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ABSTRACT
Traditionally, the spherical collapse of objects is studied with respect to a uniform background
density, yielding the critical overdensity δc as a key ingredient to the mass function of virialized
objects. Here, we investigate the shear and rotation acting on a peak in a Gaussian random field.
By assuming that collapsing objects mainly form at those peaks, we use this shear and rotation
as external effects changing the dynamics of the spherical collapse, which is described by the
Raychaudhuri equation. We therefore assume that the shear and rotation have no additional
dynamics on top of their cosmological evolution and thus only appear as inhomogeneities in
the differential equation. We find that the shear will always be larger than the rotation at peaks
of the random field, which automatically results into a lower critical overdensity δc, since the
shear always supports the collapse, while the rotation acts against it. Within this model, δc

naturally inherits a mass dependence from the Gaussian random field, since smaller objects
are exposed to more modes of the field. The overall effect on δc is approximately of the order
of a few per cent with a decreasing trend to high masses.
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1 IN T RO D U C T I O N

The combined observations of Type Ia supernovae (e.g. Riess
et al. 1998; Perlmutter et al. 1999), the cosmic microwave back-
ground (e.g. Komatsu et al. 2011; Planck Collaboration XIII 2016),
the Hubble constant and large-scale structure (e.g. Cole et al. 2005)
show that the Universe is spatially flat and expanding in an accel-
erated fashion. Under the assumptions of General Relativity being
true and the symmetries of the Friedmann–Robertson–Walker met-
ric, the accelerated expansion can be described by the cosmological
constant � or by adding a fluid component (see e.g. Copeland,
Sami & Tsujikawa 2006, for a review) to the energy-momentum
content of the Universe with an equation of state w < −1/3 which
may be time dependent. In this scenario, generally called dark en-
ergy, � would correspond to a constant w = −1.

The equation-of-state parameter, as well as the other parameters
such as the dark energy content �� or the matter content �m of the
cosmological standard model, can and already have been measured
to very high precision. However, with high precision comes also the
risk of possible biases in the parameters if the theoretical prediction
and astrophysics are not modelled well enough. It is therefore nec-
essary to review and perhaps modify common concepts and models
since possible systematics are no longer wiped out by the statistical
errors of the experiment.

� E-mail: reischke@stud.uni-heidelberg.de

The halo mass function is, due to its exponential sensitivity, one
of the main tools to provide robust theoretical predictions for many
observables such as cluster counts (Sunyaev & Zeldovich 1980;
Diego & Majumdar 2004; Majumdar 2004; Fang & Haiman 2007;
Abramo, Batista & Rosenfeld 2009; Angrick & Bartelmann 2009)
or weak lensing peak counts (Maturi et al. 2010; Maturi,
Fedeli & Moscardini 2011; Lin & Kilbinger 2014; Reischke, Ma-
turi & Bartelmann 2016b). As it deals with objects in the highly
non-linear regime, one needs to extrapolate the linearly evolved
density to the non-linear one which is encoded in the critical linear
overdensity δc.

This can be done by using the spherical collapse model in-
troduced by Gunn & Gott (1972) and later extended in several
works (Fillmore & Goldreich 1984; Bertschinger 1985; Ryden
& Gunn 1987; Avila-Reese, Firmani & Hernández 1998; Mota
& van de Bruck 2004; Abramo et al. 2007; Pace, Waizmann &
Bartelmann 2010; Pace et al. 2014a). This model assumes in its
most simplistic form, called standard spherical collapse (SPC here-
after), the evolution of a spherically symmetric density perturbation
in an expanding background with uniform background density, i.e.
an isolated collapse. The overdensity grows until it reaches a critical
point at which it starts to collapse under its own gravity. Due to the
collapse, it decouples from the expansion. In theory, the overdense
region would collapse to a single point, however, the energy re-
leased during the collapse is converted into random motions of the
particles, such that an equilibrium situation (in the sense of a viri-
alized structure; Schäfer & Koyama 2008) is created. Effectively,
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we start from initial conditions such that such a virialized struc-
ture is formed at a certain redshift. These initial conditions are then
used to propagate the linear growth of structures, described by the
overdensity δ. The corresponding linear δ at the redshift where the
non-linear solution resulted into a virialized object is then called δc.
It therefore sets a threshold above which an object can be considered
as being collapsed even in terms of linear structure formation. Given
this value, one can predict the abundances of collapsed objects in
terms of a random walk with a moving barrier.

It is necessary to check the validity of the SPC model and intro-
duce additional effects subject to more realistic situations. One of
the ingredients of the SPC model is the embedding of the spherical
region into a uniform background. In this way, no external forces can
act on the halo by virtue of Birkhoff’s theorem. However, haloes
are embedded in a random field giving rise to gravitational tidal
fields inducing shear and rotation acting on the collapsing spherical
region and thus changing the collapse dynamics.

In earlier works (Del Popolo, Pace & Lima 2013a,b; Pace,
Batista & Del Popolo 2014b), the influence of rotation and shear
has been studied extensively using a phenomenological model in-
troducing an additional term to match the Newtonian predictions.
The authors found that the effect of shear is always smaller than
the effect of the rotation, leading to a slowdown of the collapse.
Consequently, δc is larger compared to the SPC scenario, where
it adopts the known value 1.686. The additional term has a mass
dependence leading to a mass-dependent δc as well. Lower mass
haloes are exposed to higher values of rotation and shear, leading
to a higher δc while it becomes negligible for haloes with M �
1015 M�.

More recently, Reischke et al. (2016a, hereafter R16) investigated
a test particle embedded in tidal gravitational fields described by
a Gaussian random field. The Gaussian random field obeys the
statistics of the cosmic density field δ by virtue of the Zel’Dovich
approximation (Zel’Dovich 1970). This gives rise to an effective
shear acting on the collapsing region. The mass dependence of the
shear is introduced naturally by assigning a length-scale to an object
of mass M. Since the shear is treated as a random variable, δc is a
random variable as well and has a distribution rather than a distinct
value and the averaged value should be used for the mass function.
It was shown in R16 that the effect on δc can cause a 1σ bias
in cosmological parameters when considering an idealized cluster
survey. Pace et al. (2017) studied the effect of shear in clustering
dark energy models, finding similar results to the smooth case.

Since the tidal field examined in R16 is described by a po-
tential flow, there is no vorticity generation. However, a rotation
of the collapsing region can be modelled by a mechanism called
tidal torquing (White 1984; Catelan & Theuns 1996; Crittenden
et al. 2001; Schäfer 2009; Schäfer & Merkel 2012). We will there-
fore consider a peak in the density field with inertial tensor I and
tidal shear tensor � and investigate jointly the induced shear and
rotation. Assuming that haloes form at peaks, we will use the val-
ues estimated for the shear and the rotation as an input for the
spherical collapse model leading to a self-consistent description
of the spherical collapse in gravitational tidal fields. We will fur-
thermore show that the restriction to peaks in the density field
has some very general consequences on the induced rotation and
shear.

The structure of the paper is as follows. In Section 2, we very
briefly review the spherical collapse model and show the equations
to be solved. In Section 3, we introduce the statistical procedure to
obtain tidal shear values and decompose them to identify the shear
and rotation tensor, respectively. The obtained invariants are then

used in Section 4 to calculate the influence of the tidal fields on
δc for the standard �CDM model. We summarize our findings in
Section 5.

2 SP H E R I C A L C O L L A P S E

The spherical collapse model has been discussed by various au-
thors, e.g. Bernardeau (1994), Padmanabhan (1996), Ohta, Kayo &
Taruya (2003), Ohta, Kayo & Taruya (2004), Abramo et al. (2007)
and Pace et al. (2010, 2014a), and its standard scenario describes
the evolution of a spherical overdense region in an homogeneous
expanding background. The key quantity derived from the spherical
collapse is the critical overdensity δc which allows an extrapolation
from the linear evolved density field to virialized structures. There-
fore, δc is primal for the study of the abundance of objects in the
Universe. Starting from the perturbed hydrodynamical equations

δ̇ + (1 + δ)∇x u = 0,

u̇ + 2H u + (u · ∇x)u = − 1

a2
∇xφ,

∇2
xφ = 4πGa2ρ0δ, (1)

with comoving coordinate x, comoving peculiar velocity u, Newto-
nian potential φ, overdensity δ and background density ρ0, respec-
tively. Here, the dot represents a derivative with respect to cosmic
time t. Taking the divergence of the Euler equation and inserting
the Poisson equation yields

δ̇ = −(1 + δ)θ,

θ̇ = −2Hθ − 4πGρ0δ − 1

3
θ2 − (σ 2 − ω2). (2)

Here, we used the decomposition

∇x · [(u∇x)u)] = 1

3
θ2 + σ 2 − ω2, (3)

with the expansion θ = ∇x · u, the shear σ 2 ≡ σ ijσ
ij and the rotation

ω2 ≡ ωijω
ij assuming a spherical symmetry. The rotation and the

shear tensors are themselves the antisymmetric and the symmetric
traceless part of the velocity divergence tensor, respectively. They
are defined as

σij = 1

2

(
∂iuj + ∂j ui

) − θ

3
δij ,

ωij = 1

2

(
∂iuj − ∂j ui

)
, (4)

where ∂i ≡ ∂/∂xi . We now use the relation ∂t = aH (a)∂a and
δ̃ = 1/δ which leads to

δ̃′ = θ

aH
δ̃(1 + δ̃),

θ ′ = −2θ

a
− 3H�m

2aδ̃
−

(
1

3
θ2 + σ 2 − ω2

)
1

aH
, (5)

where the prime denotes a derivative with respect to a. The sys-
tem defined in equation (5) is solved numerically until δ̃ ∼ 10−8

and then it is extrapolated to zero, which is much more stable than
treating the system in δ rather than δ̃. This yields the appropriate
initial conditions for the linear version of equation (5) which gives
δc. Usually σ 2 and ω2 are neglected, however, their influence has
phenomenologically been investigated, e.g. by Del Popolo et al.
(2013a,b) in the �CDM and dark energy cosmologies and by Pace
et al. (2014b) in clustering dark energy models. The authors heuris-
tically model the term σ 2 − ω2 allowing us to study an isolated
collapse including a (mass-dependent) quantity α, defined as the

MNRAS 473, 4558–4565 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/473/4/4558/4411833
by University of Manchester user
on 30 November 2017



4560 R. Reischke et al.

ratio between the rotational and the gravitational term. Specifically,
the term is

α = L2

M3RG
, (6)

where L is the angular momentum of the spherical overdensity
considered. M and R are its mass and radius, respectively. The
angular momentum is important for galaxies, but negligible for
clusters. In particular, α ≈ 0.05 for M ≈ 1011M�h−1 and of the
order of 10−6 for M ≈ 1015M�h−1. By defining new quantities
θ̃ = θ/H , σ̃ = σ/H and ω̃ = ω/H , the combined contribution of
the shear and rotation term can effectively be modelled by

σ̃ 2 − ω̃2 = −3

2
α�mδ, (7)

leading to modified equations for the spherical collapse. Clearly
σ̃ 2 − ω̃2 is always negative, thus leading to a slowdown of the
collapse. Technically, the term leads to larger initial conditions for
the density contrast for a halo to be formed at a certain redshift, thus
increasing δc as it is obtained from the linear equation using these
initial conditions.

3 SH E A R A N D ROTAT I O N

3.1 The model

In this work, we intend to model the shear invariant σ 2, to-
gether with the rotation invariant ω2, which occurs in the collapse
equation (5). Earlier works studied the joint influence of shear and
rotation in a phenomenological way as mentioned in the last section.
The logic here is the following: we assume that dark matter haloes
form at peaks of the density field, which itself is described by a
Gaussian random field and thus by its power spectrum. In order to
model σ 2 − ω2, we calculate these values at peaks of the density
field using only the statistics of the field itself and the Zel’Dovich
approximation. We then effectively place a test particle into the
Gaussian random field at the peak and let it undergo a gravitational
collapse, with the shear and rotation acting as external forces with
no own dynamics (except for the ones given by the background dy-
namics). Thus, the collapse dynamics will stay spherical, while we
allow for deviations from sphericity in the estimation of the shear
and rotation (especially to find an expression for the inertial tensor).
In this way, the collapsing object can be seen as a test particle in a
tidal gravitational field.

3.2 The tidal tensor

The central object of our model is the tidal tensor �, which is
related to the density field. For scales large enough, particles follow
Zel’Dovich trajectories (Zel’Dovich 1970)

xi = qi − D+(t)∂iψ ≡ qi − D+(t)ψ,i . (8)

The displacement field ψ is related to the density contrast δ via a
Poisson relation, �ψ = δ. In Fourier space, we can thus write the
components of the tidal tensor as

ψ,ij = −
∫

d3k

(2π )3

kikj

k2
δ(k) exp(ikx). (9)

We now choose spherical coordinates in such a way that the peaks
under consideration lie symmetric around the origin on the z-axis
(Regős & Szalay 1995; Heavens & Sheth 1999). For convenience,

we introduce dimensionless complex variables

yn
lm =

√
4π

il+2n

σl+2n

∫
d3k

(2π )3
kl+2nδ(k)Ylm(k̂) exp(ikx), (10)

with the direction vector k̂ = k/k and σ i being the spectral moments
of the matter power spectrum

σ 2
i = 1

2π2

∫
dk k2i+2P (k), (11)

and Ylm are the spherical harmonics. With this, we obtain a linear
relation (Schäfer & Merkel 2012) between yn

lm and the tidal field
values ψ , ij

σ0y
−1
20 = −

√
5

4

(
ψ,xx + ψ,yy − 2ψ,zz

)
,

σ0y
−1
2±1 = −

√
15

2

(
ψ,xz ± iψ,yz

)
,

σ0y
−1
2±2 =

√
15

8

(
ψ,xx − ψ,yy ± 2iψ,xy

)
,

σ0y
0
00 = (

ψ,xx + ψ,yy + ψ,zz

)
. (12)

The variables yn
lm now have a diagonal autocorrelation matrix:

〈
yn

lm(x)yn′
l′m′ (x)∗

〉
= (−1)n−n′ σ 2

l+n+n′

σl+2nσl+2n′
δll′δmm′ . (13)

By inverting the linear relation, we can draw random samples in
the yn

lm basis and calculate the components of the tidal tensor
� ij ≡ ψ,ij . The strength of the tidal field depends on the char-
acteristic length-scale R(M) of the halo and thus on its mass. We
thus introduce a low-pass filter to cut off high-frequency modes,
suppressing fluctuations on scales smaller than the characteristic
scale of the halo:

P (k) → P (k)W 2
R(k), (14)

with WR(k) = exp (−k2R2/2). The mass scale is obtained via M =
4π
3 ρcrit�mR3, where ρcrit = 3H2/(8πG) is the critical density. For

more details on the tidal field and the random process, we refer to
R16.

3.3 Tidal torquing

Having presented the procedure to sample the components of the
tidal tensor directly from the statistics of the density field, we intro-
duce a mechanism known as tidal torquing in order to describe the
generation of rotation due to tidal gravitational fields. In the pic-
ture of tidal torquing, angular momentum is generated by the tidal
gravitational field which exerts a torquing moment on the halo. It
is important to note that the vorticity ω is not driven by the non-
linear term ∇ × (v × ω) in the Euler equation. On the contrary, the
angular momentum is generated by vorticity-free flows generating
shear effects on the halo prior to collapse. During this process, the
halo is slightly deformed and tends to align its inertia tensor in the
eigenframe of the shear tensor. After decoupling from the shear
flow and the start of collapse, the length of the lever arms reduces
dramatically in comoving coordinates making tidal torquing ineffi-
cient. Therefore, the angular momentum just before collapse begins
is a good proxy for the total rotation of the halo.

The angular momentum L of a rotating mass distribution ρ(r, t)
is given by

L(t) =
∫

V

d3r (r − r̄) × v(r, t)ρ(r, t), (15)
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with v being the rotational velocity and V the physical volume
under consideration. Making use of the Zel’Dovich approximation
and expressing everything in the Lagrangian frame (i.e. comoving),
the angular momentum becomes

L = ρ0a
5
∫

VL

d3q (q − q̄) × ẋ, (16)

neglecting higher order terms (White 1984; Catelan & Theuns 1996;
Crittenden et al. 2001). The velocity ẋ is given via the gradient of
the potential ψ , which can be expanded in the vicinity of the centre
of gravity q̄ if its variation across the Lagrangian volume VL is
small:

∂iψ(q) ≈ ∂iψ(q)
∣∣∣

q=q̄
+ ∂ijψ(q)

∣∣∣
q=q̄

(q − q̄)j , (17)

with expansion coefficients ψij ≡ ∂ijψ describing the tidal shear
given in equation (12). The first term can be neglected as it only
describes the displacement of the protohalo, the second however
will be responsible for the rotational effects. Introducing the inertial
tensor Iij as

Iij = ρ0a
3
∫

Vl

d3q (q − q̄)i(q − q̄)j , (18)

the angular momentum can be written as

Li = a2Ḋ+εijkIjlψlk, (19)

with the Levi–Civita symbol εijk. The matrix product in the latter
expression X = I� can be decomposed into a symmetric X+ and
an antisymmetric part X− defined via the anticommutator and the
commutator, respectively:

X+ ≡ 1

2
{I,�}, X− ≡ 1

2
[I, �]. (20)

With this definition, the angular momentum can be written as
(Schäfer 2009; Schäfer & Merkel 2012)

Li = a2Ḋ+εijkXjk = a2Ḋ+εijkX
−
jk, (21)

since the contraction with εijk will only pick out the antisymmetric
part of X . Thus, angular momentum is not generated if inertia and
tidal shear have a common eigensystem, which is always the case
for a matter distribution invariant under SO(3), therefore we need
to have X− �= 0 to generate angular momentum. On the other hand,
X+ will measure the alignment of the eigensystems of inertia and
shear and thus cause shear effects due to deformations.

The components of the inertial tensor I can be expressed via
second derivatives of the density field δ(x) which are given by

δij = −
∫

d3k

(2π )3
kikj δ(k) exp (ikx). (22)

Thus, the decomposition works in the same way as before:

σ2y
0
20 =

√
5/4

(
δxx + δyy − δzz

)
,

σ2y
0
2±1 =

√
15/2

(
δxz ± iδyz

)
,

σ2y
0
2±2 =

√
15/8

(
δxx − δyy ± 2iδxy

)
,

σ2y
1
00 = (δxx + δyy + δzz). (23)

At a peak in the density field, the peak slope is approximated by a
parabolic function

δ(x) = xp − 1

2
λi(x − xp)2

i , (24)

with the eigenvalues λi of the mass tensor mij = −δij at the peak.
If the boundary of the peak is given by the isodensity contour with

δ = 0, the inertia tensor can be written as

I = η0

5
�diag

(
A2

y + A2
z, A

2
x + A2

z, A
2
x + A2

y

)
, (25)

in the eigensystem of the paraboloid. Here, Ai = √
2δ/λi are the

ellipsoids semi-axes, � its volume and η0 its density, such that
M = η0� is the mass of the peak. In our approximation, the density
field is assumed to be homogeneous to the first order, and thus
η0 = �mρcrita3. We thus sample values for X± from the joint
covariance matrix of δij and ψ ij. All calculations are carried out
in the eigensystem of the inertia tensor, i.e. we sample values yn

lm

and calculate the inertia tensor by inverting equation (23) and using
equation (25).

3.4 Decomposition of the shear tensor

In the last two parts, we described how the statistics of the density
field induce tidal gravitational fields, encoded in �, and how these
tidal fields can give rise to rotation. Since the shear effects are as
well described by the tidal tensor, the scope of this section will
be to decompose � into two separate parts whose invariants can
be identified with σ 2 and ω2. Physically, the shear corresponds to
convergent flows, which will deform the halo, while the rotational
part will give rise to an overall spinning of the halo induced by the
external fields. As already mentioned, angular momentum will only
be sourced by the antisymmetric part of the matrix product X ; the
Hodge dual to the angular momentum is the tensor

Lij = a2Ḋ+[I, �]ij . (26)

Now, since the angular momentum can also be expressed as

Li = Iijωj , (27)

with angular velocity ωj, we can conclude that

Lij = Iilωlj , (28)

and thus, in matrix–vector notation

ω = I−1 X−. (29)

For the shear, we proceed in complete analogy, but using the anti-
commutator instead of the commutator. In particular, we decompose
the tidal gravitational field as follows:

� = I−1 I� = I−1 X+ + I−1 X− ≡ σ̃ + ω̃. (30)

Here, we identified the shear tensor σ̃ and the rotation tensor ω̃.
Since σ̃ still carries a trace, we need to subtract it to arrive at
the following expressions for the shear tensor and rotation tensor,
respectively:

σ = 1

2

(
� + I−1� I

) − tr�

3
I3 , ω = 1

2

(
� − I−1� I

)
. (31)

The interpretation of the two expressions is straightforward: σ mea-
sures the alignment between the eigenframes of the tidal tensor and
the inertial tensor, while ω measures their misalignment. Clearly,
if both are completely aligned, the tidal tensor will not induce any
rotation and only the shear effect is present. If, however, the two
frames are not aligned, the inertial tensor will start rotating into the
frame of the tidal tensor and keep its rotation once the lever arm
will reduce dramatically during collapse.
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3.5 Model comparison

Having set up all the important relations, it is worthy to compare the
models presented here with the one from R16 and the phenomeno-
logical model in Del Popolo et al. (2013a,b).

The procedure of R16 is quite similar to the one outlined here.
Values for the tidal tensor � are sampled in the same way, the values
for the inertial tensor, however, are not sampled from the density
field and I is implicitly assumed to be the one of the spherical
objects. I is thus proportional to the identity, which itself commutes
with every other tensor, thus setting ω to zero identically. Especially,
this means equation (31) was

σ = � − tr�

3
I3 , ω = 0, (32)

for the model presented in R16, and thus the inertial tensor is not
needed as well as the condition to consider peaks in the density
field only. This leads to a few subtle differences between the two
models in terms of the physical interpretation: Both models describe
the collapse of a spherically symmetric test object in a Gaussian
random field. In both cases, the tidal tensor � is evaluated from the
statistics of the underlying linearly evolved density field and gives
rise to effective external forces that act on the collapse equation
as an inhomogeneity. While the position of the test mass in R16
has been arbitrary, we restrict ourselves to peaks in the density
field here and include the possible spin-up due to tidal torquing
of the test mass. The restriction to peaks in the density field will
generally lead to higher values in � compared to R16, due to the
non-trivial correlation with I . In this sense, the model presented
here is more realistic, in terms of the shear and rotation being just
inhomogeneities entering in the collapse equation, than the one
in R16.

The comparison with Del Popolo et al. (2013b) is somewhat more
difficult as their model was heuristically motivated only. In contrast,
our model relies on the statistics of the cosmic density field only
and is in this sense only restricted by the validity of Lagrangian
perturbation theory at the first order. This is certainly valid as long
as δ 
 1. If we are considering objects with masses above 1014 M�,
this criterion is certainly satisfied in the sense of that the variance
of the density field smoothed at this scale is well below unity. In
particular, Del Popolo et al. (2013b) find values for ω2 > σ 2 which
is not possible with our treatment. This is because in Del Popolo
et al. (2013b), the rotation term was derived to match the angular
momentum of galaxies and clusters today, being therefore a non-
linear quantity. This value will be exceeding our estimate of the
rotation tensor and lead to effects that are opposite to what we find.

3.6 Calculation of the invariant σ 2 − ω2

The invariant quantities σ 2 and ω2 just differ by the sign of the cross
terms and by the terms which arise due to the term including the
trace of �. It is easy to see that the latter terms vanish identically,
and thus the only difference between σ 2 and ω2 is the sign of the
two cross terms, which are themselves identical due to the cyclicity
of the trace. Generalizing this reasoning to higher order invariants
in a coordinate free way, we use that the invariants correspond to
the Frobenius norm of the tidal tensor and the inertia tensor. The
Frobenius norm of a symmetric matrix A is defined as

||A||2 := trA2 ≡ AijA
ji . (33)

An inner product can be defined in the following way

〈A,B〉 = trAB = AijB
ji , (34)

Figure 1. Distributions of the ratio of the two invariants σ 2 and ω2. The
red histogram does not include the maximum constraint, i.e. λi > 0, while
the black histogram includes this constraint. Clearly the constraint moves
all values that would have σ 2 < ω2 to values σ 2 > ω2 as it is expected from
the analytical considerations made in equation (35). The smoothing length
for the power spectrum is R = 10 Mpch−1.

which is also called Frobenius scalar product, and then inducing the
Frobenius norm defined above. With this, we find

σ 2 = || {I, �} ||2 = ||I�||2 + 2〈I�, � I〉 + ||� I ||2
ω2 = || [I, �] ||2 = ||I�||2 − 2〈I�, � I〉 + ||� I ||2. (35)

Clearly, the positive definiteness of the Frobenius norm implies
that σ 2 > ω2 is fulfilled if 〈I�,� I〉 > 0. Due to the cyclic
property of the trace, this term can be shown to be 〈I�, � I〉 =
tr(I�2 I) = tr(I2�2) = 〈I2, �2〉, which in turn is positive for pos-
itive (semi)definite matrices I and �.

To show this, one can use the generalization of the inequality of
the arithmetic and geometric mean,

1

n
〈I2, �2〉 = 1

n
tr(I2�2) ≥ (det(I)det(�))

2
n ≥ 0, (36)

which is only valid for positive (semi)definite matrices, with n being
the dimension of the matrices. The tidal shear is positive definite
at a peak of the density field, because tr(�) = �� = δ > 0 due to
the Poisson equation, and the inertia can only sensibly be defined at
a maximum of the density field, where the curvature of the density
field assumes positive values, resulting in a positive definite inertia
tr(I) > 0. The argumentation applies for the traceless shear as well,
as a positive semidefinite matrix. Both determinants are positive for
positive definite matrices, and constrain the scalar product 〈I2, �2〉
to be larger than zero. This is an important result, and we find that
the induced shear is always larger than the induced rotation by tidal
torquing.

Fig. 1 shows the effect mentioned in equation (35) very clearly:
If we restrict the random process to maxima in the density field all
values with σ 2 < ω2 disappear and get shifted to larger ratios of
σ 2/ω2. Thus, gravitational tidal fields will always introduce more
shear than rotation by tidal torquing if only maxima of the un-
derlying density field are considered. This is indeed a necessary
condition, since otherwise the inertia tensor would not be defined in
a proper way. As a consequence, the collapse will always proceed
faster in a scenario with tidal gravitational fields than in a uniform
background as it is the case for the SPC.

We show the, not normalized, joint distribution of σ 2 and
δ in Fig. 2. Due to the correlations in the yn

lm basis given in
equation (13), the maximum constraint enforces higher values in
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Figure 2. Joint distributions (not normalized) of the density contrast δ = tr(�) and the invariant σ 2. Left-hand panel: no maximum constraint. The distribution
is similar to the distribution found in R16. Right-hand panel: the maximum constraint is imposed. Clearly the constraint enforces higher values of δ and thus
also in σ 2, which is due to the correlations in the yn

lm basis given in equation (13). The smoothing length for the power spectrum is R = 10 Mpch−1.

δ and σ 2. In particular, peaks can only be found if δ > 0, which
is indeed necessary to write down the inertia tensor as in equation
(25), as the ellipsoid is a region with a boundary δ = 0. Also, the
density peaks are significantly higher than without the constraint.

In Fig. 3, we show the distribution of σ 2 − ω2 with different
thresholds for the overdensity δ at the peak. Clearly, higher over-
densities at the peak imply higher shear values as the potential is
more curved at higher peaks.

4 IN F L U E N C E O N δc, �V A N D S C A L I N G
PROPERTIES

In this section, we investigate the influence of the tidal gravitational
fields on the collapse dynamics by substituting the invariants σ 2 and
ω2 into the collapse equation. Additionally, we will study the scaling
with the mass of the collapsed structure. The cosmology is chosen
to be a concordance �CDM model with �m = 0.3, �� = 0.7,
w = −1, h = 0.7, σ 8 = 0.8 and ns = 0.96.

In Fig. 4, the resulting distribution of δc is shown. The collapse
always proceeds faster than in the case without tidal fields. For
more work on this, we refer to Hoffman (1986), Zaroubi & Hoffman
(1993) and Bertschinger & Jain (1994). As discussed in the previous
section, this is due to the fact that the tidal field induced shear is
always higher than the effect due to tidal torquing, provided we
restrict our considerations to maxima in the density field. Thus, the
strong drop of the distribution at higher δc marks the value that one
would get within a uniform background.

Due to the faster collapse, virialized objects form more easily,
thus yielding more massive objects. This effect is similar to modified
gravities theories or dark energy cosmologies with non-phantom
equations of state. Since the distribution found for δc is similar to
the one found in R16 and no significant differences were found for
more complex dark energy models, we refer to our previous works
regarding the impact on the mass function and cluster counts (see
Reischke et al. 2016a; Pace et al. 2017).

δc exhibits a mass dependence due to the low-pass filter with a
scale R which is introduced to model the effective tidal fields acting
on an object of size R(M). We consider again the averaged values
of the invariant σ 2 − ω2 or the linear critical density contrast δc, i.e.
given the distribution p(δc) we consider

E[δc] =
∫

p(δc)δcdδc, (37)

Figure 3. Distributions of the invariants σ 2 − ω2 for different thresholds
δ on a scale of R = 10 Mpch−1. Higher peaks induce higher values for
σ 2 − ω2.

and similarly for σ 2 − ω2. On the left-hand panel in Fig. 5, we
show the scaling of E[σ 2 −ω2] with respect to the mass. The general
scaling shows that higher masses result into lower values for σ 2 −ω2

as larger objects are only influenced by low-frequency modes that
become smaller for increasing scale. In the case considered here,
we restrict ourselves to maxima in the density field, and thus the
situation is constructed such that the curvature of the density field
must be negative, yielding slightly more shear on large scales than
for a random point in the density field. On smaller scales, however,
the situation is reversed. This argument is precisely due to the
additional factor k4 which enters in the random process for δij (cf.
equations 11 and 23).

The right-hand panel of Fig. 5 shows the resulting scaling of
E[δc]. Here, we additionally show the constant value (green curve)
obtained without gravitational tidal fields. As for the invariants σ 2

and ω2 the qualitative behaviour is identical. We find that the term
σ 2 − ω2 will always favour the collapse, thus lowering E[δc]. Even
though ω2 will act against the collapse, as it corresponds to a cen-
trifugal force, it can never dominate σ 2 as we showed before. For
completeness, we note that our final results for E[δc] are effec-
tively very similar to the ones found in R16. Furthermore, we note
that the time evolution of the invariant is controlled by the time
derivative of the growth factor introduced in equation (8) and is
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Figure 4. Distribution of the critical linear overdensity δc for a standard
�CDM cosmology. The smoothing scale is again R = 10 Mpch−1 and the
density threshold is δ = 0.

thus purely due to background dynamics. If one instead starts with
a non-spherical collapse, one would find larger effects on δc com-
pared to this idealized model. An example for this is the ellipsoidal
collapse model (Eisenstein & Loeb 1995; Ohta et al. 2003, 2004;
Angrick & Bartelmann 2010), where δc values are normally sub-
stantially higher than for the spherical collapse case, especially at
low redshift and mass.

A very important and interesting quantity that can be evalu-
ated within the framework of the spherical collapse model is the
virial overdensity �V, representing the overdensity of the col-
lapsing object at the virialization epoch (see also Meyer, Pace &
Bartelmann 2012, for a discussion of this quantity in a general rel-
ativistic setting). The virial overdensity is also related to the size of
spherically symmetric haloes and its value can be inferred by em-
bedding the virial theorem into the formalism. When including the
shear and rotation terms into the equations of motion for dark mat-
ter perturbations, �V becomes, in analogy to δc, mass-dependent.
However, one finds that �V is practically independent of mass and
it evolves as if the system is evolving in an ideal background, i.e.
without shear and rotation. This is an interesting result but not un-
expected. As showed in R16, the virial overdensity is insensitive to
mass since the quantities involved for its determination are evalu-
ated still in the linear regime and perturbations with respect to the

spherically symmetric case are of the order of per mill. Taking also
into account that rotation has always a smaller contribution than the
shear and their combined effect makes the rotating ellipsoid closer
to the sphere in terms of the perturbation quantities, it is easy to
understand why the feature found in R16 still holds.

5 C O N C L U S I O N A N D D I S C U S S I O N

In this paper, we extended the work by R16 to estimate the effect of
shear and rotation on the spherical collapse of dark matter haloes.
The model assumes that the spherical collapse dynamics are only
altered in terms of an inhomogeneity in the collapse equation which
also only enters in the non-linear equation. In this sense, the model
describes the spherical collapse of a test mass in a tidal gravitational
field.

By jointly considering the gravitational tidal field and the curva-
ture of the density field, we separated its action into a symmetric
traceless part and an antisymmetric part which correspond to the
shear tensor and rotation tensor, respectively. These tensors were
used to construct the invariants σ 2 and ω2 in the collapse equation.
Physically, the protohalo, forming at the location of a peak, feels the
surrounding tidal gravitational field and thus shear effects as well
as rotation induced by tidal torquing. This procedure is identical to
the one presented in R16 if we restrict our considerations again to
peaks with a spherical symmetry. Our findings are the following.

(i) The invariant quantity ω2 of the rotational part of the tidal
tensor is always smaller than the shear invariant σ 2 within the
framework of tidal torquing. This statement is not of statistical
nature, and it is true for every sample individually.

(ii) The critical linear overdensity δc is now a mass-dependent
quantity changing by roughly a per cent with respect to the usual
spherical collapse value. The overall effect is small at masses below
1015 M� and completely negligible for masses above.

(iii) External tidal fields will always help objects to collapse into
virialized structures even if a rotational term due to tidal torquing
is considered. In terms of observations of cluster counts, tidal fields
can, in principle, always be confused with dynamical dark energy
increasing the abundance of heavy clusters in a purely spherically
symmetric case where no tidal fields are taken into account. For a
more detailed discussion on this, we refer the reader to R16.

(iv) Comparing this work with Del Popolo et al. (2013a), we find
that the deviations of δc found there are mainly due to the rotational

Figure 5. Scaling relations of averaged quantities with mass evaluated at redshift zero. The blue curve shows the effect derived in this paper by including
both σ 2 and ω2. The influence of gravitational tidal fields is highest for low masses, and thus δc is also influenced most at the low-mass tail. Left: averaged
invariants, right: averaged δc. The value for the SPC for a �CDM universe is shown in green.
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term, which can become rather large, and thus the collapse is mostly
slowed down. Our work finds an opposite result as the gravitational
tidal fields always speed up the collapse and the rotational term is
nearly negligible. This is, however, also a property of the model
we used here. Our model is self-consistent as long as we only
consider external tidal effects on a spherically symmetric object
where the deformation is negligible compared to the total extent
of the collapsing object. In this work, we assumed the halo to be
non-spherical prior to collapse to allow it to spin-up as long as the
lever arms are large enough. As soon as collapse starts, the collapse
is again treated as being spherical. We therefore have a situation
in which a spherical overdensity is rotating at an angular speed
ω2 gained by tidal torquing as if it would have been an ellipsoidal
object. These limitations make a direct comparison with Del Popolo
et al. (2013a) difficult. See point (v) for an explanation based on the
way the invariant σ 2 − ω2 is evaluated.

(v) In our self-consistent model, the shear and rotation terms have
little effect and their effect grows with time and mass as structures
evolve. In the formalism outlined, the invariant σ 2 − ω2 is evaluated
at early times when structures are in the linear regime. This explains
why, for example, the virial overdensity �V is barely affected. In
previous works on the subject (Del Popolo et al. 2013a,b; Pace
et al. 2014b) instead, the term σ 2 − ω2 assumes objects to be still
spherical in average and that the rotation term matches the present-
day rotational velocity of clusters as a function of their mass. This
late time evaluation makes the rotation term ω2 the dominant one
and this explains the different trends in the two series of papers.
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Baden-Württemberg. FP is supported by the STFC post-doctoral
fellowship with grant R120562 ‘Astrophysics and Cosmology
Research within the JBCA 2017-2020’ and thanks Inga Cebotaru
for reading the manuscript and providing useful comments. The
authors thank an anonymous referee for improving the manuscript.

R E F E R E N C E S

Abramo L. R., Batista R. C., Liberato L., Rosenfeld R., 2007, J. Cosmology
Astropart. Phys., 11, 12

Abramo L. R., Batista R. C., Rosenfeld R., 2009, J. Cosmology Astropart.
Phys., 7, 40

Angrick C., Bartelmann M., 2009, A&A, 494, 461
Angrick C., Bartelmann M., 2010, A&A, 518, A38
Avila-Reese V., Firmani C., Hernández X., 1998, ApJ, 505, 37

Bernardeau F., 1994, ApJ, 433, 1
Bertschinger E., 1985, ApJS, 58, 39
Bertschinger E., Jain B., 1994, ApJ, 431, 486
Catelan P., Theuns T., 1996, MNRAS, 282, 436
Cole S. et al., 2005, MNRAS, 362, 505
Copeland E. J., Sami M., Tsujikawa S., 2006, Int. J. Mod. Phys. D, 15, 1753
Crittenden R. G., Natarajan P., Pen U.-L., Theuns T., 2001, ApJ, 559, 552
Del Popolo A., Pace F., Lima J. A. S., 2013a, Int. J. Mod. Phys. D, 22, 50038
Del Popolo A., Pace F., Lima J. A. S., 2013b, MNRAS, 430, 628
Diego J. M., Majumdar S., 2004, MNRAS, 352, 993
Eisenstein D. J., Loeb A., 1995, ApJ, 439, 520
Fang W., Haiman Z., 2007, Phys. Rev. D, 75, 043010
Fillmore J. A., Goldreich P., 1984, ApJ, 281, 1
Gunn J. E., Gott J. R., III, 1972, ApJ, 176, 1
Heavens A. F., Sheth R. K., 1999, MNRAS, 310, 1062
Hoffman Y., 1986, ApJ, 308, 493
Komatsu E. et al., 2011, ApJS, 192, 18
Lin C.-A., Kilbinger M., 2014, Proc. IAU Symp. 306, Statistical Challenges

in 21st Century Cosmology. Kluwer, Dordrecht, p. 107
Majumdar S., 2004, Pramana, 63, 871
Maturi M., Angrick C., Pace F., Bartelmann M., 2010, A&A, 519, A23
Maturi M., Fedeli C., Moscardini L., 2011, MNRAS, 416, 2527
Meyer S., Pace F., Bartelmann M., 2012, Phys. Rev. D, 86, 103002
Mota D. F., van de Bruck C., 2004, A&A, 421, 71
Ohta Y., Kayo I., Taruya A., 2003, ApJ, 589, 1
Ohta Y., Kayo I., Taruya A., 2004, ApJ, 608, 647
Pace F., Waizmann J.-C., Bartelmann M., 2010, MNRAS, 406, 1865
Pace F., Moscardini L., Crittenden R., Bartelmann M., Pettorino V., 2014a,

MNRAS, 437, 547
Pace F., Batista R. C., Del Popolo A., 2014b, MNRAS, 445, 648
Pace F., Reischke R., Meyer S., Schäfer B. M., 2017, MNRAS, 466, 1839
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