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Gravitational wave constraints on dark sector models

Richard A. Battye,* Francesco Pace,† and Damien Trinh‡

Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester,
Manchester M13 9PL, United Kingdom

(Received 6 March 2018; published 2 July 2018)

We explore the constraints on dark sector models imposed by the recent observation of coincident
gravitational waves and gamma rays from a binary neutron star merger, GW170817. Rather than focusing
on specific models as has been considered by other authors, we explore this in the context of the equation of
state approach of which the specific models are special cases. After confirming the strong constraints found
by others for Horndeski, Einstein-Aether, and massive gravity models, we discuss how it is possible to
construct models which might evade the constraints from GW170817 but still leading to cosmologically
interesting modifications to gravity. Possible examples are “miracle cancellations” such as in fðRÞmodels,
non-local models and higher-order derivatives. The latter two rely on the dimensionless ratio of the wave
number of the observed gravitational waves to the Hubble expansion rate being very large (∼1019) which is
used to suppress modifications to the speed of gravitational waves.
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I. INTRODUCTION

The detection of gravitational waves from a source
almost coincident with a gamma ray burst suggests that
the two come from the merger of a binary neutron star
system [1,2]. The measured time difference between the
two is Δtobs ¼ ð1.75� 0.05Þ sec and the distance inferred
to the source is D ¼ 40þ8

−14 Mpc [3]. The difference
between two waves emitted a time Δtemit apart is given by

Δt ¼ Δtobs − Δtemit

¼ D
cG

−
D
cγ

¼ D
cγ

��
1þ Δc

cγ

�
−1

− 1

�
; ð1:1Þ

where cγ and cGW are the propagation speeds of the photons
and gravitational waves respectively, and Δc ¼ cGW − cγ .
By making the assumptions that −10 < Δtemit=sec < 0 and
Δc=cγ ≪ 1, and also conservatively using the lower bound
on the distance, D ≈ 26 Mpc, one obtains a very strong
constraint on the difference between the speed of propaga-
tion of gravitational waves and photons

−3 × 10−15 <
Δc
cγ

< 7 × 10−16: ð1:2Þ

One might question this constraint in that the precise
numbers depend very strongly on the unknown Δtemit.

However, any value for which one might imagine that it
was possible to make a definite association between the
gravitational wave signal and the counterpart photons
still leads to a very strong constraint on Δc=cγ due to
the large distance over which the signals have propagated.
For example, if jΔtemitj < 1 day then jΔc=cγj < 10−9

which is already a very stringent limit. Similar bounds
are obtained by the lack of gravitational Cherenkov
radiation [4–7].
A number of authors [8–13] have pointed out that this

constraint has very severe implications for many, but not
all, modified gravity models considered in the literature
as possible origins of the cosmic acceleration.1 The
focus of these discussions is mainly on the generalized
scalar-tensor (ST) models known as Horndeski and
beyond Horndeski theories, although there is also some
discussion on vector-tensor (VT), massive gravity and
Hořava models. If these works are to be taken at face value
they appear to rule out all but the simplest—and obser-
vationally least interesting—modified gravity models,
implying that observational programs aimed at con-
straining them using cosmological observations might be
wasting their time and significant amounts of taxpayer
funding.

*richard.battye@manchester.ac.uk
†francesco.pace@manchester.ac.uk
‡damien.trinh@manchester.ac.uk

1We note that the constraining power of a simultaneous
detection of gravitational waves and electromagnetic counterpart
was anticipated by [14–18]. In particular, it was shown that large
scale structure observations would not be able to unequivocally
distinguish Horndeski models from the ΛCDM model, but that
gravitational waves could break what the authors call “dark
degeneracy” [15,16].
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In our contribution to this discussion2 we do not question
the specific calculations presented in these earlier works.
However, we do note that dark sector models are designed
to modify gravity on scales ∼H−1

0 whereas the scales
relevant to the observations of the binary neutron star
merger GW170817 are ∼1014 sec∼10−4H−1

0 (the look-
back time inferred from the distance) and ∼1016 Mpc−1 ∼
1019H0 (the wave number computed from the frequency
of gravitational waves detected). This means that in the
context of gravitational wave sources, such as GW170817,
there is a large dimensionless number Kgrav ¼ kgrav=H0

which in principle might be used to suppress modifications
to gravity on small scales, but which can be very different
on large scales. In its very simplest terms our argument is
that the very wide range of scales between those probed by
cosmology and those relevant for the detection of gravi-
tational waves means that there is significant room for the
construction of models that avoid these constraints. In what
follows we flesh out our arguments within the equation of
state approach to cosmological perturbations in dark sector
models.3

II. CONSTRAINING THE EQUATION
OF STATE APPROACH

The equation of state approach [19,20] is a phenom-
enological idea for describing perturbations in dark sector
models whereby whatever is causing the cosmic acceler-
ation is modelled as an isotropic fluid with equation of state
Pds ¼ wdsρds where Pds and ρds are the pressure and the
density of the dark sector fluid at the background level,
respectively, and wds is not necessarily a constant, but is
often considered to be so within the context of present
observations. Such a description is sufficient for describing
observations that are only sensitive to the expansion rate of
the Universe. If one wants to also include observations
sensitive to perturbations, such as those for the cosmic
microwave background (CMB) or cosmic shear, then it is
necessary to also provide an equation of state for the
perturbations which encodes how the dark sector pertur-
bations respond, allowing the linearised conservation
equations for the dark sector fluid to become closed and,
hence, be solved using standard codes (see, for example,
the discussions presented in [21,22]).
Most work to date has focused on the scalar perturba-

tions since they are most relevant to cosmological obser-
vations, but it can be adapted to the tensor (gravitational
wave) sector and indeed the simplicity of the idea is even
more clear there due to the reduced number of degrees of
freedom. Assuming that theþ and ×modes of gravitational

wave evolve identically—which need not be the case—the
equation for the evolution of the transverse-traceless
component of the metric in an Friedmann-Robertson-
Walker universe with a dark sector producing cosmic
acceleration is given by

ḧþ 3H _hþ k2

a2
h ¼ 16πGNPdsΠT

ds; ð2:1Þ

where H ¼ _a=a is the Hubble parameter, GN is Newton’s
constant, andΠT

ds is the tensor component of the anisotropic
stress. In general, ΠT

ds ≡ 0 does not need to imply ΠS
ds ≡ 0

and this could be seen as a simple way to avoid all
constraints from GW170817. We would, however, see
ΠT

ds ≡ 0 and ΠS
ds ≠ 0 as being a little unnatural, but not

necessarily impossible. In order to solve this equation it is
necessary to specify ΠT

ds and by similar arguments to those
applied to the scalar sector we can write

8πGNPdsΠT
ds ¼ Cḧḧþ C _hH _hþ ChH2h; ð2:2Þ

where Cḧ, C _h and Ch are all functions of a and k.
When discussing constraints imposed by GW170817,

one needs to solve (2.1) inserting the expression in (2.2)
which leads to

ḧþ 3 − 2C _h

1 − 2Cḧ
H _hþ K2 − 2Ch

1 − 2Cḧ
H2h ¼ 0; ð2:3Þ

where K ¼ k=ðaHÞ. In what follows it is more convenient
to rewrite (2.3) in a simpler form

ḧþ ½3þ βMða;KÞ�H _hþ βTða;KÞH2h ¼ 0; ð2:4Þ

where in general the dimensionless coefficients βM and βT
can be a function of both time and scale and are related to
Ci where i ¼ ḧ; _h; h, via

βM ¼ 2ð3Cḧ − C _hÞ
1 − 2Cḧ

; βT ¼ K2 − 2Ch

1 − 2Cḧ
: ð2:5Þ

Specific models for the dark sector predict different forms
for the coefficients βMða;KÞ and βTða;KÞ and those
already in the literature are presented in Appendix A
and we note that for βM ¼ 0 and βT ¼ K2 we recover
the standard general relativistic result.
The specific choice typically assumed, is that of the

Horndeski class of models4 which leads to the specific
forms βM ¼ αMðaÞ and βT ¼ ½1þ αTðaÞ�K2, and it is this
specific choice that leads to the very strong conclusions
reported in [8–13], for example. In particular it has been

2Fromnowonwewill use natural unitswherecγ ¼ ℏ ¼ kB ¼ 1.
3We use the term dark sector to refer to whatever causes

cosmic acceleration encompassing both dark energy and modi-
fied gravity models.

4We have shown in Appendix A that generalized Einstein-
Aether models fall into this category, but that massive gravity and
elastic dark energy models do not.
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argued that the constraints from GW170817 imply that
jαTj < 10−15 and hence that it is reasonable to assume that
αT ≡ 0 in these models. What we have argued here is that
this specific form could be too restrictive and in particular
there is room for the speed of gravitational waves being
dependent on K. In Sec. III we will investigate how it might
be possible to avoid these conclusions.
Before doing this we will address the solution of (2.4)

using the Wentzel-Kramers-Brillouin (WKB) approxima-
tion as recently done in detail, including source terms, in
[23,24], to which we refer for more details and for a more
general discussion. Assuming a solution of the form
h ¼ AðtÞ exp½{ψðtÞ�, Eq. (2.4) is equivalent to the following
two sets of equations:

Ä − A _ψ2 þ ð3þ βMÞH _Aþ βTH2A ¼ 0; ð2:6Þ

2 _A _ψ þ Aψ̈ þ ð3þ βMÞHA _ψ ¼ 0; ð2:7Þ

where the two equations are derived from the real and
imaginary parts, respectively. The condition we impose is
that the amplitude of the gravitational wave is slowly
changing with respect to the frequency of the wave itself ψ ,
therefore it is reasonable to assume that _ψ2 ≫ Ä=A and
_ψ2 ≫ ð3þ βMÞH _A=A which is equivalent to the oscillation
timescale being much faster than the Hubble rate. This
would be true for gravitational waves from GW170817,
and similar objects, but is not necessarily relevant on
cosmological scales. Under these conditions, the first
equation reduces to _ψ ¼ ffiffiffiffiffi

βT
p

H whose solution is

ψ ¼
Z
a

ffiffiffiffiffi
βT

p da0

a0
; ð2:8Þ

and the second one to ∂t ln ðA2 _ψÞ ¼ −ð3þ βMÞH whose
solution is

A ¼ exp ½− 1
2

R
að3þ βMÞ da0a0 �

ð ffiffiffiffiffi
βT

p
HÞ1=2 : ð2:9Þ

The full WKB solution is

hðK; tÞ ¼ h0
ð ffiffiffiffiffi

βT
p

HÞ1=2 exp
�
−
1

2

Z
aðtÞ

ai

ð3þ βMÞ
da0

a0

�

× exp

�
{
Z

aðtÞ

ai

ffiffiffiffiffi
βT

p da0

a0

�
; ð2:10Þ

where h0 represents the amplitude of the wave at
a ¼ ai ¼ aðtiÞ.
We now evaluate the dispersion relation for gravitational

waves and derive expressions for the phase vp ¼ ω=k and
the group velocity vg ¼ dω=dk. The frequency is ωðKÞ ¼
_ψ ¼ ffiffiffiffiffi

βT
p

H, which leads to

vpðkÞ ¼
ffiffiffiffiffi
βT

p
aK

; vgðkÞ ¼
β0T

2a2Kvp
¼ vp

Kβ0T
2βT

; ð2:11Þ

where a prime denotes the derivative with respect to K.
These expressions are very simple and encompass a wide
range of dark sector models. For a more general discussion
on the group velocity of gravitational waves, we refer the
reader to [25], but from the point of view of the present
discussion it is important to note two points. First, the speed
of gravitational waves only depends on βT and βM is
unconstrained.5 In addition it is clear that, for a general
dependence of βT on K, vp ≠ vg. The observations of
coincident electromagnetic and gravitational waves refer
to the coincidence of detection of energy and hence refer
specifically to the group velocity and not to the phase
velocity. This distinction is not relevant in the Horndeski
case where vp ¼ vg, but we need to be slightly more
careful here.
All the models discussed in the Appendix can be

parametrized by the form βT ¼ ð1þ αTÞK2 þM2
GW, where

αT is a function of time and MGW ¼ mGW=H is the time
dependent, dimensionless graviton mass. In this case the
two velocities read

vpðKÞ ¼
1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þαTþ

M2
GW

K2

r
; vgðKÞ ¼

1þαT
a2vp

: ð2:12Þ

If MGW ≪ Kgrav ∼ 1019, which one would naturally expect,
then we have that vp ¼ vg ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT

p
and hence we

derive the constraint jαTj < 10−15 as previously deduced.
However, we see that there is no extra constraint imposed
by GW170817 on MGW. This is due to the suppression of
this quantity by the large dimensionless number Kgrav.
However, the massive graviton could still have significant
cosmological effects. In the next section we will attempt to
develop this line of argument to more general dark sector
models.

III. FORM OF THE EQUATION OF STATE
FOR THE DARK SECTOR

In the previous section we have argued that the evolution
of cosmological gravitational waves in the most general
dark sector models can be parameterized by βM ≡
βMða;KÞ and βT ¼ βTða;KÞ and the very specific case
of βM ≡ αMðaÞ and βT ≡ ½1þ αTðaÞ�K2 assumed by most
authors leads to very strong constraints from GW170817.

5It is possible for the observations of coincident gravitational
and electromagnetic waves to be used to infer a distance measure
and a redshift and hence for the construction of a Hubble diagram
based on these “standard sirens”. Indeed this method has already
been used to infer a measurement of the Hubble constant [3]. In
future it might be possible to use this approach to infer constraints
on βM [16,26].
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In this section we will explore how it might be possible to
evade these constraints in more general models.
Before this we should make an important point con-

cerning our choice to parameterise these functions in terms
of the dimensionless combination K ¼ k=ðaHÞ which is
≫1 in the regime relevant to gravitational waves from
GW170817. All dark sector models could be considered to
be unnatural in some way since the timescale of the age of
Universe, H−1

0 , has been introduced to them by hand. This
is manifest even in models with a cosmological constant
where Λ ∝ H2

0—this is often known as the timescale
problem or “why is ΩΛ ∼Ωm today?” We do not attempt
to solve this problem, but our argument is that once one
accepts the addition of this new dimensionful quantity into
the problem, one is not further increasing the complexity by
reusing it. The significant consequence of this is that it is
natural for cosmological observations to probe in the
regime K ≪ 1, while the solar system, where there are
very stringent constraints on the nature of gravitational
interactions [27,28], and GW170817 are in the regime
K ≫ 1. Hence, the constraints imposed by GW170817,
while extremely strong in the regime of validity, only
impose constraints in a regime very different to that
probed by cosmological observations and hence one does
not have to work too hard to construct a dark sector
model capable of explaining large-scale cosmic acceler-
ation while still being compatible with measurements on
smaller scales.
In order to understand how one might avoid the con-

straints imposed by GW170817, let us consider the case
where the dispersion relation is parametrized by some
function χðKÞ defined by

ω2 ¼ K2H2½1þ χðKÞ�; ð3:1Þ

in which case the coefficients of the equation of state can be
written as

Ch ¼ K2

�
Cḧ þ χ

�
Cḧ −

1

2

��
: ð3:2Þ

With this form for the dispersion relation, βT ¼
K2½1þ χðKÞ� and

vp ¼
1

a

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
; vg ¼

1

a

� ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
þ Kχ0

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p
�
: ð3:3Þ

For the case below ensuring that vg ≈ 1=a, which is what
the observations require, is equivalent to vp ≈ 1=a and
therefore we will concentrate on the simpler case of
ensuring v ≈ 1=a.
The form of χðKÞ in the regime K ≫ 1 governs the

evolution of gravitational waves in the regime relevant to
GW170817. If spatial derivatives enter in second order
combinations (for example, ð∇iFÞ2,∇i∇jF for some scalar

function F) then it seems reasonable to expand χðKÞ as a
power series in K2. The observed properties of gravitational
waves suggest that terms with positive powers of K2 are
excluded and therefore we consider6

χðKÞ ¼
X∞
n¼0

χn
K2n ; ð3:4Þ

where the dimensionless coefficients χn ≡ χnðaÞ are chosen
so that 1þ χ remains> 0 for all K. The first two coefficients
have physical interpretations: χ0 ¼ Δc=cγ is the modifica-
tion to the speed of propagation of gravitational waves
constrained to be jχ0j ≪ 10−15 and χ1 ¼ M2

GW ¼ m2
GW=H

2

is the dimensionless mass associated with a graviton mass
mGW. Observations of the gravitational waves event
GW150914 lead to a relatively weak limit of mGW ≤ 1.2 ×
10−22 eV which implies that MGWða ¼ 1Þ≲ 1010 [29]. We
note that there is a stronger constraint of mGW≲10−30 eV,
MGWða ¼ 1Þ≲ 103 enforced by consideration of gravity in
the solar system [30] and from weak lensing data [31–33].
In order to investigate possible models that might be able

to avoid constraints from GW170817 it is interesting to
consider some special cases.

(i) The simplest possible case is where χ ≡ 0 which
implies thatCh ¼ K2Cḧ. An example of such amodel
is the fðRÞ gravity model, or indeed any Horndeski
model with αT ≡ 0. We describe models with this
property as having a “miracle cancellation,” in that
they have αT ≡ 0 without having ΠT

ds ¼ 0 and more
importantly from the point of view of having inter-
esting observational signatures due to the evolution
of dark sector perturbations. In fact all Horndeski
models with G4 ≡G4ðϕÞ and G5 constant lead to
such miracle cancellations. The conditions required
for these miracle cancellations in generic scalar-
tensor theories were determined in [34].

(ii) If Cḧ is independent of K and consider the possibility
of χ ¼ χ1=K2 þ χ2=K4 as the simplest case which
gives something beyond the graviton mass, then
Ch ¼ B2K2 þ B0 þ B−2=K2 for some coefficients
B2, B0 and B−2 which are functions of the scale
factor. In order to construct such a model with
negative powers of K it may be necessary to introduce
nonlocal modifications to gravity so that the equation
of state contains terms such as∇−2h. To see this more
explicitly, let us consider for simplicity a model where
the graviton mass is zero and the only term in the

6This choice, written as a power series, appears to diverge as
K → 0. It is necessary the actual function which this power series
represents would have a finite limit and is regularized in some
way in order to avoid extreme behavior in the infrared regime of
the theory. Such behavior would lead to a violation of causality.
Simple function which has this property is χðKÞ ∝ ðK2

0 þ K2Þ−1
for some constant K0.
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series expansion is χ1. The equation of motion for the
transverse-traceless degrees of freedom h is

ḧþ3H _hþK2H2hþ χ1
K2

¼ 0

↔ ḧþ3H _h−
1

a2
∇2hþ

Z
d3x0Kðx−x0Þhðx0; tÞ¼ 0;

ð3:5Þ

where KðxÞ ¼ χ1jxj−1 would give rise to such a
behavior and other suitably regularized kernels could
be computed to achieve other limiting behaviors for
K ≫ 1 (i.e., higher order inverse powers of K).
Constructing a Lagrangian which leads to this kind
of evolution for the gravitational waves may be quite
challenging, but it is not obviously impossible. We
note that a model containing a nonlocal “mass” term
∝ R□−2R where R is the Ricci scalar has been
studied in a number of works with the conclusion
that the model gives rise to a local equation for the
traceless-transverse degrees of freedom where gravi-
tational waves propagate at the speed of light [for
example [35,36]]. Since this model has a nonvanish-
ing ΠT

ds, it can be seen as another example, together
with fðRÞ models, of miracle cancellation. This
happens because the model can be recast into a
multiscalar-tensor theory. We feel though, this issue
warrants further investigation since it has interesting
cosmological consequences while at the same time
surviving the constraints of GW170817.
In general it is not known how to build a nonlocal

Lagrangian that gives rise to an integral term of the
form as in (3.5), but one can follow the approach of
[37,38] and enforce it at the level of the equations of
motion. As shown in these works, this nonlocal term
will propagate up to the equations of motion for the
gravitational waves. Since there is no underlying
physical argument which leads to a form for the
kernel function Kðx − x0Þ, it is necessary to use
phenomenological parametrizations, which can,
nevertheless, be constrained by data, as for example
where a nonlocal Poisson equation is valid; we refer
to [38] for details of specific models.

(iii) A more general form for Cḧ ¼ A0 þ A2K2 and the
same form for χ as in the last example in which case
Ch ¼ B4K4 þ B2K2 þ B0 þ B−2=K2 with B4, B2,
B0 and B−2 again scale factor dependent coeffi-
cients. If one were to make the particular choice
A0 ¼ 1=2 then one finds that B−2 ≡ 0 removing, by
a specific cancellation, the need for nonlocal inverse
powers of K and βT ≈ B4K2=A2 at large K so
observations require B4=A2 ¼ 1þOð10−15Þ. In this
case, it would be necessary for the equation of state
to contain terms such as ∇2ḧ and ∇4h. This is for
example the case for higher-order-derivatives

theories (see, for example, [39]). One might be
concerned that such models might suffer from Os-
trogradsky ghosts or other instabilities since these
often appear in theories with higher order derivatives.
Of course, one can easily construct models without
them, fðRÞ and more general Horndeski models
being examples, and by construction—sincewe have
defined a positive definite dispersion relation—our
suggestions would automatically avoid them.

A simple example of such an equation of motion
for the transverse-traceless degrees of freedom is

ḧþ ∇2ḧ
a2H2

þ3H _hþ3
∇2 _h
a2H

−
∇2h
a2

þ ∇4h
a4H2

þm2
GWh¼0

↔ ḧþ3H _hþM2
GWþK2þK4

1−K2
H2h¼0;

ð3:6Þ

where we have specifically chosen the functional
form of C _h to recover the standard friction term of
general relativity, which need not be the case. Finally,
∇4 represents the biharmonic operator.7

We note that this list of possibilities is far from exhaustive
and indeed the details of the last two depend quite strongly
on the choice of χ. Nonetheless we believe that one would
come to similar qualitative conclusions in more gen-
eral cases.
We note that an approach very similar to ours has been

suggested by [40–42] to take into account quantum-
mechanical effects which predict a small amount of
violation to the otherwise accepted Lorentz covariance
of physical laws. In this approach, the modified dispersion
relation is defined by

E2 ¼ p2 þm2
GW þ Apα; ð3:7Þ

where A defines the magnitude of the deviations from the
standard picture (with units ½energy�2−α) and α is a
dimensionless constant. The models become particularly
appealing for α < 2 as they provide a screening length. In
addition to the Compton length λGW ¼ 1=mGW associated
to the graviton mass, there is a characteristic scale λA ¼
A1=ðα−2Þ associated with Lorentz violation [42]. Despite
being phenomenological, the parametrized form of the
dispersion relation in (3.7) can accommodate some par-
ticular classes of models, as described in [40,41].
Let us now rewrite the dispersion relation in a form more

suitable for the goals of this work. Upon the following
identifications, E ¼ ω and p ¼ k, we obtain

7In three dimensions, we have ∇4 ¼ ∂4
∂x4 þ ∂4

∂y4 þ ∂4
∂z4 þ

2 ∂4
∂x2∂y2 þ 2 ∂4

∂x2∂y2 þ 2 ∂4
∂y2∂z2.
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ω2 ¼ K2H2

�
1þM2

GW

K2
þ A
ðHKÞ2−α

�
; ð3:8Þ

and from (3.1), assuming α ¼ −2, we can read off
χðKÞ ¼ M2

GW=K
2 þ A=ðHKÞ4. We can easily see that χ1 ¼

M2
GW and χ2 ¼ ðλA=HÞ4 is the term arising from Lorentz

violation.

IV. CONCLUSIONS

In this paper we have attempted to address the question
of whether it is possible to construct dark sector models
which can naturally evade the very strong constraints
imposed by GW170817 while still giving rise to cosmo-
logically interesting signatures. Within the Horndeski class
of scalar tensor models usually considered there is a strong
constraint which restricts the space of models. This
restriction prima-facie forces one into the regime where
G4 ≡G4ðϕÞ and G5 ≡ 0. Models where G4 is a constant
which fall into this class are much less observationally
interesting since they do not have anisotropic stress and
indeed they could be thought of as dark energy models, as
opposed to a genuine modified gravity model where the
cosmic acceleration is a self-acceleration effect [15,16]. An
alternative that avoids this constraint is the introduction of
the mass for the graviton or an equivalent effect due to
elastic dark energy. The generalization we have advocated
is to allow the coefficients describing the evolution of
cosmological gravitational waves (2.4) to have arbitrary
dependence on K parameterized by βMða;KÞ and βTða;KÞ.
The specific choice βT ¼ K2ð1þ αTÞ þM2

GW is the one
which is strongly constrained as described in previous
works and we concur with these conclusions. More gen-
erally, observations force βT ≈H2K2 at K ¼ Kgrav ≈ 1019,
but say nothing about the larger scales relevant to cosmol-
ogy and, at least at this level of sophistication, it seems
perfectly reasonable to imagine a simple functional form
leading to this kind of behavior.
The strong constraints on Δc=cγ come from the large

distance between the source of the gravitational waves and
their detection on earth by LIGO. In order to avoid this
constraint we have suggested to use the small dimension-
less number K−1

grav to suppress the effects of a modification
of gravity that might lead to cosmologically interesting
effects on the scales relevant to gravitational wave sources.
We have only talked about the basic idea behind this
suppression mechanism. We have not constructed explicit
models at the level of a Lagrangian and indeed we
acknowledge that it might be difficult to achieve in practice.
Other than a miracle cancellation similar to that found in
fðRÞ models, we identified two possible directions for
further exploration: nonlocal models and higher-order
derivatives, providing concrete examples of equations of
motions which lead to such dispersion relations.

One thing that we should point out is that the suppression
mechanism used for the gravitational wave sector of the
theory could also operate in the scalar density perturbation
sector and in principle be used to suppress modifications
to gravity on solar system scales characterized by Ksolar ≈
4 × 1014 (corresponding to lengthscales ∼10 au). In
Appendix B we have outlined some of the basics behind
this idea. In its simplest possible terms, the coefficients Cij

from (B7) are chosen so that modifications to gravity
quantified by two of μψ , μϕ, η and Σ are equal to their
general relativistic values when K ∼ Ksolar, but the cancel-
lations of coefficients required to achieve this would only
be true up to inverse powers of K.
Since we have only outlined the basic ideas, there is

clearly much detailed work to be done to develop fully
fledged theories. Nonetheless we believe we have made a
simple argument that one can develop theories which are
compatible with general relativity on scales ∼Kgrav and
Ksolar while being interestingly different for K ∼ 1. Indeed
the fact that Kgrav > Ksolar suggests that it is not at all
unreasonable to think that a suppression mechanism which
works on solar system scales would allow one to avoid the
constraints from GW170817.
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APPENDIX A: EXAMPLE EQUATIONS
OF STATE

In this Appendix we present a survey of the coefficients
Cij for some of the modified gravity models which have
been already evaluated in literature and show that these
results lead to the conclusions that match the results found
by others.
(1) Horndeski theories. These are the most general

scalar-tensor theories compatible with second-order time
evolution. They are specified in terms of four free functions
Giðϕ; XÞ for i ¼ 2, 5 where ϕ is the scalar field and X ¼
− 1

2
∇μϕ∇μϕ is the canonical kinetic term. The equation of

state for the tensor sector in these models is given by

8πGNPdsΠT
ds ¼ −

1

2

��
m2

m2
pl

− 1

�
ḧþ

�
m2

m2
pl

ð3þ αMÞ− 3

�
H _h

þ
�
m2

m2
pl

ð1þ αTÞ− 1

�
K2H2h

�
; ðA1Þ
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and hence we can read off

Cḧ ¼ −
1

2

�
m2

m2
pl

− 1

�
; C _h ¼ −

1

2

�
m2

m2
pl

ð3þ αMÞ − 3

�
;

Ch ¼ −
1

2

�
m2

m2
pl

ð1þ αTÞ − 1

�
K2; ðA2Þ

wherem represents the effective Planck mass which can be,
in general, a function of time, αT the excess speed of
gravitational waves and mpl ¼ G−1=2

N the bare Planck mass.

αM ¼ 1
H

d lnm2

dt is the logarithmic time variation of the
effective Planck mass. These parameters, together with
αB and αK (these last two important for the scalar sector)
completely define Horndeski theories and have been
introduced for the first time in [43]. The identification
with the βi functions introduced in (2.4) is now trivial:
βM ¼ αMðaÞ and βT ¼ ½1þ αTðaÞ�K2 and the observations
of GW170817 imply that jαTj < 10−15.
We can express αT in terms of the functions G4 and

G5 as8

αT ¼ X½2G4;X − 2G5;ϕ − ðϕ̈ −H _ϕÞG5;X�
G4 − 2XG4;X þ XG5;ϕ − _ϕHXG5;X

; ðA3Þ

which reduces to

αT ¼ 2XG4;X

G4

�
1 −

2XG4;X

G4

�
−1
; ðA4Þ

when G5 is a constant, which is equivalent to setting
G5 ≡ 0 by integration by parts. From this we can deduce
that αT ≪ 1 can be achieved when XG4;X=G4 ≪ 1 (i.e., the
slope of G4 with respect to X is close to zero). The most
natural way to achieve this is when G4 ≡G4ðϕÞ although
there are other possibilities.
There are two interesting and well studied subclasses of

the Horndeski model:
(i) Quintessence [47–51], k-essence [52–57] and ki-

netic gravity braiding (KGB) models [58,59] are
subclasses of the Horndeski theory with G4 constant
and G5 ¼ 0 and hence Cḧ ¼ C _h ¼ Ch ≡ 0. All of
these minimally coupled scalar field models predict
no modifications to the evolution of gravitational
waves and, therefore, survive constraints from
GW170817. Of course, this should be no surprise
since such models have no anisotropic stress at all,
but this also implies that they only weakly impact on
cosmological observables such as the CMB and
cosmic shear [21].

(ii) fðRÞ models are also a subclass for which m2 ¼
m2

plð1þ df
dRÞ and αT ¼ 0 where fðRÞ is the modifi-

cation to the Einstein-Hilbert action. In this class of
models, Ch ¼ K2Cḧ which is the miracle cancella-
tion discussed in Sec. III and hence this class of
models survives the constraints imposed by
GW170817 by having αT ≡ 0, but ΠT

ds ≠ 0.
(2) Generalized Einstein-Aether theories. Einstein-

Aether theories [60] are vector-tensor theories of gravity
which involve the addition of a timelike unit normalized
vector field Aμ, such that AμAμ þ 1 ¼ 0, with a Lagrangian
described by a generalized function FðKÞ where

K ¼ 1

m2
K
Kαβ

μν∇αAμ∇βAν; ðA5Þ

and the rank-4 tensor is defined as

Kαβ
μν ¼ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ þ c4AαAβgμν: ðA6Þ

The ci are dimensionless constants and mK has dimensions
of mass. The timelike unit norm constraint ensures only one
scalar degree of freedom propagates which makes this
theory similar to the scalar-tensor theories discussed above.
It can be shown that

8πGNPdsΠT
ds ¼ −

1

2
c13

�
dF
dK

ḧþ
�
3
dF
dK

H þ d2F
dK2

_K
�
_h

�
;

ðA7Þ

where c13 ¼ c1 þ c3 from which we can read off

Cḧ ¼ −
1

2
c13

dF
dK

; C _h ¼ −
1

2
c13

�
3
dF
dK

þ d2F
dK2

_K
H

�
;

Ch ¼ 0: ðA8Þ

In terms of the βi parameters, we find βM ¼ αM ¼ 1
H

d lnm2

dt

with an effective Planck mass m2 ¼ m2
plð1þ c13

dF
dKÞ and

βT ¼ K2ð1þ αTÞ where αT ¼ −c13 dF
dK ð1þ c13

dF
dKÞ−1.

From this we can deduce that vp ¼ ð1þ c13
dF
dKÞ−1=2. The

tight constraints Δc=cγ suggest that the only models in this
class which would survive—should the generalized
Einstein-Aether model apply on the scales relevant to
observations of gravitational waves—are those with
c13≡0 and hence ΠT

ds ≡ 0. If 1þ wde ¼ 0, it can be shown
that if c13 ¼ 0 then the scalar sector will be observationally
equivalent to a cosmological constant. This is because c13
also sets ΠS

ds ¼ 0. It is possible that if 1þ wds ≠ 0 then this
equivalence will be broken and will lead to interesting
observational consequences [61]. We also note the striking
analogy for αM between fðRÞ and FðKÞ models.
(3)Massive gravity theories. Differently from the models

above, these theories consider the graviton to be massive
8Expressions for m and all the αi functions can be found in

[43–46] in terms of the Gi functions.
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(mGW ≠ 0) and in general the mass could be a function of
time (and space) but the scalar and vector sectors are
unaffected by this choice [62]. From the general equation
describing the propagation of gravitational waves [63,64]

ḧþ ð3þ αMÞH _hþ ½ð1þ αTÞK2H2 þm2
GW�h ¼ 0; ðA9Þ

we can deduce a modification to the coefficients in the
Horndeski model

δCh ¼ −
1

2

m2

m2
pl

m2
GW

H2
: ðA10Þ

The βi functions read: βM¼αM and βT¼ð1þαTÞK2þM2
GW

where MGW ¼ mGW=H.
(4) Elastic dark energy models. These models represent a

generalization of the perfect fluid approach to dark energy
where the rigidity of the medium is taken into account. In
their simplest formulation elastic dark energy models are
analogous to massive gravity models albeit the mass term
introduced is not linked to the graviton itself. It was shown
that [65,66]

8πGNPdsΠT
de¼

�
μ

m2
pl

þ2aH
ν

m2
pl

�
ðhi−hÞ−a

ν

m2
pl

_h; ðA11Þ

where μ, identified as the rigidity modulus, and ν as the
viscosity, are parameters with dimensions M4 and M3

respectively. The previous expression reduces to what
found in [65] for ν ¼ 0. The Ci coefficients are

Cḧ ¼ 0; C _h ¼−
aν

m2
plH

; Ch ¼−
μþ 2aHν

m2
plH

2
: ðA12Þ

The additional term hi takes into account the formation
time of the elastic medium.

APPENDIX B: SUPPRESSING MODIFIED
GRAVITY EFFECTS IN THE

SCALAR SECTOR

In this Appendix we will discuss the principle of
applying the same approach to suppressing modified
gravity effects as K → ∞ in the gravitational waves sector
to the scalar sector. First let us define some parameters
commonly used to quantify deviations from Einstein
gravity. We will use a metric of the form

ds2 ¼ −ð1þ 2ϕÞc2dt2 þ aðtÞ2ð1 − 2ψÞδijdxidxj: ðB1Þ

The two of the Einstein equations yield

−
2

3
K2ψ ¼

X
i

ΩiΔi ¼ μψða;KÞΩmΔm; ðB2Þ

−
1

3
K2ðψ − ϕÞ ¼

X
i

ΩiwiΠS
i ; ðB3Þ

where the summation is over i ¼ m and ds and the relative
contributions to the critical density are Ωi ≡ΩiðaÞ. In
what follows we will assume that ΠS

m ≡ 0 which is the case
for a perfect pressureless fluid. The Weyl potential Ψ ¼
1
2
ðϕþ ψÞ is the quantity which leads to a number of

observational effects notably lensing and is often para-
metrized as

−
2

3
K2Ψ ¼ Σða;KÞΩmΔm: ðB4Þ

The functions μΨ and Σ have been introduced to encode the
effects of modifications to gravity. In principle other
parameters can be used to describe this but they are all
related to μΨ and Σ; any two independent parameters are
needed to fully describe the theory. One notable alternative
often used is the gravitational slip

ηða;KÞ ¼ ψ

ϕ
¼

�
1 − 2

P
iΩiwiΠS

iP
iΩiΔi

�−1
; ðB5Þ

while one can also define μϕ according to

−
2

3
K2ϕ ¼ μϕða;KÞΩmΔm; ðB6Þ

where μψða;KÞ ¼ ηða;KÞμϕða;KÞ and Σða;KÞ ¼
1
2
μϕða;KÞ½1þ ηða;KÞ� ¼ 1

2
½μϕða;KÞ þ μψða;KÞ�. If the

dark sector were to only comprise a cosmological constant
then μΨ ¼ μΦ ¼ η≡ 1 and Σ ¼ 1.
Using the equation of state approach in the scalar sector

it is necessary to specify two functions and it has been
argued that the natural ones to specify are the entropy
perturbation, wdsΓ, and the scalar anisotropic stress, wdsΠS

ds
which are both gauge invariant. Since the perturbations are
linear these functions must be linear functions of the
other perturbation variables and can be written (using
the Einstein and conservation equations to remove metric
perturbations and time derivatives) as

wdsΓds ¼ CΓdsΔds
Δds þ CΓdsΘds

Θds þ CΓdsΔm
Δm þ CΓdsΘm

Θm

þ CΓdsΓm
Γm;

wdsΠS
ds ¼ CΠS

dsΔds
Δds þ CΠS

dsΘds
Θds þ CΠS

dsΔm
Δm

þ CΠS
dsΘm

Θm þ CΠS
dsΠ

S
m
ΠS

m: ðB7Þ

Here, we are describing the system where Δi and Θi are
density and velocity perturbations in the dark (ds) and
matter (m) sectors using the same notation as in [67].
For completeness we have also included the entropy
perturbation Γm and the anisotropic stress ΠS

m for the
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matter component which are typically negligible in the
regime relevant to observations of cosmic acceleration;
in the subsequent discussions we will ignore these terms.
The coefficients ðCijÞ have been computed for k-essence
[68–70], kinetic gravity braiding [19], fðRÞ [67], Horndeski
theories [45], generalized Einstein-Aether [61], elastic dark
energy [65,66], and Lorentz-violating massive gravity
models [71]. In full generality they are free functions of
the scale factor (and hence cosmic time) and scale via the
wave number, usually entering as a k2 term due to the
presumed dependence on second order combinations of
spatial derivatives.
In order to establish a relationship between Δm and Δds

we will now assume that the approach to understanding
perturbations in the scalar sector which works in fðRÞ
models (see, for example, [72]) works in more general
models. We would assume that this is a good approxima-
tion to a wide range of models, but not all cases. In
particular, we will assume that one can ignore the con-
tributions from Θm and Θds in (B7) and construct a second
order differential equation describing the evolution of Δds
which is sourced by matter perturbations

Δ̈ds þ ð2 − 3wde − 2CΠS
dsΔds

ÞH _Δds

þ 1

3
ð3wds þ 2CΠS

dsΔds
þ 3CΓdsΔdsÞH2 K2Δds

¼ −
1

3
ð2CΠS

dsΔm
þ 3CΓdsΔmÞH2 K2Δm; ðB8Þ

so that the relation between Δds and Δm (the attractor
solution) is

Δde ¼ − 2CΠS
dsΔm

þ 3CΓdsΔm

3wds þ 2CΠS
dsΔds

þ 3CΓdsΔds

Δm. ðB9Þ

When this attractor solution applies, we can deduce that

μψ ¼ 1 −
Ωds

Ωm
κ;

Σ ¼ 1 −
Ωds

Ωm
½CΠS

dsΔm
þ κð1 − CΠS

dsΔds
Þ�: ðB10Þ

where we have defined

κ ¼
2CΠS

dsΔm
þ 3CΓdsΔm

3wds þ 2CΠS
dsΔds

þ 3CΓdsΔds

: ðB11Þ

Using these expressions, we see that one experiences
general relativity on small scales if, in the limit K → ∞,
we have that μψ → 1, which implies κ → 0, and Σ → 1, and
this can be achieved if κ ¼ 0 and CΠS

ds
¼ 0. One specific

way of enforcing this is by setting CΠS
dsΔm

¼ CΓdsΔm
¼ 0 in

this limit, although there are other possible ways of
achieving this. The suppression mechanism we are sug-
gesting would require the zero in these conditions to be
replaced by OðK−2Þ so that they are effectively zero for
K ∼ Ksolar ≈ 4 × 1014. We will discuss the details of how
this might be achieved in practice in future work.
The attractor solution arises naturally when writing the

equation for Δds with Δm as source term. The expression in
(B9) is valid provided that the attractor solution is attained
for each Fourier mode before the dark energy component
starts to dominate. Under the assumption that any modi-
fication of gravity is relevant only at late times, one would
expect this will be true in the matter dominated era since we
can in general assume that at very early times, i.e., in the
radiation dominated era, perturbations in the dark sector are
negligible. However, this need not to be the case when the
dark energy component is not negligible at early times,
such as in early dark energy models. In this case the
attractor solution would have to be obtained during radiation
dominated era and its validity would need to be checked
carefully. If the field does not reach the attractor solution
sufficiently fast to make exact initial conditions unimportant,
then the full equations of motions need to be solved. For a
deeper discussion on the issue we refer to [73] where this
issue is discussed in detail for a perfect fluid.
It is interesting to calculate the expressions for fðRÞ

models since they exhibit some of the properties we are
looking for, but not all. We will use approximations for the
Cij coefficients presented in [72] which appear to give a
good description of the full problem on all but the very
largest scales when fR ≪ 1 (which one would expect to be
the case),

CΠS
dsΔm

¼ 0; CΠS
dsΔds

¼ 1;

CΓdsΔm
¼ 1

3

Ωm

Ωds
; CΓdsΔds

¼
�
1

3
− wds þ

M2

K2

�
; ðB12Þ

where M2 ≡ _R=ð3H _HBÞ and B ¼ fRRH _R=½ _Hð1þ fRÞ�
with fR ¼ df

dR and fRR ¼ d2f
dR2. Using these expressions we

can deduce that

κ¼1

3

K2

K2þM2

Ωm

Ωds
; μψ ¼

2K2þ3M2

3ðK2þM2Þ ;

μϕ¼
4K2þ3M2

3ðK2þM2Þ ; η¼2K2þ3M2

4K2þ3M2
; Σ¼1: ðB13Þ

In the small scale limit K ≫ M ≫ 1: μϕ → 4=3 and this
represents the well known effective gravitational constant
in fðRÞmodels leading to an increase of clustering on small
scales; η → 1=2 and therefore the two Bardeen potentials
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differ from each other by a factor of two (another well
known result [74]). Finally we see at work the screening
mechanism which reduces μψ → 2=3 and more importantly
Σ ¼ 1 which is what would be expected for a model
recovering general relativity on small scales, despite the

fact that the fðRÞ does not. This model achieves Σ ¼ 1 by
havingCΠS

dsΔm
¼ 0 andCΠS

dsΔds
¼ 1 and does not have κ ¼ 0

and hence μψ ≠ 1 and indeed it is believed that the fðRÞ
model can be compatible with the solar system scales by the
nonlinear chameleon mechanism [75].
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