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We derive the mass-temperature relation using an improved top-hat model and a continuous formation model
which takes into account the effects of the ordered angular momentum acquired through tidal-torque interaction
between clusters, random angular momentum, dynamical friction, and modifications of the virial theorem to
include an external pressure term usually neglected. We show that the mass-temperature relation differs from
the classical self-similar behavior, M ∝ T 3/2, and shows a break at 3 − −4 keV, and a steepening with
a decreasing cluster temperature. We then compare our mass-temperature relation with those obtained in the
literature with N -body simulations for f(R) and symmetron models. We find that the mass-temperature relation
is not a good probe to test gravity theories beyond Einstein’s general relativity, because the mass-temperature
relation of the ΛCDM model is similar to that of the modified gravity theories.

PACS numbers: 98.52.Wz, 98.65.Cw
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I. INTRODUCTION

The wealth of astronomical observations available nowa-
days clearly shows either that our Universe contains more
mass-energy than is seen or that the accepted theory of grav-
ity, general relativity (GR), is somehow not correct, or both
[1]. The central assumption of the concordance ΛCDM model
relies on gravity being correctly described by GR so that dark
matter (DM), a nonbaryonic and nonrelativistic particle, and
dark energy (DE), in the form of the cosmological constant
Λ, constitute its dominant components [2]. Despite gravita-
tional evidence for DM from galaxies [3], cluster of galax-
ies [4], cosmic microwave background (CMB) anisotropies
[5], cosmic shear [6], structure formation [7], and large-scale
structure of the Universe [8], decades of direct and indirect
searches of those DM particles did not give any positive re-
sult [9]. In addition, the accelerated expansion of the universe
modeled with Λ [10] raised the “cosmological constant fine-
tuning problem”, and the “cosmic coincidence problem” [11–
13].

The success of the ΛCDM model in describing the forma-
tion and evolution of the large-scale structures in the Universe
at early and late times [7, 14, 15] cannot hide the tensions at
small [16–22] and large scales [23–29] precision data are cur-
rently revealing.

Small-scale problems [22] have sprung two sets of attempts
of solutions to save the ΛCDM paradigm: cosmological and
astrophysical recipes. The first are based on either modi-
fying the power spectrum on small scales [30] or altering
the kinematic or dynamical gravitational behavior of the con-
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stituent DM particles. The latter, like supernovae (SN) feed-
back [22, 31, 32] and transfer of energy and angular momen-
tum from baryon clumps to DM through dynamical friction
[33–37], rely on some “heating” mechanism producing an ex-
pansion of the galaxy’s DM component which reduces its in-
ner density.

The previous issues seeded the push for several new mod-
ified gravity (MG) theories, to understand our Universe with-
out DM [38] or at least to connect the accelerated expansion
to some new features of gravity [39].

A first drive for MG came from fundamental problems in
the hot big bang model (horizon, flatness and monopole prob-
lem solved within the inflationary paradigm [40, 41]) and
another one from galaxy rotation curves with solutions at-
tempted within the modified Newtonian dynamics (MOND)
[42] and the “modified gravity” (MOG) paradigm [43] and
f(R) theories [44].

Alternative proposals to explain the accelerated expansion
of the Universe increased exponentially. Besides DM-like DE
schemes [45–48], MG theories attempted to explain such ac-
celeration as the manifestation of extra dimensions, or higher-
order corrections effects, as in the Dvali-Gabadadze-Porrati
model [49] and in f(R) gravity. Nowadays, the catalog of
MG theories includes many theories, among which we re-
call f(R) [44], f(T ) [50], MOND and BIMOND [42, 51],
tensor-vector-scalar theory [52], scalar-tensor-vector gravity
theory (MOG) [43], Gauss-Bonnet models [53, 54], Lovelock
models [55], Hořava-Lifshitz [56], Galileons [57], and Horn-
deski [58, 59]. The freedom allowed to MG from observa-
tions reduces to modifications on large scales (typically Hub-
ble scales), low accelerations (a0 . 10−8 cm s−2), or small
curvatures (typically RΛ ' 1.2× 10−30R� [60]). Some the-
ories violate Birkhoff’s theorem and this induces effects that
should be disentangled wisely as they make local tests com-
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plex. Such local tests, using PPN-like parameters1 [61–64]
and the GR condition on the two Newtonian potentials Φ = Ψ,
provide a smoking gun for MG, combining galaxy surveys
(∝ Φ), the integrated Sachs-Wolfe effect [65] in the CMB
[∝
∫
dl(Φ̇ + Ψ̇)], and weak lensing [∝

∫
dl(Φ + Ψ)]. Real

opportunities will come with future surveys: both from satel-
lites (Euclid [66] and JDEM [67]) and ground-based (SKA
[68] and LSST [69]). Another smoking gun should proceed
from the best fitting of the CMB between DM and MG to
constrain the parameters of the models [70, 71].

For MG theories not to alter the behavior of gravity at
small scales (e.g., Solar System) and reproduce the obser-
vational measurements [63, 72],it is necessary to have some
screening mechanism which hides undesired effects on small
scales [73]. Following Ref. [74], we consider the case of the
symmetron scalar-tensor theory [75] and the chameleon f(R)
gravity [76].

Effects of MG can be probed with structure formation and
verified by means of dark-matter-only N -body simulations
[77–81]. Nevertheless, hydrodynamical simulations are more
suited from an observational point of view, as they provide
observables, such as the halo profile, the turnaround [82, 83],
the splashback radius [84], and the mass-temperature relation
(MTR) [74] which can be directly compared with observa-
tions. While the halo profile is usually studied in DM-only
simulations and it is, as such, used for a variety of studies, the
MTR can be accurately inferred only with hydrodynamic sim-
ulations, to avoid the necessary approximations introduced,
for example, by using scaling relations. The MTR has been
used to put constraints on MG theories. By means of hydro-
dynamic simulations, Ref. [74] showed that the MTR obtained
in MG theories is different from the expectations of GR.2

In the present paper, we extended the results of Ref. [85]
to take into account the effects of dynamical friction and the
cosmological constant and revisited the results of Ref. [74] to
show that the MTR is not a good probe to disentangle MG
from GR. To this aim, we use a semianalytic model to show
that in a ΛCDM model the MTR has a behavior similar to
those obtained by Ref. [74], and this makes it impossible to
disentangle between the MG results and those of GR.

The paper is organized as follows. Section II briefly
presents the modified gravity models analyzed in this work,
while Sec. III describes the model used to derive the MTR re-
lation in ΛCDM cosmologies. Section IV is devoted to the

1 The parametrized post-Newtonian (PPN) formalism is a tool expressing
Einstein’s equations in terms of the lowest-order deviations from Newton’s
law of gravitation.

2 In the literature, there is no explicit emphasis on what is exactly meant for
mass. In general, when considering both numerical simulations and obser-
vations, the mass has to be the virial mass, as a result of the application of
the virial theorem. This is more appropriately true for observations but less
for N -body simulations, as the spherical overdensity procedure obtained to
infer structures assumes a virial overdensity but does not automatically im-
ply the virial theorem holding. Furthermore, the virial overdensity chosen
will depend on which probe is considered (i.e., SZ effect or x-ray emis-
sion); therefore, the virial mass will be interpreted differently in different
scenarios. We therefore prefer to just call it mass, having in mind it is
related to the true virial mass of the object.

presentation and the discussion of our results. We conclude in
Sec. V.

In this work, we use the following cosmological parame-
ters: h0 = 0.7, ΩΛ = 0.727, ΩDM = 0.227, and Ωb = 0.046.
An overbar will indicate quantities evaluated at the back-
ground level.

II. MODIFIED GRAVITY: MODELS AND SIMULATIONS

In this section, we summarize the modified gravity theories
used by Ref. [74] that we compare our model to. These are
scalar-tensor theories of gravity described by the action

S =

∫
d4x
√
−g
[

1

2
M2

plR−
1

2
∂iϕ∂iϕ− V (ϕ)

]
+ Sm(g̃µν , ϕi) , (1)

where g is the determinant of the metric tensor gµν , R the
Ricci scalar, Mpl = 1/

√
8πG the reduced Planck mass (in

natural units where ~ = c = 1), and ϕ and V (ϕ) the scalar
field and the self-interacting potential, respectively. Matter
is described by the total matter action Sm. The scalar field
is conformally coupled to matter via g̃µν = A(ϕ)gµν , with
A(ϕ) the conformal factor.

The conformal coupling between matter and field gives rise
to a fifth force of the form

Fϕ = −A
′(ϕ)

A(ϕ)
∇ϕ , (2)

where a prime indicates the derivative with respect to the
scalar field.

A. Symmetron

The screening mechanism of the symmetron model [76]
produces a strong coupling between matter and the extra
field in low-density regions, while in high-density regions the
scalar degree of freedom decouples from matter.

For this mechanism to work, one requires, around ϕ = 0, a
coupling of the form

A(ϕ) = 1 +
1

2

( ϕ
M

)2

(3)

and a potential

V (ϕ) = V0 −
1

2
µ2ϕ2 +

1

4
λϕ4 , (4)

whereM and µ are mass scales and λ a dimensionless param-
eter.

The free parameters can be recast in terms of the strength
of the scalar field, β, the expansion factor at the symmetry
breaking time, aSSB, and the range of the fifth force, λ0. The
fifth force then reads

Fϕ = − ϕ

M2
∇ϕ = 6ΩmH

2
0

β2λ2
0

a3
SSB

ϕ̃∇ϕ̃ , (5)

where the quantities with tilde are in the supercomoving coor-
dinates [86].
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B. f(R) gravity

The f(R)-gravity models are theories in which the Ricci
scalar in the Einstein-Hilbert action is substituted by a func-
tion of the same quantity, and it is described by the following
action

S =
1

2
M2

pl

∫
d4x
√
−g [R+ f(R)] . (6)

When f(R) = −2Λ, the ΛCDM model is recovered.
Typical of these theories is the chameleon screening mech-

anism, characterized by a local density dependence of the
scalar field mass. In high-density environments, the scalar
degree of freedom is very short ranged, and the opposite hap-
pens in low-density fields, where deviations from GR are max-
imized.

Reference [74] used the Hu-Sawicki [75] model, whose
functional form is

f(R) = −m2 c1(R/m2)n

1 + c2(R/m2)n
, (7)

where the free parameter m2 = H2
0 Ωm,0 has dimensions of

mass squared and n > 0. The two additional constants c1 and
c2 can be determined by requiring that in the large curvature
regime (R/m2 � 1), f(R) ≈ −2Λ

c1
c2
≈ 6

ΩΛ,0

Ωm,0
. (8)

The strength of gravity modifications is encoded in the
value of fR = df/dR today

fR0 = −nc1
c22

[
ΩΛ,0

3(Ωm,0 + 4ΩΛ,0)

]n+1

. (9)

The range of the scalar degree of freedom is λ0 ∝
√

1/fR0.
To derive the expression of the fifth force for f(R) models,

it is useful to transform them into scalar-tensor theories us-
ing the conformal transformation A(ϕ) = exp (−βϕ/Mpl),
where β =

√
6/6. We then find

Fϕ = − a
2β

Mpl
∇ϕ , (10)

with a the scale factor.

C. Simulations

In order to get the MTR for f(R) and symmetron mod-
els, Ref. [74] modified the ISIS code [80] and ran two sets
of simulations, one for f(R)-gravity models and another one
for the symmetron models, both containing 2563 DM parti-
cles. The box size and background cosmology were different
for the two models, due to consistency with previous works of
the authors [87]. In the case of the f(R) gravity (symmetron)
the DM particle mass was 3×1010M�/h (8.32×1010M�/h),

ΩΛ = 0.727, ΩCDM = 0.227 and Ωb = 0.045 (ΩΛ = 0.65,
ΩCDM = 0.3 and Ωb = 0.05), and the box size 200 Mpc h−1

(256 Mpc h−1), with h = 0.7 (h = 0.65).
Because of the different parameters for f(R) and sym-

metron models, the background ΛCDM model of the two
models is different. Table 2 in Ref. [74] summarizes the pa-
rameters employed.

III. THE MODEL

In the next sections, we will discuss how the top-hat model
(THM) can be improved, and how the MTR is calculated. We
show two different models, the “late-formation approxima-
tion” (see the following) and a model in which structures form
continuously.

A. Improvements to the top-hat model

Using scaling arguments, one can show that there exists
a relation between the x-ray mass of clusters and their tem-
perature TX. The mass in the virial radius can be written as
M(∆vir) ∝ T

3/2
X ρ

−1/2
c ∆

−1/2
vir , where ρc is the critical den-

sity, and ∆vir the density contrast of a spherical top-hat per-
turbation after collapse and virialization.

The previous relation shows a correlation between the mass
and temperature, but this result can be highly improved. One
possibility is to improve the THM, taking into account the an-
gular momentum acquired by the interaction with neighboring
protostructures, dynamical friction, and a modified version of
the virial theorem, including a surface pressure term [88–91]
due to the fact that at the virial radius rvir the density is dif-
ferent from zero, as done in [92].

A further improvement can be obtained by taking into ac-
count that clusters form in a quasicontinuous way. To this aim,
one substitutes the top-hat cluster formation model by a model
of cluster formation from spherically symmetric perturbations
with negative radial density gradients. The merging-halo for-
malism of Ref. [93] is used to take into account the gradual
way clusters form.

To start with, we consider some gravitationally growing
mass concentration collecting into a potential well. Let dP =
f(L, r, vr, t)dLdvrdr be the probability that a particle, hav-
ing angular momentum L = rvθ, is located at [r, r + dr],
with velocity (vr = ṙ) [vr, vr + dvr], and angular momentum
[L,L + dL]. The term L takes into account ordered angu-
lar momentum generated by tidal torques and random angular
momentum (see Appendix C.2 in Ref. [35]). The radial accel-
eration of the particle [92, 94–97] is

dvr
dt

= −GM
r2

+
L2(r)

M2r3
+

Λ

3
r − ηdr

dt
, (11)

with Λ being the cosmological constant and η the dynamical
friction coefficient. The previous equation can be obtained via
Liouville’s theorem [92]. The last term, the dynamical fric-
tion force per unit mass, is more explicitly given in Ref. [35]
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[Appendix D, Eq. (D5)]. A similar equation (excluding the
dynamical friction term) was obtained by several authors (see,
e.g., [98–100]) and generalized to smooth dark energy models
in Ref. [101].

In the framework of general relativity, Refs. [102, 103]
derived the nonlinear evolution equation of the overdensity
δ = δρm/ρ̄m of nonrelativistic matter

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
− 4πGρ̄mδ(1 + δ)−

(1 + δ)(σ2 − ω2) = 0 .

(12)

Recalling that δ = 2GMm

Ωm,0H2
0

(a/R)3 − 1, where R is the ef-
fective perturbation radius and a the scale factor, substituting
into Eq. (12) one gets [101]

R̈ = −GMm

R2
− GMde

R2
(1 + 3wde)− σ2 − ω2

3
R , (13)

where Mm and Mde are the matter mass content of the per-
turbation and the mass of the dark energy component, respec-
tively. The previous equations can be generalized to account
for the presence of dynamical friction using Eckart’s formal-
ism [104]. The standard Friedmann equation is now aug-
mented with a fluid describing the contribution of the viscosity

(
ȧ

a

)2

= H2 =
8πG

3
(ρ̄v + ρ̄m + ρ̄Λ) , (14)

where ρ̄Λ is the energy density of the cosmological constant,
ρ̄m = ρ̄m,0a

−3 the matter component and ˙̄ρv + 3Hρ̄v =
3H2ξ0ρ̄

ν
v the viscous component, with ξ0 the bulk viscosity

coefficient. The bulk viscosity is expressed as ξ = ξ0ρ̄
ν
v ,

where ν is a real constant.
Integrating Eq. (11) with respect to r, we have:

1

2

(
dr

dt

)2

=
GM

r
+

∫ r

0

L2

M2r3
dr+

Λ

6
r2−

∫ r

0

η
dr

dt
+ε . (15)

The specific binding energy of the shell, ε, can be obtained
from the turnaround condition dr

dt = 0.
One can obtain the MTR combining energy conservation,

the virial theorem, using Eq. (15) and the connection between
kinetic energy K and the temperature [90]:

〈K〉 =
3β̃MkBT

2µmp
, (16)

where µ = 0.59 is the mean molecular weight, kB is the
Boltzmann constant, mp the proton mass, β̃ = β[1+f(1/β−
1)Ωb,0/Ωm,0], Ωb,0 (Ωm,0) is the baryonic (total) matter den-
sity parameter today, f is the fraction of the baryonic matter
in the hot gas, and the parameter β =

µmpσ
2
v

kBT
, σv being the ra-

tio of the mass-weighted mean velocity dispersion of the dark
matter particles.

Using the virial theorem, we have [92, 96, 105]

〈K〉 =
3β̃MkBT

2µmp
= −1

2
〈UG〉−〈UL〉+〈UΛ〉+〈Uη〉 . (17)

The brackets indicate time average (see [95]). The four terms
represent the energy related to the gravitational potential, the
angular momentum, the cosmological constant, and the dy-
namical friction, respectively.

Equation (17) does not take into account the surface pres-
sure term we spoke about, though. Assuming [90]

〈K〉+ 〈E〉 = 3PextV = −νU , (18)

with V the volume of the outer boundary of the virialized re-
gion, Pext the pressure on the boundary, ν a constant and U
the total potential (see [90]), Eq. (17) reads now

〈K〉 = (1 +ν)
(
− 1

2 〈UG〉 − 〈UL〉+ 〈UΛ〉+ 〈Uη〉
)
. (19)

In other words, the averaged kinetic energy differs by a factor
1 + ν from before.

In order to estimate the effect of the boundary pressure on
the virial theorem, we consider an isothermal velocity disper-
sion (σ1D = const), and then P = ρvirσ

2
1D, for which we

have [89]

〈K〉 =
ρ̄m,vir

2ρ(rvir)− ρ̄m,vir
〈E〉 , (20)

where ρ is the mean density within the virial radius. If the lo-
cal density is negligible at rvir, the confining pressure is zero
and 〈K〉 = −〈E〉. For a Navarro-Frenk-White profile and
a typical cluster value of the concentration parameter c ' 5,
we have |〈K〉/〈E〉| ' 2. References [106, 107] studied in
detail the effect of the quoted boundary pressure, finding that
it changes significantly the final object. More in detail, it is
found that the virial temperature is affected (larger than a uni-
form sphere but smaller than a truncated singular approxima-
tion sphere) and the extrapolated linear overdensity contrast
δc is slightly smaller, implying an earlier collapse.

We now use energy conservation in the form (see [92, 96])

〈E〉 = 〈K〉+ 〈UG〉+ 〈UΛ〉+ 〈UL〉+ 〈Uη〉 (21)
= UG,ta + UΛ,ta + UL,ta + Uη,ta ,

where the subscript “ta” stands for turnaround.
Combining Eqs. (19) and (21), solving for 〈K〉 and recall-

ing Eq. (16), we obtain

kBT

keV
= 1.58 (ν + 1)

µ

β

1

ψξ
Ω

1/3
m,0

(
M

1015M�h−1

)2/3

(1 + zta)

×

[
1 +

(
32π

3

)2/3

ψξρ̄
2/3
m,ta

1

H2
0 Ωm,0M8/3(1 + zta)

×
∫ reff

0

L2

r3
dr − 2

3

Λ

Ωm,0H2
0 (1 + zta)3

(ψξ)
3

− 210/3

32/3
π2/3

(
ψξ

Ωm,0H2
0

)(ρm,0

M

)2/3 1

1 + zta
×∫

η
dr

dt
dr

]
, (22)

where reff = ψrta = ψξ
(

2GM
Ωm,0H2

0

)1/3

, rta is the radius at the

turnaround epoch zta, Ωm,0 =
8πGρ̄m,0

3H2
0

, M = 4πρ̄m,0x
3
1/3,

and ξ = rta/x1.
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The product ψξ, using the definitions of ψ, ξ, and M can
be written as [see also Eq. (26) and Ref. [108]]

ψξ =
reff

rta

rta

x1
=
reff

rta

(
ρ̄m,0

ρta

)1/3

(1 + zta)−1 , (23)

where ρta is the average density inside the perturbation at the
turnaround.

Equation (22) can be also equivalently written, by using the
notation of Ref. [108], in terms of rvir:

kBT

keV
= 0.94 (ν + 1)

µ

β

(
rta

rvir

)(
ρta

ρ̄m,ta

)1/3

Ω
1/3
m,0

×
(

M

1015M�h−1

)2/3

(1 + zta)

×
[
1 +

15rvirρ̄m,ta

π2H2
0 Ωm,0ρ3

tar
9
ta(1 + zta)

∫ rvir

0

L2dr

r3

−2

3

Λ

H2
0 Ωm,0

(
rvir

rta

)3(
ρ̄m,ta

ρta

)
1

(1 + zta)3

− 61/3

π1/3
rvirrta

(
ρ̄m,ta

ρta

)1/3 ( ρ̄m,0

M

)2/3 1

1 + zta
×

λ0

1− µ(δ)

]
, (24)

where ΩΛ = Λ
3H2

0
= 1− Ωm,0. In Eq. (24), we integrated the

term containing the dynamical friction; λ0 and µ(δ) are given
in Ref. [109].

The value of reff , as shown in Refs. [85, 96], is given by the
solution of the cubic equation:

1 − ν + (ξψ)
3

(ν + 2) ζ − ψ
(
2 + ζξ3

)
− 27

32

ξ9ψ

ρ3
taπ

3Gr8
ta

[
ν

∫ reff

0

L2

r3
dr +

∫ rta

0

L2

r3
dr

− 16π2

9
(2 + ν)ρ2

tar
6
ta ×(∫ reff

0

η
dr

dt
dr − 1

2 + ν

∫ rta

0

η
dr

dt
dr

)]
= 0 ,(25)

where

ζ =
Λ

4πGρta
=

Λr3
ta

3GM
=

2ΩΛ,0

Ωm,0

ρ̄m,ta

ρta
(1 + zta)−3 . (26)

The parameter ν, as shown by Ref. [90] [Eq. (47)], depends
on the concentration parameter and the density profile. We
fixed it as ν+1

ν−1 ' 2 [89, 90], for a typical value of the cluster
concentration parameter, c ' 5.

B. Revisiting the continuous formation model

The approximation in which we found the MTR is known
as the late-formation approximation and assumes that pertur-
bation clusters form from having a top-hat density profile and
that the redshift of observation, zobs, is equal to that of for-
mation, zf . The quoted approximation is good in the case

Ωm,0 ' 1, where cluster formation is fast, and at all redshifts
zobs ' zf . For the actual value of Ωm,0, one needs to take
into account the difference between zobs and zf . Moreover, as
shown by Ref. [89], continuous accretion is needed to get the
correct normalization of the MTR and its time evolution.

In order to improve the THM, one can take into account the
formation redshift [110, 111] or the THM can be replaced by
a model in which clusters form from spherically symmetric
perturbations [88, 89], combined with the merging-halo for-
malism of Ref. [93]. In this way, one moves from a model
in which clusters form instantaneously to one in which they
form gradually.

Integrating Eq. (15), one gets

t =

∫
dr√

2
[
ε+ GM

r +
∫ r
ri

L2

M2r3 dr + Λ
6 r

2
]
−
∫
η dr

dtdr

.

(27)

Following Ref. [89], we may write the specific energy of
infalling matter as

εl = −1

2

(
2πGM

tΩ

)2/3
[(

M0

M

)5/(3m)

− 1

]
g(M) , (28)

where tΩ = πΩm,0/[H0(1−Ωm,0)3/2],M0 is a fiducial mass,
m is a constant specifying how the mass variance evolves as a
function of M and the function g(M) reads

g(M) = 1 +
F

x− 1
+

λ0

1− µ(δ)
+

Λ

3H2
0 Ωm,0

ξ3 , (29)

where x = 1 + (tΩ/t)
2/3 is connected to the mass by M =

M0x
−3m/5, M0 is given in [89], and

F =
27/3π2/3ρ̄

2/3
m,0

32/3H2
0 Ωm,0M8/3

∫ rrta

ri

L2

r3
dr . (30)

In order to calculate the kinetic energy E, we integrate εl with
respect to the mass [89] to get −

∫
εldM = E/M . Finally,

we have

kBT =
4

3
ã
µmp

2β

E

M
, (31)

where ã =
ρ̄m,vir

2ρ(rvir)−ρ̄m,vir
is the ratio between kinetic and to-

tal energy [89] and ρ̄m,vir the mean density within the virial
radius. Calculating E/M , we obtain

kBT

keV
=

2

5
ã
µmp

2β

m

m− 1

(
2πG

tΩ

)2/3

M2/3 ×[
1

m
+

(
tΩ
t

)2/3

+
K(m,x)

(M/M0)8/3
+

λ0

1− µ(δ)

+
Λξ3

3H2
0 Ωm,0

]
, (32)
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where

K(m,x) = (m− 1)FxLerchPhi(x, 1, 3m/5 + 1)−
(m− 1)FLerchPhi(x, 1, 3m/5) , (33)

and LerchPhi is a function defined as follows3:

LerchPhi(z, a, v) =

∞∑
n=0

zn

(v + n)a
. (34)

Following Ref. [89] to get the normalization, Eq. (32) can
be written as [92]

kBT ' 8 keV

(
M

1015h−1M�

)2/3
m(M)

n(M)
. (35)

The functions m(M) and n(M) are defined as

m(M) =
1

m
+

(
tΩ
t

)2/3

+
K(m,x)

(M/M0)8/3
+

λ0

1− µ(δ)
+

Λξ3

3H2
0 Ωm,0

, (36)

n(M) =
1

m
+

(
tΩ
t0

)2/3

+K0(m,x) , (37)

where K0(m,x) indicates that K(m,x) must be calculated
assuming t = t0.

When compared to Eq. (17) of Ref. [89], Eq. (35) shows
an additional mass-dependent term. This means that, as in the
case of the top-hat model, the MTR is no longer self-similar,
showing a break at the low-mass end (see next section).

Besides Refs. [88, 89], Ref. [90] found a MTR and its scat-
ter. Their result concerning the MTR and the scatter is in
agreement with the result we found here. In this case,

kBT = 6.62 keV Q

(
M

1015 h−1M�

)2/3

, (38)

where

Q =
1 + ν

1− ν
B

A(Ht)2/3
(39)

and whereB/A is a constant [see the discussion after Eq. (25)
in Ref. [90]] and ν was defined in Eq. (18).

IV. RESULTS AND DISCUSSION

In Fig. 1, we show the results of the comparison be-
tween our continuous formation model [Eq. (35)] and the
model by Ref. [90] with that of [74] for f(R) and sym-
metron models. For f(R) models, we consider n = 1 and
|fR0| = 10−4, 10−5, 10−6, while for the symmetron model

3 This definition is valid for |z| < 1. By analytic continuation, it is extended
to the whole complex z plane for each value of a.

(β, aSSB, λ0) = (1.0, 0.5, 1.0) for Sym A, (1.0, 0.33, 1.0) for
Sym B, (2.0, 0.5, 1.0) for Sym C, and (1.0, 0.25, 1.0) for Sym
D.

In all the panels, the black straight dashed line represents
the classical MTR self-similar behavior and the black solid
line the ΛCDM model obtained in the simulations of Ref. [74]
and for the specific modified gravity models we refer to the
caption of Fig. 1. Observational data are represented by
points. Red circles come from Ref. [112], while blue points
are from Ref. [113]. Stars are from Ref. [113] and represent
data using spatially resolved observations.

Fig. 1(a) (top left panel) compares the result of our con-
tinuous formation model for the f(R) models presented in
Ref. [74] (HM). The cyan band represents the 68% confidence
level region, obtained using the continuous formation model
[Eq. (35)] and calculated similarly to Ref. [90] (Sec. 3.7). The
white dashed line is the average value. As expected, devia-
tions from the ΛCDM model are larger for the model with
fR0 = −10−4, as it represents the model with the strongest
modifications to gravity. For smaller values of fR0, at temper-
atures T < 1 keV, data are in partial agreement with both the
f(R) cosmology and the model presented in this work.

Data points have a large dispersion and circumscribe the
theoretical models at high mass, while at the lowest masses
data have a value larger than the simulated HM models and the
result of our model. Stars show lower masses than the models
considered. At high mass, all models are indistinguishable,
while at small masses differences become visible.

This is because effects of modified gravity depend on the
environment and, hence, on the density. In high-density re-
gions, screening takes place and deviations from ΛCDM are
smaller. Therefore, in high-density regions the ΛCDM MTR
has a similar behavior to that of modified gravity models.

Our model shows a non-self-similar behavior and presents
a break at T ' 3 keV. At small masses, the slope of the cen-
tral (average) curve, in the range 0.5-3 keV, is ' 2.3, and the
cyan region has an inner and outer slope of 1.8 and 3, respec-
tively. The quoted bend has been observed in the literature by
several authors (see, e.g. [114]), who, assuming the cluster
temperature to be constant after the formation time, explained
the break as due to the formation redshift. Another possibility
is that the cluster medium is preheated in the early phase of
formation [115]. Reference [90], instead, justified the break
with the scatter in the density field. The result of the model of
Ref. [90] is shown in Fig. 1(b) (top right panel), where once
again the cyan region represents the 68% confidence level re-
gion, (see Ref. [90], Sec. 3.7).

This model is not able to distinguish between the effect of
formation redshift from scatter in the initial energy of the clus-
ter or its initial nonsphericity. However, the presence of non-
sphericity gives rise to a mass-dependent asymmetric scatter
in the MTR. This scatter is larger than that of the density field
and at small temperatures covers all clusters except one, while
the bend in the curve of Ref. [90] takes place almost at the
same temperature, TX ' 3 keV, in our model.

In our model, the bend is due to tidal interactions with
neighboring clusters, arising from the asphericity of clusters
(see [92] for a discussion on the relation between angular mo-
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Sym A

Sym C

Sym B

Sym D

Sym A

Sym C

Sym B

Sym D

(a)

(c)

(b)

(d)

CDMCDM

CDM CDM

FIG. 1. The MTR for f(R) (top panels) and symmetron models (bottom panels). In all the panels, the black line shows the ΛCDM model,
and the dashed black line shows the MTR ∝ T 3/2 as obtained from scaling relations, while the stacked galaxy clusters are depicted with red
and blue circles, blue squares, and black stars. In panel (a) (top left) and in (b) (top right), the cyan region shows the 68% confidence level
region, obtained using the continuous formation model [Eq. (35)] and the model by Ref. [90] [Eq. (39)], respectively. The white dashed line
is the average value. The red, blue, and green lines represent the f(R) model with three different normalizations. Panels (c) (bottom left) and
(d) (bottom right) are the equivalent of (a) and (b) for the symmetron models.

mentum acquisition, asphericity, and structure formation), and
to the effect of dynamical friction. Asphericity gives rise to a
mass-dependent asymmetric bend in the MTR. The lower the
mass, the larger the difference from the classical self-similar
solution. The origin of the bend is due to a few reasons.
Our MTR, differently from others (e.g., [89, 90]), contains a
mass-dependent angular momentum, L, originating from the
quadrupole moment of the protocluster with the tidal field of
the neighboring objects. The presence of this additive mass-
dependent term breaks the self-similarity of the MTR. To be
more precise, the collapse in our model is different from the
THM: The turnaround epoch and collapse time change, as
well as the collapse threshold δc, which is now mass depen-
dent and a monotonic decreasing function of the mass (see
Fig. 1 in Ref. [116]). It is larger than the standard value
at galactic masses and tends to the standard value when we
move to the largest clusters. The temperature is T ∝ ε ∝ δc

(see [89]), and then less massive clusters are hotter than more
massive ones, which are characterized by a standard MTR.

Besides the effect of angular momentum in changing the
shape of the MTR, we must recall that another factor con-
tributing is the modification of the partition of energy in virial
equilibrium, which influences the shape of the MT relation. At
the same time, an important role is played by the cosmological
constant and dynamical friction. Both effects, similarly to that
of angular momentum, delay the collapse of the perturbation.
A comparison of the three effects, the three terms in Eq. (11),
are shown in Fig. 1 of Ref. [116] and in Fig. 11 of Ref. [35].
They are all of the same order of magnitude with differences
of a few percent. The effect of dynamical friction (DF) was
calculated as shown in Refs. [35, 117, 118].

The first calculations of the role of DF in clusters formation
is due to Refs. [119–122], who considered the DF generated
by the galactic population on the motion of galaxies them-
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Sym A

Sym C

Sym B

Sym D

(a) (b)

CDM
CDM

FIG. 2. The MTR for f(R) (left panel) and symmetron models (right panel). Lines and symbols represent the same quantities as in Fig. 1, but
now the cyan region is the 68% confidence level region, obtained by means of the improved top-hat model [Eq. (24)].

selves. Reference [117] took into account also the effects of
substructure and showed DF produces a collapse delay in the
collapse of low-ν peaks, with several consequences, like the
mass accumulated by the peak, and similarly to tidal torques.

As a consequence of dynamical friction and tidal torques,
one expects changes in the threshold of collapse, the tempera-
ture at a given mass (since T ∝ δc), the mass function, and the
correlation function. DF and angular momentum have similar
effects on structure formation: They delay the collapse, and
have similar consequences on the collapse threshold.

An important result of the previous calculation is that the
MTR in modified gravity cannot be distinguished from that
predicted by the ΛCDM model. In HM, the MTR in modi-
fied gravity was very different from that of ΛCDM prediction
for colder clusters and indistinguishable for hotter ones. Our
plots show that the MTR bends in a similar way as done by the
MTR in the f(R) models and symmetron models (see the fol-
lowing). The bending was explained previously, and is related
to the effect of several factors as the acquisition of angular
momentum through tidal torques, by dynamical friction, and
by the cosmological constant.

Our model and the f(R) and symmetron models (see the
following) of Ref. [74] are in agreement with data till '
1 keV; at lower temperatures, a discrepancy is observed with
the few clusters present. A similar result is found comparing
the f(R) models with the model by [90], in Fig. 1(b). In this
case, while f(R) models are in disagreement with the data at
small masses, this is no longer true for the model by Ref. [90]
and ΛCDM. However, there is a slight disagreement between
the model with fR0 = −10−4 and Ref. [90].

In particular, in the case of the f(R) models, Figs. 1(a) and
1(b) show that our model is in agreement with all f(R) models
considered. In Fig. 1(b), the slope of the average value, in the
range 0.5-3 keV, is ' 2.3, while that of the inner cyan region
' 1.8 and that of the outer cyan region > 3 for temperatures
< 1 keV.

Fig. 1(c) shows the same quantities plotted in Figs. 1(a)
and 1(b) but for the symmetron case. The plot shows that

model Sym D is the one which deviates the most from the
ΛCDM, followed by Sym C, Sym B, and Sym A. Again, at
high mass, till' 4 keV, our model, the symmetron models and
the data are indistinguishable, but Sym D, even if in agreement
with the data till ' 3 keV, slightly differs from our model,
namely, with the ΛCDM predictions. The discrepancy goes
on till ' 2 keV and then disappears. All the other symmetron
models are in agreement with our model. As in Fig. 1(a), for
T ≤ 1 keV, the models are in disagreement with a few clus-
ters. Notice that in Figs. 1(a) and 1(c), we compare the contin-
uous formation model with the f(R) and symmetron model,
respectively, and then the only change between the two plots
is due to the f(R) and symmetron curves. The slopes are then
the same as in Fig. 1(a).

Finally, in Fig. 1(d), we show the same results as in Fig. 1(c)
but for the model by Ref. [90]. The result is similar to
Fig. 1(b). In this case, in the range 1 ≤ T/keV ≤ 4, the
model by Ref. [90] differs from Sym B and D.

The larger discrepancy between the model by Ref. [90] and
the symmetron models in the temperature range 1-4 keV with
respect to the predictions of our model is probably due to the
fact that, as stressed by Ref. [90], the calculation of the effects
of the nonspherical shape of the initial protocluster are not
very rigorous and should be considered as an estimate of the
actual corrections. The previous assertion is somehow con-
firmed by the fact that in the given range there is not a real
discrepancy between cluster data and the other models (ex-
cept with the model by Ref. [90]).

We want to stress that the quoted discrepancies between
ΛCDM predictions and Sym B and D, however, do not imply
that the symmetron model can be used to claim the MTR is
a probe to distinguish between modified gravity and ΛCDM,
since in the quoted temperature range there are no visible pe-
culiar differences between the cluster data and the model.

As before, we stress that Figs. 1(d) and 1(b) differ only
for the curves relative to the f(R) and symmetron models,
since we are comparing the last with the same model, namely
Ref. [90] [Eq. (39)]. The slopes are then the same as in
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Fig. 1(b).

Finally in Figs. 2(a) and 2(b) we compare the results of the
improved top-hat model [Eq. 24)] with the f(R) [Fig. 2(a)]
and the symmetron models [Fig. 2(b)] of Ref. [74]. The re-
sults are similar to those plotted in Figs. 1(a) and 1(c), with the
difference that the slope discussed previously is now smaller.
The differences between the model plotted in Figs. 1(a) and
1(c) (revised top hat) and that in Figs. 2(a) and 2(b) (continu-
ous formation model) are due to the assumed redshift of for-
mation in the two models. The slope of the average curve is
' 2, and those of the outer and inner cyan region, ' 1.8, and
' 2.5, respectively.

Before concluding, we want to add a note on the redshift
dependence of the observed cluster data and the MTR which
depends on the redshift. All the quantities involved in the de-
termination are, formally, time dependent (concentration and
temperature). Therefore, when evaluating the MTR, one has
to be cautious and aware of this, as the time evolution can
have a substantial effect on the final result. Nevertheless, in
our discussion, redshift evolution is not a concern as all the
objects considered in Refs. [112, 113] are nearby (z . 0.2)
and neglecting it has a very small impact when compared to
the observational error bars on the mass and temperature.

V. CONCLUSIONS

In the present work, we derived the MTR relationship using
an improved top-hat model and a continuous formation model
and compared the results with the prediction of Ref. [74] using
f(R) and symmetron models. Our model takes into account
dynamical friction, the angular momentum acquired through
tidal-torque interaction between clusters, and a modified ver-
sion of the virial theorem including an external pressure. The
continuous formation model is based on the merging-halo for-
malism by Ref. [93]. Both models give a MTR different from
the classical self-similar behavior, with a break at 3-4 keV, and
a steepening with a decreasing cluster temperature. The com-
parison of the quoted MTR with those obtained by Ref. [74]
for f(R) gravity and symmetron models shows that the MTR
is not a good probe to test gravity theories, since the MTR for
the ΛCDM model has the same behavior of that obtained by
Ref. [74] for the two modified gravity theories considered.
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