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ABSTRACT
The accelerated expansion of the universe is a rather established fact in cosmology and many
different models have been proposed as a viable explanation. Many of these models are based
on the standard general relativistic framework of non-interacting fluids or more recently of
coupled (interacting) dark energy models, where dark energy (the scalar field) is coupled to
the dark matter component giving rise to a fifth-force. An interesting alternative is to couple
the scalar field directly to the gravity sector via the Ricci scalar. These models are dubbed
non-minimally coupled models and give rise to a time-dependent gravitational constant. In this
work, we study few models falling into this category and describe how observables depend on
the strength of the coupling. We extend recent work on the subject by taking into account also
the effects of the perturbations of the scalar field and showing their relative importance on the
evolution of the mass function. By working in the framework of the spherical collapse model,
we show that perturbations of the scalar field have a limited impact on the growth factor (for
small coupling constant) and on the mass function with respect to the case where perturbations
are neglected.
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1 IN T RO D U C T I O N

Geometrical probes of the cosmic expansion scenario including: (a)
Type Ia supernovae (SnIa; Riess et al. 1998; Perlmutter et al. 1999;
Kowalski et al. 2008); (b) the first peak location in the angular power
spectrum of cosmic microwave background (CMB) perturbations
(Komatsu et al. 2009); (c) baryon acoustic oscillations in the power
spectrum of the matter density field (Percival et al. 2010); (d) ob-
servations from Gamma-Ray Bursts (Basilakos & Perivolaropoulos
2008), cluster gas mass fraction (Allen et al. 2004) and the estima-
tion of the age of Universe (Krauss & Chaboyer 2003), and dynam-
ical probes of the growth rate of matter perturbations such as (e) the
growth data from X-Ray clusters (Mantz et al. 2008); (f) the power
spectrum at different redshift slices of the Ly α forest (McDonald
et al. 2005; Nesseris & Perivolaropoulos 2008); (g) redshift dis-
tortions from anisotropic pattern of galactic redshifts at the cluster
scales (Hawkins et al. 2003; Nesseris & Perivolaropoulos 2008) and
(h) weak lensing surveys (Benjamin et al. 2007; Amendola, Kunz &
Sapone 2008; Fu et al. 2008) point towards the general conclusion
that our Universe is experiencing an accelerated expansion.

This cosmic expansion scenario can be well explained by as-
suming an additional cosmic fluid with a positive energy density
and a sufficiently negative pressure usually dubbed dark energy
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(DE). The nature of DE is still unknown and it seems that new
physics beyond the standard model of particle physics is required
to explain its properties. Einstein cosmological constant � with
constant equation of state w� = P�/ρ� = −1 is the earliest and
simplest candidate for DE. However, this model suffers from se-
vere theoretical problems, as the fine-tuning and the cosmic co-
incidence problems (Weinberg 1989; Sahni & Starobinsky 2000;
Carroll 2001; Padmanabhan 2003; Peebles & Ratra 2003; Copeland,
Sami & Tsujikawa 2006). Alternatively, scalar fields are plausible
candidates for DE (Ratra & Peebles 1988; Wetterich 1988). An
outstanding feature of scalar fields is that the equation of state of
these models is generally varying during the cosmic history. More-
over, due to the time varying equation of state, these models possess
some fluctuations in both space and time like pressureless dust mat-
ter. Several attempts have been done to study the possibility that
scalar fields might be coupled to other entities in the Universe. On
one side, the coupling can be considered between scalar fields and
dust matter within the framework of General Relativity (GR). On
the other side, one can consider the coupling between the scalar
field and the Ricci scalar, the so-called non-minimally coupled
quintessence models, which is the case, for example, of scalar–
tensor (ST) gravities (Bergmann 1968; Nordtvedt 1970; Wagoner
1970; Esposito-Farèse & Polarski 2001). For an historical review
of ST theories see Brans & Dicke (1961) and for later attempts
Perrotta, Baccigalupi & Matarrese (2000), Acquaviva, Baccigalupi
& Perrotta (2004) and Pettorino & Baccigalupi (2008). Very recent
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parameter estimation on Brans–Dicke models have been performed
by Li et al. (2015).

Beside causing the acceleration of the overall expansion rate of
the Universe, quintessence models can change the formation rate
and the growth of collapsed structures (haloes). It is well known
that the large-scale structures we observe today originated from the
small initial fluctuations originated during the inflationary phase
era (Starobinsky 1980; Guth 1981; Linde 1990). These fluctuations
subsequently grew under the influence of gravity (Gunn & Gott
1972; Press & Schechter 1974; White & Rees 1978; Peebles 1993;
Peacock 1999; Sheth & Tormen 1999; Barkana & Loeb 2001;
Peebles & Ratra 2003; Ciardi & Ferrara 2005; Bromm & Yoshida
2011).

The spherical collapse model (SCM) introduced by Gunn & Gott
(1972) is a simple analytical tool to study the evolution of the growth
of overdense structures on sub-horizon scales. The dynamics of the
overdensities depends strongly on the dynamics of the background
Hubble flow and expansion history of the Universe. In the frame-
work of GR, the SCM has been widely investigated in the litera-
ture (Fillmore & Goldreich 1984; Bertschinger 1985; Hoffman &
Shaham 1985; Ryden & Gunn 1987; Avila-Reese, Firmani &
Hernández 1998; Subramanian, Cen & Ostriker 2000; Ascasibar
et al. 2004; Williams, Babul & Dalcanton 2004). Furthermore, this
formalism has been extended to different DE and scalar field DE
cosmologies (Mota & van de Bruck 2004; Maor & Lahav 2005;
Basilakos 2009; Li et al. 2009; Pace, Waizmann & Bartelmann
2010; Wintergerst et al. 2010; Basse, Eggers Bjælde & Wong 2011;
Pace et al. 2012; Pace, Batista & Del Popolo 2014b; Naderi, Malek-
jani & Pace 2015). The growth of spherical overdensities within
the framework of inhomogeneous DE cosmologies within the GR
framework has been studied by Abramo et al. (2007), Abramo,
Batista & Rosenfeld (2009), Pace et al. (2014b) and Malekjani,
Naderi & Pace (2015).

All of the previously mentioned studies and improvements of
the SCM in DE cosmologies take place within the framework of
standard Einstein theory of gravity (GR). In particular, Mota & van
de Bruck (2004) studied the SCM for different minimally coupled
quintessence models with different potentials in the GR paradigm.
However, since in ST theories there is a non-minimally coupling
between the scalar field and the gravity sector via the Ricci scalar,
the evolution of spherical overdensities is completely different from
that of standard gravity. This is the subject of the work by Pace
et al. (2014a) and Fan, Wu & Yu (2015) where the authors studied
the non-linear evolution of structures in non-minimally coupled
quintessence models using the SCM machinery in the context of
ST gravities. It is worth to mention that in Pace et al. (2014a),
despite the general derivation of the equations of motion, scalar
field perturbations were assumed to be negligible to facilitate the
comparison with results from N-body simulations. In the work by
Fan et al. (2015), the non-minimally coupled quintessence models
are also assumed to be homogeneous in both the metric and Palatini
formalisms.

In this work, we extend the SCM in ST theory of gravity to
the more general case where scalar field perturbations are taken
into account. In fact in the case of GR, it was shown that density
perturbations of minimally coupled scalar fields exist on all scales
but they are strongly scale-dependent and negligible on sub-Hubble
scales (Unnikrishnan, Jassal & Seshadri 2008; Jassal 2009, 2010).
On Hubble scale, they are roughly 10 per cent of the matter den-
sity perturbations and they leave a trace on the low � multipoles
of the angular power spectrum of the CMB through the ISW effect
(Weller & Lewis 2003). Generally, the existence of perturbations

of a cosmic fluid on sub-Hubble scales depends on the effective
sound speed ceff. The effective sound speed ceff determines
the sound horizon of a fluid: leff = ceff/H. On scales smaller than
the sound horizon, perturbations cannot grow and vanish, while on
scales larger than leff perturbations can grow due to gravitational
instability. In the case of minimally coupled quintessence models
in GR, the effective sound speed is roughly equal to unity (in units
of the speed of light c = 1). Consequently, the sound horizon is of
the order of the Hubble scale H−1 (Ferreira & Joyce 1997, 1998;
de Putter, Huterer & Linder 2010) and the perturbations of scalar
fields below the horizon vanish and cannot grow. In ST gravities,
the non-minimally coupling between scalar fields and curvature
perturbations amplifies the scalar field perturbations on sub-Hubble
scales. In addition, it has been shown that in ST theories, scalar field
perturbations on sub-horizon scales are scale-independent and their
effective sound speed vanishes (Esposito-Farèse & Polarski 2001).
As shown by Bueno Sanchez & Perivolaropoulos (2010), scalar field
perturbations are anticorrelated to the perturbations of dust matter.
In addition, the ratio of the scalar field density perturbations over
the matter density perturbations on sub-Hubble scales is roughly of
the order of 10 per cent (Bueno Sanchez & Perivolaropoulos 2010).

The aim of this study is to generalize the SCM in ST theories of
gravity for clustering non-minimally coupled quintessence models
by taking the scalar field perturbations into account. We follow the
evolution of perturbations both in the linear and non-linear regimes.
We calculate the fundamental SCM parameters: the linear overden-
sity threshold δc and the virial overdensity �vir in the framework of
ST gravities for different homogeneous and clustering cases of non-
minimally quintessence models. Having these quantity at hands, we
will use them to evaluate the mass function and the number counts
of haloes. We organize the paper as follows: In Section 2, we in-
troduce the ST theories of gravity and describe the evolution of the
background cosmologies in these models. In Section 3, the basic
equations for the evolution of the density perturbations of the scalar
field and matter are presented. In Section 4, we study the linear
growth factor on sub-horizon scales and the SCM in the framework
of ST gravities. We also present the effect of scalar field perturba-
tions on the mass function and cluster number counts within the
Press–Schechter formalism. Finally, we conclude and summarize
our results in Section 5.

2 BAC K G RO U N D H I S TO RY IN ST TH E O R I E S

In this section, we present the background evolution equations of
ST gravity in a spatially flat Friedmann–Robertson–Walker (FRW)
universe. The action for these models in the physical Jordan frame
is given by (Bergmann 1968; Nordtvedt 1970; Wagoner 1970)

S = 1

16πG

∫
d4x

√−g(F (	) R−Z(	) gμν∂μ	∂ν	 − 2U (	))

+Sm(gμν), (1)

where G is the gravitational coupling constant, R is the Ricci scalar, g
is the determinant of the metric gμν and Sm is the action of the matter
field which does not involve the scalar field 	. The independence
of the matter action Sm from the scalar field 	 guarantees that
the weak equivalence principle is exactly satisfied. F(	) and Z(	)
in equation (1) are arbitrary dimensionless functions and U(	) is
the scalar field potential. The dynamics of the real scalar field 	

depends on the dimensionless functions F(	) and Z(	) as well as
the potential U(	). The term F(	)R represents the non-minimally
coupling between the scalar field 	 and gravity. In the limit of GR,
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it is obvious to have F(	) = 1, showing that there is no direct
interaction between the scalar field and gravity. By a redefinition of
the field 	, the quantity Z(	) can be set either to 1 or −1. In this
work, we will consider all equations and quantities in ST gravity
for the case Z(	) = 1. In what follows we will also use units such
that 8πG = 1. For a flat FRW universe with

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θ dφ2)]. (2)

Friedmann equations for the evolution of the background in ST cos-
mologies are the following (see also Gannouji et al. 2006; Polarski
& Gannouji 2008; Bueno Sanchez & Perivolaropoulos 2010)

3F (	)H 2 = ρm + 1

2
	̇2 + U (	) − 3HḞ (	) = ρtot , (3)

−2F (	)Ḣ = ρm + 	̇2 + F̈ (	) − HḞ (	) = ρtot + ptot . (4)

The Klein–Gordon equation for the evolution of the scalar field
and the equation of motion for non-relativistic dust matter are,
respectively, given by

	̈ + 3H	̇ = 3
dF

d	
(Ḣ + 2H 2) − dU

d	
. (5)

ρ̇m + 3Hρm = 0 , (6)

where ρm is the energy density of pressureless dust matter. Here, we
will assume the Ratra–Peebles form for the scalar field potential:

U (	) = M4+α

	α
, (7)

where M is an energy scale and the exponent α is a free posi-
tive constant. Constraints from magnitude-redshift measurements
of SnIa show that α < 1 at the 1 − σ level both for mini-
mally and non-minimally coupled quintessence models (Caresia,
Matarrese & Moscardini 2004). We further assume a power law for
the dimensionless function F(	):

F (	) = 1 + ξ
(
	2 − 	2

0

)
, (8)

where the constant ξ indicates the strength of the coupling between
the scalar field and Ricci scalar and 	0 is the value of the scalar
field at the present time (see also Perrotta et al. 2000; Perrotta &
Baccigalupi 2002). Solar system tests put very tight constraints on
the coupling parameter ξ ≈ 10−2, (see Reasenberg et al. 1979; Chiba
1999; Uzan 1999; Riazuelo & Uzan 2002; Bertotti, Iess & Tortora
2003).

From equations (3) and (4), the energy density and pressure of
the scalar field in the framework of ST gravities (in the case of
Z(	) = 1 assumed here) can be easily obtained as follows:

ρφ = 1

2
	̇2 + U (	) − 3HḞ (	) , (9)

pφ = 1

2
	̇2 − U (	) + F̈ (	) + 2HḞ (	) . (10)

We now solve numerically the coupled system of equations (3, 4,
5 and 6) for the above potentials U(	) and F(	). We fix the ini-
tial time at matter-radiation equality epoch ai ≈ 10−4 and also set
the present time values of the scalar field and energy density of
pressureless dust matter as 	0 = 1 and �m,0 = 0.30, respectively.
We also need two initial conditions to solve the Klein–Gordon
equation. Following Bueno Sanchez & Perivolaropoulos (2010),
we set the initial conditions as 	(ai) = 0.12 and 	̇(ai) = 10−5.
We have two free parameters, ξ and α, in this analysis. It should
be emphasized that the initial values of these parameters must be

Table 1. Different minimally and non-
minimally coupled quintessence models con-
sidered in this work. The parameter α indi-
cates the exponent of the inverse power-law
potential and ξ represents the strength of the
coupling between the scalar field and gravity.

Model ξ α

Model (1) 0.123 0.261
Model (2) 0.088 0.679
Model (3) 0.000 0.877
Model (4) −0.087 0.877
�CDM 0.000 0.000

chosen such that the function F(	) and the scalar field 	 evolve
from their initial values to reach F(	) = 1 and 	 = 	0 = 1 at
the present time. Consequently, the amount of energy density of
the scalar field �	 should be close to 0.70 at the present time.
On the basis of different values of the exponent parameter of the
scalar field potential, α, and the strength of the non-minimally cou-
pling, ξ , we adopt four different cosmological models in the frame-
work of ST gravities presented in Table 1. The concordance � cold
dark matter (�CDM) model is reproduced by setting α = 0 and
ξ = 0. Also model (3) represents a minimally coupled quintessence
model in which there is no direct coupling between the scalar field
and gravity (ξ = 0).

In Fig. 1, we show the evolution of 1/F(	) (top panel), U(	)
(middle panel) and 	 (bottom panel), as a function of redshift z for
the different cosmological models presented in Table 1. Line styles
and colours for each model have been indicated in the caption.
While 1/F(	) is almost constant at high redshifts and its variation
with cosmic z is very small, it changes rapidly at low redshifts
and reaches one at present time. The constant line 1/F(	) = 1
represents model (3), the minimally coupled quintessence model
with ξ = 0, as expected. In the next section, we will see that the
effective gravitational constant in ST cosmologies is proportional
to 1/F(	). In middle panel of Fig. 1, we show the evolution of
the Ratra–Peebles potential for the different models of Table 1. In
all the models, the potential decays from larger values at higher
redshift to one at the present time. In fact we fix the potential to
be one at the present time by setting 	0 = 1 and M = 1. We see
that for the non-minimally coupled cases, independently of the sign
of ξ , the potential is weaker compared to the minimally coupled
case in GR. A larger value of the coupling parameter ξ causes
stronger deviations from the potential in GR gravity. Finally, in the
bottom panel, we present the redshift evolution of the scalar field
	 for different models. We see that for all models the scalar field
increases with redshift from its small initial value at ai = 10−4 to
	0 = 1 at the present time.

We now calculate the redshift evolution of the background cos-
mological parameters: the equation of state of the scalar field,
w	 = p	/ρ	, the energy density parameter of the scalar field,
�	 and the Hubble expansion rate H, for the different cosmological
models considered in this work. As well known, these quantities can
describe the background evolution of the universe. Moreover, the
linear growth rate of structures strongly depends on the background
evolution. In Fig. 2, using equations (9) and (10), we first show
the evolution of w	 as a function of the redshift z (top panel). We
then show the redshift evolution of the energy density �	 for our
selected models and �� for concordance �CDM model (middle
panel). We finally present the evolution of the fractional difference
of the Hubble parameter �H(z) for these models relatively to the
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Figure 1. The redshift evolution of 1/F(	) (top panel), the Ratra–Peebles
potential U(	) (middle panel) and the scalar field (bottom panel) for the
different cosmological models in ST cosmologies considered in Table 1.
The pink dot–dotted–dashed curve stands for the negative coupling constant,
(ξ < 0, model 4). The red long-dashed curve indicates the positive coupling ξ

= 0.123 (model 1), the green short-dashed curve corresponds to the positive
coupling ξ = 0.088 (model 2) and the brown dotted line represents the
minimally coupled model ξ = 0 (model 3).

concordance �CDM model H�CDM(z) in the bottom panel of Fig. 2.
We refer to the caption for the different colours and line styles. In
the case of a positive coupling (ξ > 0), the phantom regime (w
< −1) can be achieved at high redshifts, while models with ξ <

0 and ξ = 0 remain in the quintessence regime (w > −1). The
amount of DE for different minimally and non-minimally coupled
quintessence models as well as the �CDM model have been pre-
sented in the middle panel. For all the models the amount of DE is
negligible at high redshifts meaning that all the models reduce to
an Einstein de Sitter (EdS) Universe at early times. The evolution
of �H(z) for different models is shown in the bottom panel. As

Figure 2. Top panel: the redshift evolution of the equation of state w	.
Middle panel: the energy density of the minimally and non-minimally cou-
pled quintessence models (�	) and �� for the reference �CDM model
(black solid curve). Bottom panel: the relative difference of the Hubble pa-
rameter in the framework of different minimally and non-minimally coupled
quintessence models (�H(z)) relative to the one of the reference �CDM
model H�CDM. Line styles and colours are the same as in Fig. 1.

it appears clear, at low redshifts, all the models give �H(z) > 0
indicating that all of them have larger Hubble parameter than the
�CDM universe. We see that at high redshifts the Hubble param-
eter becomes smaller than the reference one only for a negative
coupling constant (model 4). In the case of the minimally coupled
quintessence (model 3), the Hubble parameter tends to the fiducial
value in the �CDM model at high redshifts and differences become
negligible. This result is interesting, because in this model there is
no direct coupling between the scalar field and gravity and therefore
DE models mimics the cosmological constant at high redshifts. In
the case of non-minimally coupled quintessence models with pos-
itive coupling ξ > 0 (models 1 and 2), differences with respect to
the �CDM model are at most 4 per cent at high redshifts for both
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models, independently of the exact value of ξ . We conclude that in
ST theories of gravity, the coupling between the scalar field and the
gravitational sector causes differences in the Hubble expansion rate
with respect to the �CDM universe also at high redshifts. More in
detail, at high redshifts differences are positive (negative) for posi-
tive (negative) values of the coupling constant ξ . In the next section,
we will see that differences of the Hubble parameter together with
the time evolution of the gravitational constant lead to differences
in the growth of matter perturbations in ST theories with respect to
the standard general relativistic models.

3 PERTURBATIONS IN ST GRAV ITIES

Let us start with the perturbed FRW metric in the Newtonian gauge
(Boisseau et al. 2000; Esposito-Farèse & Polarski 2001; Bueno
Sanchez & Perivolaropoulos 2010)

ds2 = −(1 + 2φ)dt2 + a2(1 − 2ψ)δij dxi dxj , (11)

where φ and ψ are the linear gravitational potentials. In the frame-
work of GR and in the absence of anisotropic stresses, it is obvious
to have φ = ψ . In ST theories of gravity, this is no longer true
and the two potentials can be related to each other as (Boisseau
et al. 2000; Esposito-Farèse & Polarski 2001; Bueno Sanchez &
Perivolaropoulos 2010):

φ = ψ − F,	

F
δ	 , (12)

where F, 	 = dF/d	. For F = 1 (as in GR gravity), equation (12)
gives φ = ψ as expected. The general relativistic equations for the
perturbations of φ, ψ and the scalar field 	 in ST theories of gravity
have been studied in details by Esposito-Farèse & Polarski (2001),
Hwang & Noh (2005), Copeland et al. (2006) and Bueno Sanchez
& Perivolaropoulos (2010).

The linear evolution of non-relativistic matter density perturba-
tions and scalar field perturbations in the framework of ST theory
of gravity can be written as follows (Copeland et al. 2006; Bueno
Sanchez & Perivolaropoulos 2010):

δ̈m + 2Hδ̇m + k2

a2

(
ψ − F,	

F
δ	

)
− 3(ψ̈ + 2Hψ̇) = 0 , (13)

where k is the wavenumber of the perturbations mode. Since in
this work we deal with the SCM formalism with perturbations well
inside the horizon scale, in the following we will limit ourselves
to the study of perturbations of matter and scalar fields on scales
much smaller than the Hubble scale (k/a �H). On these scales,
the scalar field perturbations can be obtained as (Bueno Sanchez &
Perivolaropoulos 2010):

δ	 � (φ − 2ψ)F,	 . (14)

Using equation (12), we have

δ	 � −ψ
FF,	

F + F 2
,	

, (15)

showing that the perturbations of non-minimally coupled scalar
fields in ST gravity are scale independent on sub-horizon scales.
For minimally coupled scalar field models in GR, since F = 1
and consequently F,	 = 0, it is trivial to see that δ	 = 0. Hence
scalar field perturbations on sub-horizon scales are negligible for
minimally coupled quintessence models in GR gravity (see also
Unnikrishnan et al. 2008; Jassal 2009, 2010, 2012; Bueno Sanchez
& Perivolaropoulos 2010).

It has been shown that on sub-horizon scales, the energy den-
sity perturbation of the non-minimally coupled DE, δρ	, can be
expressed as a function of scalar field perturbation δ	 as follows
(Bueno Sanchez & Perivolaropoulos 2010):

δρ	 � − k2

a2
F,	δ	 = k2

a2
ψ

F F 2
,	

F + F 2
,	

. (16)

Also, matter density perturbations are (Bueno Sanchez &
Perivolaropoulos 2010):

δρm � − k2

a2
ψF

(
F 2

,	

F + F 2
,	

+ 2

)
. (17)

Hence, the ratio δρ	

δρm
on sub-horizon scales is given by

δρ	

δρm
= δ	

δm
� − F 2

,	

3F 2
,	 + 2F

. (18)

Using equations (16) and (18), we can eliminate the term k2

a2 ψ from
equation (13) and being the study of the perturbations limited to the
sub-horizon scales, we can also ignore the time derivatives of the
potential ψ in equation (13) (see also Boisseau et al. 2000; Bueno
Sanchez & Perivolaropoulos 2010). In this case, it is easy to obtain
the linear evolution of matter overdensities on sub-horizon scales
within ST gravities as (see also Boisseau et al. 2000)

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0 , (19)

where the effective gravitational constant Geff reads:

G
(p)
eff = GN

F

(
2F + 4F 2

,	

2F + 3F 2
,	

)
, (20)

where (p) represents the clustering non-minimally coupled
quintessence models. We see that equation (19) is scale indepen-
dent (as in the GR case) but the Newtonian gravitational constant
GN is replaced by the effective gravitational constant Geff as given
by equation (20). In fact, the effect of scalar field perturbations δ	

is included in the definition of Geff. In the case of homogeneous
non-minimally coupled models where we ignore the perturbations
of scalar field (δ	 = 0), it is easy to show that:

k2

a2
ψ = −4πρmδm

1

F

(
2F + 2F 2

,	

2F + 3F 2
,	

)
. (21)

Inserting equation (21) into equation (13) and ignoring the time
derivatives of ψ in the sub-Hubble scale regimes, we again obtain
equation (19) for the evolution of matter overdensity in homoge-
neous non-minimally quintessence models with δ	 = 0, but in this
case the effective gravitational constant Geff is reduced to (see also
Pace et al. 2014a):

G
(h)
eff = GN

F

(
2F + 2F 2

,	

2F + 3F 2
,	

)
, (22)

where (h) indicates the homogeneous scenarios. In Fig. 3, we show
the redshift variation of the difference between G

(p)
eff and G

(h)
eff di-

vided by the Newtonian gravitational constant GN, �Geff/GN =
(G(p)

eff − G
(h)
eff )/GN, where G

(p)
eff is the effective gravitational con-

stant for clustering non-minimally coupled models and G
(h)
eff is for

the homogeneous case, respectively, defined in equations (20 and
22). In the case of model (3), we see that the relative difference
�Geff/GN = 0. This result is expected, since there are no pertur-
bations of scalar field in this model and the effective gravitational
constant is given by equation (22). In the case of models (1, 2 and 4),
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Figure 3. The redshift variation of the difference between the effective grav-
itational constant defined in clustering non-minimally coupled quintessence
models G

(p)
eff and the same quantity in homogeneous non-minimally coupled

quintessence models G
(h)
eff , divided by Newtonian gravitational constant GN

as �Geff/GN = (G(p)
eff − G

(h)
eff )/GN. Line styles and colours are the same as

in Fig. 1.

the non-minimally coupled models, we see that �Geff/GN > 0 at
low redshifts and approaches zero at high redshifts. Since the dif-
ference between G

(p)
eff and G

(h)
eff at high redshifts is zero, we conclude

that the perturbations of the scalar field, which directly influence the
effective gravitational constant, can be neglected at early times. On
the other hand, at low redshifts, since �Geff > 0, we can say that the
effective gravitational constant defined in clustering non-minimally
quintessence models, G

(p)
eff , is bigger than the corresponding quan-

tity defined in homogeneous non-minimally quintessence models.
Moreover in model (1), where the strength of non-minimally cou-
pling between scalar field and gravity is the largest, the difference
between G

(p)
eff and G

(h)
eff is the largest (roughly 5.5 per cent) among

the other models. On the basis of the above discussion, it is easy
to see that due to the different behaviours of the definition of the
effective gravitational constant Geff in clustering and homogeneous
versions of non-minimally coupled models, matter overdensity will
evolve differently whether the scalar field perturbations are taken
into account or not. In the next section, we solve equation (19) in
order to follow the evolution of matter overdensities on sub-Hubble
scales in the linear regime for these two different classes of mod-
els. We also compare these models with the minimally coupled
quintessence model in GR gravity.

4 G ROWTH O F OVERDENSITIES IN ST
G R AV I T I E S

In this section, we study the growth of structures on sub-horizon
scales in the framework of ST gravity for different homogeneous
and clustering models. In particular, we evaluate the linear evolution
of perturbations and the growth factor in Section 4.1, the non-linear
evolution and the spherical collapse parameters in Section 4.2 and
the mass function for virialized haloes in Section 4.3.

4.1 Growth factor

Here we follow the linear growth of perturbations of non-relativistic
dust matter and density perturbations of the scalar field by solving
equations (18) and (19). We remind the reader that in the case
of clustering quintessence models where the effects of scalar field
perturbations are taking into account, the effective gravitational

Figure 4. Top panel: redshift evolution of the growth factor normalized to
one at the present time divided by the scale factor a in terms of the cosmic
redshift z for different cosmological models considered in Table 1. For all
the models, label (a) represents homogeneous models and label (b) indicates
the clustering cases. The red long dashed (blue dotted–long-dashed) curve
represents homogeneous (clustering) models with coupling parameter ξ =
0.123 (model 1). The cyan dashed (violet dot–dashed) curve represents the
homogeneous (clustering) model with ξ = 0.088 (model 2). The brown
dotted curve indicates the minimally coupled quintessence model with ξ =
0.00 (model 3). The pink double dot–dashed (green double dash–dot) curve
represents the homogeneous (clustering) model with ξ = −0.087 (model 4).
The reference �CDM model is shown by a black solid curve for comparison.
Bottom panel: evolution of the density perturbations of the scalar field δ	

according to equation (18). Line styles and colours are as in Fig. 1.

constant Geff is given by equation (20), while in the case of homo-
geneous models, we adopt equation (22). It is also obvious, in the
case of minimally coupled quintessence models (ξ = 0), that we
have Geff = GN as expected.

In Fig. 4, we show the linear growth factor D+(a) = δm(a)/δm(a
= 1) divided by the scale factor (D+(a)/a) as a function of redshift
z for the different cosmological models studied in this work (top
panel). In the bottom panel, we show the evolution of the density
perturbations of DE δ	 in terms of the redshift z. In all cases, label
(a) represents homogeneous models and label (b) indicates the clus-
tering case. Line style and colours have been described in the caption
of the figure. While model (3), the minimally coupled case, has a
larger growth factor compared to the reference �CDM universe
at high redshifts, we see that the non-minimally coupled models
with negative (positive) coupling constant ξ have a higher (lower)
growth factor with respect to the minimally coupled model. For all
the models, the decrease of the growth factor at lower redshifts is
due to the fact that at late times DE dominates the energy budget of
the universe and suppresses the amplitude of perturbations. Also,
the constant behaviour at high redshifts shows that at early times the
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effects of DE are negligible for all the models. In the non-minimally
coupled cases, we conclude that the growth factor is smaller for clus-
tering models compared to the homogeneous case. The difference
between the growth factor of clustering and homogeneous models
is more pronounced for higher values of the coupling constant ξ .
In fact the decrease of the growth factor in clustering DE models
compared to the homogeneous models is due to the fact that the
density perturbation of the DE field is always negative (δ	 < 0) as
shown in the bottom panel of Fig. 4. In addition, the negative value
of δ	 is due to the minus sign in equation (18) and one can see that
clustering DE models can reproduce void DE structures (see also
Dutta & Maor 2007; Unnikrishnan et al. 2008; Jassal 2009, 2012;
Mainini 2009; Bueno Sanchez & Perivolaropoulos 2010; Villata
2012).

4.2 SCM parameters

The linear overdensity parameter δc and the virial overdensity �vir

are the two main quantities characterizing the SCM. In this section,
we evaluate them in the framework of ST cosmologies.

The linear overdensity δc is an important quantity in the Press–
Schechter formalism (Press & Schechter 1974; Bond et al. 1991;
Sheth & Tormen 2002) and the virial overdensity �vir is used to
determine the size of virialized haloes.

To derive the time evolution of the linear overdensity parameter
δc, we use the following non-linear evolution equation (Pace et al.
2014a)

δ̈m + 2Hδ̇m − 4

3

δ̇2
m

1 + δm
− 4πGeffρmδm = 0 , (23)

where in the case of homogeneous models Geff is given by equation
(22) and in the case of clustering models we use equation (20).
Remember that in the case of the minimally coupled model (model
3 in our analysis), the effective gravitational constant Geff reduces to
the constant Newtonian gravitational constant GN in the GR limit.
It is important to note that the evolution of matter perturbations
in ST cosmologies both in the linear (equation 19) and non-linear
(equation 23) regime are coupled to the perturbations of the scalar
field δ	 through the effective gravitational constant Geff introduced
in equations (20) for clustering non-minimally coupled DE models.
We should emphasize that although the functional form of equations
(19 and 23) for the evolution of matter perturbations is identical to
that obtained in standard GR once GN is replaced by Geff, differences
between the two gravitational models are deeper. In fact Geff in
ST theory is dynamical and evolves in time, while GN is constant
in GR. Moreover, the perturbations of the scalar field δ	 affect
directly the evolution of Geff via equation (20). This feature of
ST theory completely determine the behaviour of the growth of
matter perturbations in ST cosmologies with respect to the standard
perturbations growth in GR models. Said this, we follow the general
approach outlined in Pace et al. (2010, 2012, 2014a) to determine
the linear overdensity δc and virial overdensity �vir, to which we
refer for an in depth description of the procedure.

In Fig. 5, we show the evolution of δc as a function of the collapse
redshift zc for the models presented in Table 1. We refer to the cap-
tion for line styles and colours. In analogy to the previous section,
label (a) represents homogeneous models and label (b) indicates
clustering models. We see that at low redshifts, where DE domi-
nates the energy budget of the Universe, δc for clustering models
is smaller than that obtained in the homogeneous case. In fact the
perturbations of the scalar field due to the non-minimally coupling
between the scalar field and the Ricci scalar lowers the value of δc

Figure 5. Linear overdensity parameter δc as a function of the collapse
redshift zc for different minimally and non-minimally coupled models con-
sidered in this work. Line styles and colours are as in Fig. 4.

at low redshifts. This results is expected, since we showed that the
density perturbations of scalar fields due to the non-minimally cou-
pling are always negative (see bottom panel of Fig. 4). Furthermore,
one can see that for positive (negative) coupling constant ξ the value
of δc is larger (smaller) compared to the minimally coupled model
(e.g. model 3).

In addition to δc, the other important parameter in the SCM is the
virial overdensity �vir. The size of spherically symmetric haloes
can be well defined by the virial overdensity parameter. The virial
overdensity is defined as �vir = ζ (x/y)3, where ζ is the overdensity
at the turn-around redshift, x is the scale factor normalized to the
turn-around scale factor and y is the ratio between the virialized
radius and the turn-around radius (Wang & Steinhardt 1998). In
EdS cosmology, it is well known that y = 1/2, ζ ≈ 5.6 and �vir

≈ 178 at any cosmic redshift. In DE cosmologies, �vir depends on
the evolution of the DE sector and evolves with redshift. Moreover,
according to whether DE takes part or not into the virialization
process, the quantity y may be larger or smaller than 1/2. Hence
the virial overdensity �vir can be affected by the clustering of DE
(Maor & Lahav 2005; Pace et al. 2014b; Malekjani et al. 2015).

In standard cosmology, the virialization of pressureless dust mat-
ter and size of forming haloes are strongly affected by the DE
component (Lahav et al. 1991; Wang & Steinhardt 1998; Mota &
van de Bruck 2004; Horellou & Berge 2005; Wang & Tegmark
2005; Naderi et al. 2015) and also by DE perturbations (Abramo
et al. 2007, 2008, 2009; Batista & Pace 2013; Pace et al. 2014b;
Malekjani et al. 2015). In ST cosmologies, we expect that the den-
sity perturbations of the scalar field derived from the non-minimally
coupling between the scalar field and Ricci scalar affect the evolu-
tion of the virial overdensity �vir.

In Fig. 6, we show the redshift evolution of the virial overdensity
�vir for different homogeneous (top panel) and clustering (bot-
tom panel) models in ST theory. All clustering and homogeneous
quintessence models reach the fiducial value �vir ≈ 178 at high
redshifts and decrease towards smaller redshift values. This result
is expected, since at high redshifts the effect of DE on the scenario
of structure formation is negligible and the EdS cosmology is recov-
ered. A decrease in �vir with redshift z in ST cosmologies indicates
that the quintessence sector in ST gravity prevents collapse and
condensation of overdense regions as it happens for DE models in
standard GR gravity. For a ≈ 1 the difference between clustering
and homogeneous quintessence models is limited. We see that in
homogeneous models the virial overdensity is slightly bigger than
in the clustering case. Quantitatively speaking, the present value
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Figure 6. Virial overdensity parameter �vir as a function of collapse red-
shift z for different models given in Table 1. The top panel shows non-
clustering models while the bottom panel represents the clustering case.
Line styles and colours are as in Fig. 4.

of �vir in model (1a) is roughly 3 per cent larger than model (1b).
In the case of homogeneous models (2a) and (4a), �vir is almost
1 per cent higher than clustering cases (2b) and (4b).

4.3 Abundance of haloes in homogeneous quintessence models

We now estimate the comoving number density of virialized haloes
in a certain mass range. To this end, we adopt the Press–Schechter
formalism in which the abundance of haloes is described in terms
of their mass (Press & Schechter 1974). In the Press–Schechter
formalism, the fraction of the volume of the Universe which col-
lapses into an halo of mass M at a given redshift z is expressed by a
Gaussian distribution function (Press & Schechter 1974; Bond et al.
1991). The comoving number density of haloes with masses in the
range of M and M + dM as a function of the redshift z is given by

dn(M,w, z)

dM
= ρ̄0

M

dν(M,w, z)

dM
f (ν) , (24)

where ρ̄0 is the background density at the present time and

ν(M,w, z) = δc

σ
, (25)

where σ is the r.m.s. of the mass fluctuations in spheres containing
the mass M. Generally, the parameters δc and σ depend on the cos-
mological model and as a consequence also on the equation of state
of the DE component. Although, the standard mass function f(ν)
presented in Press & Schechter (1974) can provide a good estimate
of the predicted number density of haloes, it fails by predicting
too many low-mass haloes and too few high-mass objects (Sheth
& Tormen 1999, 2002). Hence we use a modified mass function
proposed by Sheth & Tormen (1999, 2002):

f (ν) = 0.2709

√
2

π

(
1 + 1.1096ν0.3

)
exp

(
−0.707ν2

2

)
. (26)

Adopting a Gaussian density field, the amplitude of mass fluctuation
σ (M) is given by

σ 2 = 1

2π2

∫ ∞

0
k2P (k)W 2(kR)dk , (27)

where R is the radius of the overdense spherical region, W(kR)
is the Fourier transform of a spherical top-hat filter and P(k) is
the linear power spectrum of density fluctuations (Peebles 1993).
The number density of virialized haloes above a certain mass M at
collapse redshift z is

n(> M, z) =
∫ ∞

M

dn(z)

dM ′ dM ′ . (28)

We now compute the predicted number density of virialized
haloes in the Press–Schechter formalism for homogeneous mod-
els in ST cosmologies. In the case of homogeneous cosmologies
we use equations (24) and (28) to determine the number density
of virialized haloes. In this case the total mass of haloes is defined
by the pressureless matter perturbations. In order to calculate σ 2,
we adopt the formulation presented in Abramo et al. (2007) and
Naderi et al. (2015). On the basis of latest observational results by
the Planck Collaboration team (Planck Collaboration XIII 2015),
we adopt the concordance �CDM model with the normalization of
the matter power spectrum σ 8 = 0.815.

In Fig. 7, we show the ratio of the predicted number of haloes
above a given mass M between the homogeneous models in ST
gravity and the concordance �CDM universe for different cosmic
redshifts: z = 0 (top-left panel), z = 0.5 (top-right panel), z = 1.0
(bottom-left panel) and z = 2.0 (bottom-right panel). Analogously
to previous figures, label (a) represents homogeneous models. We
remind the reader that model (3) represents a minimally coupled
quintessence model. At z ≈ 0, all the models produce approximately
the same number of haloes over a large mass range, however small
differences take place at high masses.

At z = 0.5, we see that all models including the �CDM one are
still giving approximately the same number of objects at low masses
(M ≈ 1013 M	 h−1), while at high masses (M ≈ 1015 M	 h−1)
the differences between the models (2), (3), (4) and the �CDM
one become more pronounced. However, differences are negligible
for model (1). Quantitatively speaking, at z = 0.5, model (4) with
negative coupling constant ξ =−0.087 has roughly 22 per cent more
haloes than the �CDM model. This value is roughly 11 per cent for
model (2) and 17 per cent for the minimally coupled quintessence
case with ξ = 0 (model 3). At higher redshifts, z = 1 and z = 2, we
see that differences in the halo numbers appear also at low masses.
At high redshifts, all the models here investigated predict a higher
number of virialized haloes compared to the �CDM model. In
particular, the number of objects in the non-minimally coupled case
with negative coupling parameter ξ = −0.087 (model 4) is larger
than what is predicted for a minimally coupled case (model 3). In
the non-minimally coupled case with positive coupling constant ξ =
0.088 and ξ = 0.123 (models 1 and 2) instead, the number of objects
is smaller. Fractional differences in the number of virialized haloes
between different models and the �CDM model are presented in
Table 2. Results are shown for three mass scales: M > 1013 M	 h−1,
M > 1014 M	 h−1 and M > 1015 M	 h−1.

4.4 Abundance of haloes in clustering quintessence models

As shown in Section 4.2, the size and density of virialized haloes
strongly depends on the background dynamics and change in the
presence of the scalar field perturbations. Hence in clustering
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Figure 7. Ratio of the number of haloes above a given mass M at z = 0 (top left), z = 0.5 (top right), z = 1.0 (bottom left) and z = 2.0 (bottom right)
between the minimally and the non-minimally coupled quintessence models and the concordance �CDM cosmology. Scalar field models have been assumed
homogeneous. Line style and colours are as in Fig. 1.

Table 2. Numerical results for the fractional difference of number of haloes between homogeneous
minimally and non-minimally coupled quintessence models and the concordance �CDM model. These
results are presented at four different redshifts: z = 0, z = 0.5, z = 1 and z = 2 for objects with M >

1013 M	 h−1 (low-mass scale), M > 1014 M	 h−1 (intermediate mass scale) and M > 1015 M	 h−1

(high-mass end).

Model (1a) z = 0 z = 0.5 z = 1 z = 2

M > 1013 M	 h−1 −0.1 per cent 0.3 per cent 0.9 per cent 3 per cent
M > 1014 M	 h−1 −0.2 per cent 0.6 per cent 2 per cent 6 per cent
M > 1015 M	 h−1 −0.6 per cent 2 per cent 7 per cent 21 per cent

Model (2a) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −0.1 per cent 1.2 per cent 5 per cent 22 per cent
M > 1014 M	 h−1 −0.2 per cent 3 per cent 11 per cent 47 per cent
M > 1015 M	 h−1 −0.6 per cent 11 per cent 40 per cent –

Model (3) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −0.1 per cent 2 per cent 8 per cent 39 per cent
M > 1014 M	 h−1 −0.2 per cent 4 per cent 17 per cent 89 per cent
M > 1015 M	 h−1 −0.5 per cent 17 per cent 71 per cent –

Model (4a) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −0.1 per cent 2.3 per cent 9 per cent 43 per cent
M > 1014 M	 h−1 −0.2 per cent 6 per cent 21 per cent 101 per cent
M > 1015 M	 h−1 −0.5 per cent 22 per cent 89 per cent –

models we should take into account the contribution of the scalar
field density perturbations to the total mass of the haloes (see also
Creminelli et al. 2010; Basse et al. 2011; Batista & Pace 2013; Pace
et al. 2014b; Malekjani et al. 2015). We follow the formulation pre-
sented before in DE cosmologies where the total mass of the haloes
is affected by DE perturbations (Batista & Pace 2013; Malekjani
et al. 2015). The quantity ε(z) = MDE/Mm, representing the ratio of
DE mass to matter mass, indicates how DE perturbations affect the
total mass of virialized haloes. The mass of DE is defined according
to the contribution of DE perturbation. If we assume the top-hat

density profile and fully clustering DE, we have (see also Malekjani
et al. 2015)

ε(z) = �φ(z)

�m(z)

δde(z)

1 + δm(z)
. (29)

In Fig. 9, we show the redshift evolution of ε(z) on the basis
of equation (29) for the different minimally and non-minimally
coupled quintessence models considered in this work. We see that
for all the non-minimally coupled models with positive or negative
coupling constant ξ , the quantity ε is negative and for the minimally
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Figure 8. Ratio of the number of haloes above a given mass M at z = 0 (top left), z = 0.5 (top right), z = 1.0 (bottom left) and z = 2.0 (bottom right)
between the minimally and the non-minimally coupled scalar field models considered in this work and the concordance �CDM cosmology. Here, we assume
the clustering of scalar field models. Line style and colours are same as in Fig. 4.

Figure 9. The redshift evolution of the ratio of DE mass to pressureless dark
matter mass ε(z) calculated according to equation (29) for different scalar
field models considered in this work. For the non-clustering minimally
coupled scalar field case (model 3) we have ε = 0 as expected. Line style
and colours are as in Fig. 1.

coupled case (model 3) ε is zero. This result is expected, since δ	 for
all non-minimally coupled models is negative and zero for model
(3) (see also Fig. 4). We also see that for z � 1, in all non-minimally
coupled models ε approaches zero. This means that the contribution
of the DE mass to the total mass of haloes is negligible at high
redshifts. This is nothing else than requiring an EdS behaviour in
the past. Moreover, models with larger coupling constant ξ give
a higher contribution of the DE mass to the total mass of haloes.
We notice that in these models the DE mass is negative and hence
should be subtracted from the total mass of haloes.

Following Batista & Pace (2013), Pace et al. (2014b) and
Malekjani et al. (2015), in the presence of DE mass contribution, the
definition of the mass function in the Press–Schechter formalism is

changed to

dn(M,w, z)

dM
= ρ̄0

M(1 − ε)

dν(M,w, z)

dM
f (ν) , (30)

where f(ν) is given by equation (26). We notice that in clustering
models, density perturbations of the scalar field change the function
f(ν) via changing the quantities δc and σ . In Fig. 8, we show the pre-
dicted number of haloes calculated with the corrected mass function
in equation (30) for clustering models divided by those obtained for
the concordance �CDM model. In analogy to Fig. 7, we select four
different redshifts z = 0, z = 0.5, z = 1 and z = 2. As in the previous
section, clustering models are labelled with the letter ‘(b)’. Results
for model (3) are similar to those obtained before and presented in
Section 4.3. We see that at z ≈ 0, all models roughly coincide with
the �CDM case and differences are negligible. At z = 0.5 differ-
ences with the �CDM model are considerable at the high-mass tail
(M > 1015 M	 h−1). In particular, we see that for model (4b) the
number of haloes is roughly 20 per cent higher than that of the con-
cordance �CDM model. This value is 17 per cent for model (3) and
approximately 8 per cent for model (2b) and −5 per cent in the case
of model (1b). The numerical values for the fractional difference of
the number of haloes between the different clustering models con-
sidered in this work and the �CDM model are presented in Table 3.
In analogy to Table (2), the results are reported for masses greater
than 1013, 1014 and 1015 M	 h−1. At higher redshifts, z = 1 and
z = 2, we see that the predicted number of haloes calculated for
clustering models deviates from the �CDM expectation even at the
low-mass end of the halo mass function. Generally, by comparing
the results presented in Tables 2 and 3, we conclude that the number
of virialized haloes estimated in clustering models is lower than that
for homogeneous models. This result is due to the negative sign of
δ	 and ε in clustering quintessence models. Differences between
clustering and homogeneous models are more pronounced at the
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Table 3. The fractional difference of number of haloes between clustering models in ST cosmologies and
the concordance �CDM model. Results are shown at four different epochs: z = 0, z = 0.5, z = 1 and z =
2 for objects with M > 1013 M	 h−1, M > 1014 M	 h−1 and M > 1015 M	 h−1.

Model (1b) z = 0 z = 0.5 z = 1 z = 2

M > 1013 M	 h−1 −2.6 per cent −3.2 per cent −4.5 per cent −6.4 per cent
M > 1014 M	 h−1 −2.7 per cent −3.6 per cent −5.3 per cent −12 per cent
M > 1015 M	 h−1 −3.1 per cent −5 per cent −11.8 per cent −34 per cent

Model (2b) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −1.4 per cent 0.6 per cent 3.8 per cent 19 per cent
M > 1014 M	 h−1 −1.5 per cent 1.9 per cent 8.5 per cent 39 per cent
M > 1015 M	 h−1 −1.9 per cent 7.7 per cent 32 per cent –

Model (3) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −0.1 per cent 2 per cent 8 per cent 39 per cent
M > 1014 M	 h−1 −0.2 per cent 4 per cent 17 per cent 89 per cent
M > 1015 M	 h−1 −0.5 per cent 17 per cent 71 per cent –

Model (4b) z = 0 z = 0.5 z = 1 z = 2
M > 1013 M	 h−1 −0.8 per cent 2 per cent 8.5 per cent 42 per cent
M > 1014 M	 h−1 −1 per cent 5 per cent 19 per cent 95 per cent
M > 1015 M	 h−1 −1.6 per cent 20 per cent 81 per cent –

high-mass tail and at high redshifts, as expected. For example for
model (1) where the coupling constant is the largest (ξ = 0.123),
we see that at the high-mass tail (M > 1015 M	 h−1 at z = 0) the
homogeneous model (1a) produces only 2.5 per cent more objects
than in the clustering case (model 1b). This value is 7 per cent at
z = 0.5, roughly 19 per cent at z = 1 and 55 per cent at z = 2. For
other quintessence models we have similar results.

5 C O N C L U S I O N S

In the context of the SCM, we studied the non-linear growth of struc-
tures in ST cosmologies. In ST gravity, there is a non-minimally
coupling between the scalar field and the Ricci scalar, the so-called
non-minimally coupled quintessence models. We first studied the
background expansion history in ST theories. We saw that in the
case of positive non-minimally coupling parameter, ξ > 0 (model 1),
the equation of state of the scalar field w	 can achieve the phantom
regime (w	 < −1) at high redshifts, while in the case of minimally
coupled quintessence models (model 3), w	 remains always in the
quintessence regime −1 < w	 < −1/3, as expected (see the top
panel of Fig. 2). The redshift evolution of the energy density �	

shows that all minimally and non-minimally coupled quintessence
models considered in this work reduce to an EdS universe at high
redshifts where the dynamics of the universe can be well described
by the pressureless matter component (see middle panel of Fig. 2).
All quintessence models in ST theories are characterized by �H(z)
> 0 at low redshift, meaning that all minimally and non-minimally
coupled quintessence models have a larger Hubble parameter com-
pared to the �CDM universe at low redshifts (see bottom panel of
Fig. 2).

We then followed the evolution of matter perturbations within
the ST gravity on sub-Hubble scales. In particular, we focused
on the scalar field perturbations due to the non-minimal coupling
between the scalar field and the Ricci scalar, the so-called clus-
tering non-minimally coupled quintessence models. When we ig-
nore the scalar field perturbations and assume that the scalar field
is important only at the background level, the model is the so-
called homogeneous non-minimally coupled quintessence model.
The equation describing the evolution of matter overdensities in
ST theories is similar to the one found in general relativistic mod-

els, albeit in this case the Newtonian gravitational constant GN is
replaced by the effective gravitational constant Geff (equation 20).
Since there is a difference between the definition of Geff in homo-
geneous (equation 22) and clustering (equation 20) non-minimally
coupled quintessence models, we infer that the evolution of matter
perturbations on the basis of equation (19) differs between cluster-
ing and homogeneous non-minimally coupled quintessence mod-
els. We saw that for higher values of the coupling parameter ξ ,
the effective gravitational constant G

(p)
eff defined in clustering non-

minimally quintessence model is higher than the same quantity G
(h)
eff

defined in homogeneous non-minimally coupled quintessence mod-
els (Fig. 3). Hence we conclude that the scalar field perturbations
directly affect the effective gravitational constant in ST cosmolo-
gies. In the case of minimally coupled quintessence models (ξ = 0)
since the perturbations of scalar field are vanishing, the difference
between these two different definitions of effective gravitational
constant is zero. The linear growth factor depends strongly on the
sign of the coupling parameter ξ , so that the growth factor for non-
minimally coupled quintessence with negative (positive) coupling ξ

is larger (smaller) than in minimally coupled quintessence (top panel
of Fig. 4).

We showed that independently of the sign of the coupling param-
eter, the perturbations of the scalar field are always negative (bottom
panel of Fig. 4), so that the clustering non-minimally quintessence
models can reproduce the void DE structures. Due to the nega-
tive sign of the scalar field perturbations, the linear growth factor
in clustering quintessence models is smaller than that obtained in
homogeneous quintessence models (top panel of Fig. 4).

As next step we calculated the SCM parameters δc and �vir in
the context of homogeneous and clustering non-minimally coupled
quintessence models. Due to the negative sign of the scalar field
perturbations, we notice that the linear overdensity δc is smaller with
respect to the case when the scalar field is homogeneous (see Fig. 5).
The redshift evolution of the virial overdensity �vir parameter shows
that in both homogeneous and clustering quintessence models the
scalar field sector slows down the collapse and the formation of
overdense regions as it happens for DE models in standard GR
gravity (see Fig. 6).

With this point of the discussion, we want to stress the point that
the results here obtained for both the linear growth factor (D(a))
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and linear overdensity parameter (δc) are more general than those
in Pace et al. (2014a), where the effective gravitational constant was
approximated to Geff � GN/F for a direct comparison with N-body
simulations.

We finally investigated the number count of haloes for non-
minimally coupled quintessence models taking into account the
scalar field perturbations. In the case of homogeneous models, we
showed that all the models here investigated give an excess of
structures with respect to the concordance �CDM model. The dif-
ferences between non-minimally coupled models and the �CDM
model are more pronounced for high masses and high redshifts.
We also notice that the number of haloes in non-minimally coupled
quintessence models with negative (positive) coupling parameter
ξ is higher (lower) than that obtained in the minimally coupled
quintessence case (see Fig. 7).

When the scalar field is clustering, we should in principle modify
the mass of the halo. When doing this, we obtain similar results
to the homogeneous case, except for model (1). In model (1), we
see that the number of haloes is lower than in the reference �CDM
universe. Since scalar field perturbations are negative (see Fig. 9),
the predicted number of haloes is smaller compared to the homoge-
neous models (see Tables 2 and 3).
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APPENDIX A : U SEFUL EQUATIONS IN TERMS
O F T H E PL A N C K M A S S

Since different works in literature use different definitions of the
function F characterizing the coupling between the scalar field and
the Ricci scalar, for the sake of completeness, here we write the
most important equations used in this work relaxing the common
notation 8πG = 1. This will help the reader to implement the fol-
lowing equations correctly from a dimensional point of view. We
also remind the reader that, expressing physical quantities in units
of mass ([M]), the density and the scalar field potential have units
of [M4], the Hubble function and time derivatives have units of [M]
and finally the scalar field is expressed in units of the reduced Planck
mass (M2

pl = 1/(8πG)), where we have set � (Planck constant) and
c (speed of light) to unity. The function F and the coupling constant
ξ are assumed to be dimensionless quantities.

The function F(	) is therefore

F (φ) = 1 + ξ

[(
	

Mpl

)2

−
(

	0

Mpl

)2
]

, (A1)

and the density and the pressure of the scalar field are

ρ	 = 1

2
	̇2 + U (	) − 3HM2

plḞ , (A2)

p	 = 1

2
	̇2 − U (	) + M2

pl(F̈ + 2HḞ ) . (A3)

Hence Friedmann equations read

3F (	)H 2 = 8πG

(
ρm + 1

2
	̇2 + U

)
− 3HḞ , (A4)

−2F (	)Ḣ = 8πG
(
ρm + 	̇2

) + F̈ − HḞ , (A5)

ä

a
= −4πG

3F

[
ρm + 2	̇2 − 2U + 3M2

pl(F̈ + HḞ )
]
. (A6)

Note that equation (A6) corrects a typo in equation (22) of Pace
et al. (2014a).

The Klein–Gordon equation can be written in a more general
form by noticing that R = 6(2H 2 + Ḣ ):

	̈ + 3H	̇ + dU

d	
= 1

2
M2

pl

dF

d	
R . (A7)

The two different forms of the effective gravitational constant
read

G
(h)
eff = GN

F

(
2F + 2M2

plF
2
,	

2F + 3M2
plF

2
,	

)
= GN

F

2 + 2ω−1
JDB

2 + 3ω−1
JDB

, (A8)

G
(p)
eff = GN

F

(
2F + 4M2

plF
2
,	

2F + 3M2
plF

2
,	

)
= GN

F

2 + 4ω−1
JDB

2 + 3ω−1
JDB

, (A9)

where we introduced the Jordan–Brans–Dicke parameter ωJDB:

ω−1
JDB = M2

plF
2
,	/F . (A10)

By using equation (A10), we see that GR is recovered for ωJDB

� 1. In addition, we also notice that for ωJDB � 1 we obtain
G

(h)
eff = G

(p)
eff � GN/F . This shows once again, from a different point

of view, that in the general relativistic regime, fluctuations of the
scalar field become unimportant.
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