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Cosmological perturbation theory in Generalized Einstein-Aether models
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We investigate the evolution of cosmological perturbations in models of dark energy described by
a time-like unit normalized vector field specified by a general function F(K), so-called Generalized
Einstein-Aether models. First we study the background dynamics of such models via a designer
approach in an attempt to model this theory as dark energy. We find that only one specific form
of this designer approach matches ΛCDM at background order and we also obtain a differential
equation which F(K) must satisfy for general wCDM cosmologies. We also present the equations of
state for perturbations in Generalized Einstein-Aether models, which completely parametrize these
models at the level of linear perturbations. A generic feature of modified gravity models is that
they introduce new degrees of freedom. By fully eliminating these we are able to express the gauge
invariant entropy perturbation and the scalar, vector, and tensor anisotropic stresses in terms of
the perturbed fluid variables and metric perturbations only. These can then be used to study the
evolution of perturbations in the scalar, vector, and tensor sectors and we use these to evolve the
Newtonian gravitational potentials.
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I. INTRODUCTION

The nature of dark energy remains one of the biggest unsolved problems in cosmology. Numerous models of dark
energy and modified gravity theories have been constructed [1] in an attempt to describe cosmological observations
[2–4], with varying degrees of success. Perhaps the simplest and most successful of these is the cosmological constant
which is remarkably consistent with recent observations [5, 6]. However, other models must be studied in case they
provide a more suitable description or otherwise to rule them out all together, both theoretically and observationally.
With the advent of surveys such as DES1 [7], Euclid2 [8–10], LSST3 [11, 12], and SKA4 [13–16], observational
constraints on these models will undoubtedly become tighter.

An obvious way to modify gravity is to introduce a new field other than the metric and make dark energy a dynamical
component. These models typically introduce scalar fields and many of these are encompassed by Horndeski [17, 18],
the most general scalar-tensor theory that gives rise to second-order equations of motion. This class of models include
Quintessence [19–21], k-essence [22, 23], Kinetic Gravity Braiding (KGB) [24], f(R) gravity [25–27], and many more.
Indeed, it has already been shown that it is possible to achieve a dark energy fluid with w = −1 exactly in, for
example, Quintessence and k-essence [28], and for so-called ‘designer f(R)’ [29]. However, there is no reason not to
consider the new field to be a vector and indeed such vector-tensor theories have been shown to be able to give rise to
a period of accelerated expansion even without potential terms [30–38], and therefore provide an interesting avenue
of research. In this paper we study so-called Einstein-Aether theories at background and perturbative order, where
the vector field is constrained to be of time-like unit norm. First studied in [34], it was shown that the model would
in fact slow the expansion of the universe [39]. However, more recently, modifications to this theory have been shown
to allow it to describe dark energy and still be compatible with observations [36–38]. This is done by introducing
non-canonical kinetic terms parametrized by a free function F(K), where K determines the kinetic terms for the vector
field. In principle this could take on any functional form and in previous work in this area specific forms were chosen
to work with. However, as with designer f(R), we will choose a background evolution of the universe and allow that
to dictate the form of F(K) in a ‘designer F(K)’ model.

At background order, despite the many complex models of dark energy all of these can be parametrized by specifying
a single function of time, the equation of state parameter, wde = Pde/ρde. Exactly how wde behaves as a function of
time will of course depend on the theory, but at this order there is nothing else to measure which will tell us about the
nature of dark energy, provided FRW spacetime symmetries are respected. At the level of linear perturbations various
approaches have been developed in order to try to parametrize different theories [40–50]. In this paper, we work with
the Equation of State for perturbations (EoS) approach [47–49]. A generic feature of modified gravity models is that
new degrees of freedom arise at the level of perturbations. The EoS approach packages the parametrization into the
gauge invariant entropy perturbation, Γ, and anisotropic stress, ΠS , by eliminating these degrees of freedom in favour
of the perturbed fluid variables and metric perturbations. The perturbed conservation equation, δ(∇µTµν) = 0, gives
two evolution equations for the density perturbation, δρ, and divergence of the velocity field, θS . For example, in the
synchronous gauge they are given by (

δ

1 + w

)′
= −k2θS − 1

2
h′ − 3H

1 + w
wΓ, (1)

(1 + w)θS
′

= H(1 + w)

(
3
dP

dρ
− 1

)
θS +

dP

dρ
δ + wΓ +

2

3
wΠS , (2)

where primes denote conformal time differentiation and H is the conformal Hubble parameter. The metric pertur-
bations, h and η, are evolved via Einstein’s equation. However, the forms of ΠS and Γ are not known and hence
(1) and (2) are not closed. If we can somehow specify Γ and ΠS as linear functions of the perturbed fluid variables,
metric perturbations, and their derivatives only, these equations close, i.e. we wish to write Γ = Γ(δ, θS , h′, η, ...)
and ΠS = ΠS(δ, θS , h′, η, ...), or equivalently in terms of the dark energy (de) and matter (m) fluid variables,
Γ = Γ

(
δde, θ

S
de, δm, θ

S
m

)
and ΠS = ΠS

(
δde, θ

S
de, δm, θ

S
m

)
. Our approach is to eliminate the internal degrees of free-

dom describing the dynamics of the modified gravity theory, via expressions for δ and θS , supplemented by the
equation of motion for the vector field. In principle, the equations of motion and hence the perturbed fluid variables
have already been derived in [36, 37], for example, although the equations of state have not been computed. However,

1 http://www.darkenergysurvey.org/
2 http://www.euclid-ec.org/
3 https://www.lsst.org/
4 https://www.skatelescope.org/

http://www.darkenergysurvey.org/
http://www.euclid-ec.org/
https://www.lsst.org/
https://www.skatelescope.org/
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Theory Scalar anisotropic stress, wΠS Entropy perturbation, wΓ

Minimally coupled scalar fields 0
(
c2s − dP

dρ

) [
δ + 3H(1 + w)θS

]
KGB 0 A1δ +A2θ

S +A3h
′ +A4h

′′

EDE 3
2

(
w − c2s

)
[δ − 3(1 + w)η] 0

TABLE I. Expressions for Γ and ΠS in terms of the dark energy perturbed fluid variables and metric perturbations for some
dark energy models and modified gravity theories, in the synchronous gauge.

in most of the previous work the so-called ‘acceleration’ term has not been included, corresponding to the c4 term
in [35]. This term is often either completely ignored or argued that a transformation of the coefficients can remove
it. However, we discuss later why this isn’t true in general and so keep the c4 term in our subsequent analysis. In
particular, we extend on previous work done by including the c4 term for F(K) theories in so-called Generalized
Einstein-Aether, as well as using the EoS formalism.

Although in this paper we use a specific Lagrangian to work with, one of the advantages of the EoS approach is
that it allows the computation of cosmological perturbations in a model independent way. In [49] this approach was
applied to generic scalar-tensor theories by specifying only the field content of the Lagrangian and nothing specific
about its functional form. This approach also provides a set of modifications that are, in principle, easy to insert into
numerical codes. Equations of state have already calculated for various different classes of theories, for example, the
elastic dark energy (EDE) [51], which was shown to be equivalent to Lorentz violating, massive gravity theories [52].
They have also been calculated for general scalar-tensor theories [49] and in particular Quintessence, k-essence, KGB,
and Horndeski theories [18]. In these cases, the degree of freedom to be eliminated is related to the perturbed scalar
field, δϕ, and its derivatives. This was also shown to be the case for f(R) gravity and was studied in [53]. In this
paper we apply the EoS approach to Generalized Einstein-Aether theories. The expressions for Γ and ΠS are shown
in Table I for some of these theories, in the synchronous gauge, where {Ai} are functions of background quantities
and c2s = δP/δρ is the squared sound speed of scalar perturbations. We do not provide the expressions in f(R) gravity
here as they are quite complicated, however they are presented in [53].

This paper is organized as follows. In section II we present the model for Generalized Einstein-Aether and derive the
equations of motion. We also briefly mention sub-cases to this model that have been studied previously. We then study
the theory at linear perturbative order (section III) in the scalar, vector, and tensor sector and present expressions for
the perturbed fluid variables in both the conformal Newtonian and synchronous gauges. We then proceed to derive
the gauge invariant equations of state for perturbations (section IV) by eliminating all the internal degrees of freedom
that arise from introducing the vector field. From these we also study the evolution of the Newtonian gravitational
potentials. We then conclude in section V and discuss future steps.

Natural units are used throughout with c = ~ = 1 and the metric signature is (−,+,+,+).

II. GENERALIZED EINSTEIN-AETHER FIELD EQUATIONS

II.1. Field equations

The Lagrangian for Generalized Einstein-Aether is [36]

16πGLA = M2F(K) + λ(gµνA
µAν + 1), (3)

where we introduce the vector field Aµ, which is known as the Aether field. The scalar K is defined by

K =
1

M2
Kαβ

µν∇αAµ∇βAν (4)

and the rank-4 tensor is defined by

Kαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
ν δ

β
µ + c4A

αAβgµν . (5)

Here, {ci} are dimensionless constants and M has dimensions of mass. The ‘kinetic tensor’, Kαβ
µν , determines the

derivative squared terms of the Aether field. Similar to generalization of Quintessence to k-essence, the kinetic terms
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have been modified to an arbitrary, dimensionless function F(K). An important feature of Einstein-Aether models is
the presence of the Lagrange multiplier λ. This will constrain the Aether field to have a time-like unit norm. As we
will see, this will also have an effect on the propagating degrees of freedom at the perturbative level.

The full action that we will study is then

S =

∫
d4x
√
−g
(

1

16πG
R+ LA

)
+ Sm, (6)

where the action for the matter fields, Sm, does not couple directly to the Aether field. The equations of motion can
now be obtained by varying (6) with respect to each degree of freedom i.e. λ, Aµ, and gµν . Variation with respect to
λ yields the constraint gµνA

µAν = −1. The equation of motion for the Aether field, Aµ, is

∇α(FKJαµ)− c4FKAα∇αAν∇µAν = λAµ, (7)

where we define Jαµ = Kαβ
µν∇βAν and FK = dF

dK , and variation with respect to the metric gives Einstein’s equation
in the form

Gµν = 8πGTµν + Uµν , (8)

where Tµν is the energy-momentum tensor for the matter fields only. All contributions from the Aether field are
included in Uµν which takes the form

Uαβ = ∇µ
[
FK
(
J(α

µAβ) − Jµ(αAβ) − J(αβ)A
µ
)]

+ λAαAβ +
1

2
M2Fgαβ

+ c1FK (∇µAα∇µAβ −∇αAµ∇βAµ) + c4FKAµAν∇µAα∇νAβ , (9)

where brackets around indices denote symmetrization, i.e. J(αβ) = 1
2 (Jαβ + Jβα).

Using (7) to eliminate λ, we find that

Uαβ = ∇µ
(
FK
[
J(α

µAβ) − Jµ(αAβ) − J(αβ)A
µ
])

+ c1FK (∇µAα∇µAβ −∇αAµ∇βAµ) + c4FKAµAν∇µAα∇νAβ

+ [c4FKAµAν∇µAτ∇νAτ −Aν∇µ(FKJµν)]AαAβ +
1

2
M2Fgαβ . (10)

The first line arises due to the metric variation in the Christoffel symbols [39, 54], the second line comes from the
variation in the c1 and c4 terms of (5), and the third line is due to the variation of the Lagrange multiplier and

√
−g

terms.

II.2. Background dynamics

We will assume a background cosmology described by the FRW metric,

ds2 = −dt2 + a(t)2δijdx
idxj , (11)

and that Aµ = (1, 0, 0, 0). The reason for this choice of Aµ is to satisfy the unit norm constraint and to be compatible
with the symmetries of FRW. Taking Uµν to be the energy momentum tensor of a perfect fluid, then from U00 and
Uij we find that the background energy density and pressure are

ρA = 3αH2

(
FK −

F
2K

)
, (12)

PA = α

[
3H2

(
F
2K
−FK

)
− ḞKH −FKḢ

]
, (13)

where α = c1 + 3c2 + c3, over-dots denote differentiation with respect to cosmic time, t, and

K =
3αH2

M2
. (14)
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Note that we have absorbed a factor of 8πG into Uµν . We can also check that PA and ρA satisfy the energy conservation
equation

ρ̇A = −3H(ρA + PA), (15)

as they should by construction of (8). Note that the c4 term plays no role in the background dynamics.
The time-time component of Einstein’s equation gives the modified Friedmann equation as

(1− αFK)H2 +
1

6
FM2 =

8πG

3
ρm. (16)

If we were to demand that the theory is indistinguishable from a cosmological constant at background order, then
from (16) we obtain the differential equation

KdF
dK
− 1

2
F =

Λ

M2
, (17)

where we have substituted H2 for K via (14). The solution to this equation is

F = B(±K)1/2 − 2Λ

M2
, (18)

depending on the sign of K and where B is an arbitrary integration constant. The case of a general power law has been
studied in [36–38] as well as more exotic forms, for example see [54, 55]. Indeed, the functional form of F(K) must
be specified at some point to make observational predictions. However, since F(K) could in principle be anything, it
would be ideal if the form of F(K) could be found by specifying more standard parameters describing the background
dynamics e.g. wde, Ωde,0, etc. Since any new dark energy model will at least have to be compatible with ΛCDM
‘globally’, it makes sense to demand that Generalized Einstein-Aether must yield a ΛCDM cosmology and in turn,
this will restrict the form of F(K). Since the background evolution of this model will be identical to ΛCDM, the
effects of perturbations will become very important as it is only the dynamics at the perturbative level which will be
able to distinguish this model from ΛCDM.

Let us now demand that the Aether field energy density and pressure obey a more general equation of state i.e.
PA = wdeρA, where wde is constant. Since current observations do not yet sufficiently constrain anything other than
constant wde this is a reasonable assumption to make, however this may change in the near future. We can rewrite
(13) as

PA = −ρA − α(2KFKK + FK)Ḣ (19)

and so,

(1 + wde)M2

(
KFK −

1

2
F
)

= −α(2KFKK + FK)Ḣ, (20)

where we have written H2 in terms of K. If we can write Ḣ = Ḣ(K), then (20) will give us a differential equation to
solve for F(K) satisfying a certain value of wde.

We write the Friedmann equation as (
H

H0

)2

=
Ωm,0

a3
+

Ωde,0

a3(1+wde)
, (21)

where we have defined 8πGρde = ρA, Ωi = 8πG
3H2 ρi, and for this section only the subscript ‘m’ refers to matter with

Pm = 0. Differentiating this and combining with (21) to eliminate Ωde,0 gives

1

a3
=

1

wdeΩm,0

[
(1 + wde)

(
H

H0

)2

+
2Ḣ

3H0
2

]
. (22)

We can also use the Raychaudhuri equation, given by

Ḣ +H2 = −4πG

3
[ρm + (1 + 3wde)ρde] . (23)
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Inserting (12) we have that

Ḣ

H0
2 +

(
H

H0

)2

= −Ωm,0

2a3
− M2

6H0
2 (1 + 3wde)

(
KFK −

1

2
F
)
, (24)

and so using (22) we find that

Ḣ(K) = −M
2

2

[
K
α

+ wde

(
KFK −

1

2
F
)]

. (25)

Therefore, the differential equation we must solve is then

(1 + wde) (2KFK −F) = (2KFKK + FK)

[
K +

1

2
αwde (2KFK −F)

]
. (26)

For wde = −1, then this reduces to

(2KFKK + FK)

[
K − 1

2
α (2KFK −F)

]
= 0, (27)

for which there are two branches of solutions,

F =
2

α
K +D(±K)1/2, (28)

F = B(±K)1/2 + C, (29)

again depending on the sign of K and where B,C and D are integration constants. If we insert (28) into (16) we
find that the Friedmann equation becomes ρm = 0 and therefore we ignore this branch of the solution. For the
other branch, we see that (29) is what we obtained before from demanding a cosmological constant, which sets
C = −2Λ/M2 = −6H2

0 ΩΛ,0/M
2. Therefore, the only functional form for F which gives rise to an exact ΛCDM

cosmology, at background order, is (18). More generally, we see that the initial conditions are related via (12), such
that if we specify that today F(K0) = F0, then it must be that

FK,0 =
Ωde,0

α
+
F0

2K0
, (30)

where FK,0 = FK(K0) and K0 = K(a = 1). Applying these initial conditions to (29) we find that

F =

(
F0 +

6H2
0 Ωde,0

M2

)(
K
K0

)1/2

− 6H2
0 Ωde,0

M2
. (31)

At background order, we appear to have 5 parameters {wde,Ωde,0,F0,M, α} which we must specify in order to
compute F . Varying α will vary the domain over which F varies as a function of K. It may also seem that α will
affect the functional form of F , as it appears explicitly in (26). However, note that this is somewhat misleading
because K ∝ α and the explicit dependence of α in (26) is removed under a rescaling K → K/α. This can also be
seen from (12) and (13), where the factor of α is removed under the same rescaling. Therefore, α can take on any
value for the purposes of the background evolution and so we will fix α = 1 for the rest of this section.

The evolution of F for different {wde,F0,M} is shown in Figure 1. We will fix Ωde,0 = 0.691 and H0 = 2.132 ×
10−42hGeV, where h = 0.678 [5]. To study the effect of varying F0 we will look to the analytical solution for wde = −1
in (31), with M = H0. The evolution of F will be such that it will be driven to F0 at a = 1, as shown in Figure 1.
The parameter F0 is similar to designer f(R) theories where the analogous parameter in [53] was called B0. We see
that in the past F is approximated well by a pure power law, corresponding to the behaviour of the first term in
(31), since this terms dominates in the past. For F0 � 6H2

0 Ωde,0/M
2, this power law behaviour persists into the

dark energy dominated era as F → F0. If F0 . 6H2
0 Ωde,0/M

2 then for (K/K0)
1/2 � 1 the first term still dominates

in (31) and we still observe the power law behaviour. However, as (K/K0)
1/2 → 1 the second term in (31) becomes

comparable to the first and so the power law behaviour is broken as F → F0, as seen in Figure 1.
We note that the variation of the mass scale, M , also has a similar effect to varying F0, as the behaviour of F will

depend on the relative size of F0 and 6H2
0 Ωde,0/M

2 from (31). Similar to α, varying M will also change the domain
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FIG. 1. Top left panel : Comparison of the evolution of F due to varying F0. In these models M = H0 and wde = −1 are fixed.
Top right panel : Comparison of the evolution of F due to the variation of M , as a multiple of H0. In these models F0 = 1 and
wde = −1 are fixed. Bottom left panel : Comparison of the evolution of F for varying wde close to −1. In these models F0 = 1
and M = H0 are fixed. Bottom right panel : Comparison of the evolution of M2F for varying M2 and F0, with M2F0/H

2
0 = 1

and wde = −1 fixed.

of F . It may seem that M should not influence the evolution of F as it does not appear explicitly in (26). However,
similar to α, the M dependence is hidden via K ∝ M−2. Under a rescaling K → M2K, we see that there is in fact
a M dependence in (26). However, if we instead work with the combination M2F , then under the rescaling we find
that (26) becomes independent of M . Indeed, note that F appears as M2F in the Lagrangian (3) and from (31) we
can write this as

M2F =
(
M2F0 + 6H2

0 Ωde,0

)( K
K0

)1/2

− 6H2
0 Ωde,0. (32)

Hence, we see that any change in M can be offset with a change in F0, i.e. M and F0 are degenerate, as seen in
Figure 1. As expected, the choice of M does not affect the functional form of M2F . We will therefore fix M = H0,
corresponding to the approximate mass scale dark energy begins to dominate, and keep F0 as a free parameter.

For solutions close to wde = −1, we do not expect to see large deviations from the analytical solution. Indeed, the
previous discussion about the power law behaviour still holds for solutions with wde sufficiently close to −1, as seen in
Figure 1. Although unfavoured by current observations, dark energy models with wde 6= −1 have not been completely
ruled out and so we will allow for this in the subsequent analysis.

To summarise, for the background evolution we have 3 free parameters {wde,Ωde,0,F0} to specify, not 5, since α has
no effect on the background evolution, other than a rescaling of the domain as a function of K, and M2 is degenerate
with F0. While the background evolution only requires us to specify {wde,Ωde,0,F0,M}, as we will see in section IV,
at the level of linear perturbations the value of α and the other {ci} coefficients will be important.
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II.3. Sub-classes to Generalized Einstein-Aether

There are a number of interesting sub-classes of the Generalized Einstein-Aether model that have been studied
previously which we will mention here.

II.3.1. Linear Einstein-Aether

The first is perhaps the most obvious simplification to this model, other than the absence of the Aether field, and
that is to set F(K) = K, and indeed this is the form of Einstein-Aether that was originally proposed in [34].

In this case, the equations of motion become

∇τ (Jτ µ)− c4Aα∇αAν∇µAν = λAµ (33)

and

Uαβ = ∇µ
(
J(α

µAβ) − Jµ(αAβ) − J(αβ)A
µ
)

+ c1 (∇µAα∇µAβ −∇αAµ∇βAµ)

+ c4A
µAν∇µAα∇νAβ + (c4A

µAν∇µAτ∇νAτ −Aν∇µJµν)AαAβ +
1

2
Kgαβ . (34)

The energy density and pressure are then

ρA =
3

2
αH2, PA = −3

2
αH2 − αḢ. (35)

For a universe dominated by a fluid species with equation of state P = wiρ the scale factor is a ∝ t2/3(1+wi). We
therefore have that

PA
ρA

= wde = −1− 2Ḣ

3H2
= wi (36)

i.e. the equation of state parameter for Aether field in linear Einstein-Aether matches that of other fluids present
in the universe [39]. This behaviour prevents linear Einstein-Aether, F(K) = K, from being a dark energy candidate
and is one of the motivations for its generalization.

II.3.2. Generalized Einstein-Aether with c4 = 0

As already mentioned, many previous studies of Einstein-Aether models set c4 = 0. It is often argued that this can
be done via a redefinition of the coefficients. However, we will see in the next section that this can only be achieved
after a specific choice of Aµ which has further consequences at the level of linear perturbations. In this case, the
equations of motion become

∇ν(FKJνµ) = λAµ, (37)

and

Uαβ = ∇µ
(
FK
[
J(α

µAβ) − Jµ(αAβ) − J(αβ)A
µ
)]

+ c1FK (∇µAα∇µAβ −∇αAµ∇βAµ)

−AαAβAν∇µ(FKJµν) +
1

2
M2Fgαβ . (38)

II.3.3. The Khronometric model

The Khronometric model [56, 57] is a version of Einstein-Aether where the Aether field is constrained via a scalar
field, ϕ, called the Khronon. In this case, the field is defined as

Aµ = − ∂µϕ√
−gαβ∂αϕ∂βϕ

, (39)
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and so the time-like unit norm constraint is satisfied automatically. In doing so, the Aether is restricted to be
orthogonal to a set of space-like surfaces defined by ϕ. At background order we assume ϕ = ϕ(t) and so from (39) we
have that Aµ = (1, 0, 0, 0), which is the same as before. Therefore, the choice of the Khronon definition has no effect
on background dynamics.

The khronometric model was first proposed in [56], where ϕ sets a preferred global time coordinate. It was
discussed how this model describes the low energy limit of the consistent extension of Horava gravity, a quantum
theory of gravity. At low energies, this reduces to a Lorentz-violating scalar-tensor gravity theory. For more details
see [56–59].

For this choice of the Aether field, the c1, c3 and c4 terms are no longer independent. The twist vector is defined as
[60]

ωα = εαβµνA
β∇µAν , (40)

where εαβµν is the 4-dimensional Levi-Civita symbol, and ωα = 0 if Aµ is hypersurface orthogonal. If ωα = 0 then

wαwα = 0 = εαβµνε
αγρσAβAγ∇µAν∇ρAσ = −δγρσβµνA

βAγ∇µAν∇ρAσ, (41)

where δγρσβµν is the generalized Kronecker delta. Therefore,

−AγAγ∇ρAσ∇ρAσ −AσAγ∇ρAσ∇γAρ −AρAγ∇ρAσ∇σAγ

+AγAγ∇ρAσ∇σAρ +AρAγ∇ρAσ∇γAσ +AσAγ∇ρAσ∇ρAγ = 0. (42)

From Aγ∇ρAγ = ∇ρ(AγAγ)−Aγ∇ρAγ , applying the unit norm constraint gives Aγ∇ρAγ = 0, and so

AρAγ∇ρAσ∇γAσ = ∇ρAσ∇σAρ −∇ρAσ∇ρAσ. (43)

Note that the left-hand side of (43) is the c4 term in (5). Since the terms on the right-hand side of (43) are related to
the c1 and c3 terms, we are able to absorb c4 into the other coefficients effectively setting c4 = 0 i.e. c1 → c′1 = c1− c4
and c3 → c′3 = c3 + c4 giving

Kαβ
µν = c′1g

αβgµν + c2δ
α
µδ

β
ν + c′3δ

α
ν δ

β
µ . (44)

We therefore see that it is possible to set c4 = 0, but only if the choice is made that Aµ is also hypersurface orthogonal.
While this has no effect at background order, we will see later that differences arise at the level of linear perturbations
for the vector sector. Furthermore, this is not the only choice we can make as (43) also allows a redefinition which
could remove c1 or c3 instead.

III. LINEAR PERTURBATIONS

We will present results for perturbations in the scalar sector in both the synchronous and conformal Newtonian
gauge. We perturb the metric as

gµν = ḡµν + δgµν = a2(τ)(ηµν + hµν), (45)

such that

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + (δij + hij)dx

idxj
]
, (46)

where we now work in conformal time, τ . In the synchronous gauge we set Ψ = 0 and decompose hij into [61, 62]

hij = k̂ik̂jh+

(
k̂ik̂j −

1

3
δij

)
6η + 2k̂(i

(
hV 1 l̂j) + hV 2m̂j)

)
+ h+

(
l̂i l̂j − m̂im̂j

)
+ h×

(
l̂im̂j − l̂jm̂i

)
,

where the unit vectors
{
k̂, l̂, m̂

}
form an orthonormal basis in k-space. Here, h and η are the scalar perturbations,

hV 1 and hV 2 are the vector perturbations, and h+ and h× are the tensor perturbations. In the conformal Newtonian
gauge we set hscalar

ij = −2Φδij , while the vector and tensor perturbations are as before in the synchronous gauge.
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We also perturb the Aether field as [38]

Aµ = Āµ + δAµ =
1

a
(1 +X, ∂iV + iBi), (47)

where V is the longitudinal scalar mode and Bi is the transverse vector mode such that kiB
i = 0. The unit norm

constraint demands that X = −Ψ and so

δAµ =
1

a
(−Ψ, ∂iV + iBi). (48)

Hence, we see that the time-like unit norm constraint means that there is only one scalar degree of freedom, V , along
with a transverse vector mode, Bi. In what follows, we will suppress over-bars to denote background order quantities.

The perturbed energy momentum tensor is given by

δUαβ = δ
(
∇µ
[
FK
(
J(α

µAβ) − Jµ(αAβ) − J(αβ)A
µ
)])

+ c1FKKδK (∇µAα∇µAβ −∇αAµ∇βAµ) + c1FKδ (∇µAα∇µAβ −∇αAµ∇βAµ)

+ c4FKKδKAµAν∇µAα∇νAβ + c4FKδ (AµAν∇µAα∇νAβ)

+ δ ([c4FKAµAν∇µAτ∇νAτ −Aν∇µ(FKJµν)]AαAβ)

+
1

2
M2 (Fδgαβ + gαβFKδK) . (49)

For a general energy-momentum tensor, Eµν , we can decompose its perturbations as [61]

δEµν = (δρ+ δP )uµuν + δPδµν + (ρ+ P )(δuµuν + δuνu
µ) + PΠµ

ν , (50)

where uµ = 1
a (1, 0, 0, 0), δuµ = 1

a (0, vi) and Πµ
ν is the anisotropic stress, with the properties uνΠµ

ν = 0, Πµ
ν = Πν

µ,
and Πµ

µ = 0. Projecting out the perturbed fluid variables, we find that

δE0
0 = −δρ, (51)

δE0
i = (ρ+ P )vi, (52)

δEi0 = −(ρ+ P )vi, (53)

δEij = PΠi
j + δPδij . (54)

Similar to hij , we can decompose vi and Πij into scalar, vector, and tensor parts. They are given by [63]

vi = V S k̂i + V V 1 l̂i + V V 2m̂i, (55)

Πij =

(
k̂ik̂j −

1

3
δij

)
ΠS + 2k̂(i

(
ΠV 1 l̂j) + ΠV 2m̂j)

)
+ Π+

(
l̂i l̂j − m̂im̂j

)
+ Π×

(
l̂im̂j − l̂jm̂i

)
, (56)

whereas the transverse vector, Bi, only has vector modes i.e.

Bi = BV 1 l̂i +BV 2m̂i. (57)
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In a general gauge, the perturbed fluid variables from (49) in k-space are then

a2δρ = α

[
3FKKδKH2 + FKH

(
1

2
h′ − k2V − 3HΨ

)]
+ c14FKk2(V ′ +HV + Ψ), (58)

a2δP = αFK
[
HΨ′ +

(
2H′ +H2

)
Ψ− 1

6
(h′′ + 2Hh′) +

1

3
k2 (V ′ + 2HV )

]
− αFKK

[(
H′ + 2H2 +

FKKK
FKK

K′H
)
δK + δK′H− 1

6
K′
(
12HΨ + 2k2V − h′

)]
, (59)

a2(ρ+ P )vi = iα

[(
FK
(
H2 −H′

)
−FKKK′H

)
ξi −

1

2
k2Bi

]
+ i

(
3

2
c2 + c1

)
FKk2Bi

+ ic14

[
FK
(
ξ′′i + 2Hξ′i +

(
H′ +H2

)
ξi + kiΨ

′ +HkiΨ
)

+ FKKK′ (ξ′i +Hξi + kiΨ)
]
, (60)

a2PΠi
j = c13

[
FKKK′

(
kikjV −

1

2
hij
′
)

+ FKkikj(V ′ + 2HV )−FK
(

1

2
hij
′′ +Hhij ′

)
+

1

6

(
FKKK′

(
h′ − 2k2V

)
+ FK (h′′ + 2Hh′)− 2FKk2(V ′ + 2HV )

)
δij

+

(
FKH+

1

2
FKKK′

)(
kiBj + kjB

i
)

+
1

2
FK
(
kiBj

′ + kjB
i ′)] , (61)

where primes denote conformal time differentiation, c13 = c1 +c3, c14 = c1−c4, c123 = c1 +c3 +c3, and ξi = kiV +Bi.

III.1. Scalar sector

The scalar components of vi and Πi
j are obtained via V S = k̂ivi and ΠS = 3

2

(
k̂ik̂

j − 1
3δ
j
i

)
Πi
j . If we further define

θS = iV S/k = ikivi/k
2, then we have that

a2(ρ+ P )θS = α
[
FK
(
H′ −H2

)
+ FKKK′H

]
V

− c14

[
FK
(
V ′′ + 2HV ′ +

(
H′ +H2

)
V + Ψ′ +HΨ

)
+ FKKK′ (V ′ +HV + Ψ)

]
, (62)

2

3
a2PΠS = c13

(
k̂ik̂

j − 1

3
δji

)[
FKKK′

(
kikjV −

1

2
h′ij

)
+ FKkikj(V ′ + 2HV )−FK

(
1

2
h′′ij +Hh′ij

)]
. (63)

Note that the expression for ΠS will simplify further once we specify the gauge. We further define the entropy
perturbation, Γ, as

wΓ =

(
δP

δρ
− dP

dρ

)
δ. (64)

It should be noted that whatever gauge we choose to work in, both ΠS and Γ are gauge invariant. The perturbed

Aether field equation of motion is obtained from perturbing (7). Taking the i-component, the k̂i direction will yield
the equation of motion governing the perturbation V , given by

c1

[
V ′′ + 2HV ′ + (2H2 + k2)V + Ψ′ + 2HΨ− 1

2
k̂ik̂jh

j
i
′
]

+ c2

[(
k2 + 3H2 − 3H′

)
V + 3HΨ− 1

2
h′
]

+ c3

[(
k2 +H2 −H′

)
V +HΨ− 1

2
k̂ik̂jh

j
i
′
]
− c4

[
V ′′ + 2HV ′ + (H′ +H2)V + Ψ′ +HΨ

]
−FKK
FK

(αδKH+K′ [αHV − c14(V ′ +HV + Ψ)]) = 0, (65)

where we have substituted in for λ.
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III.1.1. Conformal Newtonian gauge

In the conformal Newtonian gauge, where the metric perturbations are parametrized via Ψ and Φ, we have that

a2δρ =
[
3FKKδKH2 −FKH

(
k2V + 3HΨ + 3Φ′

)]
+ c14FKk2(V ′ +HV + Ψ), (66)

a2δP = αFK
[
HΨ′ +

(
2H′ +H2

)
Ψ + Φ′′ + 2HΦ′ +

1

3
k2 (V ′ + 2HV )

]
− αFKK

[(
H′ + 2H2 +

FKKK
FKK

K′H
)
δK + δK′H− 1

3
K′
(
6HΨ + 3Φ′ + k2V

)]
, (67)

a2(ρ+ P )θS = α
[
FK
(
H′ −H2

)
+ FKKK′H

]
V

− c14

[
FK
(
V ′′ + 2HV ′ +

(
H′ +H2

)
V + Ψ′ +HΨ

)
+ FKKK′ (V ′ +HV + Ψ)

]
, (68)

a2PΠS = c13

[
FKKK′k2V + FKk2(V ′ + 2HV )

]
. (69)

The perturbed Aether field equation of motion reads

α

[(
H2 −H′ + k2

)
V +HΨ + Φ′ − FKK

FK
(δKH+K′HV )

]
+ c14

[
V ′′ + 2HV ′ + (H2 +H′)V + Ψ′ +HΨ +

FKK
FK
K′(V ′ +HV + Ψ)

]
− 2c2k

2V = 0. (70)

III.1.2. Synchronous gauge

In the synchronous gauge, where hij is decomposed into h and η as in (47), we find that

a2δρ = α

[
3FKKδKH2 + FKH

(
1

2
h′ − k2V

)]
+ c14FKk2(V ′ +HV ) (71)

a2δP =
1

3
αFK

[
k2 (V ′ + 2HV )− 1

2
h′′ −Hh′

]
− αFKK

[(
H′ + 2H2 +

FKKK
FKK

K′H
)
δK + δK′H− 1

6
K′
(
h′ + 2k2V

)]
, (72)

a2(ρ+ P )θS = α
[
FK
(
H′ −H2

)
+ FKKK′H

]
V

− c14

[
FK
(
V ′′ + 2HV ′ +

(
H′ +H2

)
V
)

+ FKKK′ (V ′ +HV )
]
, (73)

a2PΠS = c13

[
FKKK′

(
k2V − 1

2
(h+ 6η)

)
+ FKk2(V ′ + 2HV )

−FK
(

1

2
(h′′ + 6η′′) +H (h′ + 6η′)

)]
. (74)

The perturbed equation of motion for the Aether field reads

α

[
(H2 −H′ + k2)V − 1

2
(h′ + 4η′)− FKK

FK
(δKH+K′HV )

]
+ c14

[
V ′′ + 2HV ′ + (H2 +H′) +

FKK
FK
K′(V ′ +HV )

]
+ c2

(
h′ + 6η′ − 2k2V

)
= 0. (75)
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III.2. Vector and tensor sectors

In the vector and tensor sectors, the vector and tensor modes of vi and Πi
j can be computed via V V 1 = l̂ivi,

ΠV 1 = k̂i l̂
jΠi

j , and Π+ =
1

2

(
l̂i l̂
j − m̂im̂

j
)

Πi
j . Equivalent expressions also exist for the V 2 modes and Π×. Also,

analogous to θS , we can define θV 1 = iV V 1/k = il̂ivi/k and so we have that

a2(ρ+ P )kθV 1 = α
[
FK
(
H′ −H2

)
+ FKKK′H

]
BV 1 +

1

2
(c3 − c1)FKk2BV 1

− c14

[
FK
(
BV 1′′

+ 2HBV 1′
+
(
H′ +H2

)
BV 1

)
+ FKKK′

(
BV 1′

+HBV 1
)]
, (76)

a2PΠV 1 = c13

[
1

2
FK
(
kBV 1′

− hV 1′′
)

+

(
FKH+

1

2
FKKK′

)(
kBV 1 − hV 1′

)]
, (77)

a2PΠ+ = −c13

[
1

2
FKh+′′

+

(
FKH+

1

2
FKKK′

)
h+′
]
. (78)

The time-time and traced ij-components are zero in the vector and tensor sectors since δρ and δP only have scalar
modes.

The equation of motion for the Aether field in the l̂i direction is given by

α

[(
H2 −H′

)
BV 1 − 1

2
khV 1′

− FKK
FK
K′HBV 1

]
+ c1k

2BV 1 +
3

2
c2kh

V 1′

+ c14

[
BV 1′′

+ 2HBV 1′
+
(
H′ +H2

)
BV 1 +

FKK
FK
K′
(
BV 1′

+HBV 1
)]

= 0. (79)

Note that the two vector and tensor modes are interchangeable. From here on we will not discriminate between them
and denote them simply as θV , ΠV and ΠT .

III.3. Vector modes in the Khronon

If we restrict ourselves to the case where the Aether field is defined by the Khronon in (39), then we find that

δAµ =
a

ϕ′

[
−∂µδϕ+ ∂µϕ

(
Ψ +

δϕ′

ϕ′

)]
, (80)

where δϕ is the perturbed Khronon field. The time component is then δA0 = aΨ, which is a consequence of the
time-like unit norm constraint, as in (48). However, if we calculate the spatial component we find that

δAi = − a

ϕ′
∂iδϕ⇒ Bi = 0 (81)

i.e. there is no propagating transverse vector mode. Therefore, if we redefine
1

ϕ′
∂iδϕ = ∂iV then we obtain the results

from section III.1. Therefore, the scalar sector for Generalized Einstein-Aether and the Khronon are completely
equivalent [57], up to a redefinition of the coefficients discussed previously.

IV. EQUATIONS OF STATE FOR PERTURBATIONS

IV.1. Scalar sector

We now derive the equations of state, Γ and ΠS,V,T , in terms of the other perturbation variables by fully eliminating
the internal degrees of freedom introduced by the theory i.e. V , Bi, and their derivatives. In the scalar sector we do
this via the expressions for δρ and θS . Let us first work in the conformal Newtonian gauge. Initially it may not seem
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possible to eliminate the degrees of freedom as we have that θS ≡ θS(V, V ′, V ′′) and δρ ≡ δρ(V, V ′), i.e. we have three
unknowns and only two equations. However, we can use the perturbed Aether field equation of motion (70) to reduce
the dimensionality of the problem. Using this to eliminate V ′′ in (68) and gathering terms in V and V ′, we find that

a2δρ = c14FKk2V ′ −
[
αFK − c14FK +

6α2FKKH2

a2M2

]
Hk2V

+ c14FKk2Ψ− 3αH
(
FK +

6αFKKH2

a2M2

)
(HΨ + Φ′), (82)

a2ρ(1 + wde)θS =

[
c123FK +

2α2H2FKK
a2M2

]
k2V + α

(
FK +

6αH2FKK
a2M2

)
(HΨ + Φ′), (83)

where we have substituted in for K from (14) and

δK = − 2αH
a2M2

(k2V + 3HΨ + 3Φ′). (84)

So we see that in fact θS ≡ θS(V ). Note that we can already see the emergence of the gauge invariant combination,
HΨ + Φ′, in the 0i-component of Einstein’s equation that was used in [43–45].

We can then write this system of equations as

a2

(
δρ

ρ(1 + wde)θS

)
= k2

(
A B

0 C

)(
V ′

V

)
+

(
D

E

)
, (85)

with

A = c14FK, (86)

B =

[
c14FK − αFK −

6α2FKKH2

a2M2

]
H, (87)

C =

[
c123FK +

2α2H2FKK
a2M2

]
, (88)

D = c14FKk2Ψ− 3αH
(
FK +

6αFKKH2

a2M2

)
(HΨ + Φ′), (89)

E = α

(
FK +

6αH2FKK
a2M2

)
(HΨ + Φ′). (90)

In [49] the ABC matrix in (85) was dubbed the activation matrix, as it determines which degrees of freedom are
present, or activated, in the perturbed fluid variables. Inverting this then yields expressions for V and V ′ in terms of
δρ, θS , the metric perturbations, Ψ and Φ, and their derivatives. Eliminating for these in ΠS (69), we find that we
can write

wdeΠS = A1δ +A2(1 + w)θS +A3k
2Ψ +A4(HΨ + Φ′), (91)

where

A1 =
c13

c14
, (92)

A2 =
3c13H

3c123 + 2αγ2

[
1 +

2(H′ −H2)

H2
γ2 +

α(1 + 2γ2)

c14

]
, (93)

A3 =
2c13γ1

3αH2 (2γ1 − 1)
, (94)

A4 =
2c13γ1(1 + 2γ2)

H (2γ1 − 1) (3c123 + 2αγ2)

[
2

(
c13

c14
− (H′ −H2)

H2
γ2

)
− 1

]
(95)

and we define the dimensionless functions

γ1 =
KFK
F

, γ2 =
KFKK
FK

, γ3 =
KFKKK
FKK

. (96)
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Variable Conformal Newtonian Synchronous

T
h′‖

2HK2 0

W 1
HX

′ − εH(X + Y ) 1
HX

′ − εH(X + Y )

X 1
HZ
′ + Y 1

HZ
′ + Y

Y Ψ 1
HT
′ + εHT

Z Φ η − T

∆ δ + 3H(1 + w)θS δ + 3H(1 + w)θS

Θ̂ 3H(1 + w)θS 3H(1 + w)θS + 3(1 + w)T

δP̂ δP δP + P ′T

TABLE II. Combinations of the metric perturbations and perturbed fluid variables are now written in terms of the dimensionless
variables given in this table, in both the conformal Newtonian and synchronous gauges.

In the parlance of [53], we write (91) in terms of a set of dimensionless variables given in Table II, where h‖ = h+6η,

K = k/H, and εH = 1−H′/H2. Note that these new variables are gauge invariant except T , which we be important
in the synchronous gauge. From this we can write (91) as

wdeΠS = cΠ∆∆ + cΠΘΘ̂ + cΠXX + cΠYK
2Y, (97)

where

cΠ∆ =
c13

c14
, (98)

cΠΘ =
c13

3c123 + 2αγ2

[
1− 2

(
εHγ2 +

c13

c14

)]
, (99)

cΠX =
2c13γ1(1 + 2γ2)

(2γ1 − 1) (3c123 + 2αγ2)

[
2

(
c13

c14
+ εHγ2

)
− 1

]
, (100)

cΠY =
2c13γ1

3α (1− 2γ1)
. (101)

In a similar fashion, we can eliminate V and V ′ in δP and hence write the entropy perturbation as

wdeΓ = cΓ∆∆ + cΓΘΘ̂ + cΓWW + cΓXX + cΓYK
2Y, (102)

where

cΓ∆ =
α(1 + 2γ2)

3c14
− dP

dρ
, (103)

cΓΘ =
α

3(3c123 + 2αγ2)

[(
1− 2c13

c14

)
(1 + 2γ2)− 6εHγ2

(
1 +

2

3
γ3

)]
+
dP

dρ
, (104)

cΓW =
2γ1(1 + 2γ2)

3 (2γ1 − 1)
, (105)

cΓX =
4αγ1

3 (2γ1 − 1) (3c123 + 2αγ2)

[(
1 +

c13

c14

)
(1 + 2γ2)2 +

3c13

α

(
1 + 2γ2

[
1− εH

(
1 +

2

3
γ3

)])]
, (106)

cΓY =
2γ1(1 + 2γ2)

9 (1− 2γ1)
. (107)

Note that in (97) and (102) the perturbed fluid variables are those for the dark energy fluid.
In order to ensure these results are truly gauge invariant, we must do the same calculation in the synchronous

gauge. However, as mentioned previously, we now have an extra variable, T , to deal with. Therefore, let us suppose
that in the synchronous gauge we find that

wdeΠS = cΠ∆∆ + cΠΘΘ̂ + cΠXX + cΠYK
2Y + cΠTT, (108)

wdeΓ = cΓ∆∆ + cΓΘΘ̂ + cΓWW + cΓXX + cΓYK
2Y + cΓTT, (109)
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with cΠT , cΓT 6= 0. If this was the case, ΠS and Γ would not be gauge invariant due to the presence of T and so it
must be that cΠT = cΓT = 0. Note that this was not necessary in the conformal Newtonian gauge as T = 0 from

Table II. We also require that in both gauges the coefficients are identical i.e. cCN
Π,Γ = cSync

Π,Γ , because ∆, Θ̂,W,X, and
Y are gauge invariant. Indeed, doing this calculation in the synchronous gauge we find that this is the case, and
hence (97) and (102) constitute the gauge invariant equations of state for the perturbations and are both presented
simultaneously in the conformal Newtonian and synchronous gauges via Table II. For details of this calculation in
the synchronous gauge see Appendix A.

To ensure that no coefficient diverges we require that α, c14, γ1, 2γ1 − 1, and 3c123 + 2αγ2 do not equal zero. If
α = 0 then K = 0, removing the dynamics of Einstein-Aether completely, and so this must be excluded. As we will
see later, to prevent a diverging sound speed for perturbations we must have that c14 6= 0 from (119). The solution
for γ1 = 0 is constant F , which is just the case of a cosmological constant with no Einstein-Aether and therefore has
no perturbations, while setting 2γ1 − 1 = 0 yields ρm = 0 from the Friedmann equation. The case for disallowing
3c123 + 2αγ2 = 0 is more subtle. If this was true it would set the coefficient of k2V in (83) to zero and hence the
activation matrix would be singular, i.e. we would be unable to eliminate the degrees of freedom V and V ′ from our
equations using θS . However, we note that this is not a strict condition and could in principle be true for some models
as there is nothing that physically prevents this. For the designer F(K) in (31) this is non-zero and so all the cΠ,Γ
coefficients are well behaved.

Additionally, we can eliminate the metric perturbations in favour of the perturbed fluid variables for matter and
dark energy as done in [18] for the Horndeski theory. This will allow us to write (97) and (102) as

wdeΠS
de = cΠ∆de

∆de + cΠΘde
Θ̂de + cΠ∆m

∆m + cΠΘm
Θ̂m + cΠΠm

ΠS
m, (110)

wdeΓde = cΓ∆de
∆de + cΓΘde

Θ̂de + cΓ∆m
∆m + cΓΘm

Θ̂m + cΓΓm
Γm, (111)

where we now make explicit distinction between the perturbed fluid variables for matter and dark energy. In the
notation of Table II, the perturbed Einstein equations take the form [53]

2W = Ωm

(
3δP̂m

ρm
+ 2wmΠS

m − 3Θ̂m

)
+ Ωde

(
3δP̂de

ρde
+ 2wdeΠS

de − 3Θ̂de

)
, (112)

2X = ΩmΘ̂m + ΩdeΘ̂de, (113)

−2

3
K2Y = Ωm(∆m − 2wmΠS

m) + Ωde(∆de − 2wdeΠS
de), (114)

−2

3
K2Z = Ωm∆m + Ωde∆de. (115)

Substituting for these in (97) yields

(1− 3cΠY Ωde)wdeΠS
de =

(
cΠ∆ −

3

2
cΠY Ωde

)
∆de +

(
cΠΘ +

1

2
cΠXΩde

)
Θ̂de

− 3

2
cΠY Ωm∆m +

1

2
cΠXΩmΘ̂m + 3cΠY ΩmwmΠS

m, (116)

Similarly, the entropy perturbation becomes(
1− 3

2
cΓWΩde

)
wdeΓde =

(
cΓ∆ +

3

2
cΓWΩde

dP

dρ

∣∣∣∣
de

− 3

2
cΓY Ωde

)
∆de +

3

2
Ωm

(
cΓW

dP

dρ

∣∣∣∣
m

− cΓY
)

∆m

+

[
cΓΘ −

3

2
cΓWΩde

(
1 +

dP

dρ

∣∣∣∣
de

)
+

1

2
cΓXΩde

]
Θ̂de

+
1

2

[
cΓX − 3cΓW

(
1 +

dP

dρ

∣∣∣∣
m

)]
ΩmΘ̂m +

3

2
cΓWΩmwmΓm. (117)

Note that (116) and (117) are completely general and not specific to Generalized Einstein-Aether. If for any theory
wdeΠS and wdeΓ can be written as (97) and (102), then (116) and (117) will also be true automatically.

From these expressions we can derive the sound speed for scalar perturbations. Starting from the perturbed
conservation equations, (1) and (2), we can deduce that

δ′′ + · · ·+ k2c2sδ = F (h, η, ...). (118)



17

Therefore, extracting the coefficient of k2δ we find that

c2s =
1

c14

(
c123 +

2

3
αγ2

)
. (119)

In general, the sound speed of scalar perturbations varies with time due to F . To ensure subluminal propagation and
stable growth of perturbations, we require that 0 ≤ 1

c14

(
c123 + 2

3αγ2

)
≤ 1.

From here, we could attempt to obtain constraints on the {ci} coefficients by appealing to the behaviour of pertur-
bations in the limit of Minkowski space, as in [64]. However, as we have directly coupled the evolution of F to a(t)
via a designer approach, we argue that no sensible Minkowski limit exists for this theory once this connection has
been made. For a brief discussion of this see Appendix B. In the context of the Equation of State approach, in the
limit of H → 0 we see that ρ, P → 0 from (12) and (13). Therefore, the expressions for wdeΠS and wdeΓ cannot be
computed since wdeΠS appears as PΠS from the perturbed energy momentum tensor (54) and wdeΓ can be written

as wdeρΓ =
(
δP
δρ −

dP
dρ

)
δρ.

IV.2. Special cases

IV.2.1. wde = −1

Consider the case where we have exactly wde = −1, equivalent to ΛCDM. From section II.2 we have an analytical
solution given by (31) and in this case the cΠ and cΓ coefficients reduce to

cΠ∆ =
c13

c14
, cΠΘ =

1

2
(1 + εH)− c13

c14
, cΠX = 0, cΠY = −c13

3α

(
1 +

M2F0

6Ωde,0H2
0

)(
H

H0

)
, (120)

and also

cΓ∆ = −cΓΘ = −dP
dρ

= 1, cΓW = cΓX = cΓY = 0, (121)

and hence Γ = δ. Here we see that from cΠY , as with the background evolution, M and F0 are degenerate.

This case is indistinguishable from ΛCDM at background order, but at the level of linear perturbations they are not
the same. Therefore, geometrical cosmological tests such as SNe and BAOs would not be able to observe a difference
between ΛCDM and Generalized Einstein-Aether with wde = −1, whereas probes which are sensitive to perturbations,
such as weak lensing, will be different and can in principle distinguish between them.

From (31) we note that the ΛCDM limit is when F0 = −6H2
0 Ωde,0/M

2 and so F = −6H2
0 Ωde,0/M

2 (31). This case
corresponds to the cosmological constant in the Friedmann equation. Indeed, this also is reflected at the level of linear
perturbations since FK = 0 and so all the perturbed fluid variables and the equation of motion for V in section III
are zero, as in ΛCDM. However, it seems that there is a discontinuity in taking the limit of F0 → −6H2

0 Ωde,0/M
2,

since in this limit the cΠ,Γ coefficients become

cΠ∆ =
c13

c14
, cΠΘ =

1

2
(1 + εH)− c13

c14
, cΠX = cΠY = 0 (122)

and

cΓ∆ = −cΓΘ = 1, cΓW = cΓX = cΓY = 0 (123)

i.e. ΠS and Γ are non-zero in this limit, but are zero if F0 = −6H2
0 Ωde,0M

2 exactly. This is a property shared by
f(R) models in the limit of B0 → 0.
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IV.2.2. Power law

For a general power law with F ∝ (±K)n as studied in [36–38], the coefficients become

cΠ∆ =
c13

c14
, (124)

cΠΘ =
c13

(2n+ 1)α− 6c2

[
1− 2

(
εH(n− 1)− c13

c14

)]
, (125)

cΠX =
2nc13

(2n+ 1)α− 6c2

[
2c13

c14
− 1 + 2εH(n− 1)

]
, (126)

cΠY =
2nc13

3α(1− 2n)
, (127)

and

cΓ∆ =
(2n− 1)α

3c14
− dP

dρ
, (128)

cΓΘ =
(2n− 1)α

3 [(2n+ 1)α− 6c2]

[
1− 2εH(n− 1)− c13

c14

]
+
dP

dρ
, (129)

cΓW =
2

3
n, (130)

cΓX =
4n

3 [(2n+ 1)α− 6c2]

[
α(2n− 1)(c13 + c14)

c14
+ 3c13

(
1− 2

3
εH(n− 1)

)]
, (131)

cΓY = −2

9
n. (132)

Note that cΠY is singular for the case of n = 1
2 . Although F ∝ (±K)1/2 is also a solution to (26), inserting this into

the Friedmann equation (16) shows that this case corresponds to an absence of dark energy at the level of background
cosmology.

IV.3. Dynamics of linear perturbations in the scalar sector

The dynamics of scalar perturbations can be computed via the perturbed fluid equations in (1) and (2). We will
use the designer F(K) model via (26). Following the notation of Table II we rewrite these equations as

∆̇− 3w∆ + gKεHΘ̂− 2wΠS = 3(1 + w)X, (133)

˙̂
Θ + 3

(
dP

dρ
− w +

1

3
εH

)
Θ̂− 3

dP

dρ
∆− 2wΠS − 3wΓ = 3(1 + w)Y, (134)

where gK = 1 + K2

3εH
and, for this section only, over-dots denote differentiation with respect to the logarithmic scale

factor, log a. For a cold, pressureless matter fluid with wm = ΠS
m = Γm = 0 and assuming wde constant, (133) and

(134) yield 4 differential equations for the dark energy and matter perturbed fluid variables, given by

∆̇m + gKεHΘ̂m = 3X, (135)

˙̂
Θm + εHΘ̂m = 3Y, (136)

∆̇de − 3wde∆de + gKεHΘ̂de − 2wdeΠS
de = 3(1 + wde)X, (137)

˙̂
Θde + εHΘ̂de − 3wde∆de − 2wdeΠS

de − 3wdeΓde = 3(1 + wde)Y. (138)

With these, the dynamics of the Newtonian gravitational potential, Z = Φ, can be computed directly from the
perturbed Einstein equation in (115) or via Ż = X −Y from the definition of Z in Table II. Note that in Table II the
variables and derivatives are in conformal time, not the scale factor. To solve these equations we will opt to specify
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FIG. 2. Left panel : The spectrum of Φ/Ψ, or Z/Y , at a = 1 as a function of scale for varying F0 and wde = −1. Right panel :
The spectrum of Φ/Ψ at a = 1 as a function of scale for a General Einstein-Aether fluid with wde varying around −1 and
F0 = 1.

FIG. 3. The evolution of the effective Newton’s constant, Geff/G, is shown for varying wde around −1.

ΠS
de and Γde terms of the perturbed fluid variables for dark energy and matter, given in (116) and (117). The variables

X and Y are also specified in terms of the perturbed fluid variables via the perturbed Einstein equations in (113)
and (114). We note that this is not the only way to proceed. For example, instead of the perturbed fluid variables
we could have opted to work with the metric perturbation variables W,X, Y , and Z. For more details see [53]. We

set the initial conditions as described in [53]. They are set at z = 100 such that ∆de = Θ̂de = 0, Ωm∆m = − 2
3K

2Z,

ΩmΘ̂m = 2X, and X = Y = Z. Since the behaviour of the perturbations will also depend of the specific choice of
{ci} and not just α, we will fix c1 = 1, c2 = 1, c3 = 1, and c4 = −3. This choice is somewhat arbitrary, other than
ensuring the subluminal propagation of the perturbations (119).

We investigate how the ratio of the Newtonian potentials vary with scale. From Figure 2, we see that at a = 1, the
large scale behaviour of Φ/Ψ is highly dependent on F0, while this is less so for wde near −1. We see that Φ/Ψ tends
to a constant in both the large and small K0 regimes. In all cases the small scale behaviour is such that Φ = Ψ and
so this indicates a vanishing wdeΠS

de for small scales. Note that K0 = 1 corresponds to a scale of 3.35× 10−4hMpc−1.

In the regime K � 1 we find that the
{

Θ̂i

}
are negligible and so we can write wdeΠS

de ≈ cΠ∆de
∆de + cΠ∆m∆m.

From equations (135) to (138) we compute the second order differential equations for {∆i}, given by

∆̈m + (2− εH)∆̇m −
3

2
Ωm∆m =

3

2
Ωde∆de, (139)

∆̈de + (5− εH)∆̇de +
2

3
cΠ∆de

K2∆de = −2

3
cΠ∆m

K2∆m, (140)

where we have also used the Einstein equations for X (113) and Y (114), with wde = −1. Note that in (139) the
secondary source term arising from wdeΠS

de is subdominant compared to Ωde∆de and so we have neglected this. From
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(113) and (114), for small scales we have that

Y

Z
= 1− 2Ωde(cΠ∆de

∆de + cΠ∆m
∆m)

Ωde∆de + Ωm∆m
, (141)

where the second term must be negligible from Figure 2. In order to explain this, note that from (140) we must have
that the solution tends to the particular solution

cΠ∆de
∆de = −cΠ∆m

∆m. (142)

Hence, the second term in (141) is always negligible regardless of what the {cΠ∆i
} are. Therefore, a vanishing

anisotropic stress at small scales is a generic feature of these designer F(K) models.
Using (142) in (139), we find that this becomes the standard differential equation for the matter overdensity with

Newton’s constant replaced with an effective Newton’s constant, Geff , given by

Geff

G
= 1− ΩdecΠ∆m

ΩmcΠ∆de

(143)

and the evolution of this is shown in Figure 3. We see that the ratio Geff/G is always of order unity but that for our
choice of {ci} it decreases to Geff ≈ 0.78G at a = 1, which should lead to a suppression of structure at late times
compared to ΛCDM. We leave this as a matter for future investigation. We also observe that increasing wde causes
Geff/G to decay faster at early times, while the opposite is true for decreasing wde. It is interesting to note that the
value of Geff/G for different wde initially diverge and then converge again at a = 1. Note that what we have called
Geff is different to that in [37], for example, which is derived from the modified Poisson equation.

We also investigate the evolution for the Newtonian potential, Φ, as a function of a and this is shown in Figure 4.
We see that for a designer F(K) model which mimics a ΛCDM background the evolution is now sensitive to the scale,
where K0 = k/H0, unlike the case of a cosmological constant. The amplitude of Φ grows with respect to ΛCDM
for large scales, while for smaller scales the amplitude is suppressed. For scales K0 . 1, we see that Φ initially
grows before reaching a maximum and then decays due to the increasing contribution from dark energy. A similar
feature was also observed in [37] for their power law model of F . We note that this is very similar to other models
which introduce a new cosmological fluid with a negative squared sound speed, c2s = δP/δρ. We solve the differential
equation governing the evolution of Φ [65, 66]

d2Φ

da2
+

(
1

H
dH
da

+
4

a
+ 3

c2s
a

)
dΦ

da
+

[
2

aH
dH
da

+
1

a2
(1 + 3c2s ) +

c2sk
2

a2H2

]
Φ = 0, (144)

provided there is zero anisotropic stress and so Φ = Ψ. In models where c2s < 0 we observe the same behaviour for Φ
rising to a maximum before decaying, as seen in Figure 4. In these models, the initial growth is due to an imaginary
c2s causing an unstable growth of perturbations. However, as dark energy begins to dominate Φ decays as in ΛCDM.
This feature is enhanced for smaller scales until the effect of dark energy in unable to overcome the unstable growth
of perturbations and Φ grows exponentially as seen for K0 = 100 in Figure 4. While a fluid with c2s < 0 is unphysical,
it is interesting to note that this feature appears in a designer F(K) universe without the need for c2s < 0. Indeed, the
{ci} coefficients were chosen to avoid this. Moreover, we see that for designer F(K) the opposite occurs compared to
ΛCDM and that as we go to smaller scales this feature is suppressed rather than enhanced.

IV.4. Vector and tensor sectors

We can also calculate the equation of state for the vector sector. In this case, the function we specify is ΠV =
ΠV (θV ). Since we only have one function, θV , to eliminate the vector degree of freedom, BV , it may not seem possible

as θV ≡ θV (BV , BV
′
, BV

′′
), as seen from (76). However, in a similar process to the scalar sector, we can use the

perturbed equation of motion (79) to eliminate derivatives of BV . In doing so, (76) becomes

a2ρ(1 + wde)θV =
1

2
c13FK(kBV − hV

′
). (145)

Inserting this into (77), we obtain the equation of state for perturbations in the vector sector as

wdeΠV
de = [(1− 3wde)(1 + wde)H] θVde + (1 + wde)θV

′

de . (146)
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FIG. 4. Top left panel : The evolution of the Newtonian potential, Φ, in ΛCDM (black solid line) and for different scales in a
designer F(K) model (dashed and dotted lines) for F0 = 1 and wde = −1. Note that the potential for the ΛCDM model is
scale independent. For comparison we also show the evolution of Φ with the presence of a dark energy fluid with wde = −1
and a constant negative squared sound speed of c2s = −10−2 (red lines), calculated using (144). Top right panel : The evolution
of Φ in a Generalized Einstein-Aether universe with varying F0 for wde = −1 and K0 = 1 fixed. Bottom panel : The evolution
of Φ for a General Einstein-Aether fluid with wde varying around −1, with F0 = 1 and K0 = 1 fixed.

Note that this is exactly the same as the perturbed conservation equation and is, therefore, a tautology. To proceed
we use the vector Einstein equations, given by

− 1

2a2
hV

′
= 8πGρm(1 + wm)θVm + ρde(1 + wde)θVde, (147)

1

6H2
hV

′′
+

1

3H
hV

′
= ΩmwmΠm + ΩdewdeΠde. (148)

Differentiating (147) and eliminating for θV
′

de and the metric perturbations in (146), we find that

wdeΠV
de = H(1 + wde)θVde +

Ωm

Ωde

[
H(1 + wm)θVm − wmΠV

m

]
. (149)

For the tensor sector, since there are no new tensor degrees of freedom, ΠT can only be a function of hT and its
derivatives. Therefore, (78) immediately constitutes the equation of state for tensor perturbations and is given by

3αH2

(
FK −

F
2K

)
wdeΠT

de =− c13

(
FKH+

1

2
FKKK′

)
hT

′
− 1

2
c13FKhT

′′
. (150)

We can, therefore, derive the modification to the propagation speed of gravitational waves, due to the presence of the
Aether field. Projecting out the tensor mode of the ij-component of the Einstein equation (8) yields

a2(l̂i l̂
j − m̂im̂

j)δGij = hT
′′

+ 2HhT
′
+ k2hT = a2(l̂i l̂

j − m̂im̂
j)δU ij = 2a2PΠT , (151)
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assuming that the matter energy-momentum tensor contributes zero anisotropic stress. Hence, from (150) we find
that

(1 + c13FK)hT
′′

+ 2

[
H+ c13

(
FKH+

1

2
FKKK′

)]
hT

′
+ k2hT = 0 (152)

and so gravitational waves propagate with speed

c2grav =
1

1 + c13FK
. (153)

We see that, in general, the propagation speed of gravitational waves is time dependent via F . This is consistent with
the result in [37]. It is often argued that on the grounds of causality that we should constrain cgrav ≤ 1, as was said
for the scalar perturbations (119). Indeed, this is the standard argument that was often made in previous work, for
example see [64] and Appendix B. However, if gravitational waves were to propagate subluminally we would expect
the existence of gravitational Cherenkov radiation, of which very stringent constraints have been placed [67]. See also
[36] for a discussion. It was also noted in [67] that the constraint for cgrav ≥ 1 were much weaker. Moreover, given
that this is already a Lorentz violating theory it could be argued that cgrav ≥ 1 may not be a problem, however we
do not discuss this further.

V. DISCUSSION AND CONCLUSIONS

In this paper the background dynamics of Generalized Einstein-Aether are studied using a designer approach. We
find that only one form of F gives rise to a fluid species with wde = −1 exactly (18) for a ‘designer’ F(K) model.
However, we see that at the level of linear perturbations this model is not the same as ΛCDM. We obtain a differential
equation for general values of constant wde (26), which is solved numerically to see how this model behaves as we
vary the parameters in the theory, shown in Figure 1. We also find that the background evolution is independent of
the choice of {ci}. For wde = −1 there is an analytical solution for F given by (31).

We have also provided expressions for the perturbed fluid variables in Generalized Einstein-Aether models, in the
scalar, vector, and tensor sectors. These vector-tensor theories have non-canonical kinetic terms and are modified by
a free function, F(K). While some work has been done on these theories, the c4 term in (5) is often set to zero. It
is often argued that this can be done via a redefinition of the coefficients, which is true only if the Aether field is
hypersurface orthogonal i.e. as in the Khronometric model (39). A consequence of this is that no transverse vector
mode propagates at the level of linear perturbations. To keep things more general we keep the c4 term in our analysis.

The EoS approach to cosmological perturbations provides a way of parametrizing dark energy models and modified
gravity theories via the gauge invariant entropy perturbation and anisotropic stresses. This is done by fully eliminating
the internal degrees of freedom introduced by this theory. In this paper, we have provided expressions for these
in terms of linear functions of the perturbed variables and metric perturbations, ΠS

de = ΠS
de(∆de, Θ̂de, X, Y ) and

Γde = Γde(∆de, Θ̂de,W,X, Y ), given in (97) and (102). They have been expressed in an explicitly gauge invariant
form thanks to a new set of notation. Furthermore, via the Einstein equations, we are also able to specify them in
terms of the perturbed fluid variables for dark energy and matter only i.e. ΠS

de = ΠS
de(∆de,∆m, Θ̂de, Θ̂m,Πm) and

Γde = Γde(∆de,∆m, Θ̂de, Θ̂m,Γm), given by (116) and (117). We note that there seems to be a discontinuity in taking
the ΛCDM limit in a designer F(K) model. From these, we solve for the evolution of the Newtonian gravitational
potentials via the perturbed fluid equations for varying parameters, shown in Figure 2 and Figure 4. In a designer
F(K) we find that wdeΠS

de → 0 for K � 1, independent of the choice of {ci}. We also provide expressions for ΠV,T

in the vector and tensor sectors, given by (149) and (150).
Of course, the motivation for this analysis is to obtain observables in cosmology and see how they compare to

ΛCDM. We have now provided the necessary expressions in order to solve the perturbed fluid equations and obtain
spectra. In principle, this should be easy to incorporate into existing numerical codes. Similar to [47–49], we would
like to explore a broader class of vector-tensor models, without ever having to specify a specific model. What if we
know nothing about the background Lagrangian other than its field content? Can anything be said more broadly
about general vector-tensor theories of gravity and their application to dark energy? This is similar to work done
in [50], but instead adopting a covariant approach as was done in [49] for scalar-tensor theories. We leave this as a
matter for future work.
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Appendix A: Equations of state for perturbations in the synchronous gauge

In the synchronous gauge, we have that

a2δρ =FK
[
c14k

2V ′ + (c14 − α(1 + 2γ2))Hk2V +
1

2
αH(1 + 2γ2)h′

]
, (A1)

a2ρ(1 + wde)θS =
1

6
FK
[
(2k2V − h′)(3c123 + 2αγ2)− 12c13η

′] , (A2)

where

δK =
2αH
a2M2

(
1

2
h′ − k2V

)
. (A3)

We can then write this system of equations as

a2

(
δρ

ρ(1 + wde)θS

)
= k2

(
A B

0 C

)(
V ′

V

)
+

(
D

E

)
, (A4)

with

A = c14FK, (A5)

B = [c14 − α(1 + 2γ2)]HFK, (A6)

C =
1

3
FK(3c123 + 2αγ2), (A7)

D =
1

2
αHFK(1 + 2γ2)h′, (A8)

E = −1

6
FK [(3c123 + 2αγ2)h′ + 12c13η

′] . (A9)

Inverting this will give us expressions for V and V ′ in terms of δρ, θS , the metric perturbations, h and η, and their
derivatives. Eliminating for these in ΠS (74), we find that we can write (91) as

wΠS = cΠ∆∆ + cΠΘΘ̂ + cΠXX + cΠYK
2Y, (A10)

where the cΠ coefficients are given in (98) to (101). In order to show this, we use the conservation equation (15) to
find that

3(1 + wde) = εH
2γ1(1 + 2γ2)

2γ1 − 1
(A11)

and replace for this in 3(1 +w)T , arising from Θ̂ in Table II. From this it can be shown that the coefficient cΠT = 0,
as discussed previously.

Similarly, we do the same for the entropy perturbation by eliminating V and V ′ in δP and hence find that

wΓ = cΓ∆∆ + cΓΘΘ̂ + cΓWW + cΓXX + cΓYK
2Y, (A12)

where the cΓ coefficients are as before in (103) to (107). To show this, we note that there is a term proportional to

3(1 + wde)
dP

dρ
T . As before, we use (A11) to replace 3(1 + wde) and also compute that

dP

dρ
=
a2P ′

a2ρ′
= εH

(
2γ2

1 + 2γ2

)(
1 +

2

3
γ3

)
+

2

3
εH − 1− εH

′

3HεH
. (A13)

After substituting in for these it can be shown that cΓT = 0. Hence, (97) and (102) constitute the gauge invariant
equations of state for the perturbations.
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Constraints Reason

(a) 0 ≤ c123

c14
≤ 1 Non-tachyonic and subluminal propagation of scalar modes

(b) 0 ≤ c1
c14
≤ 1 Non-tachyonic and subluminal propagation of vector modes

(c) c13 ≥ 0 Subluminal propagation of gravitational waves

(d) c14 < 0 No ghosts

(e) c123 ≤ 0 (a) and (d)

(f) c1 ≤ 0 and c4 ≥ 0 (b) and (d)

(g) c2 ≤ 0 (c) and (e)

(h) c3 ≥ 0 (c) and (f)

(i) α ≤ 0 (e) and (g)

TABLE III. Summary of the constraints on the {ci} coefficients, obtained from Minkowski space and gravitational waves.

Appendix B: Constraints on coefficients in Minkowski space

We would like to obtain constraints on the {ci} coefficients by studying the behaviour of perturbations in Minkowski
space. We largely follow the procedure defined in [64], extending their results to include c4 6= 0. The Lagrangian
which governs the perturbations is obtained by perturbing the degrees of freedom in the background Lagrangian to
quadratic order. This would then give rise to linear equations of motion for the perturbations. Schematically, we
are computing L → L+ δL+ δ2L, where δ2L denotes the Lagrangian quadratic in perturbations. Again suppressing
over-bars to denote unperturbed variables, from (3) we have that

δ2L = M2
(
FKK(δK)2 + FKδ2K

)
+ 2AµδAµδλ, (B1)

since λ = 0 in Minkowski space.
Perturbing the Aether as Aµ → Aµ + δAµ = (1, 0, 0, 0) + vµ and assuming the metric to be flat, we can compute

M2δ2K by perturbing the Aether field and expanding out to quadratic order, to give

M2δ2K = c1∂µv
ν∂µvν + c2(∂µv

µ)2 + c3∂µv
ν∂νv

µ + c4A
µAν∂µv

ρ∂νvρ + 2δλAµvµ. (B2)

Similarly we can calculate M2δK to be

1

2
M2δK = c1∂µA

ν∂µvν + c2∂µA
µ∂νv

ν + c3∂µA
ν∂νv

µ + c4A
µvν∂µA

ρ∂νAρ + c4A
µAν∂µA

ρ∂νvρ. (B3)

From this we see that in Minkowski space δK = 0 since ∂µA
ν = 0, which will also be true for the unperturbed value

of K. The second order Lagrangian is therefore given by

δ2L = FK
[
−c14v̇

2 + c1∂iv
j∂ivj + c2(∂iv

i)2 + c3∂iv
j∂jv

i
]
, (B4)

where v̇2 = v̇iv̇i and we have used v0 = 0. By analogy to the cosmological perturbations, we decompose the
perturbation into a scalar and vector part,

vi = ∂iV + iBi = Si + T i, (B5)

such that kiTi = 0. Inserting this into (B4), we find that we can write it as the sum of two uncoupled Lagrangians
for the fields Si and T i, since any cross terms are zero by the scalar-vector decomposition of the perturbation. They
are given by

LS = FK
[
−c14Ṡ

2 + c1∂iS
j∂iSj + c2(∂iS

i)2 + c3∂iS
j∂jS

i
]
, (B6)

LT = FK
[
−c14Ṫ

2 + c1∂iT
j∂iTj

]
. (B7)
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Here we see the problem with the Minkowski limit for the the designer model, with F = B(K)1/2 +C. Since K ∝ H2,
in the Minkowski limit where K → 0 we have that FK →∞ and hence the second order Lagrangian is not well defined.
Constraints can still be obtained for the {ci} coefficients, but not for the designer model. To compare with results
from [64, 68] we will set FK = 1.

Hence, the equations of motion from (B6) and (B7) are then given by

S̈i −
c123

c14
∂j∂jSi = 0, T̈i −

c1
c14

∂j∂jTi = 0, (B8)

where we have used ∂iSj = ∂jSi from the definition in (B5). Therefore, we see that Si and Ti propagate with sound

speeds c2s =
c123

c14
and c2s =

c1
c14

respectively. Imposing that the propagation speeds are less than c and to avoid them

being imaginary, leading to an exponential growth in perturbations, we require

0 ≤ c123

c14
≤ 1 and 0 ≤ c1

c14
≤ 1 (B9)

Also, following the process of [64], considerations of the quantum Hamiltonian gives an additional constraint of
c14 < 0 to prevent ghosts. Heuristically we can see this from (B4), as c14 < 0 ensures that the kinetic term is the
correct sign, however see [64] for a full treatment of the quantization of this theory.

Let us summarise the constraints we have obtained. As in [64], we can also infer further constraints from those
already obtained, allowing us to get more useful constraints on the individual coefficients and also combinations of
them that appear frequently. They are are shown in Table III and are also consistent with those obtained in [68].
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[31] J. Beltrán Jiménez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008), arXiv:0801.1486.
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[56] D. Blas, O. Pujolàs, and S. Sibiryakov, Journal of High Energy Physics 4, 18 (2011), arXiv:1007.3503 [hep-th].
[57] D. Blas and S. Sibiryakov, JCAP 7, 026 (2011), arXiv:1104.3579 [hep-th].
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