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ABSTRACT
While usually cosmological initial conditions are assumedto be Gaussian, inflationary theo-
ries can predict a certain amount of primordial non-Gaussianity which can have an impact on
the statistical properties of the lensing observables. In order to evaluate this effect, we build
a large set of realistic maps of different lensing quantities starting from light-cones extracted
from large dark-matter only N-body simulations with initial conditions corresponding to dif-
ferent levels of primordial local non-Gaussianity strength fNL. Considering various statistical
quantities (PDF, power spectrum, shear in aperture, skewness and bispectrum) we find that
the effect produced by the presence of primordial non-Gaussianity is relatively small, being
of the order of few per cent for values of|fNL| compatible with the present CMB constraints
and reaching at most 10-15 per cent for the most extreme caseswith |fNL| = 1000. We also
discuss the degeneracy of this effect with the uncertainties due to the power spectrum nor-
malizationσ8 and matter density parameterΩm, finding that an error in the determination
of σ8 (Ωm) of about 3 (10) per cent gives differences comparable with non-Gaussian mod-
els havingfNL = ±1000. These results suggest that the possible presence of an amount of
primordial non-Gaussianity corresponding to|fNL| = 100 is not hampering a robust determi-
nation of the main cosmological parameters in present and future weak lensing surveys, while
a positive detection of deviations from the Gaussian hypothesis is possible only breaking the
degeneracy with other cosmological parameters and using data from deep surveys covering a
large fraction of the sky.

Key words: cosmology: theory - gravitational lensing: weak - cosmological parameters -
large-scale structure of the Universe - Methods: N-body simulations

1 INTRODUCTION

In recent years, the interest for an accurate measurement ofthe
amount of non-Gaussianity present in the primordial density field
has largely increased. The main reason is that this test is now con-
sidered not only a general probe of the inflationary paradigm, but
also a powerful tool to constrain the plethora of its different vari-
ants. Only the most standard slow-rolling models based on a single
field produce in fact almost uncorrelated fluctuations, which is the
motivation of the common assumption (and large simplification)

⋆ E-mail: francesco@ita.uni-heidelberg.de

that their distribution is Gaussian. In general, small deviations from
Gaussianity are predicted even for the simplest inflationary models,
while non-standard models, like the scenarios based on the curva-
ton, on the inhomogeneous reheating and on the Dirac-Born-Infeld
inflation allow much more significant departures (see Bartolo et al.
2004, and references therein).

It has become common to quantify the level of primordial
non-Gaussianity adopting the dimensionless non-linearity parame-
terfNL (see, e.g., Salopek & Bond 1990; Gangui 1994; Verde et al.
2000a; Komatsu & Spergel 2001), that measures the importance
of the quadratic term in a sort of Taylor expansion of the gauge-
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invariant Bardeen potentialΦ1:

Φ = ΦL + fNL(Φ
2
L − 〈Φ2

L〉) ; (1)

hereΦL represents a Gaussian random field. Hereafter we will
adopt the so-called large-scale structure (LSS) convention, where
Φ is linearly extrapolated to the present epoch2. Moreover we
will consider only the so-called local shape for non-Gaussianity,
in which the bispectrum signal is larger on squeezed triangle con-
figurations. For more details about other possible shapes werefer to
Bartolo et al. (2004); Verde & Matarrese (2009); Bartolo & Riotto
(2009) and references therein.

At present the most stringent constraints onfNL come from
the cosmic microwave background (CMB) data. Their discrimi-
nating power derives from the fact that its temperature fluctua-
tions trace the density perturbations before the gravitational non-
linearities modify their original distribution. Whateveris the spe-
cific test adopted, all CMB analysis consistently allow onlyvery
small deviations from Gaussianity: for instance, analyzing the re-
cent WMAP data, Komatsu et al. (2010) found thatfNL varies be-
tween -13 and 97, while Smith et al. (2009) found−5 < fNL <
104 (at 95 per cent confidence level); see also Komatsu et al.
(2009).

Alternative and complementary constraints onfNL can in
principle be derived analyzing the LSS (for recent reviews,see,
e.g. Verde 2010; Desjacques & Seljak 2010). As already evident
from the first generation of non-Gaussian N-body simulations
(Messina et al. 1990; Moscardini et al. 1991; Weinberg & Cole
1992), the presence of a positive (negative) skewness in thePDF
of the primordial density field tends to favor (disfavor) theforma-
tion of cosmic structures, inducing a different timing in the whole
process of gravitational instability. However, to be fullyexploited,
this approach needs to be complemented with reliable methods to
disentangle from the primordial signal the non-Gaussian features
introduced by the late non-linear evolution and by the possible pres-
ence of a non-linear bias factor. While lensing statistics entirely
avoid the latter problem, to attack the former one it is necessary
to make use of both analytic techniques (like high-order perturba-
tion theory and the Time-Renormalization Group approach; see,
e.g., Taruya et al. 2008; Bartolo et al. 2010) and full N-bodysim-
ulations (see, e.g., Kang et al. 2007; Grossi et al. 2007; Dalal et al.
2008; Viel et al. 2009; Desjacques et al. 2009; Pillepich et al. 2010;
Grossi et al. 2009) to properly calibrate the theoretical predictions
in the non-linear regime. The large amount of theoretical work
recently done in this direction allowed to better understand what
is the size of the effects on the abundance of non-linear struc-
tures (Matarrese et al. 2000; Verde et al. 2000a; Mathis et al. 2004;
Kang et al. 2007; Grossi et al. 2007, 2009; Maggiore & Riotto
2010; Roncarelli et al. 2010), on the halo biasing (Dalal et al. 2008;
McDonald 2008; Fedeli et al. 2009; Carbone et al. 2010), on the
galaxy bispectrum (Sefusatti & Komatsu 2007; Jeong & Komatsu
2009; Nishimichi et al. 2009), on the mass density distribution
(Grossi et al. 2008; Lam & Sheth 2009; Lam et al. 2009), on the
topology (Matsubara 2003; Hikage et al. 2008), on the integrated
Sachs-Wolfe effect (Afshordi & Tolley 2008; Carbone et al. 2008),
on the Ly-α flux from low-density intergalactic medium (Viel et al.
2009), on the 21 cm fluctuations (Cooray 2006; Pillepich et al.

1 We recall that on scales smaller than the Hubble radiusΦ corresponds to
the usual Newtonian peculiar potential (but with changed sign).
2 With the cosmological parameters adopted in this paper, this corresponds
to values forfNL larger by a factor of≈ 1.3 with respect to the so-called
CMB convention, whereΦ is instead extrapolated atz = ∞.

2007) and on the reionization process (Crociani et al. 2009). The
first attempts of an application to real observational data gave very
encouraging results: Slosar et al. (2008), combining the bias mea-
surements for two samples of luminous red galaxies and quasars,
found fNL = 48+55

−74; Afshordi & Tolley (2008), studying the in-
tegrated Sachs-Wolfe effect (ISW) in the NVSS survey, derived
fNL = 354 ± 165; all error bars are at 2-σ level3. Very recently
Xia et al. (2010) found32 < fNL < 152 from the analysis of the
auto-correlation of the brightest NVSS sources on angular scales of
several degrees.

In this paper we will focus on estimating the weak lensing sig-
nals in scenarios with primordial non-Gaussianity. Being based on
the measurement of the shear effect produced by the intervening
large-scale structure of the Universe on the images of background
galaxies, gravitational lensing is a direct probe of the total mat-
ter distribution. For this reason it is considered one of themost
powerful tools to constrain the main cosmological parameters and
many dedicated projects are in progress or under study. A very ex-
citing perspective is certainly opened by the ESA Cosmic Vision
project EUCLID (Laureijs 2009), currently under study: thegoal
of its wide survey is to obtain the shear measurements for about
40 galaxies per arcmin2 on the entire extragalactic sky with Galac-
tic latitude b > 30 (approximately 20000 deg2). The possibility
of using the weak lensing signals to constrain also the amount of
primordial non-Gaussianity has been already explored by different
authors. Amara & Refregier (2004) used a generalized halo model
to study the impact on the estimates of the power spectrum nor-
malizationσ8 of primordial non-Gaussianity, modeled assuming
various lognormal distributions for the density field. Morerecently,
Fedeli & Moscardini (2010) computed the power spectrum of the
weak cosmic shear for non-Gaussian models with different values
of fNL. In particular, they improved the halo model including more
accurate prescriptions for its ingredients (mass functions, bias and
halo profile), calibrated on the last generation of non-Gaussian N-
body simulations. The application of this model to a survey hav-
ing the expected characteristics of the EUCLID project showed the
possibility of a significant detection of non-Gaussianity at the level
of |fNL| ≈ few tens, once the remaining parameters are held fixed.

In this paper we investigate weak lensing statistics in non-
Gaussian scenarios using numerical rather than analyticaltools.
Specifically, we will create weak lensing maps performing ray-
tracing simulations through very deep light-cones extracted from
high-resolution N-body simulations. The advantage of thisap-
proach is twofold. First of all, N-body simulations permit to fully
account for the non-linear evolution which is usually modeled less
accurately by analytical means. Second, numerical experiments al-
low us to extract a large set of realistic weak lensing maps that can
be used for better evaluating the statistical robustness ofthe results.

The main goal of our numerical work is to figure out what
are the observational evidences of the presence of some level of
primordial non-Gaussianity, as quantified by thefNL parameter. In
particular we will compute a large set of weak lensing statistics in
models with differentfNL and we will quantify the deviations from
the corresponding results in the Gaussian scenario. This isimpor-
tant not only to address the possibility of a positive detection with
future data, but also to establish at which level an amount ofpri-
mordial non-Gaussianity compatible with the present observational

3 We report the values as revised by Grossi et al. (2009) to include a cor-
rection mimicking the ellipsoidal collapse and converted to the LSS con-
vention.
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constraints can hamper an accurate measurement of the othercos-
mological parameters. We must recall that Gaussian initialcondi-
tions are virtually always assumed in their practical derivation.

The plan of this paper is as follows. In Section 2 we review
the basis of the lensing formalism necessary to the present work.
In Section 3 we describe the cosmological simulations and the
numerical procedure to build the lensing maps. In Section 4 we
present our main results about the statistical properties of the dif-
ferent lensing quantities investigated: the probability distribution
function, the third-order moment, the power spectrum and the bis-
pectrum. In Section 5 we compare the effects produced by primor-
dial non-Gaussianity to the uncertainties related to powerspectrum
normalizationσ8 and on the matter density parameterΩm. Finally,
in Sect. 6 we draw our conclusions.

2 LENSING THEORY

In this section we give a short summary of the aspects of the the-
ory of gravitational lensing that will be used throughout this work.
For more detail we refer to the review by Bartelmann & Schneider
(2001).

We can start by describing how light rays are deflected by
the presence of structures in the universe. Since the coherence
length of cosmic structures is small compared to the Hubble ra-
dius, it is possible to slice the large-scale structures into shells and
use the so-calledthin-screenapproximation for them, which al-
lows to consider only the projected mass distribution of theslices.
Denoting byΣ(~θ) the projected mass distribution of the lens at
the angular position vector~θ, the convergence can be defined as
κ(~θ) ≡ Σ(~θ)/Σcrit, where

Σcrit ≡
c2

4πG

Dds

DdDs
(2)

is thecritical surface density. In the previous equationDs, Dd and
Dds represent the angular-diameter distances between the observer
and the source, between the observer and the lens, and between the
lens and the source, respectively.

Thanks to thethin-screenapproximation, the object acting as
lens can be completely described using its lensing potential Ψ,
which is related to the convergence through the two-dimensional
Poisson equation

∇2Ψ(~θ) = 2κ(~θ) . (3)

The deflection anglêα is simply the gradient of the lensing poten-
tial, α̂ = ∇Ψ.

Up to second order, lensing-induced image distortions are
given by

θi
′ ≃ Aijθj +

1

2
Dijkθjθk (4)

(see, e.g., Goldberg & Bacon 2005; Bacon et al. 2006), where
Aij ≡ ∂jθ

′
i represent the elements of the Jacobian matrix of the

lens equation,θi′ are the unlensed coordinates, and the tensor is
defined asDijk ≡ ∂kAij . In the previous equations∂i ≡ ∂/∂θi.
The quantitiesA andD can be conveniently expressed as a func-
tion of the convergenceκ, of the complex shear termγ = γ1+ iγ2,

and of their derivatives:

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

Dij1 =

(

−2γ1,1 − γ2,2 −γ2,1
−γ2,1 −γ2,2

)

(5)

Dij2 =

(

−γ2,1 −γ2,2
−γ2,2 2γ1,2 − γ2,1

)

;

in the previous equations the comma indicates the derivative. The
shear derivatives can be combined to construct two new quantities,
F andG, calledfirst andsecond flexionrespectively, defined as

F ≡ F1 + iF2 = (γ1,1 + γ2,2) + i(γ2,1 − γ1,2) (6)

G ≡ G1 + iG2 = (γ1,1 − γ2,2) + i(γ2,1 + γ1,2). (7)

The previous formalism can be easily generalized to the case
in which a continuous distribution of matter is considered.The vol-
ume between the observer and the sources can be divided in a se-
quence of sub-volumes having a size along the line-of-sightsuffi-
ciently small compared to the distances between the observer and
the sub-volumes, and between those and the sources. The matter
of each sub-volume can be projected onto a plane and then we
are allowed to use again the thin-screen approximation described
above. The final quantities, estimated on the source plane, will be
the weighted sum of the relevant quantities, where the weight is
given by a suitable ratio of the involved distances. In multiple lens-
plane theory, rotation of light bundles can occur in addition to shear
and convergence, but numerical simulations have shown thatthese
are negligibly small (Jain et al. 2000). Then, all the lens properties
are contained in the lensing potential. Knowing it on all lens planes
allows us to write recursion relations representing the deflection an-
gle, the shear, the effective convergence and the two flexions on the
source plane. These relations will be given and discussed inmore
detail in Section 3.3.

3 THE LENSING SIMULATIONS

3.1 The cosmological simulations

To study the effect of non-Gaussianity on the weak lensing statis-
tics, we use the outputs of a set of N-body cosmological simulations
following the evolution of dark matter particles only. These simula-
tions have been already used by Grossi et al. (2007), Hikage et al.
(2008), Grossi et al. (2008) and Roncarelli et al. (2010). Here we
will summarize the information relevant for this paper, referring
the interested readers to the original papers for further details.

The simulations were carried out using the publicly available
codeGADGET-2 (Springel 2005) assuming aΛCDM model with
total matter densityΩm = 0.3, baryon densityΩb = 0.04 and cos-
mological constant densityΩΛ = 0.7; the Hubble parameter is set
to h = 0.7, while the power spectrum is normalized toσ8 = 0.9.
The simulated box has a comoving length of 500 Mpc/h and con-
tains8003 particles with a mass resolution of2 × 1010 M⊙/h.
The comoving softening scale isǫPl = 12.5 kpc/h. The different
outputs are equispaced in comoving space by 250 Mpc/h. The set
is composed by seven cosmological simulations consideringdiffer-
ent values of the non-Gaussianity parameterfNL: ±1000, ±500,
±100, plus the standard Gaussian casefNL = 0. Notice that in this
work we prefer to make use of this set of N-body simulations in
spite of the more recent one presented in Grossi et al. (2009). The
reason for this choice is twofold. First, the mass resolution is bet-
ter and this allows us to have more robust results on small scales,

c© 2010 RAS, MNRAS000, 1–12
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in particular for shear and flexions; second, the assumed values for
the parameterfNL span a larger range, covering also cases where
the weak lensing signal produced by primordial non-Gaussianity is
larger.

3.2 Building the mock light-cones

To construct the mock light-cones used to perform the ray-tracing
simulations, we follow the same procedure described in Paceet al.
(2007), to which we refer for more details. Since the different out-
puts of an N-body simulation represent the redshift evolution of the
same initial matter distribution, we need to apply a specificpro-
cedure to avoid the introduction of biases related to the fact that
the same structures appear approximately at the same positions in
different outputs. For this reason we randomly shift and rotate the
particle positions exploiting the periodicity of the simulation boxes
in the plane perpendicular to the line-of-sight. As said before, given
our choice for the output redshifts, they overlap for50 per cent of
their comoving side-length, therefore we can just considerparticles
in the lower half of the rotated and translated boxes.

Once selected the particles to be used, we project them along
the line-of-sight on a regular two-dimensional grid and compute
the projected mass density field using the triangular-shaped-cloud
(TSC) mass assignment (Hockney & Eastwood 1988). Finally via
fast Fourier transform (FFT) techniques it is possible to recover the
lensing potential associated with the considered matter distribution.
More details on the numerical procedure will be given in the next
section.

Our mock light-cones extend along the line-of-sight up to red-
shift zs = 1, usingNout = 9 outputs. As all the distances are in
comoving units, the opening angle of the ray-tracing simulation can
be calculated using the comoving distance of the last plane in the
stack, resulting inθ = 13.49 degrees. Using a grid of20482 points,
the corresponding angular resolution of the produced maps is 23.7
arcsec.

3.3 Ray-tracing simulations

Ray-tracing simulations consist in tracing back a bundle oflight
rays through the matter distribution of the light-cone, from the ob-
server to the sources, which we place at redshiftzs = 1.

Projected mass maps are converted to projected density-
contrast mapsδproj,ilm by

δproj,ilm =
M i

lm

Aiρ̄
− Li , (8)

whereAi is the the area of the grid cell on thei-th plane,M i
lm is

the mass projected on the grid cell with indices(l,m) belonging to
thei-th plane andLi = 250 Mpc/h is the depth of thei-th subvol-
ume used to build mock cone. The density contrast is deliberately
defined such as to have the unit of a length (see Hamana & Mellier
2001). In the previous equation̄ρ represents the average comoving
density of the Universe.

The lensing potential on each planeΨi is related to the pro-
jected density contrast through the two-dimensional Poisson equa-
tion, namely:

∇2Ψi(~θ) = 3Ωm

(

H0

c

)2

δproj,i(~θ) . (9)

Exploiting the periodic boundary conditions of the projected maps,

Eq. (9) can be solved adopting the FFT techniques. Having thepo-
tential on each plane, the lensing quantities can be derivedadopting
standard finite-difference schemes.

In order to perform the ray-tracing simulations, we need to ap-
ply the multiple-plane theory to compute the total effect taking into
account the contributions from each single lensing plane. Alight-
ray is deflected on each plane by the amount~αi(~θi), thus the total
deflection is given by the sum of all contributions. In particular, if
the light-cone is sampled intoNout lens planes and the sources are
located on theNout + 1 plane, the relation giving the deflection
angle on thei-th plane of a ray with image position~θ1 reads (in
comoving units)

~θi = ~θ1 −

i−1
∑

k=1

fK(wi − wk)

fK(wi)ak
∇~xΨk(~x) ; (10)

hereΨk(~x) is the unscaled lensing potential, i.e. the Newtonian po-
tential projected along the line-of-sight,fK is a function depending
on the cosmology,w is the comoving distance anda represents the
scale factor of the lens plane. Note that in general the light-rays
will intercept the lens planes at arbitrary points, while the poten-
tial is defined only at the grid points. Thus, it is necessary to use a
bi-linear interpolation to compute the lensing quantities.

Differentiating Eq. (10) with respect to~θ1 and definingAi ≡
∂~θi/∂~θ1 andUk the matrix containing the second derivatives of the
lensing potential, one obtains

Ai = I −

i−1
∑

k=1

fK(wk)fK(wi − wk)

fK(wi)ak
UkAk . (11)

In the previous equation,I represents the identity matrix. On the
source plane, the Jacobian matrixANout+1 is given by

ANout+1 =

(

1− κ− γ1 −γ2 + ω
−γ2 − ω 1− κ+ γ1

)

, (12)

whereκ is now the effective convergence andγ = γ1 + iγ2 is the
effective shear. The termω, called rotation, represents the asymme-
try introduced by multiple lenses.

Differentiating Eq. (11) with respect to~θi, a recursive relation
for the two flexions can be obtained:

D1,2
i = −

i−1
∑

k=1

fK(wk)fK(wi − wk)

fK(wi)ak
[fkwkG

1,2
U + UkD

1,2
k ] ,

(13)
whereGU = ∇~xU is a tensor containing the third derivatives of
the lensing potential.

On the source plane, the tensorD reads as

D1
N+1 =

(

−2γ1,1 − γ2,2 −γ2,1 + ω1

−γ2,1 − ω1 −γ2,2

)

(14)

D2
N+1 =

(

−γ2,1 −γ2,2 + ω2

−γ2,2 − ω2 2γ1,2 − γ2,1

)

,

where, as for the Jacobian matrix,ω1 andω2 represent the asym-
metric terms. In Eq. (14) we do not take into account the addi-
tional terms, called twist and turn, introduced by Bacon & Schäfer
(2009), but several tests performed at different resolutions assure
us that their inclusion would not significantly affect our results.

4 RESULTS

In this section we present the results of our analysis of the statisti-
cal properties of several lensing quantities extracted from the ray-
tracing simulations described above. In particular we discuss the

c© 2010 RAS, MNRAS000, 1–12
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probability distribution function (PDF) in Sect. 4.1, the third-order
moment (skewness) in Sect. 4.2, the power spectrum in Sect. 4.3,
the shear in aperture in Sect. 4.4 and finally the bispectrum in
Sect. 4.5.

4.1 Probability distribution functions

We start considering the PDFs for several important lensingquan-
tities. All our results are grouped in Fig. 1. The panels on the left
present the actual PDFs of a given quantity, as obtained averag-
ing over 60 different light-cone realizations. Given the smallness of
the differences, we prefer to show only the results for the Gaussian
modelfNL = 0 (red points and lines) and for the most extreme non-
Gaussian models:fNL = −1000 (blue lines) andfNL = +1000
(green lines): models with smaller non-Gaussianity are intermedi-
ate between the displayed lines. For reference, we also show(for
the Gaussian model only) the error bars, referring to the r.m.s. of
the corresponding sample of realizations. Finally, the panels on the
right present for all models (represented by different colour lines,
as described in the label) the ratio between the non-Gaussian and
Gaussian results.

The top row of Fig. 1 refers to the modulus of the deflec-
tion angleα̂. The presence of primordial non-Gaussianity affects
the PDFs by at most few percent in the most extreme cases with
fNL = ±1000, while the models with primordial non-Gaussianity
more consistent with current constraints (fNL = ±100) are almost
indistinguishable from the Gaussian case. We also notice that the
differences produced by non-Gaussianity are more evident in the
high-value tails. These large deflections reflect lensing events asso-
ciated with rare, large structures. In this sense these results confirm
those on the halo abundance: unlikely events (large haloes)are use-
ful probes of primordial non-Gaussianity. However, we haveto note
that in the high-value tails the statistics can be quite poorand noisy:
a good modelization of the strong non-linear effects actingon the
same scales is necessary to allow a positive detection.

In the panels in the second row of Fig. 1 we show the analo-
gous plots for the (modulus of the) shearγ. Since a negative value
of thefNL parameter favors lower values ofγ, we find that the ratio
between non-Gaussian and Gaussian models is in this case larger
than unity; the opposite trend holds for models with positive pri-
mordial non-Gaussianity. As already pointed out for the deflection
angle, the effect of a mild non-Gaussianity on the shear distribu-
tion is tiny, below 1 per cent, which is comparable to the sizeof
the error bars (shown only in the left panels) but can grow up to
10 per cent for the very extreme tail. Only models with very high
values offNL display a deviation with respect to the Gaussian case
that can be as large as the error bars obtained by averaging over the
simulated maps.

The PDFs for the first and second flexion are shown in the
panels in the third and forth rows of Fig. 1, respectively. The trend
is very similar to the case of the shear: compared to the Gaussian
model, models with negativefNL have a higher probability of an
excess at low values; the opposite trend holds in the high-value tail.
The differences between Gaussian and non-Gaussian models are
slightly more evident for the second flexionG.

Finally the panels in the last row of Fig. 1 refer to the effec-
tive convergence, for which we find a slightly different situation. In
this case, in the maps there are also negative values, corresponding
to underdense regions where the non-Gaussian PDFs show large
deviations from the Gaussian results: for negativeκ we find less
than 1 per cent forfNL = ±100, ≈ 1 per cent forfNL = ±500,
and approximately 3 per cent forfNL = ±1000. Note that this

result agrees with the analysis made by Grossi et al. (2008) on the
three-dimensional density field and its probability distribution: un-
derdense regions tend to maintain the imprint of primordialnon-
Gaussianity, suggesting that statistics based on voids canbe a pow-
erful tool to estimatefNL (see also Kamionkowski et al. 2009). The
plot shows that also the overdense regions keep the important im-
prints of the primordial non-Gaussianity: forκ = 0.3 we find 8-10
per cent forfNL = ±100, ≈ 40 per cent forfNL = ±500, and
more than 80 per cent forfNL = ±1000. However, in this regime,
the statistics is quite poor and the ratio between non-Gaussian and
Gaussian PDFs becomes very noisy. As final comment on PDFs
(and on their moments, see the following sections), it is important
to stress that the lensing quantities here discussed are observables
that directly measure the dark matter distribution. This isnot true
for the density PDF derived from galaxy surveys, where the com-
plex effect of bias must be corrected for.

4.2 Third-order moment

A possible alternative way to detect the signatures produced by the
presence of some primordial non-Gaussianity is to look at the high-
order moments (skewness, kurtosis, etc.) of the distribution of the
various lensing quantities. The power of this approach was already
evident in the investigation of the corresponding quantities related
to the density field (see, e.g., Coles et al. 1993; Grossi et al. 2008;
Lam & Sheth 2009). However, the measurement of these statistics
is often affected by large error bars, that increase with theorder and
hamper their reliable application to the real data. For thisreason,
in this section we will focus only on the skewnessµ3 of the two-
dimensional convergence fieldκi,j , defined as

µ3 =
µ
−3/2
2

N2

∑

i,j

(κi,j − κ̄)3 , (15)

whereκ̄ andµ2 ≡
∑

i,j(κi,j−κ̄)2/N2 represent the mean and the
variance, computed on allN2 pixels of the maps. To derive these
quantities, we first convolve the convergence map with a Gaussian
filter of angular radiusθ, then we subtract the mean and finally we
normalize it appropriately.

In the upper panel of Fig. 2 we present the results for the skew-
ness of the effective convergence, as extracted from the Gaussian
simulation. For reference we also show the results for the two most
extreme non-Gaussian models. As expected,µ3 (which is com-
puted as average over 60 different realizations) is a decreasing func-
tion of the filtering radiusθ: increasing the smoothing reduces the
non-Gaussian features introduced by the non-linear evolution. Fur-
thermore the error bars, representing the r.m.s. over the set of dif-
ferent light-cone realizations, are slightly increasing with θ due to
increasing shot noise, since by increasing the smoothing radius we
are averaging over a smaller number of circles. This behavior is
analogous to what found by Jain et al. (2000) in the determination
of the skewness of the effective convergence.

More interesting is the bottom panel of the same figure, where
we show the ratio between the third-order moments computed in
non-Gaussian and Gaussian simulations: we find a variation of
the order of 12 per cent forfNL = ±1000, ≈ 6 per cent for
fNL = ±500 and only≈ 0.8 per cent forfNL = ±100. It is
worth noticing that this effect is almost constant on scalesup to 10
arcmin. Comparing these results with the size of the error bars, we
can conclude that with relatively small maps, like those analyzed in
this paper, we can use the skewness statistics to detect onlystrong
primordial non-Gaussianities (fNL = ±500,±1000). As shown
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Figure 1. Left panels: the differential PDF for different lensing quantities: the (modulus of the) deflection angleα (first row); the (modulus of the) shear
γ (second row); the (moduli of the) two flexionsF andG (third and fourth rows, respectively); the effective convergenceκ (last row). Points and error
bars represent the average and r.m.s. of a set of 60 differentrealizations for the Gaussian model, while blue and red lines present the average values of
the simulation set corresponding to the two most extreme non-Gaussian models,fNL = −1000 andfNL = +1000 respectively. Right panels: the ratio
between non-Gaussian and Gaussian differential PDFs for the same quantities shown in the left panels. Different color lines refer to models with different
levels of primordial non-Gaussianity:fNL = +1000 (green),fNL = +500 (blue),fNL = +100 (cyan),fNL = −100 (orange),fNL = −500 (red) and
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the Gaussian model as a function of the angular scaleθ. The data and error
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of the simulation set corresponding to the two most extreme non-Gaussian
models,fNL = −1000 andfNL = +1000 respectively. Lower panel: the
ratio between the skewness results for non-Gaussian and Gaussian models.
Different color lines refer to different values offNL, as indicated in the
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by the results of the analysis made by Fedeli & Moscardini (2010),
only with data covering very large area it would be possible to dis-
entangle the effects of non-Gaussian models withfNL = ±100.
Finally we notice that a similar analysis performed on the shear
field, which is directly related to the convergence one, would pro-
vide comparable results.

4.3 Power Spectrum

An important theoretical quantity, directly related to themat-
ter power spectrum, is the effective convergence power spectrum
Pκ(ℓ), which is defined as the squared modulus of the Fourier
transform ofκ, averaged on the modes having a given multipole
ℓ. Starting fromPκ(ℓ), it is possible to derive analytic expressions
for the power spectra of the other lensing quantities, such as those
for the shear (Pγ ) and the two flexions (PF andPG), namely:

Pγ(ℓ) = Pκ(ℓ) (16)

PF (ℓ) = PG(ℓ) = ℓ2Pκ(ℓ) . (17)

In the top panels of Fig. 3 we show, for the Gaussian model
only, the comparison between the power spectra extracted from our
simulations and the corresponding theoretical predictions including
the non-linear effect. We consider different lensing quantities: ef-
fective convergence, shear and reduced shearg ≡ γ/(1−κ) (upper
left panel) and two components of the flexion (top right panel). We
notice that the agreement between the numerical results andthe
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Figure 3. Upper panels: comparison between theoretical predictionsand
our numerical estimates, derived as average of 60 differentrealizations of
the power spectra. Error bars correspond to the r.m.s. over the different real-
izations. Various lensing quantities are shown: effectiveconvergence, shear
and reduced shear (upper left panel); first and second flexions (upper right
panel). The results refer to the Gaussian case. Bottom panels: ratio between
non-Gaussian and Gaussian estimates for the convergence power spectrum
(averaged over 60 different realizations) as a function of the multipolel.
Different color lines refer to various values offNL as indicated in the la-
bels. The left (right) panel refers to sources atzs = 1 (zs = 4).

theoretical expectations holds, as expected, only in a given range
of wavenumbers. On large scales (smallℓ), the departure from the-
ory is due to the low number of modes we can use to average the
numerical power spectra. On small scales (largeℓ), the disagree-
ment is produced by the mass resolution (particularly relevant for
the flexion power spectrum) and by numerical artifacts produced by
the weighting function appearing in the definition of a givenpower
spectrum. A better mass resolution will make the lack of power at
high frequencies less severe, but it will not solve it entirely because
of the limit of resolution due to the Nyquist frequency intrinsic
to every discrete Fourier transformation. Moreover, when numer-
ically performing the ray-tracing simulations, low-redshift planes
are poorly sampled since a few low-redshift pixels contribute to the
lensing maps. This poor sampling is amplified by the weighting
function appearing in Eqs. 10, 11 and 13. We can use Fig. 3 as a
reference to define the range ofℓ on which the numerical results
can be trusted: typically102 . ℓ . 104.

In the bottom panels of Fig. 3 we show the ratio between
the power spectra derived from the non-Gaussian and the Gaus-
sian simulations. We present here only the results for the effective
convergence since the other power spectra can be obtained byin-
troducing the suitable dependence onℓ, and then the correspond-
ing ratios are identical. In this case, we decided to study the ef-
fect of primordial non-Gaussianity at two different sourceredshifts,
namelyzs = 1 andzs = 4. This is done to verify, with the help
of numerical simulations, recent analytical predictions made by
Fedeli & Moscardini (2010) using an improved version of the halo
model. As expected, the effects of the primordial non-Gaussianity
become more evident when the absolute value of the parameterfNL

increases. At very large scales, where the evolution is still in the lin-
ear regime, the Gaussian model and all the non-Gaussian oneshere
considered display approximately the same power spectrum,and
the ratio is in practice unity or slightly larger due to the scatter of
the power spectrum at lowℓ. At smaller scales (ℓ > 100 − 200)
the behaviors start to be different: a positive (negative)fNL param-
eter implies a larger (smaller) power spectrum with respectto the
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Gaussian case. It is also worth noticing that at very small scales
(ℓ > 4000 − 5000) the ratio tends to an asymptotic value: this is
due to the fact that in this range the power spectrum can be very
well approximated by a power-law relation and all models turn out
to have approximately the same slope. We have to recall, however,
that some numerical artifacts can affect our results on these small
scales. Looking at the plots, we see that, as expected, the differ-
ences between Gaussian and non-Gaussian models are tiny, for the
power spectrum too and increase progressively with the source red-
shift: for the most extreme models (fNL = ±1000), the deviations
are of the order of 8 per cent atzs = 1 (10-12 per cent atzs = 4),
for the models withfNL = ±500 they are approximately 4-5 per
cent, while for the models withfNL = ±100 the deviations are
smaller than 1 per cent. From the bottom panels of Fig. 3 we also
see that the peak of the ratio between the non-Gaussian and the
Gaussian models shifts at higher frequencies when the source red-
shift increases. This is in agreement with what was found recently
by Fedeli & Moscardini (2010).

4.4 Shear in aperture

A quantity which is directly related to the shear power spectrum
but which can be more easily measured in real data is the so-called
shear in apertureγav. It represents the variance of the shear field
within a circular aperture of a given radiusθ:

|γav(θ)|
2 ≡ 2π

∫

∞

0

dl lPγ(l)

[

J1(lθ)

πlθ

]2

, (18)

whereJ1 is the first-order Bessel function of the first kind.
The top panel of Fig. 4 shows the comparison between the

theoretical expectation and the results derived from our Gaussian
simulations (averaged over 60 different light-cone realizations): the
good agreement is evident up to scales ofθ ≈ 20 arcmin. For refer-
ence we also plot the results forfNL = ±1000. The bottom panel
of the same figure presents the ratio between the results for non-
Gaussian and Gaussian models as a function of the aperture angle.
Being a weighted integral of the shear power spectrum,|γav(θ)|

2

has a trend which is quite similar to the one displayed byPγ : the
larger the absolute value of thefNL parameter is, the larger are the
deviations from the Gaussian expectations. An increment (decre-
ment) in the signal of the order of 7-8 per cent is expected forthe
model withfNL = +1000 (fNL = −1000), while the differences
reduce to less than 1 per cent for the models withfNL = ±100. As
expected, we find that the deviations from the Gaussian expecta-
tions are larger for small apertures, but rapidly wash out for angles
larger than few arcmin, since the average of the shear involves more
and more large scale structures. We also notice that the ratio at large
smoothing scales does not reach unity since structures are already
evolved enough to show high intrinsic non-Gaussianity, therefore
higher smoothing scales are necessary to compensate the effect.

4.5 Bispectrum

In several works (see e.g. Verde et al. 1998, 2000b; Takada & Jain
2004; Sefusatti et al. 2006, 2010) it has been shown that a large
amount of cosmological information can be inferred from thestudy
of high-order spectra (the so-called poly-spectra). Here we just
limit our investigation to the simplest high-order spectrum, the bis-
pectrum. We recall that for a Gaussian random field all available
information is contained in the power spectrum, while all higher-
order spectra vanish or are combinations of the power spectrum. As
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Figure 4. The shear in aperture. Top panel: comparison between the theoret-
ical analytical relation and our estimate, derived as average of 60 numerical
realizations; error bars represent the r.m.s. The results refer to the Gaussian
model. Blue and brown lines present the corresponding results for the two
most extreme non-Gaussian models,fNL = +1000 andfNL = −1000

respectively. Bottom panel: the ratio between the results for non-Gaussian
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a consequence the measurement of the bispectrum is quite sensitive
to the non-Gaussian features of the quantity under investigation.

In general, the bispectrum depends on a triangular configura-
tion and its values are very sensitive to the particular configuration
adopted. Since the complete determination of the bispectrum is ex-
tremely expensive from a computational point of view, we will re-
strict our analysis to equilateral triangles only. Notice that, given
our assumption of local shape for the primordial non-Gaussianity,
the non-Gaussian signal on squeezed configurations is expected to
be larger. In a future work we will use the convergence maps pre-
sented in this work to study the full bispectrum configuration and
how the signal expected from primordial non-Gaussianity issensi-
tive to the triangular configuration.

In general the bispectrum of a given quantityf is defined as:

〈f̂(~ℓ1)f̂(~ℓ2)f̂(~ℓ3)〉 = (2π)2δD(~ℓ123)B(~ℓ1, ~ℓ2, θ12) . (19)

In the previous equation,̂f represents the Fourier transform of the
field f . Since the wavenumbers at which the bispectrum is com-
puted (~ℓ1, ~ℓ2 and~ℓ3) must form a closed triangle in Fourier space,
they are related by the constraint~ℓ123 = ~ℓ1 + ~ℓ2 + ~ℓ3 = 0. Fi-
nally θ12 is the angle between~ℓ1 and~ℓ2 and fixes, together with the
triangle condition,~ℓ3.

Similar to Fig. 3, the top panel of Fig. 5 shows, for the Gaus-
sian model only, the comparison between our numerical estimates
and the theoretical bispectrum computed for the effective conver-
gence. We show a bispectrum computed for an equilateral configu-
ration, i.e., in the Fourier space,|~ℓ1| = |~ℓ2| = |~ℓ3|. The results from
the simulations represent the average over 60 different light-cone
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realizations with the corresponding r.m.s. plotted as error bars. The
theoretical quantity are derived from the matter density bispectrum
BPT(~k1,~k2, θ12), that can be computed according to the perturba-
tion theory. For instance, in the case of the effective convergence
κ, the bispectrum can be obtained by using the Limber’s approx-
imation in an analogous way as for the power spectrum (see e.g.
Cooray & Hu 2001), namely:

Bκ(~ℓ1, ~ℓ2, θ12) =

∫ wlim

0

dw

fK(w)
G3(w)

× BPT

(

~ℓ1
fK(w)

,
~ℓ2

fK(w)

)

, (20)

where fK(w) is a function depending on the cosmologi-
cal parameters andG(w) contains the distance weight
(Bartelmann & Schneider 2001). For the other lensing quan-
tities, similar relations hold. In order to quantify the effects of
primordial non-Gaussianity, the panel on the bottom shows the
bispectrum computed for the different non-Gaussian models,
normalized to the corresponding result for the Gaussian one.

As for the case of the power spectrum, we see that the agree-
ment between the theoretical expectations and the numerical pre-
dictions holds only for a limited range of angular scales, but in
this case the range for which the estimate of bispectrum is robust
is much more limited. Focusing on scales where the numericalre-
sults can be considered reliable, we find that the contribution of
non-Gaussianity is not very relevant, reaching up to 12 per cent
in the very non-linear regime, but only for the most extreme non-
Gaussian models (fNL = ±1000). For models withfNL in the

range allowed by the most recent CMB constraints, we do not ex-
pect a difference with respect to the Gaussian case larger than few
per cent.

5 THE DEGENERACY BETWEEN PRIMORDIAL
NON-GAUSSIANITY AND THE POWER SPECTRUM
NORMALIZATION AND MATTER DENSITY
PARAMETER

As shown in the previous sections, the effects due to primordial
non-Gaussianity on the various weak lensing quantities aresmall,
in particular when we consider models with values offNL in the
range allowed by present data. To better investigate the possibility
of their future detection, here we will discuss their degeneracy with
the effects produced by the variation of other relevant cosmological
parameters. In particular we will focus on the degeneracy between
the amount of primordial non-Gaussianity and the power spectrum
normalizationσ8 and matter density parameterΩm, which are cer-
tainly the most important source of uncertainty.

Since the different timing in the structure formation induced
by fNL modifies the power spectrum and its amplitude, non-
Gaussianity can be confused with a Gaussian model with a different
σ8 or Ωm parameter. In particular a positive (negative)fNL has ef-
fects similar to a higher (lower) power spectrum normalization or
matter density parameter. In this section we show how much the un-
certainty on the value of theσ8 normalization affects the possibil-
ity of detecting non-Gaussianity, keeping all the other parameters
fixed. We also show how important is the error in the determination
of the matter density parameter. To do so, we vary at the same time
bothΩm andΩΛ to have a flat geometry. For the sake of simplic-
ity, we restrict our analysis to the convergence power spectrum, the
shear in aperture and the effective convergence bispectrum.

In the left column of Fig. 6 we show a comparison between
the contribution of non-Gaussianity and the changes produced by
a variation of the spectrum normalization while on the rightpan-
els we show the effect of varying the matter content, keeping
Ωm + ΩΛ = 1. In particular we considerσ8 (Ωm) in the range
between 0.87 and 0.93 (0.27 and 0.33): the size of this variation
approximately corresponds to the typical 2σ error derived from the
most recent CMB analysis. It is clear from the figure that the error
on the determination of the parameters has effects more important
than the introduction of a weak primordial non-Gaussianity. The
two most extreme models produce deviations from the Gaussian
predictions that are of the same level of uncertainty∆σ8 = 0.03
and∆Ωm = 0.02. On the contrary, the models withfNL in the
range allowed by current constraints have effects well within the
range allowed by the present uncertainties, since their effect is
smaller than a variation ofσ8(Ωm) ≈ 0.01. This implies that sig-
nificant constraints on the amount of primordial non-Gaussianity
can be obtained only reducing the uncertainties on the powerspec-
trum normalization and on the matter density parameter.

6 CONCLUSIONS

In this work, we used the outputs of N-body simulations to cre-
ate a large set of realistic mock maps for several lensing quantities
(deflection angle, effective convergence, shear and the twocompo-
nents of the flexion) in the framework of cosmological modelswith
different amount of primordial non-Gaussianity, quantified using
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Figure 6. Comparing the effects of different levels of primordial non-Gaussianity to the ones produced by different power spectrum normalizations (left
panels) and matter density parameter (right panels). The panels show various lensing quantities: effective convergence power spectrum (upper panel); shear
variance (central panel); effective convergence bispectrum (lower panel). The results are presented as ratio with respect to the same quantity computed for the
Gaussian model withσ8 = 0.9 (Ωm=0.3) (solid horizontal line) and refer to Gaussian models with differentσ8 normalizations (Ωm parameter): 0.93 (0.33)
(dot-dashed line), 0.92 (0.32) (dot with long dash line), 0.91 (0.31) (dotted line), 0.89 (0.29) (double dots line), 0.88 (0.28) (dashed line with three dots), 0.87
(0.27) (short dashed line). For reference we also show the effects produced by different levels of primordial non-Gaussianity: fNL = +1000 (cyan line);
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the dimensionless parameterfNL. In particular we considered sev-
eral statistical properties (PDF, power spectrum, shear inaperture,
skewness and bispectrum) and compared the results with the corre-
sponding ones obtained in the Gaussian case. Our main results can
be summarized as follows.

• For all quantities here considered the effect produced by the
presence of primordial non-Gaussianity is relatively small, amount-
ing to differences of 1 per cent for|fNL| = 100, 5 per cent for
|fNL| = 500, and 8-15 per cent for|fNL| = 1000. These results
are in good agreement with the analytic predictions presented in
Fedeli & Moscardini (2010).
• The largest effects are visible on small scales (i.e. for large

multipolesl > 1000), where, however, also non-linearity can pro-
duce strong effects which have to be accurately modeled.
• The most promising statistical tests to search for imprintsof

primordial non-Gaussianity are the (convergence and shear) power
spectra and the (convergence) bispectrum, thanks to the smaller size
of their error bars at the relevant scales.
• The differences of the various PDFs in both rare-event tails

are also important, but their discriminating power is reduced by the
poor statistics and by the high-level of noise.
• We compared the effects produced by the primordial non-

Gaussianity with the uncertainties due to the power spectrum nor-
malization and matter density parameter: an error in the determi-
nation ofσ8 of about 3 per cent or ofΩm of about 10 per cent
gives differences comparable with the non-Gaussian modelswith
fNL = ±1000, while for more realistic non-Gaussian models
with fNL = ±100 the effects is smaller than the one induced by
∆σ8(∆Ωm) = 0.01.

As said, a significant covariance exists between primordial
non-Gaussianity and fundamental cosmological parameters, espe-
cially with σ8 and Ωm. The smallness of non-Gaussian effects
found in our analysis means that one can obtain a precise estimate
of these parameters despite their covariance withfNL. As an exam-
ple, ignoring the possible presence of a primordial non-Gaussianity
with fNL = 100, consistent with current observational constraints,
would induce a mere 0.2 per cent uncertainty in the estimate of
the cosmological parameters, i.e. well below the current 1-σ error.
The same argument, in reverse, is telling us that the search for non-

c© 2010 RAS, MNRAS000, 1–12
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Gaussian features in the weak-lensing statistics is a very challeng-
ing task. According to our results, it can be successfully completed
only if errorbars can be significantly reduced. For the purpose of
discriminating among competing models the reduction needsnot to
be dramatic. Indeed, as pointed out by Fedeli & Moscardini (2010),
the fact that deviations from Gaussianity are small but systematics
allows one to estimatefNL by adding the statistical information
from different angular bins, this is also shown in our analysis of the
power spectrum for sources at different redshifts.

A more significant reduction in the errorbars is required to
break the degeneracy between non-Gaussianity with cosmologi-
cal parameters, sayσ8 or Ωm. Indeed, as shown in Fig. 6, re-
moving such degeneracy requires to compare information from
a limited number of bins at very different scales. As shown by
Fedeli & Moscardini (2010), both tasks could be achieved with
next-generation, all-sky surveys. A good example is certainly repre-
sented by the ESA mission EUCLID (Laureijs 2009). Accordingto
the analysis made by Fedeli & Moscardini (2010) and based on an-
alytic predictions for the power spectrum quantitatively confirmed
in this numerical work, we expect that the quality and the quantity
of the EUCLID data will allow to constrainfNL at the level of few
tens, opening the possibility of discriminating between the various
inflationary models.
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