above the background rms. See text for more details. Right panel: scaling functions for cross sections of lenses
with mass M = 10" h~' M, at four different redshifts: 0.2 (solid line), 0.4 (dotted line), 0.6 (dashed line), and 0.8 (dot-dashed line).

mass and redshift. As the figure shows, the region of the plane
where clusters are able to produce critical lines extends down to
masses of groups at the most favorable redshifts. However, these
are very rare objects. At redshifts higher than 1.2, or lower that
0.2, the mass threshold grows rapidly, while the number counts
of critical clusters drop. These lenses are too close to the sources
or to the observer to be critical.

Requiring that clusters are also able to produce giant arcs
produces an additional selection effect. Using the same conven-
tion as for the dotted contours, the solid contours refer to arcs
with nonvanishing cross-sections for giant arcs. There are no
clusters at z7 > 1.3 that are able to produce large distortions,
although they could be still efficient for sources at much higher
redshift. The most massive clusters in the box are still able to de-
velop small critical lines up to z; = 1.7. The bulk of clusters pro-
ducing giant arcs is concentrated at 0.15 < z; < 0.8. Finally, the
dashed contours show the distribution of the lenses with lensing
cross sections above 1073 h~2 Mpc?. These lenses are likely to be
the most easily targeted for strong lensing studies and contribute
significantly to the lensing signal in the universe given that, as
discussed in the previous section, the expected number of strong
lensing features produced by these objects is by far greater than
for lenses with smaller cross sections. These, on the other hand,
are more abundant, so they will dominate the total lensing opti-
cal depth. As shown by the contours, these objects are confined
in a smaller area on the My;; —z plane. They are typically clusters
with masses exceeding a few times 10'* 2~! M, and with redshift
below unity. Most of them are concentrated in a narrow redshift
window between 0.2 < z < 0.6.

Although we see an interesting selection effect in the
3D masses, what really matters for strong lensing is the projected
mass, in particular, the mass contained in a cylinder around
the cluster center, where the critical lines form. For each clus-
ter in our sample, we measure the projected mass within R»sqp,
M} 2500, for each of the three projections used for ray-tracing.
This is defined as that of a sphere encompassing a mean den-
sity of 2500 x p.. Typically, it corresponds to a region that is
large enough to contain the cluster critical lines. Here, the pro-
jected mass is obtained by integrating all the mass in a cylinder
of height 5 A~! Mpc. We show the distribution of the strong
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Fig. 3. The lensing cross section required for an expectation value of
one giant arc behind a cluster as a function of the effective number of
background sources.

lensing clusters in the plane M} 2500 — z in the right panel of
Fig. 5. Interestingly, although it appears clear that strong lens-
ing depends on the mass in the central region of the deflectors,
the spread in projected mass is wider by about one order-of-
magnitude than in 3D. There are clusters that have relatively low
mass projected into the core but that are still capable of produc-
ing strong lensing effects of different intensities. We interpret
this result as being due to the importance that other properties of
the lenses have for strong lensing, like the amount of substruc-
tures and the level of asymmetry and ellipticity in the cluster
cores, as shown in Meneghetti et al. (2007a). In several cases,
and especially for clusters producing mild strong lensing effects
(i.e. clusters with critical curves), the excess of shear produced
by a clumpy and asymmetric mass distribution can compensate
for the low value of the central convergence.
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Fig.4. The number of halos above a given mass within the
MARENOSTRUM UNIVERSE simulation box at four different redshifts
between 0 and 2. The dotted line shows the theoretical expectations
from the Sheth & Tormen mass function.

5. Halo triaxiality and orientation

Since simulated galaxy clusters are triaxial (see e.g. Jing & Suto
2000; Gottlober & Yepes 2007), their projected mass depends
on their orientation with respect to the line of sight. In order to
evaluate how this affects the strong lensing ability of clusters, we
measured their triaxial best fit model and discuss the correlation
of the orientation with the occurrence of critical lines and giant
arcs. To do that, we measured the moment of inertia tensor /;; of
each cluster in the sample. The cluster particles within Ry;. were
sorted in a regular cubic grid of 256 X 256 x 256 cells. The mass
density in each grid cell was then computed The inertial tensor
components are given by

Iij = Z mk(Riéij - Rk,iRk,j)’ (13)
k

where my, is the mass of in the kth selected cell and R = [R;]
is the vector that identifies the cell position with respect to the
center of mass of the system. The triaxial model of the cluster
and its principal axes were obtained by diagonalizing the inertial
tensor, finding its eigenvalues and eigenvectors.

The fits show that clusters have prolate triaxial halos, and the
distributions of the axis ratios of strong lensing clusters are not
significantly different from that expected for the general clus-
ter population (see e.g. Jing & Suto 2002). This agrees with
the results of Hennawi et al. (2007), who also find that strong
lensing clusters are not significantly more triaxial than normal
clusters. However, strong lensing clusters seem to be affected by
an orientation bias. In Fig. 6, we show the cumulative probabil-
ity distribution function of the angle between the major axes of
the inertial ellipsoid and the line of sight to the cluster for the
whole sample of lensing clusters and for the subsample of clus-
ters producing giant arcs. We also show the distribution of the
orientation angles of the most efficient lenses in the sample, i.e.
with lensing cross section oo > 1072 A2 Mpc?. We also dis-
play, the distribution corresponding to totally randomly oriented
lenses. We find that lensing clusters tend to be aligned with the
line of sight. This orientation bias increases with the strength of

the lens: the median angle for critical clusters is ~57 deg, while,
for the subsample of clusters capable of producing giant arcs, the
median angle is ~50 deg. The median decreases to ~47 deg for
clusters with lensing cross section o > 1073 h=2 Mpc?. In the
case of random orientation we should expect a median angle of
60 deg. This is an important effect, which can affect the conclu-
sions of many studies aiming at estimating the mass of clusters
through strong lensing or at measuring cosmological parameters
using the abundance of highly elongated arcs on the sky. In fact,
we expect that, owing to the orientation bias, 3D strong-lensing
masses are biased high, if the approximation of spherical sym-
metry is used to convert the measured 2D into 3D mass profiles.
Moreover, this alignment bias has to be properly modeled when
estimating the lensing optical depth for a population of strong
lenses in a given cosmology. Similar results have been found
by Hennawi et al. (2007). They also find a correlation between
strong lensing and orientation of the lenses and similar distribu-
tions of the orientation angles to those we find here.

Apart from the orientation, the halo triaxiality is important
because it determines the projected shape of the lenses. It has
been shown in several papers that, for a fixed mass, the strong
lensing cross section is larger for higher ellipticities of the pro-
jected mass distribution (Meneghetti et al. 2003b; Meneghetti
et al. 2007a). With such a large sample of lensing clusters, we
can address the question the distribution of their projected ellip-
ticities. These are measured as for the 3D shape of the lenses.
We measured and diagonalized the inertial tensor of the cluster
mass distribution projected on a regular grid of 256 x 256 cells.
We selected those cells where the surface density exceeds some
thresholds. The thresholds we used are given by the mean sur-
face densities at Ry;; and at 0.1 X Ry;,. Thus, we measured the
projected ellipticity both in the outer and in the inner cluster
regions.

The probability distribution functions of the projected el-
lipticity are shown in Fig. 7. The ellipticity is defined as € =
(1 = b/a)/(1 + b/a), where a and b are the major and minor
axes of the ellipse. The lines refer to critical clusters (assuming
again a source redshift of z; = 2), to clusters with nonvanish-
ing cross section for giant arcs, and to clusters with large cross
section for giant arcs (>107* A2 Mpc?). The left and the right
panels show the distributions of the outer and of the inner el-
lipticities. We find that the projected cores are more elliptical,
with distributions that peak at € ~ 0.2—0.4. It is interesting to
note that critical clusters have a bimodal ellipticity distribution:
several clusters have extremely elongated cores with ellipticities
that extend to € = 0.9. Since we are fitting each lens with a sin-
gle ellipse, these are mainly clusters with substructures near the
centers that mimic high ellipticities. We recall that the tangential
critical lines form where

k+y=1. (14)

As discussed in Torri et al. (2004), the shear produced by the
substructures enhance the ability of the clusters to produce
strong lensing, because it makes critical even those lenses where
the convergence is not enough to ensure it (k > 1 at some point).
However, although the additional shear allows several clusters
to have critical lines, several of them still are unable to produce
large distortions. Indeed, the second peak in the PDFs at high el-
lipticities is less prominent for clusters producing giant arcs, and
even less for clusters with large lensing cross sections. For this
class of lenses, it is more important to have a large amount of
mass projected onto a cluster core. Thus, either they have sub-
structures closer to centers, or they are more strongly aligned
with the line of sight, thus appearing a bit rounder than other
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Fig. 5. The distributions of strong lensing clusters in the M,;; — z (left panel) and in the M,,,500 — z plane (right panel). The color levels correspond
to different number counts of halos in the MARENOSTRUM UNIVERSE (5003 /=3 Mpc?® comoving), which are critical for a source redshift of z, = 2.
The inner dotted contours show the levels corresponding to 90% and 50% of the peak of the distribution. The outer dotted contour encloses 100%
of the halos, so it shows the minimal and the maximal mass of halos producing critical lines for each redshift bin. Similarly, the solid and the
dashed contours refer to the distributions of the halos with cross sections for giant arcs larger than 0 and than 1073 22 Mpc?. The colorbar on the
top of each panel shows the link between the colors and the log of the number of cluster per mass and redshift bin.
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Fig. 6. The cumulative probability distribution function of the angles
between the major axes of the strong lenses in the MARENOSTRUM
UNIVERSE and the line of sight. Shown are the results for the clusters
with critical lines, (solid line), for the clusters with cross section for
giant arcs larger than zero (dot-dashed line), and for the clusters with
cross section for giant arcs larger than 103 A~2 Mpc? (dashed line).
The dotted line shows the expected distribution for randomly oriented
halos.

critical lenses. As long as the lensing cross section grows, the
ellipticity distribution becomes unimodal but its peak shifts to-
wards higher ellipticities, also suggesting that most of these clus-
ter have substructures close to their centers.

At large radii, we find that the ellipticities are lower and the
projected ellipticity becomes lower as the strength of the lens
increases. This is clearly related to the orientation bias discussed
above. The strongest lenses are typically elongated along the line
of sight, making them appear rounder on the sky.

6. Concentrations

Several previous studies have discussed the importance of the
halo concentration for lensing. Using simulations, Hennawi et al.
(2007) find that concentrations of lensing clusters are on average
~18% higher than the typical clusters in the universe. Broadhurst
et al. (2008) report a very high level of mass concentrations
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(¢ ~ 10) in a sample of four well-known strong lensing clus-
ters. Fedeli et al. (2007b) show that, at a given mass, the strong
lenses are ~10% to ~25% more concentrated than the aver-
age. Here, we discuss the concentrations of the clusters in the
MARENOSTRUM UNIVERSE.

We measured the concentrations by fitting the density pro-
files of the clusters in our sample with the Navarro-Frenk-White
(Navarro et al. 1997) formula,

Ps

P = =

5)

where ps is a characteristic density, and r, the scale radius. The
concentration is defined as ¢ = Rago/7s-

Instead of fitting the density profiles of individual halos,
which are noisy, we prefer to fit the stacked profiles of clus-
ters with similar redshifts and masses. The mass bins are equally
spaced on a logarithmic scale. We stack the profiles of all clus-
ters in the mass bins and perform the NFW fit. Again, we select
those objects that exhibit critical lines for sources at z; = 2, and,
among them, those halos that are also able to produce large dis-
tortions, with lensing cross section above some minimal value.
The concentrations of the clusters in these two subsamples are
compared with those of general clusters, regardless of their abil-
ity to behave as strong lenses. The results are shown in Fig. 8.
The left and the right panels refer to critical and to large distor-
tion clusters, respectively. The color intensity reflects the ampli-
tude of the concentrations. The concentrations are normalized to
those of general clusters of similar mass and redshifts. The labels
in the overlaid contours indicate the numerical value of the nor-
malized concentration at the corresponding color level. Strong
lensing clusters at moderate redshifts have concentrations sim-
ilar to those of the general cluster population. Only low-mass
lenses have a relatively low concentration bias (<20%). The bias
become more significant at low and high redshifts, where it also
affects the largest masses. Because of their short distance to the
observer or to the sources, these clusters need to be very concen-
trated to focus the light from distant sources. The bias is mass
dependent. As the mass decreases, the bias is stronger. This is
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Fig. 8. NFW concentrations as a function of the halo mass and redshift. Left and right panels refer to clusters with critical lines and to clusters
with nonvanishing lensing cross section for giant arcs, respectively. The concentrations are normalized to those measured on the whole sample of
clusters in the simulation box, regardless of their ability to produce strong lensing effects. Different colors are used to encode the different values
of the normalized concentrations. The labeled contours provide the link between the color scale and the concentration values.

a clear selection effect: if we require a cluster to be critical or
even to produce large arcs, only the most concentrated halos in
the lowest mass bins are able to satisfy the requirement.

As mentioned above, lensing probes the projected mass dis-
tribution of clusters. The concentrations are typically measured
by fitting multiple image systems and arcs with combinations
of projected parametric models. Then, the 3D density profiles
are determined by assuming spherical symmetry. As we dis-
cussed earlier, clusters have triaxial shapes, thus the assumption
of spherical symmetry is generally wrong. Moreover, as we have
shown in the previous section, strong lensing clusters tend to
be seen along their major axes. For these reasons, the concen-
trations measured in 2D through strong lensing are expected to
be more biased than 3D concentrations. This effect is also dis-
cussed in Hennawi et al. (2007), where a comparison of 2D vs.

3D concentrations of individual clusters led to the conclusion
that the former are typically ~20% higher than the latter. To ver-
ify this result, we proceed to fit the surface density profiles of our
strong lensing clusters in their projections. Again, to do this, we
stack the profiles in mass and redshift bins. The fitting formula is
given by the truncated NFW surface density profile (Meneghetti
et al. 2000),

@ =2 [, (16)
where ¢ is the coordinate along the line of sight and ¢ is the
component of 7 perpendicular to . The maximum of { is given
by half the size of the sub-box containing each cluster, i.e.
2.5 h~' Mpc comoving. Using the dimensionless coordinate
on the projection plane x = &/r, and defining the quantities
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if x < 1. In the previous formulae, ua.x = arcsinh({max/€).

The resulting 2D concentrations, for several classes of strong
lenses, as a function of mass and redshift are shown in Fig. 9.
As done in Fig. 8, the 2D-concentrations are normalized to
the 3D concentrations of general clusters of similar masses
and redshifts. Starting from the top-left panel, we show the re-
sults for clusters with critical lines and for clusters with lens-
ing cross sections for giant arcs larger than 0, 1073 4~2 Mpc?,
and 2x 1073 h~2 Mpc?, respectively. As expected, the bias grows


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014098&pdf_id=9

M. Meneghetti et al.: Strong lensing by clusters in the MARENOSTRUM UNIVERSE. L.

compared to the 3D case, and the amount by which it increases
depends on the class of lensing clusters we are considering.
For critical clusters, the ratios between 2D concentrations and
the corresponding 3D concentrations are ~1.2 for intermediate
redshift clusters, but they become higher than 1.3 at low and
at high redshifts. For clusters able to produce giant arcs, the
2D-concentration bias is significantly higher. As discussed for
the 3D concentrations, the amplitude of the bias depends on both
redshift and mass: lower masses at short distances from the ob-
server or from the sources have the largest biases. Moreover,
increasing the lensing cross section for giant arcs, the concen-
tration bias grows dramatically. For example, massive clusters
(M ~ 10 k™' M) at the most efficient redshifts for strongly
lensing sources at zg = 2 (z3 ~ 0.4) with lensing cross sections
larger than 2 x 1073 42 Mpc? have 2D-concentrations that are
typically higher by ~50% than the 3D-concentration of general
clusters. For lower masses and redshifts, the 2D-concentrations
can be higher than expected in 3D by more than a factor of
two. This is a consequence of the orientation bias discussed
in the previous section. To be able to produce large and very
elongated arcs, clusters lying too close to the observer or to
the source must be optimally oriented and extremely concen-
trated. Due to triaxiality, the concentrations measured from the
2D mass distributions of these clusters are much higher than the
correspondent 3D concentrations (Oguri et al. 2005; Gavazzi
2005). As discussed in Sect. 3.3, a lensing cross section of
o ~ 1073 h=2 Mpc? corresponds to an expectation value of ~1
giant arc in a deep HST observation. Clusters like A1689, which
contains about 10 arcs with a length-to-width ratio greater than
7.5 (Sand et al. 2005), are thus expected to have extremely large
lensing cross sections. If the properties of real clusters are re-
produced correctly by the clusters in our simulations, these very
efficient strong lenses are likely to have extremely biased 2D-
concentrations, as recently reported by Broadhurst et al. (2008)
(see also Oguri et al. 2009). Our findings agree with the results
recently published by Oguri & Blandford (2009), who use semi-
analytic models of triaxial halos to estimate that the projected
mass distributions of strong lensing clusters have ~40-60%
higher concentrations than typical clusters with similar redshifts
and masses (see also Sereno et al. 2010).

7. X-ray luminosities

Gas physics are known to be potentially very important for
strong lensing (see e.g. Puchwein et al. 2005; Hilbert et al. 2008).
Several processes taking place in the intra-cluster-medium
(ICM), such cooling, heating, energy feedback from AGNs and
supernovae, and thermal conduction can also affect the distribu-
tion of the dark matter in clusters, influencing the shape of the
density profiles (Dolag et al. 2004; Puchwein & Hilbert 2009;
Yepes et al. 2007), as well as the triaxiality of the dark mat-
ter halos. Phenomena such cooling, star formation, and energy
feedback change the thermal properties of the ICM, thus influ-
encing the X-ray emissivity. In fact, several numerical studies
report that X-ray luminosities in nonradiative simulations are
higher than in simulations where cooling and feedback are ac-
tive, while the Lx — M relation derived from the same simula-
tions is shallower than observed (e.g. Short et al. 2010; Mantz
et al. 2008). The extreme complexity of the processes involved
presents a serious challenge for simulating them accurately in a
cosmological setting (e.g. Borgani et al. 2004). Nevertheless, a
nonradiative simulation like the MARENOSTRUM UNIVERSE can
also provide useful qualitative information on the possible cor-
relation between strong lensing and X-ray emission by galaxy
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Fig.10. The distribution of clusters with critical lines (dotted con-
tours and color levels), with non-vanishing cross section for giant arcs,
and with large lensing cross sections for giant arcs (solid contours),
o > 1073 h~2 Mpc? (dashed contours) in the Ly — z plane. The contour
description is the same as in Fig. 5.

clusters. Here, we focus in particular on the X-ray luminosity,
which is often used to select clusters for strong lensing surveys
(e.g. Luppino et al. 1999).

The X-ray bolometric luminosity is calculated from the tem-
perature and internal energy of each gas particle in the simulated
clusters. In short, the X-ray luminosity is the sum of the contribu-
tions to the emissivity from each gas particle, Lx = }’; &;, where
the sum extends over all the particles within Ry;;. The emissivity
of each gas element can be written as

&i = neinp,; A(T;, Z,)dV;, (21)
where n.; and ny; are the number densities of electrons and of
hydrogen atoms, respectively, associated to the ith gas particle of
given density p;, temperature 7;, and metallicity Z;. The cooling
function A(7, Z) is calculated by using a MEKAL plasma model
(Mewe et al. 1985, 1986; Liedahl et al. 1995) implemented in
the XSPEC software package (Arnaud 1996). For the metallicity,
we adopt the typical value Z = 0.3 Z; (Fukazawa et al. 1998;
Schindler 1999; see also Bartelmann & White 2003). Finally,
dV; = m;/p; is the volume of the ith gas particle of mass m;.

The distribution of strong lensing clusters in the Lx — z
plane is shown in Fig. 10, where we use the same notation as
in Fig. 5. Again the counts correspond to the comoving volume
of the MARENOSTRUM UNIVERSE. Not surprisingly, given that
the X-ray luminosity scales with the cluster mass (e.g. Kaiser
1986), the distribution of the strong lenses in the Lx — z plane is
very similar to that in the M —z plane. As found for the masses, at
each redshift a minimal X-ray luminosity exists below which no
critical lenses are found. The “critical” X-ray luminosity reaches
a minimum between z ~ 0.3 and z ~ 0.5. When we increase the
minimal lensing cross section, the distributions of clusters pro-
ducing giant arcs moves upwards and shrinks along the redshift
axis.

We now explore the scaling of the X-ray luminosity with
the mass for strong lensing clusters in more details. In Fig. 11
we show the Lx — M relation for four redshift bins, namely
0<72<0.25025<2<05,05<2<0.75,and0.75 <z < 1.
Numerical simulations are known to be poor at describing the
X-ray properties of the cosmic structures on the scales of groups
(Borgani et al. 2008). Thus, we limit our analysis to clusters of
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Fig. 11. The relation between the X-ray bolometric luminosity and the cluster mass. Results are shown in four different redshift bins, as indicated
at the top of each panel. Black, red, and blue data points (and errorbars) refer to the subsamples of critical and large distortion lenses.

masses My > 10 1h~' M. The Lx — M relations found for
clusters with critical lines, with nonvanishing cross sections for
giant arcs, and with lensing cross sections o= > 107 7~ Mpc?
are shown. We find that, increasing the strong lensing efficiency,
the slope of the Lx — M relation changes, becoming smaller espe-
cially at the lowest masses. This effect is also redshift-dependent,
because it is more extreme in the lowest and in the highest red-
shift bins. It shows that at the least favorable redshifts for strong
lensing, the X-ray luminosities of the strong lensing clusters tend
to be higher than for the general cluster population, especially
if the lens mass is relatively low. This seems to suggest that
some cluster property rather than the mass plays an important
role for boosting the lensing cross sections of these small lenses,
which also influences their X-ray luminosity. As discussed in
Torri et al. (2004) and in Fedeli & Bartelmann (2007), mergers
are likely to explain the effect we observe here.

8. Cluster’s dynamical state

In this section, we use indicators of the virial and of the hy-
drostatic equilibria in clusters to investigate wether there is a
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correlation between strong lensing and dynamical activity in the
lenses.

8.1. Virial equilibrium

The virial equilibrium is perhaps the most natural choice when
trying to quantify the dynamical state of a bound structure. In the
case of self-gravitating systems, this is quantified by the compe-
tition between the total potential energy and (twice) the internal
kinetic energy.

In agreement with the scalar virial theorem and following
Shaw et al. (2006), we introduce the parameter 8 for the simu-
lated clusters, defined as

U 0 (22)

where T is the internal kinetic energy, U the potential energy,
and S a surface pressure term that arises from considering the
structure as contained in a limited region (in this case the finite
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sphere). If Ny is the total number of particles contained in the
sphere of radius Ry, then the kinetic energy is evaluated as

vir

N
1 2
T=3 Z] miloilP, (23)
and the potential energy is given by
Nr N
G vir vir mm;
U=—— . (24)
S5 [fr; — 1}l

In Egs. (23) and (24) m;, r; and v; are the mass, the position with
respect to the center of mass and velocity with respect to the
center of motion of the ith particle, respectively.

The surface term, S, is computed by selecting the outer-
most 20% of the particles that are inside Ry;. Let us call Qgg
this set of particles. If Ryg and Ry are the innermost and the
median distances from the cluster center of the particles within
Qo.3, respectively, then

3

R
§ = > milwiP,

vir 6‘8 i€Qos

(25)

where the sum is now extended to all the particles between Ry g
and Ry;;.

For an ideal cluster in perfect virial equilibrium, 8 = 0. On
the other hand, whenever the cluster is dynamically active, like
accreting mass or merging with substructures, 5 < 0, because the
dynamics of the structure are dominated by the kinetic energy.
According to the hierachical structure formation, we expect that
structures at high redshift have 8 that is on average more negative
than at low redshift, and the lowest mass objects have the small-
est 8. At the typical redshift for lensing clusters (z ~ 0.3-0.5),
the mass range considered here is well beyond the characteris-
tic collapsing mass (M, = few x 10'2h~! My). Thus, all our
clusters are in the process of formation and have negative g pa-
rameters. As expected, we find a significant evolution of S with
redshift. In the top panel of Fig. 12 we show the median (together
with 25% and 75% percentiles) values of g8 as a function of red-
shift. Different line styles indicate the results for clusters with
critical lines, for clusters that have nonvanishing cross section
for giant arcs, and for clusters with large lensing cross sections
(00 > 1073 h~2 Mipc?, as usual). The 3 parameter is close to zero
at low redshift, and it becomes increasingly more negative go-
ing to high redshift. In particular, the value of 5 decreases from
~0 to ~—1 from z = 0.1 to z = 1. The most efficient lensing
clusters, i.e. the clusters with large lensing cross sections, are
characterized by smaller 8 parameters. The bottom panel shows
the median and the 25% and 75% percentiles of 8 as a function
of the cluster mass. The differences between the cluster subsam-
ples become more pronounced at the low masses. This indicates
that the least massive clusters with large lensing cross sections
tend to be farther from the virial equilibrium than clusters with
small lensing cross sections. These dynamically active clusters
also have higher X-ray luminosity, explaining the flattening of
the Lx — M relation shown in Fig. 11 towards the low masses.

8.2. Hydrostatic equilibrium

A different method for quantifying the equilibrium state of a
cluster consists of determining the hydrostatic equilibrium of the
gas filling its potential well. If the system is in equilibrium the
pressure and the gravitational forces at a given position are ex-
actly counteracting.
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Fig. 12. Top panel: the median value and the 25% and 75% percentiles
of the distributions of the parameter 8 as a function of redshift. Solid,
dotted, and dashed line indicate the results for clusters with critical
lines, with non-vanishing cross section for giant arcs, and with cross
section o > 1073 h~2 Mpc?. Bottom panel: the median value and the
25% and 75% percentiles of the distributions of the parameter 3 as a
function of the cluster mass.

Given the hydrostatic equilibrium equation, V@ = -V P, /pq,
we define the hydrostatic equilibrium parameter I’ at a given
distance from the cluster center as

W(r)
In=1--——=— 26
) AnGM(r)’ (26)
where M(r) is the total mass in a sphere of radius S,, and
VP,
W(r) = f —|dA. 27)
os, | Pg

While @ is the total potential of the cluster, Pg and p, are the
pressure and density of the gas component.

If hydrostatic equilibrium holds in the gas shell of radius r,
then I'(r) = 0. Depending on whether the gas is compressed or
is not thermalized, say because of merging with substructures or
infall of material from the external regions, I' becomes negative
or positive. As shown by Rasia et al. (2004), the gas is gener-
ally not at rest inside the cluster potential wells. Non-negligible
subsonic bulk motions contribute to the total pressure support of
the gas. This typically leads to underestimating the total mass
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of the system under the assumption of hydrostatic equilibrium
(see e.g. Ascasibar et al. 2003; Rasia et al. 2006, 2008; Nagai
et al. 2007; Ameglio et al. 2009; Meneghetti et al. 2010). The
effect is greatest at the largest distances from the cluster cen-
ter, where the infall of matter is more pronounced. We evaluated
the hydrostatic equilibrium parameter I" at two different cluster-
centric distances, namely Rsoo, and Rps00. In Fig. 13 we show
the redshift evolution of I'. The median (with 25% and 75% per-
centiles of the distribution) in each redshift bin are shown for
the subsamples of critical clusters, clusters capable of produc-
ing giant arcs, and clusters with lensing cross section larger than
1073 h2 Mpcz. The curves are rather flat, unlike what is found
for the B parameter.

The results at different radii are consistent with the previous
finding of Rasia et al. (2004): the excess of pressure support due
to gas bulk motions amounts to ~15-20% at Rsn, and decreases
towards the center. We do not see a clear dependence of I' on
the lensing cross section. Note however that, while 3 is a global
indicator of departure from virial equilibrium, meaning it is sen-
sitive to any excess of kinetic energy within the virial radius, I" is
only a local indicator of hydrostatic equilibrium, i.e., it can only
be used to measure a local departure from hydrostatic equilib-
rium. If, as we believe, mergers play an important role in strong
lensing, this parameter is less efficient at capturing them.

It is interesting to see where the clusters in our sample are
located in the 8 — I" plane. This is shown in Fig. 14 for I' mea-
sured at Rsgp and for four different redshift bins. Similar results
would be seen when using [ 2509 instead of I'sgg. The contours in
each panel show the distributions of clusters in different subsam-
ples: critical lenses , clusters with nonvanishing cross sections
for giant arcs, and clusters with large lensing cross sections. The
inner and the outer contours indicate the 90% and the 50% of
the distribution peaks. As the lens strength increases, the distri-
butions shift along the I' axes towards smaller Ss. The separa-
tions between the distribution peaks become increasingly larger
with redshift, indicating that the dynamical activity of clusters,
as highlighted by the departure of these structures from virial
equilibrium, has a strong impact on their ability to produce large
distortions especially at high redshift. This is expected since the
dynamical activity in clusters grows by going back in time.
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8.3. Mass fluctuations in the cluster core

To once more verify our interpretation of the results discussed
above, we performed an additional test to verify that the clusters
with increasingly negative values of 8 are indeed clusters with
infalling substructures. Considering the potential impact of clus-
ter mergers on strong lensing, we too take not only those sub-
structures into account that merge with the main cluster clump
and start orbiting around it at small distance from its center, but
also those subclumps that orbit at large distances but which tran-
sit close to cluster core perpendicularly to the line of sight. Thus,
for each cluster projection, we reconstructed the mass accretion
history by measuring the projected mass within R»sog at different
epochs. Sudden jumps in the curves My »500(z) signal the passage
of some substructure across the cluster central region. We ana-
lyzed these curves as follows. First, we smoothed the curves by
removing the peaks with a boxcar smoothing algorithm. This
provided us with a smooth accretion mass history Mmoo (2)-
Then, we compared the un-smoothed curve M) »500(z) to the
smoothed one, and we identified as mergers those events where
M, 2500(2) > K X Mmoom(2). For this analysis we chose K = 1.3
and K = 1.5.

In Fig. 15 we show the redshift evolution of the fraction fyy
of clusters exhibiting these temporal mass variations compared
to the total sample. As expected, the fraction of clusters with
large projected mass variations in the core tends to increase with
increasing redshift. The fraction of clusters where the excess of
mass within Rjsgg is at least 30% varies from ~0.1 at z =~ 0.1 to
upto~0.7atz > 1.

The distribution of the “merging” clusters in the S — I" plane
is given in Fig. 14. Clearly, merging clusters are typically objects
with extremely negative 8 parameters. Their I' parameters do not
differ significantly from those of clusters with critical lines, con-
firming that this parameter is not a good indicator of substructure
accretion. Interestingly, the distributions of “merging” clusters
in the four redshift bins nicely overlay the distributions of clus-
ters with large lensing cross sections for giant arcs. This con-
firms our interpretation that the most efficient strong lenses in
the MARENOSTRUM UNIVERSE are dynamically active clusters,
with substructures located near the cluster core. Thanks to their
contribution of the shear and to the overall convergence, these
substructures boost the strong lensing cross sections.


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014098&pdf_id=13

M. Meneghetti et al.: Strong lensing by clusters in the MARENOSTRUM UNIVERSE. L.

2<0.25

T T T T

crit. curves

giont arcs

---- o> x 107

mergers T

—0.4f

-0.8 -0.6 -04 -0.2 0.0

B
0.5<2z<0.75

-1.0

0.4 ]

FSOO

-0.2} ]

—0.4f ]

-1.2 -1.0 -0.8 -0.6

B

-0.4

-0.2 0.0

0.25 <2< 0.5

0.4F ]
0.2} 1
. ]
ey 001 ]
-0.2f 1
04} ]
-1.0 -08 -0.6 -0.4 -02 00 02
B
z > 0.75
0.4f ]
0.2f -
g
& —oof -
—0.2f -
—0.4f ]
~14 -12 -10 -08 -0.6 -04
B
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Fig. 15. The fraction f;, of structures that, at each redshift step, change
the value of the mass inside at least a rectangular volume (see text for
details) of at least 30% (black filled triangles) and 50% (red empty
squares) with respect to the previous step, as labeled in the plot.

In Fig. 16 we compare the distributions of the X-ray lumi-
nosities of all clusters in the MARENOSTRUM UNIVERSE and of
the subsample of merging clusters. Clearly, the clusters going

through a merging phase have higher X-ray luminosities com-
pared to the general cluster population (see also Rowley et al.
2004). The differences between the distributions increase with
redshift, indicating that the impact of mergers is stronger at
higher redshifts, where clusters have lower masses. In Fig. 17
we show the X-ray luminosity distributions of general and merg-
ing clusters in the redshift range 0.25 < z < 0.5. In the left
panel, we select the clusters with masses 10K My < My <
5%10'" h~! M. Among these relatively low-mass clusters, those
ongoing a merging phase are significantly more X-ray luminous.
In the right panel, we plot the distributions again after select-
ing only the most massive clusters (5 X 1047 My < My, <
3x 10" ™! My). In this case, the X-ray luminosity distributions
are almost identical, indicating that most of the differences be-
tween merging and general clusters appear at low masses. The
results shown here help explain the behavior of the luminosity-
mass relations displayed in Fig. 11. As the lens strength in-
creases, the strong lensing cluster population tends to be dom-
inated by merging clusters, which are characterized by higher
X-ray luminosities. For this reason, the Lx — M relation tilts at
the lowest masses, because clusters with high lensing efficiency
and low mass are typically merging objects.

9. Summary and conclusions

In this paper, we have investigated the properties of
~50000 strong lensing clusters at different redshifts in
the MARENOSTRUM UNIVERSE cosmological simulation. By
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projecting each of these clusters along three orthogonal lines
of sight, we considered almost 150000 lens realizations in to-
tal. With so many objects, we can statistically characterize the
population of strong lensing clusters much better than in the
past. Moreover, the MARENOSTRUM UNIVERSE includes gas,

so it allows the correlation between strong lensing and X-ray
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observables to be investigated. We classified the strong lenses
into two categories, namely clusters critical for sources at zg = 2
and clusters that can induce large distortions in the images of
these sources, i.e., form giant arcs. We explored several struc-
tural properties of the strong lensing clusters, such as the masses,
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the shapes, the concentrations, the X-ray luminosity, and the dy-
namical activity.
Our main results can be summarized as follows.

— Strong lensing clusters are typically massive objects. Their
masses vary over two orders of magnitude. The minimal
mass for strong lensing depends on both the redshift of the
lenses and of the sources. For sources at z; = 2, we find
that clusters can develop critical lines down to masses of
~10"3 h~! M,,. Requiring that clusters are also able to pro-
duce giant arcs increases the mass limit by almost one order
of magnitude. The lensing cross section also depends on the
mass, so that we can estimate that the minimal mass required
for a cluster, in order that the expected number of giant arcs
in a deep HST observation is ~1, is ~2 X 101 p! M.

— The 3D shape of strong lensing clusters does not seem to be
significantly different from that of the general cluster pop-
ulation. However, strong lensing clusters tend to have their
major axes oriented along the line of sight. This “orientation
bias” is greater for clusters that produce giant arcs than for
clusters that only possess critical lines, and it becomes larger
by increasing the lensing cross section.

— Because of the orientation bias and because their halos are
generally described well by prolate triaxial models, strong
lensing clusters tend to appear rounder when projected on
the sky. However, zooming over their central regions, we no-
ticed that their projected mass maps are described by rather
elongated distributions, proving the presence of substruc-
tures projected near cluster cores.

— The concentrations measured by fitting the density profiles of
strong lensing clusters stacked in mass and redshift bins do
not differ significantly from the concentrations of the general
cluster population. Nevertheless, owing to the orientation
bias, the concentrations of the same objects inferred from
the analysis of the projected density profiles are generally
higher than in 3D. For clusters with large lensing cross sec-
tions for giant arcs, the 2D-concentrations can be higher by
more than a factor of two. These results may provide a viable
explanation of the high concentrations reported for some of
the strongest lenses observed so far.

— The X-ray luminosity-mass relation of strong lensing clus-
ters is likely to differ from that of the general cluster pop-
ulation, especially at the lowest masses. We found that at a
fixed mass, strong lenses with increasingly larger cross sec-
tions for lensing have higher X-ray luminosities, indicating
that some process occurring in these objects enhances both
the X-ray luminosity and the strong lensing cross section.

— The strong lensing efficiency is certainly correlated with the
dynamical activity in clusters. We found that clusters with
large lensing cross sections are characterized by a system-
atic departure from virial equilibrium. A similar departure
from virial equilibrium is found for clusters in the process
of accreting substructures, which accidentally transit across
their cores perpendicularly to the line of sight.

In conclusion, our results show that strong lensing clusters are
likely to be a very peculiar class of objects, characterized by
several selection biases, which need to be properly considered
in many applications. For example, the orientation bias makes
very likely that the 3D-masses inferred from strong lensing mod-
els of observed clusters are biased high. In arc statistics studies,
the statistical modeling of the strong lensing cluster population
needs to include mergers, triaxiality, and asymmetries in the pro-
jected mass distributions, as also suggested by previous studies.
Owing to intrinsic difficulties at modeling all of these effects

analytically, numerical simulations again seem to be the only vi-
able way to describe strong lensing clusters. In this sense, large
statistical samples of numerically simulated lenses, such as the
extracted from the MARENOSTRUM UNIVERSE, are fundamental
tools for interpreting the current strong lensing observations. A
major effort is now needed to clarify the existing inconsistencies
between the properties of simulated and observed galaxy clus-
ters, especially in the central regions (e.g. Zitrin et al. 2010). For
this, strong lensing modeling techniques need to be accurately
tested and improved (Meneghetti et al. 2010; Coe et al. 2010)
and deep, high-resolution observations need to be made for a
large sample of clusters. More conclusive results are soon ex-
pected from the “CLASH”' Treasury Project, a large (524 orbit)
HST Multi-Cycle Treasury program (P.I. Postman) to observe 25
X-ray-selected galaxy clusters at 0.18 < z < 0.9, each to a depth
of 20 orbits.
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Appendix A: The most efficient lens
in the MARENOSTRUM UNIVERSE

We have ranked the clusters in our sample by their lensing cross
section, creating a list of the 10 most efficient lenses between
z = 0 and z = 2. It turns out that all of them are clusters that
are elongated along the line of sight and which have signifi-
cant substructures projected near the center. In the upper pan-
els of Fig. A.1, we show an example given by the most efficient
lens we have identified in the simulations. From left to right, the
convergence maps are shown at three different epochs, namely
71 = 042, 7o = 0.45, and z3 = 0.48. The bottom panels show
the cluster at the same epochs as in the upper panels, but along
a different line of sight, which is perpendicular to the previous
one. The scale of the figures in the left panels is 633 arcsec. In
the remaining panels it is 423 arcsec. We can see that:

1. in the upper panels the cluster appears rounder and denser
than in the bottom panels. Clearly, the cluster is elongated
along the line of sight in the upper plots. In these projections,
the lensing cross section is larger by more than an order of
magnitude compared to the projections shown in the bottom
panels;

2. the concentrations measured by fitting the surface density
profiles of the cluster in the upper panels is significantly
higher than that obtained by fitting the 3D-density profiles.
For example, at z3 the 3D-concentration is 4.11, while that
inferred from the projected mass distribution is 8.29;

3. going back in time, few substructures approach the clus-
ter center, and, at z3, they seem to cross the very in-
ner region of the cluster, boosting the lensing cross sec-
tion significantly. At this epoch the lensing cross section is

! Cluster Lensing And Supernova survey with Hubble, http: //www.
stsci.edu/?postman/CLASH/
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Fig. A.1. The most efficient lens in the MARENOSTRUM UNIVERSE. In the top row of panels, we show the convergence maps of this cluster at
three different epochs, namely at redshifts z; = 0.42, z, = 0.45, and zz = 0.48 starting from the left. The highest efficiency for lensing, which
corresponds to a cross section for giant arcs of o = 1.92 x 1072 A2 Mpc?, is reached at z3. At this epoch, the lensing cross section is approximately
two times larger than at z;. The bottom row of panels shows the same cluster sequence but along a line of sight perpendicular to that of the upper
panels. The side length of the panels on the left is 633 arcsec, while the remaining panels have sizes of 423 arcsec.

o = 1.92x 1072 k=2 Mpc?. Between z3 and z;, it drops by
almost a factor of two. At the epoch of maximal lensing effi-
ciency, the cluster is characterized by rather extreme values
of the 8 and of the I'sop parameters, which are equal to —0.74
and 0.36, respectively;

4. because the center of the cluster is clumpier, the measured
ellipticity is greater in the central than in the external region.
For example, at z3 the ellipticities measured within 0.1 X Rpp
and Ry are 0.23 and 0.07, respectively.

All this shows that the most powerful strong lenses in the uni-
verse are likely to be a very special class of objects, character-
ized by several peculiarities, which we need to properly consider
when statistically modeling them.

Oguri & Blandford (2009) (OB hereafter) used semi-analytic
methods based on triaxial NFW halos for calculating the proba-
bility distributions of several properties of the clusters producing
the largest critical lines in the universe. The size of the critical
lines is quantified by means of the Einstein radius (see Eq. (18)
of OB). Their calculations include scatter in concentrations and
axial ratios that are calibrated with numerical simulations. The
length of the critical lines is strongly correlated with the lensing
cross section (Meneghetti et al., in prep.), given that the latter
is an area surrounding the caustics, which are mapped on the
critical lines via the lens equation. Thus, we expect that the clus-
ters with the most extended critical lines will have the largest
cross sections. OB also consideres a WMAP1 normalized cos-
mology and adopted several source redshifts for drawing their
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distributions. In particular, they use z; = 1 and zg = 3, which
encompass the redshift used in our simulations (z; = 2). We at-
tempt now a comparison to their results.

We begin with the distributions of the cluster orientations
and triaxial shapes. They find that in ~90% of their Montecarlo
realizations, the cluster with the largest Einstein radius has 6 <
26 degrees and the median of their distribution is between 11
and 14 degrees. The cluster exhibiting the largest cross section
for z; = 2 in the MARENOSTRUM UNIVERSE has its major axis
forming an angle of 23 degrees with the line of sight. This cluster
has a minor-to-major axis ratio of 0.21 which is also agrees well
with the distributions found by OB, whose median for z; = 1 is

0.32*01 and for zg = 3 is 0.23*0}.

Considering a WMAPI normalized cosmology, OB report
that the typical redshift for the lens with the largest Einstein ra-
dius is z = 0.28f8:(1)é forzg = 1 and z = 0.47f8:%§ for z; = 3.
This is also compatible with the redshift of the cluster discussed
above (z = 0.48). The distribution of the cluster masses found by

OB has a median M,;, = 2.49f8:g§ x 10 h~! M, for z = 1 and

My = 1.987139x10' h~' M, for zg = 3. The strongest lens in the

MARENOSTRUM UNIVERSE has a mass of 1.85 x 10 47! M,
which agrees with the results of OB at 10 level.

As discussed above, the projected ellipticity of the cluster
shown in the upper right panel of Fig. A.1 varies between 0.23 in
the center and 0.07 in the external region. OB find that the cluster
with the largest Einstein radius has a typical projected elliptic-
ity <0.3. Given that they use simple triaxial mass distributions
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to model their clusters, the projected ellipticity does not change
with radius as we find by analyzing numerically simulated clus-
ters. Nevertheless, our and OB’s results seem consistent once
again. Similarly, there is also very good agreement between the
2D-concentrations: while the most efficient lens discussed in this
section has a projected concentration of 8.29, OB find that a

distribution with median between 8.91*3%} and 7.03*73] is ex-

pected in a WMAP1 cosmology for sources between z; = 1 and
zs = 3.

In conclusion, the most efficient lens in the MARENOSTRUM
UNIVERSE has properties that match the expectations for the
cluster with the largest Einstein radius in the Universe, as de-
rived by OB modeling galaxy clusters with triaxial halos, whose
structural properties are calibrated using numerical simulations
different from the MARENOSTRUM UNIVERSE. This can be con-
sidered a valid “sanity check” for our results.
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