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ABSTRACT

While usually cosmological initial conditions are assun@the Gaussian, inflationary theo-
ries can predict a certain amount of primordial non-Gauésiavhich can have an impact on
the statistical properties of the lensing observablesrdieioto evaluate this effect, we build
a large set of realistic maps of different lensing quargtisarting from light-cones extracted
from large dark-matter only N-body simulations with init@nditions corresponding to dif-
ferent levels of primordial local non-Gaussianity strénfjt;,. Considering various statistical
quantities (PDF, power spectrum, shear in aperture, skesvaied bispectrum) we find that
the effect produced by the presence of primordial non-Ganig is relatively small, being
of the order of few per cent for values [gfy1.| compatible with the present CMB constraints
and reaching at most 10-15 per cent for the most extreme waesfxr,| = 1000. We also
discuss the degeneracy of this effect with the uncertairtiee to the power spectrum nor-
malizationog and matter density paramet@y,, finding that an error in the determination
of og () of about 3 (10) per cent gives differences comparable wath-@aussian mod-
els havingfnr, = +1000. These results suggest that the possible presence of amaofou
primordial non-Gaussianity corresponding far,| = 100 is not hampering a robust determi-
nation of the main cosmological parameters in present anddueak lensing surveys, while
a positive detection of deviations from the Gaussian hygsithis possible only breaking the
degeneracy with other cosmological parameters and usiagfiden deep surveys covering a
large fraction of the sky.

Key words: cosmology: theory - gravitational lensing: weak - cosmalabparameters -
large-scale structure of the Universe - Methods: N-bodyitions

1 INTRODUCTION that their distribution is Gaussian. In general, small déons from
Gaussianity are predicted even for the simplest inflatypnasdels,
while non-standard models, like the scenarios based onutivac
ton, on the inhomogeneous reheating and on the Dirac-Bdatel
inflation allow much more significant departures (see Barétlal.
2004, and references therein).

In recent years, the interest for an accurate measuremethieof
amount of non-Gaussianity present in the primordial dgrfgtd
has largely increased. The main reason is that this testiscoao-
sidered not only a general probe of the inflationary paradigumn
also a powerful tool to constrain the plethora of its differeari-
ants. Only the most standard slow-rolling models based amgies
field produce in fact almost uncorrelated fluctuations, Whgcthe It has become common to quantify the level of primordial
motivation of the common assumption (and large simplifarati non-Gaussianity adopting the dimensionless non-linepetame-

ter fn1. (See, e.gl, Salopek & Band 1990; Gangui 1994; Verdelet al.

2000a; Komatsu & Spergel 2001), that measures the imp@tanc
* E-mail: francesco@ita.uni-heidelberg.de of the quadratic term in a sort of Taylor expansion of the gaug
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invariant Bardeen potenti:
P = p + fxn (P — (1)) ; (1)

here @1, represents a Gaussian random field. Hereafter we will
adopt the so-called large-scale structure (LSS) conuventitere

® is linearly extrapolated to the present e;ﬂ;cMoreover we
will consider only the so-called local shape for non-Gaarsiy,

in which the bispectrum signal is larger on squeezed treangh-
figurations. For more details about other possible shapesfeeto
Bartolo et al.[(2004); Verde & Matarrese (2009); Bartolo &R
(2009) and references therein.

At present the most stringent constraints fan, come from
the cosmic microwave background (CMB) data. Their discrimi
nating power derives from the fact that its temperature dlaict
tions trace the density perturbations before the grawitati non-
linearities modify their original distribution. Whateves the spe-
cific test adopted, all CMB analysis consistently allow onéry
small deviations from Gaussianity: for instance, analgzine re-
cent WMAP data, Komatsu etlal. (2010) found tifat, varies be-
tween -13 and 97, while_Smith et al. (2009) fourd < fni <
104 (at 95 per cent confidence level); see also Komatsul et al.
(2009).

Alternative and complementary constraints ¢, can in
principle be derived analyzing the LSS (for recent revieses,
e.g.. Verde 2010; Desjacques & Seljak 2010). As already avide
from the first generation of non-Gaussian N-body simulation
(Messina et al. 1990; Moscardini et al. 1991; Weinberg & Cole
1992), the presence of a positive (negative) skewness iRPbfe
of the primordial density field tends to favor (disfavor) fleema-
tion of cosmic structures, inducing a different timing ire tivhole
process of gravitational instability. However, to be fullyploited,
this approach needs to be complemented with reliable msttmd
disentangle from the primordial signal the non-Gaussiatufes
introduced by the late non-linear evolution and by the pgegires-
ence of a non-linear bias factor. While lensing statisticsrely
avoid the latter problem, to attack the former one it is nsags
to make use of both analytic techniques (like high-ordetysba-
tion theory and the Time-Renormalization Group approaele;, s
e.g., Taruya et al. 2003; Bartolo et al. 2010) and full N-bsiy-
ulations (see, e.d.. Kang et lal. 2007; Grossi &t al. [2007al@alal.
2008 Viel et al. 2009; Desjacques et al. 2009; PillepicH.(&G10;
Grossi et al. 2009) to properly calibrate the theoreticabmtions
in the non-linear regime. The large amount of theoreticatkwo
recently done in this direction allowed to better undemtamat
is the size of the effects on the abundance of non-lineac-stru
tures (Matarrese et ial. 2000; Verde €t al. 2000a; Mathis/ @08k;
Kang et al.| 2007 Grossi etlal. 2007, 2009; Maggiore & Riotto
2010; Roncarelli et al. 2010), on the halo biasing (Dalal 2G08;
McDonald| 2008| Fedeli et al. 2009; Carbone et al. 2010), @n th
galaxy bispectrum (Sefusatti & Komatsu 2007; Jeong & Komats
2009; | Nishimichi et all 2009), on the mass density distrdsut
(Grossi et all 2008; Lam & Sheth 2009; Lam etlal. 2009), on the
topology (Matsubara 2003; Hikage etlal. 2008), on the irtisgt
Sachs-Wolfe effect (Afshordi & Tolley 2008; Carbone et &08),
on the Ly« flux from low-density intergalactic mediumn (Viel et al.
2009), on the 21 cm fluctuations _(Codray 2006; Pillepich et al

1 We recall that on scales smaller than the Hubble radfigsrresponds to
the usual Newtonian peculiar potential (but with changegd)si

2 With the cosmological parameters adopted in this papercthiresponds
to values forfxy, larger by a factor ok 1.3 with respect to the so-called
CMB convention, where is instead extrapolated at= oco.

2007) and on the reionization process (Crociani gt al. [2008¢
first attempts of an application to real observational dategery
encouraging results: Slosar et al. (2008), combining ths hiea-
surements for two samples of luminous red galaxies and cgjasa
found fnr, = 48732 |Afshordi & Tolley (2008), studying the in-
tegrated Sachs-Wolfe effect (ISW) in the NVSS survey, detiv
fni, = 3b4 £ 165; all error bars are at 2-leveP. Very recently
Xia et al. (2010) found2 < fx1, < 152 from the analysis of the
auto-correlation of the brightest NVSS sources on angaekes of
several degrees.

In this paper we will focus on estimating the weak lensing sig
nals in scenarios with primordial non-Gaussianity. Beiagdsl on
the measurement of the shear effect produced by the iniegen
large-scale structure of the Universe on the images of radkgl
galaxies, gravitational lensing is a direct probe of theltobat-
ter distribution. For this reason it is considered one of ri&st
powerful tools to constrain the main cosmological paranseded
many dedicated projects are in progress or under study. Y\eser
citing perspective is certainly opened by the ESA Cosmidoviis
project EUCLID (Laureijs 2009), currently under study: theal
of its wide survey is to obtain the shear measurements fontabo
40 galaxies per arcmfron the entire extragalactic sky with Galac-
tic latitude b > 30 (approximately 20000 déy The possibility
of using the weak lensing signals to constrain also the amofun
primordial non-Gaussianity has been already explored figrdit
authors. Amara & Refregier (2004) used a generalized haltemo
to study the impact on the estimates of the power spectrum nor
malizationos of primordial non-Gaussianity, modeled assuming
various lognormal distributions for the density field. Moegently,
Fedeli & Moscardini (2010) computed the power spectrum ef th
weak cosmic shear for non-Gaussian models with differelutega
of fxi. In particular, they improved the halo model including more
accurate prescriptions for its ingredients (mass funstidis and
halo profile), calibrated on the last generation of non-GizumsN-
body simulations. The application of this model to a survay-h
ing the expected characteristics of the EUCLID project sttbthe
possibility of a significant detection of non-Gaussianityhe level
of | fni.| = few tens, once the remaining parameters are held fixed.

In this paper we investigate weak lensing statistics in non-
Gaussian scenarios using numerical rather than analytcds.
Specifically, we will create weak lensing maps performing-ra
tracing simulations through very deep light-cones exé@dtom
high-resolution N-body simulations. The advantage of s
proach is twofold. First of all, N-body simulations pernutfully
account for the non-linear evolution which is usually medeless
accurately by analytical means. Second, numerical exgertisral-
low us to extract a large set of realistic weak lensing mapsdan
be used for better evaluating the statistical robustnet®atsults.

The main goal of our numerical work is to figure out what
are the observational evidences of the presence of somkdeve
primordial non-Gaussianity, as quantified by the, parameter. In
particular we will compute a large set of weak lensing stiggsn
models with differentfnxr, and we will quantify the deviations from
the corresponding results in the Gaussian scenario. Tmispisr-
tant not only to address the possibility of a positive detectvith
future data, but also to establish at which level an amounprief
mordial non-Gaussianity compatible with the present olzgemal

3 We report the values as revised by Grossi et al. (2009) toidiech cor-
rection mimicking the ellipsoidal collapse and convertedte LSS con-
vention.
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constraints can hamper an accurate measurement of thecother
mological parameters. We must recall that Gaussian irdbabi-
tions are virtually always assumed in their practical daron.

The plan of this paper is as follows. In Sect[dn 2 we review
the basis of the lensing formalism necessary to the preserk. w
In Section[B we describe the cosmological simulations ard th
numerical procedure to build the lensing maps. In Sedflone4 w
present our main results about the statistical properfi¢seodif-
ferent lensing quantities investigated: the probabilitstribution
function, the third-order moment, the power spectrum aecbik-
pectrum. In Sectiofl5 we compare the effects produced bygprim
dial non-Gaussianity to the uncertainties related to p@pectrum
normalizationos and on the matter density parametgy,. Finally,
in Sect[6 we draw our conclusions.

2 LENSING THEORY

In this section we give a short summary of the aspects of the th
ory of gravitational lensing that will be used throughoustork.
For more detail we refer to the review by Bartelmann & Scheisid
(2001).

We can start by describing how light rays are deflected by
the presence of structures in the universe. Since the autere
length of cosmic structures is small compared to the Hubile r
dius, it is possible to slice the large-scale structures shiells and
use the so-calledhin-screenapproximation for them, which al-
lows to consider only the projected mass distribution ofdlees.
Denoting byE(g) the projected mass distribution of the lens at
the angular position vectdt, the convergence can be defined as
1(0) = X(6)/Serit, where

62 Dd5

Z:cri =
' T 447G DyD,

@)

is thecritical surface densityln the previous equatioP;, D, and
D, represent the angular-diameter distances between thevebse
and the source, between the observer and the lens, and betvece
lens and the source, respectively.

Thanks to thehin-screenapproximation, the object acting as
lens can be completely described using its lensing potefitia
which is related to the convergence through the two-dinoeradi
Poisson equation

— —

V23U () = 2x(0) . (3)
The deflection anglé is simply the gradient of the lensing poten-
tial, & = V.

Up to second order, lensing-induced image distortions are
given by

92'/ ~ Aijej + %Dijkéjék (4)
(see, e.g.. _Goldberg & Bacon 2005; Bacon étial. 2006), where
A;; = 0;0; represent the elements of the Jacobian matrix of the
lens equationg,” are the unlensed coordinates, and the tensor is
defined asD; ;. = 9xAsj. In the previous equation$;, = 9/90;.

The quantitiesA and D can be conveniently expressed as a func-
tion of the convergence, of the complex shear term= 1 +iv2,

and of their derivatives:

A = I—-k—m —Y2
-2 l—-rk+m
—92 —_ —
Dy = ( Y~ Y22 Y21 ) )
—72,1 —72,2
Dys = ( —Y21 22 ) ;
—v2,2 2712 — V2,1

in the previous equations the comma indicates the derezalitie
shear derivatives can be combined to construct two new ijiesnt
F andG@G, calledfirst andsecond flexiomespectively, defined as

F (6)
G ()

The previous formalism can be easily generalized to the case
in which a continuous distribution of matter is considerEae vol-
ume between the observer and the sources can be divided in a se
guence of sub-volumes having a size along the line-of-sgfit-
ciently small compared to the distances between the ohsande
the sub-volumes, and between those and the sources. Ther matt
of each sub-volume can be projected onto a plane and then we
are allowed to use again the thin-screen approximationrithest
above. The final quantities, estimated on the source plaifiehev
the weighted sum of the relevant quantities, where the wegh
given by a suitable ratio of the involved distances. In npldtiens-
plane theory, rotation of light bundles can occur in additmshear
and convergence, but numerical simulations have showrthibae
are negligibly smalll(Jain et al. 2000). Then, all the lensperties
are contained in the lensing potential. Knowing it on aldl@tanes
allows us to write recursion relations representing theed&tin an-
gle, the shear, the effective convergence and the two flexiarthe
source plane. These relations will be given and discussetbie
detail in Sectio 313.

Fi+iF = (71,1 + 72,2) +i(v2,1 — 71,2)
G1+iG2 = (71,1 — 72,2) +i(y2,1 +71,2)-

3 THELENSING SIMULATIONS
3.1 Thecosmological simulations

To study the effect of hon-Gaussianity on the weak lensiagsst
tics, we use the outputs of a set of N-body cosmological sitrans
following the evolution of dark matter particles only. Thesmula-
tions have been already used|by Grossi 2t al. (2007), Hikiaale e
(2008), Grossi et al! (2008) and Roncarelli et al. (2010).eHee
will summarize the information relevant for this paper,erging
the interested readers to the original papers for furthtzilde

The simulations were carried out using the publicly avadab
code GADGET-2 (Springel 2005) assuming &CDM model with
total matter densitf2,, = 0.3, baryon density{2;, = 0.04 and cos-
mological constant densitf, = 0.7; the Hubble parameter is set
to h = 0.7, while the power spectrum is nhormalizedde = 0.9.
The simulated box has a comoving length of 500 Mpc/h and con-
tains 800° particles with a mass resolution 8fx 10'° M /h.
The comoving softening scaleds; = 12.5 kpc/h. The different
outputs are equispaced in comoving space by 250 Mpc/h. Tthe se
is composed by seven cosmological simulations consideliffes-
ent values of the non-Gaussianity paramefter.: 1000, +500,
+100, plus the standard Gaussian cgse = 0. Notice that in this
work we prefer to make use of this set of N-body simulations in
spite of the more recent one presented in Grossilet al. |(200@)
reason for this choice is twofold. First, the mass resofuisobet-
ter and this allows us to have more robust results on smdisca
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in particular for shear and flexions; second, the assumentsdbr Eq. [9) can be solved adopting the FFT techniques. Havingdhe
the parameteyfnr, span a larger range, covering also cases where tential on each plane, the lensing quantities can be desigefdting
the weak lensing signal produced by primordial non-Gaunityiés standard finite-difference schemes.

larger. In order to perform the ray-tracing simulations, we needito a

ply the multiple-plane theory to compute the total effe&irig into
account the contributions from each single lensing plankgh#-

3.2 Building the mock light-cones ray is deflected on each plane by the amoﬁ;(@-), thus the total

) ] deflection is given by the sum of all contributions. In paurtaz, if
To construct the mock light-cones used to perform the ragityg the light-cone is sampled int,; lens planes and the sources are
simulations, we follow the same procedure described in Baat: located on theN,.; + 1 plane, the relation giving the deflection
(2007), to which we refer for more details. Since the differeut- angle on thei-th plane of a ray with image positioﬁ reads (in
puts of an N-body simulation represent the redshift evoiutif the comoving units)
same initial matter distribution, we need to apply a spegifiz-
cedure to avoid the introduction of biases related to the tfeat s i — wk)vﬂqj @) : (10)
the same structures appear approximately at the sameogpssiti P w(wi)ar " RS

different outputs. For this reason we randomly shift andtethe
particle positions exploiting the periodicity of the siratibn boxes
in the plane perpendicular to the line-of-sight. As saicdbefgiven
our choice for the output redshifts, they overlap $6rper cent of
their comoving side-length, therefore we can just congideticles
in the lower half of the rotated and translated boxes.

Once selected the particles to be used, we project them along
the line-of-sight on a regular two-dimensional grid and poie
the projected mass density field using the triangular-sthajeud
(TSC) mass assignment (Hockney & Eastwood 1988). Finally vi
fast Fourier transform (FFT) techniques it is possible tover the

here¥ (%) is the unscaled lensing potential, i.e. the Newtonian po-
tential projected along the line-of-sighfty is a function depending
on the cosmologyy is the comoving distance andrepresents the
scale factor of the lens plane. Note that in general the -ligh$
will intercept the lens planes at arbitrary points, while fioten-
tial is defined only at the grid points. Thus, it is necessaryge a
bi-linear interpolation to compute the lensing quantities
Differentiating Eg.[(ID) with respect @ and definingA; =
d6; /06, andUy, the matrix containing the second derivatives of the
lensing potential, one obtains

lensing potential associated with the considered matserilolition. Frc(wi) fre (wi — wie)
More details on the numerical procedure will be given in tegtn Ai=1- Z T (w0 )ak Uk Ak - (11)
section. ‘

Our mock light-cones extend along the line-of-sightup thre  In the previous equatiort, represents the identity matrix. On the
shift zs = 1, using Nowt = 9 outputs. As all the distances are in  source plane, the Jacobian matx;, . +1 iS given by
comoving units, the opening angle of the ray-tracing sittioiecan

1—k— _
be calculated using the comoving distance of the last plarid ANoue+1 = ( _7:_ Zl 1 _72,{:“,; ) ) (12)
stack, resulting i = 13.49 degrees. Using a grid @b48? points, _ _ ! o
the corresponding angular resolution of the produced n=ap8.i7 wherex is now the effective convergence amd= 1 + iv2 is the
arcsec. effective shear. The term, called rotation, represents the asymme-

try introduced by multiple lenses. B
Differentiating Eq.[(IlL) with respect t, a recursive relation

33 Ray-tracing smulations for the two flexions can be obtained:

Ray-tracing simulations consist in tracing back a bundléighft DM = Z fr( w’} )fxe( wl W) [frwnG? + Uk DL
rays through the matter distribution of the light-conepirthe ob- K (wi)ar
server to the sources, which we place at redshift 1. . . . - (13
Projected mass maps are converted to projected density_WherEGU = VzU is a tensor containing the third derivatives of
contrast mapgﬁflojﬂ by the lensing potential.
) On the source plane, the tendorreads as
.. M
proj,1 _ Im L: (8) ) _ _
Im —_— i 1 V1,1 — Y2,2 Y2,1 + w1
A; D = 14
p N+1 ( e — 2 ) (14)
whereA; is the the area of the grid c.ell.on.th'eh pIane,Mfm is D2 - —21 — 22 4 wa
the mass projected on the grid cell with indi¢ésmn) belonging to N+1 = —ya2 —wa 2Via2 — a1

thei-th plane andl; = 250 Mpc/h is the depth of thé-th subvol-
ume used to build mock cone. The density contrast is deliblgra
defined such as to have the unit of a length (see Hamana & Kellie
2001). In the previous equatighrepresents the average comoving
density of the Universe.

The lensing potential on each plage is related to the pro-
jected density contrast through the two-dimensional Poiggjua-
tion, namely:

where, as for the Jacobian matrix; andw. represent the asym-
metric terms. In Eq.[{14) we do not take into account the addi-
tional terms, called twist and turn, introduced/ by Bacon &&er
(2009), but several tests performed at different resahstiassure
us that their inclusion would not significantly affect ousués.

4 RESULTS

2 H ? 10j,i / PN . . . ..
V25 (0) = 3Qm (70) PR G) . 9) In this section we present the results of our analysis of thuss-
cal properties of several lensing quantities extractenhftioe ray-
Exploiting the periodic boundary conditions of the progetmaps, tracing simulations described above. In particular we wdiscthe
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probability distribution function (PDF) in Se€i. 4.1, therd-order
moment (skewness) in SeCt. K.2, the power spectrum in [S&Gt. 4
the shear in aperture in SeEi. 4.4 and finally the bispectmum i

Sect[4.5b.

4.1 Probability distribution functions

We start considering the PDFs for several important lengiran-
tities. All our results are grouped in Figl 1. The panels oml#ft
present the actual PDFs of a given quantity, as obtainechgver
ing over 60 different light-cone realizations. Given theadimess of
the differences, we prefer to show only the results for thassian
modelfn1, = 0 (red points and lines) and for the most extreme non-
Gaussian modelsfxr, = —1000 (blue lines) andfx., = +1000
(green lines): models with smaller non-Gaussianity arermedi-
ate between the displayed lines. For reference, we also floow
the Gaussian model only) the error bars, referring to thesr.of
the corresponding sample of realizations. Finally, thestsman the
right present for all models (represented by different aolines,
as described in the label) the ratio between the non-Gaussid
Gaussian results.

The top row of Fig[lL refers to the modulus of the deflec-
tion anglea. The presence of primordial non-Gaussianity affects

result agrees with the analysis made by Grossilet al. (2008)@
three-dimensional density field and its probability disttion: un-
derdense regions tend to maintain the imprint of primordih-
Gaussianity, suggesting that statistics based on voidbe&arpow-
erful tool to estimatgni, (see also Kamionkowski etlal. 2009). The
plot shows that also the overdense regions keep the impantan
prints of the primordial non-Gaussianity: fer= 0.3 we find 8-10
per cent forfyr, = £100, ~ 40 per cent forfxr, = +500, and
more than 80 per cent fgfvr, = +1000. However, in this regime,
the statistics is quite poor and the ratio between non-Gaussd
Gaussian PDFs becomes very noisy. As final comment on PDFs
(and on their moments, see the following sections), it isdrtgmt
to stress that the lensing quantities here discussed aegvalbtes
that directly measure the dark matter distribution. Thieas true
for the density PDF derived from galaxy surveys, where tha-co
plex effect of bias must be corrected for.

4.2 Third-order moment

A possible alternative way to detect the signatures pradibyehe
presence of some primordial non-Gaussianity is to lookehigh-
order moments (skewness, kurtosis, etc.) of the distobubf the
various lensing quantities. The power of this approach Wwasdy

the PDFs by at most few percent in the most extreme cases withevident in the investigation of the corresponding quaetitielated

fxr = £1000, while the models with primordial non-Gaussianity
more consistent with current constrainfs{ = +100) are almost
indistinguishable from the Gaussian case. We also notietlte
differences produced by non-Gaussianity are more evidettd
high-value tails. These large deflections reflect lensimmts/asso-
ciated with rare, large structures. In this sense thesétseanfirm
those on the halo abundance: unlikely events (large hatoes)se-
ful probes of primordial non-Gaussianity. However, we hiaveote
that in the high-value tails the statistics can be quite poaknoisy:
a good modelization of the strong non-linear effects actinghe
same scales is necessary to allow a positive detection.

In the panels in the second row of Hig. 1 we show the analo-
gous plots for the (modulus of the) shearSince a negative value
of the fx1. parameter favors lower values-gfwe find that the ratio
between non-Gaussian and Gaussian models is in this case lar
than unity; the opposite trend holds for models with positiyri-
mordial non-Gaussianity. As already pointed out for theedgitbn
angle, the effect of a mild non-Gaussianity on the sheariblist
tion is tiny, below 1 per cent, which is comparable to the sife
the error bars (shown only in the left panels) but can growaip t
10 per cent for the very extreme tail. Only models with verghhi
values offnr, display a deviation with respect to the Gaussian case
that can be as large as the error bars obtained by averagenghev
simulated maps.

The PDFs for the first and second flexion are shown in the
panels in the third and forth rows of F[g. 1, respectivelye Ttend
is very similar to the case of the shear: compared to the Gauss
model, models with negativéxr, have a higher probability of an
excess at low values; the opposite trend holds in the higiretail.

The differences between Gaussian and non-Gaussian madels a

slightly more evident for the second flexiéh

Finally the panels in the last row of Figl 1 refer to the effec-
tive convergence, for which we find a slightly different sition. In
this case, in the maps there are also negative values, pongisig

to the density field (see, e.q., Coles et al. 1993; Grossi 208I8;
Lam & Sheth 2009). However, the measurement of these #tatist
is often affected by large error bars, that increase witlother and
hamper their reliable application to the real data. For thason,
in this section we will focus only on the skewngss of the two-
dimensional convergence fietd ;, defined as

(15)

where andus = 3, (ki,; —k)?/N? represent the mean and the
variance, computed on aN? pixels of the maps. To derive these
quantities, we first convolve the convergence map with a Sans
filter of angular radiug, then we subtract the mean and finally we
normalize it appropriately.

In the upper panel of Fif] 2 we present the results for the skew
ness of the effective convergence, as extracted from theskau
simulation. For reference we also show the results for tleenhwst
extreme non-Gaussian models. As expecied,(which is com-
puted as average over 60 different realizations) is a dsicrgéunc-
tion of the filtering radiu®: increasing the smoothing reduces the
non-Gaussian features introduced by the non-linear evolutur-
thermore the error bars, representing the r.m.s. over thef shf-
ferent light-cone realizations, are slightly increasingwd due to
increasing shot noise, since by increasing the smoothutigsave
are averaging over a smaller number of circles. This behasio
analogous to what found by Jain et al. (2000) in the detertioima
of the skewness of the effective convergence.

More interesting is the bottom panel of the same figure, where
we show the ratio between the third-order moments computed i
non-Gaussian and Gaussian simulations: we find a variation o
the order of 12 per cent fofn;, = £1000, = 6 per cent for
fxr = £500 and only~ 0.8 per cent forfxr, = +100. It is
worth noticing that this effect is almost constant on scafes 10

to underdense regions where the non-Gaussian PDFs shasv larg arcmin. Comparing these results with the size of the errcs, lvee

deviations from the Gaussian results: for negativere find less
than 1 per cent foyfnr, = £100, =~ 1 per cent forfxr, = £500,
and approximately 3 per cent fgir, = +1000. Note that this

can conclude that with relatively small maps, like thosdyae in
this paper, we can use the skewness statistics to detecsivahg
primordial non-Gaussianitiesfi{r. = £500, £1000). As shown
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the simulation set corresponding to the two most extreme@amssian modelsfny, = —1000 and fn1, = 41000 respectively. Right panels: the ratio
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levels of primordial non-Gaussianity’nr, = +1000 (green),fxt, = +500 (blue), fx1, = +100 (cyan), fn1. = —100 (orange),fx1, = —500 (red) and
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Figure 2. Upper panel: the skewnegg of the effective convergence for
the Gaussian model as a function of the angular gtdléne data and error
bars represent the mean and the r.m.s. computed on a set afes@nd
light-cone realizations, while blue and red lines preskataverage values
of the simulation set corresponding to the two most extreore @aussian
models,fn1, = —1000 and fn1, = +1000 respectively. Lower panel: the
ratio between the skewness results for non-Gaussian anss@aunodels.
Different color lines refer to different values ¢k, as indicated in the
labels.

by the results of the analysis made by Fedeli & Moscardini (B0
only with data covering very large area it would be possibldis-
entangle the effects of non-Gaussian models with = £100.
Finally we notice that a similar analysis performed on theash
field, which is directly related to the convergence one, waqrb-
vide comparable results.

4.3 Power Spectrum

An important theoretical quantity, directly related to theat-

ter power spectrum, is the effective convergence powertspac

P (¢), which is defined as the squared modulus of the Fourier
transform ofx, averaged on the modes having a given multipole
£. Starting fromP, (¢), it is possible to derive analytic expressions
for the power spectra of the other lensing quantities, ssdhase

for the shear P,) and the two flexions®» and Pg), namely:

Py () P(£)
Pr(0) P(0) = P P.(¢) .

In the top panels of Fid.]3 we show, for the Gaussian model
only, the comparison between the power spectra extracetdur
simulations and the corresponding theoretical predistincluding
the non-linear effect. We consider different lensing qitieast ef-
fective convergence, shear and reduced sheary/(1— k) (upper
left panel) and two components of the flexion (top right pandtke
notice that the agreement between the numerical resultshend
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Figure 3. Upper panels: comparison between theoretical predictions
our numerical estimates, derived as average of 60 diffeealizations of
the power spectra. Error bars correspond to the r.m.s. beatifferent real-
izations. Various lensing quantities are shown: effeatiwavergence, shear
and reduced shear (upper left panel); first and second fleXigwper right
panel). The results refer to the Gaussian case. Bottomgaaéb between
non-Gaussian and Gaussian estimates for the convergeneg ppectrum
(averaged over 60 different realizations) as a functionhef multipole!.
Different color lines refer to various values ¢, as indicated in the la-
bels. The left (right) panel refers to sourcesat= 1 (zs = 4).

theoretical expectations holds, as expected, only in angigage

of wavenumbers. On large scales (snialthe departure from the-

ory is due to the low number of modes we can use to average the
numerical power spectra. On small scales (lafgehe disagree-
ment is produced by the mass resolution (particularly eefe¥or

the flexion power spectrum) and by numerical artifacts pcedlby

the weighting function appearing in the definition of a giymwer
spectrum. A better mass resolution will make the lack of poate
high frequencies less severe, but it will not solve it ehyiteecause

of the limit of resolution due to the Nyquist frequency in8ic

to every discrete Fourier transformation. Moreover, whamer-
ically performing the ray-tracing simulations, low-redsiplanes

are poorly sampled since a few low-redshift pixels contetio the
lensing maps. This poor sampling is amplified by the weightin
function appearing in EqE. 10,111 and] 13. We can use[Fig. 3 as a
reference to define the range 6©bHbn which the numerical results
can be trusted: typically0® < ¢ < 10%.

In the bottom panels of Fig.] 3 we show the ratio between
the power spectra derived from the non-Gaussian and the-Gaus
sian simulations. We present here only the results for tfectfe
convergence since the other power spectra can be obtainied by
troducing the suitable dependence Grand then the correspond-
ing ratios are identical. In this case, we decided to stugyeh
fect of primordial non-Gaussianity at two different souredshifts,
namelyzs = 1 andzs = 4. This is done to verify, with the help
of numerical simulations, recent analytical predictionade by
Fedeli & Moscardinil(2010) using an improved version of tladoh
model. As expected, the effects of the primordial non-Gangy
become more evident when the absolute value of the parathater
increases. At very large scales, where the evolution Isrsthe lin-
ear regime, the Gaussian model and all the non-Gaussiarhenes
considered display approximately the same power spectamah,
the ratio is in practice unity or slightly larger due to theter of
the power spectrum at lodr At smaller scales¢(> 100 — 200)
the behaviors start to be different: a positive (negatfwg) param-
eter implies a larger (smaller) power spectrum with respethe
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Gaussian case. It is also worth noticing that at very smallesc

(¢ > 4000 — 5000) the ratio tends to an asymptotic value: this is
due to the fact that in this range the power spectrum can be ver
well approximated by a power-law relation and all models tout

to have approximately the same slope. We have to recall,yewe
that some numerical artifacts can affect our results oretlsesall
scales. Looking at the plots, we see that, as expected, tiee-di
ences between Gaussian and non-Gaussian models arettithe fo
power spectrum too and increase progressively with thecsaed-
shift: for the most extreme modelgx;, = £1000), the deviations
are of the order of 8 per cent at = 1 (10-12 per cent ats = 4),

for the models withfxr, = £500 they are approximately 4-5 per
cent, while for the models withfxr, = £100 the deviations are
smaller than 1 per cent. From the bottom panels of[Hig. 3 we als
see that the peak of the ratio between the non-Gaussian and th
Gaussian models shifts at higher frequencies when the soede
shift increases. This is in agreement with what was foundrriyg
by|Fedeli & Moscardinil(2010).

4.4 Shear in aperture

A quantity which is directly related to the shear power speut
but which can be more easily measured in real data is thelkmca
shear in aperturey,,. It represents the variance of the shear field
within a circular aperture of a given radids

J(16)]?

{ wl6 ] ’

where J; is the first-order Bessel function of the first kind.

The top panel of Fig.]4 shows the comparison between the
theoretical expectation and the results derived from owrsSian
simulations (averaged over 60 different light-cone redians): the
good agreement is evident up to scale8 ef 20 arcmin. For refer-
ence we also plot the results ffix;, = +1000. The bottom panel
of the same figure presents the ratio between the resultsofer n
Gaussian and Gaussian models as a function of the apertyle an
Being a weighted integral of the shear power spectrigm,(9)|?
has a trend which is quite similar to the one displayedry the
larger the absolute value of tifer, parameter is, the larger are the
deviations from the Gaussian expectations. An incremesitréd
ment) in the signal of the order of 7-8 per cent is expectedter
model with fxr, = +1000 (fxr. = —1000), while the differences
reduce to less than 1 per cent for the models vith = +100. As
expected, we find that the deviations from the Gaussian ¢&xpec
tions are larger for small apertures, but rapidly wash ouafwgles
larger than few arcmin, since the average of the shear iagahore
and more large scale structures. We also notice that tleeatdarge
smoothing scales does not reach unity since structuredraseig
evolved enough to show high intrinsic non-Gaussianityretfoze
higher smoothing scales are necessary to compensate ¢oe eff

[Yav (0)]? = 27 / T 1P, (1) (18)

0

4.5 Bispectrum

In several works (see elg. Verde et al. 1998, 2000b; Takadsrk: J
2004;| Sefusatti et al. 2006, 2010) it has been shown thatge lar
amount of cosmological information can be inferred fromgshely

of high-order spectra (the so-called poly-spectra). Heeejust
limit our investigation to the simplest high-order spentruhe bis-
pectrum. We recall that for a Gaussian random field all alkgla
information is contained in the power spectrum, while agjHsr-
order spectra vanish or are combinations of the power spactks
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Figure4. The shear in aperture. Top panel: comparison between thesthe
ical analytical relation and our estimate, derived as a@ef 60 numerical
realizations; error bars represent the r.m.s. The resfits to the Gaussian
model. Blue and brown lines present the corresponding teefar the two
most extreme non-Gaussian modélgz, = +1000 and fxz, = —1000
respectively. Bottom panel: the ratio between the resoitsdn-Gaussian
and Gaussian models: different color lines refer to vari@ises offny, as
indicated in the labels.

a consequence the measurement of the bispectrum is qusié\aen
to the non-Gaussian features of the quantity under invetsbig.

In general, the bispectrum depends on a triangular configura
tion and its values are very sensitive to the particular goméition
adopted. Since the complete determination of the bispmdsex-
tremely expensive from a computational point of view, wel vet
strict our analysis to equilateral triangles only. Notibatt given
our assumption of local shape for the primordial non-Gauss,
the non-Gaussian signal on squeezed configurations is texptc
be larger. In a future work we will use the convergence maps pr
sented in this work to study the full bispectrum configunatémd
how the signal expected from primordial non-Gaussianieissi-
tive to the triangular configuration.

In general the bispectrum of a given quantjtys defined as:

(f(0)f(&2)f (L)) = (2m)*0p (fr23) B(0r, £, 612) . (19)

In the previous equatiory. represents the Fourier transform of the
field f. Since the wavenumbers at which the bispectrum is com-
puted ¢1, 7> andZs) must form a closed triangle in Fourier space,
they are related by the constraifibs = #; + 0> + f5 = 0. Fi-
nally 6,2 is the angle betweefi andZ, and fixes, together with the
triangle condition/s.

Similar to Fig[3, the top panel of Figl 5 shows, for the Gaus-
sian model only, the comparison between our numerical estisn
and the theoretical bispectrum computed for the effectomver-
gence. We show a bispectrum computed for an equilateralgrenfi
ration, i.e., in the Fourier spadgé; | = |f2| = |¢3]. The results from
the simulations represent the average over 60 differeht-tigne



A numerical study of the effects of primordial non-Gausgi@eson weak lensing statistics 9

le-14 5

T .
Numerical +—+—
~en. Analytical

le-16

le-18 -

B()

1e-20

le-22 -

1e-24 | ]

le-26 L L
100 10000 100000

12 B

11

1

Bne/Bgs

0.9

0.8

i =-1000 ——
07 ‘

100 10000

Figure 5. Top panel: comparison between theoretical predictionscamd
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realizations with the corresponding r.m.s. plotted asrévaos. The
theoretical quantity are derived from the matter densispéctrum
Bpr(k1, ks, 612), that can be computed according to the perturba-
tion theory. For instance, in the case of the effective cayesmce
k, the bispectrum can be obtained by using the Limber's approx

range allowed by the most recent CMB constraints, we do not ex
pect a difference with respect to the Gaussian case largerféw
per cent.

5 THE DEGENERACY BETWEEN PRIMORDIAL
NON-GAUSSIANITY AND THE POWER SPECTRUM
NORMALIZATION AND MATTER DENSITY
PARAMETER

As shown in the previous sections, the effects due to prirabrd
non-Gaussianity on the various weak lensing quantitiesana!,
in particular when we consider models with valuesfef, in the
range allowed by present data. To better investigate thsilytiy
of their future detection, here we will discuss their degang with
the effects produced by the variation of other relevant adsgical
parameters. In particular we will focus on the degeneratydsen
the amount of primordial non-Gaussianity and the powertspec
normalizationos and matter density paramet@y,, which are cer-
tainly the most important source of uncertainty.

Since the different timing in the structure formation inddc
by fni modifies the power spectrum and its amplitude, non-
Gaussianity can be confused with a Gaussian model withexdift
os or ), parameter. In particular a positive (negatiye}, has ef-
fects similar to a higher (lower) power spectrum normai@abr
matter density parameter. In this section we show how muehnh
certainty on the value of thes normalization affects the possibil-
ity of detecting non-Gaussianity, keeping all the otherapaaters
fixed. We also show how important is the error in the detertiona
of the matter density parameter. To do so, we vary at the samee t
both Q.,, andQ, to have a flat geometry. For the sake of simplic-
ity, we restrict our analysis to the convergence power spettthe
shear in aperture and the effective convergence bispectrum

In the left column of Fig[lb we show a comparison between
the contribution of non-Gaussianity and the changes prexliny
a variation of the spectrum normalization while on the righn-
els we show the effect of varying the matter content, keeping
Qm + Qa = 1. In particular we considess (Q2,) in the range

imation in an analogous way as for the power spectrum (see e.g between 0.87 and 0.93 (0.27 and 0.33): the size of this i@miat

Cooray & Hu 2001), namely:

J
L
be <fK(w)’ fK(w)> ’

where fx(w) is a function depending on the cosmologi-
cal parameters andG(w) contains the distance weight

By (01,05, 012)

X

(20)

(Bartelmann & Schneider 2001). For the other lensing quan-

tities, similar relations hold. In order to quantify the exffs of
primordial non-Gaussianity, the panel on the bottom shdwes t
bispectrum computed for the different non-Gaussian models
normalized to the corresponding result for the Gaussian one

As for the case of the power spectrum, we see that the agree-

ment between the theoretical expectations and the nurheriea
dictions holds only for a limited range of angular scales, ibu
this case the range for which the estimate of bispectrumbigsto
is much more limited. Focusing on scales where the numengeal
sults can be considered reliable, we find that the contobutif
non-Gaussianity is not very relevant, reaching up to 12 pet c
in the very non-linear regime, but only for the most extrerna-n
Gaussian modelsff, = +1000). For models withfxt, in the

approximately corresponds to the typical @ror derived from the
most recent CMB analysis. It is clear from the figure that ttrere
on the determination of the parameters has effects morertengo
than the introduction of a weak primordial hon-Gaussianitye
two most extreme models produce deviations from the Gaussia
predictions that are of the same level of uncertaif\tys = 0.03
and AQ,, = 0.02. On the contrary, the models witfi, in the
range allowed by current constraints have effects well iwithe
range allowed by the present uncertainties, since theacefs
smaller than a variation afs () ~ 0.01. This implies that sig-
nificant constraints on the amount of primordial non-Gaargsy
can be obtained only reducing the uncertainties on the pspes-
trum normalization and on the matter density parameter.

6 CONCLUSIONS

In this work, we used the outputs of N-body simulations to- cre
ate a large set of realistic mock maps for several lensingttfies
(deflection angle, effective convergence, shear and thebmpo-
nents of the flexion) in the framework of cosmological modeith
different amount of primordial non-Gaussianity, quantifigsing
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different levels of primordial non-Géassy: fnr, = +1000 (cyan line);

Sz, = +500 (blue line); fxz, = 4100 (red line); fn1, = —100 (magenta line);fx1, = —500 (orange line);fnr, = —1000 (brown line).

the dimensionless parametg¢r,. In particular we considered sev-
eral statistical properties (PDF, power spectrum, sheaperture,
skewness and bispectrum) and compared the results witlothe ¢
sponding ones obtained in the Gaussian case. Our maingeanlt
be summarized as follows.

e For all quantities here considered the effect produced by th
presence of primordial non-Gaussianity is relatively $paahount-
ing to differences of 1 per cent fdyni.| = 100, 5 per cent for
|f~n| = 500, and 8-15 per cent forfx.| = 1000. These results
are in good agreement with the analytic predictions preskimt
Fedeli & Moscardinil(2010).

e The largest effects are visible on small scales (i.e. faydar
multipoles! > 1000), where, however, also non-linearity can pro-
duce strong effects which have to be accurately modeled.

e The most promising statistical tests to search for imprirfits
primordial non-Gaussianity are the (convergence and spearer
spectra and the (convergence) bispectrum, thanks to tHiessiae
of their error bars at the relevant scales.

e The differences of the various PDFs in both rare-event tails

are also important, but their discriminating power is rextlby the
poor statistics and by the high-level of noise.

e We compared the effects produced by the primordial non-
Gaussianity with the uncertainties due to the power spectrar-
malization and matter density parameter: an error in therdet
nation of g of about 3 per cent or of2,, of about 10 per cent
gives differences comparable with the non-Gaussian maowiéfs
fxL = =£1000, while for more realistic non-Gaussian models
with fxi, = +100 the effects is smaller than the one induced by
Acs(AQm) = 0.01.

As said, a significant covariance exists between primordial
non-Gaussianity and fundamental cosmological parametepe-
cially with os and Q.. The smallness of non-Gaussian effects
found in our analysis means that one can obtain a precisaasti
of these parameters despite their covariance ¥th As an exam-
ple, ignoring the possible presence of a primordial nonsSemnity
with fxr, = 100, consistent with current observational constraints,
would induce a mere 0.2 per cent uncertainty in the estimhate o
the cosmological parameters, i.e. well below the curremtetror.
The same argument, in reverse, is telling us that the searctoh-
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Gaussian features in the weak-lensing statistics is a Vealjeng-
ing task. According to our results, it can be successfulppieted
only if errorbars can be significantly reduced. For the psepof
discriminating among competing models the reduction neeti®
be dramatic. Indeed, as pointed out by Fedeli & Moscardidd (g,
the fact that deviations from Gaussianity are small butesystics
allows one to estimatgni, by adding the statistical information
from different angular bins, this is also shown in our anialp$ the
power spectrum for sources at different redshifts.

A more significant reduction in the errorbars is required to
break the degeneracy between non-Gaussianity with cogiinolo
cal parameters, says or Q. Indeed, as shown in Fifl 6, re-
moving such degeneracy requires to compare informatiom fro
a limited number of bins at very different scales. As shown by
Fedeli & Moscardini [(2010), both tasks could be achievedhwit
next-generation, all-sky surveys. A good example is celstaepre-
sented by the ESA mission EUCLID (Laureijs 2009). According
the analysis made by Fedeli & Moscardini (2010) and baseden a
alytic predictions for the power spectrum quantitativebypfirmed
in this numerical work, we expect that the quality and thengjtya
of the EUCLID data will allow to constraiyfxr, at the level of few
tens, opening the possibility of discriminating betwees tarious
inflationary models.
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