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The influence of considering a generalized dark matter (GDM) model, which allows for a non-
pressure-less dark matter and a nonvanishing sound speed in the nonlinear spherical collapse model
is discussed for the Einstein-de Sitter-like and ΛGDM models. By assuming that the vacuum com-
ponent responsible for the accelerated expansion of the Universe is not clustering and therefore
behaving similarly to the cosmological constant Λ, we show how the change in the GDM charac-
teristic parameters affects the linear density threshold for collapse of the nonrelativistic component
(δc) and its virial overdensity (∆V). We found that a positive GDM equation of state parameter,
wgdm, is responsible for lower values of δc as compared to the standard spherical collapse model
and that this effect is much stronger than the one induced by a change in the GDM sound speed,
c2s,gdm. We also found that ∆V is only slightly affected and mostly sensitive to wgdm. These effects
could be relatively enhanced for lower values of the matter density. We found that the effects of the
additional physics on δc and ∆V, when translated to nonlinear observables such as the halo mass
function, induce an overall deviation of about 40% with respect to the standard ΛCDM model at late
times for high mass objects. However, within the current constraints for c2s,gdm and wgdm, we found
that these changes are the consequence of properly taking into account the correct linear matter
power spectrum for the GDM model while the effects coming from modifications in the spherical
collapse model remain negligible. Using a phenomenologically motivated approach, we also study
the nonlinear matter power spectrum and found that the additional properties of the dark matter
component lead, in general, to a strong suppression of the nonlinear power spectrum with respect
to the corresponding ΛCDM one. Finally, as a practical example, we compare ΛGDM and ΛCDM
using galaxy cluster abundance measurements, and found that these small scale probes will allow
us to put more stringent constraints on the nature of dark matter.

PACS numbers: 95.35.+d, 98.80.-k, 98.80.Es
Keywords: Cosmology; Generalized Dark Matter; Mass function; Spherical collapse model; Non-linear matter
power spectrum

I. INTRODUCTION

Nowadays, most of the cosmological data suggests a
cosmic expansion history with a flat geometry and some
sort of dark energy, usually in the form of the cosmolog-
ical constant Λ, in order to explain the recent accelerat-
ing expansion of the Universe. Assuming that large scale
structure formed thanks to the gravitational interaction
of the cold dark matter (CDM) component, the result-
ing standard model of cosmology is then dubbed ΛCDM
(see [1, 2] for a review). In this model, the cosmolog-
ical constant is a fluid with constant equation of state
w = −1 and energy density ρΛ, both constant in time
and space, that is usually associated to the vacuum en-
ergy density. The CDM component is instead described
as a nonrelativistic fluid whose influence is only gravi-
tational. Together, the cosmological constant and the
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CDM amount to approximately 95% of the total energy
budget, with the remaining 5% in the form of baryons
and a negligible amount, today, of relativistic particles
(photons and neutrinos) [3].

However, with the advent of stage IV surveys like DESI
[4], Euclid [5], LSST [6] , WFIRST [7], and the SKA [8]
providing high accuracy data especially on small scales,
one of the most challenging problems is to understand
the role played by the different cosmic components in the
nonlinear regime of gravitational clustering. This aspect
could be tackled through different approaches, among
which we recall the halo model [9], where one of the is-
sues is to understand the interplay of different possible
physical effects that contribute to determine the proper-
ties of virialized halos. One of the powerful tools to study
the nonlinear evolution of perturbations and formation of
haloes is given by the popular spherical collapse model
(SCM), introduced in a seminal paper by [10] to deal with
a system made only of CDM. This model has been later
extended and applied to study the evolution of density
perturbations and structure formation in the presence of
dark energy, both homogeneous [11–16] and clustering
[17–19]. In this work, we investigate further the nonlin-
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ear evolution of matter perturbations by focusing on the
generalized dark matter (GDM) model, which considers
the dark matter fluid augmented by positive pressure,
parametrized by a background equation of state wgdm

and a nonvanishing sound speed c2s,gdm [20]. Note that
the original GDM description also accounted for nega-
tive pressure and a nonvanishing viscosity c2vis,gdm. The
effects of this modeling on the expansion and linear per-
turbations have been recently studied in [21–26]. Here
we decided not to include the contribution of the viscos-
ity c2vis,gdm since at the linear level it is degenerate with

the sound speed c2s,gdm. This can be seen considering the
scale at which the potential decays at a conformal time
η [21, 23]:

k−1
d (η) = η

√
c2s,gdm +

8

15
c2vis,gdm . (1)

On scales larger than k−1
d one cannot distinguish the ef-

fect of these parameters separately. The viscosity, in ad-
dition, causes a dump in the oscillations, but the cutoff
is a bigger effect. This degeneracy would be broken in
the time-dependent case, however analysis [24] showed
that current data are not good enough to spot any ev-
idence of a time evolution for any of the GDM param-
eters. Therefore, we only consider constant background
equation-of-state parameter and sound speed.

However, the standard SCM needs to be appropriately
modified to have a recipe for the GDM to be able to ex-
plore the small scales that next stage surveys will probe
and extract the maximum information from them. A
recent approach, focused on developing a halo-model-
based approach for nonlinear corrections for the GDM
matter power spectrum, considered a scaling of the SCM
[26]. Here, instead, we focus on developing the SCM for
GDM by considering the evolution of matter perturba-
tions within the GDM framework (taking into account
the effects of wgdm and c2s,gdm), and use a simple phe-
nomenological approach to address the nonlinear matter
power spectrum. We restrict our analysis to an Einstein-
de-Sitter-like (EdS) model where Ωm = 1 and ΩΛ = 0.0,
and a flat ΛCDM cosmology. For the ΛCDM model, we
assume the following cosmological parameters: Ωm = 0.3,
ΩΛ = 0.7 and h = 0.7. In particular, we discuss how
the linear overdensity threshold for collapse (δc) and the
virial overdensity (∆V) change while changing the prop-
erties of the dark matter component.

The paper is organized as follows: in Sec. II we give a
brief description of the spherical collapse model for gener-
alized dark matter and derive the appropriate equations
describing the evolution of nonlinear perturbations, by
specializing on the virial overdensity ∆V and the linearly
extrapolated overdensity δc. In Sec. III we present our
findings, studying the evolution of the main parameters
of the spherical collapse model as a function of the equa-
tion of state wgdm and effective sound speed c2s,gdm of the
matter component and translate our results into observ-
able quantities such as the mass function. As a practical
application, we compute the goodness of fit of the ΛGDM

model, for some specific values of wgdm and c2s,gdm, using
cluster counts from real data. Finally, we discuss the evo-
lution of the nonlinear matter power spectrum based on
a phenomenologically motivated approach and conclude
in Sec. IV.

II. THE GDM MODEL

In this work we assume that dark matter only interacts
gravitationally with the other components and all flu-
ids satisfy the standard continuity equation ∇νTµνi = 0,
where Tµνi is the stress-energy tensor and for a perfect
fluid reads as

Tµνi = (ρic
2 + Pi)u

µuν + Pig
µν , (2)

where ρi, Pi and ui are the density, the pressure, and
the four-velocity of each fluid, respectively, and gµν the
metric.

Contracting the continuity equation once with uµ and
once with the projection operator hµα = gµα+uµuα, one
obtains the relativistic expressions for the continuity and
the Euler equations, respectively:

∂ρi
∂t

+∇~r · (ρi~vi) +
Pi
c2
∇~r · ~vi = 0 , (3)

∂~vi
∂t

+ (~vi · ∇~r)~vi +∇~rΦ +
∇~rPi

ρi + Pi/c2
= 0 . (4)

Here ~vi is the three-dimensional velocity of each species,
Φ the Newtonian gravitational potential and ~r denotes
physical coordinates.

The 00-component of Einstein’s field equations gives
the relativistic Poisson equation

∇2
~rΦ = 4πG

∑
k

(
ρk +

3Pk
c2

)
, (5)

where the potential is sourced by all the fluid components
and ρk and Pk are the total density and pressure of each
fluid. We define, in fact ρk = ρ̄k+δρk and Pk = P̄k+δPk,
where overbarred quantities represent the background.

The background continuity equation for the fluid i is

˙̄ρi + 3H

(
ρ̄i +

P̄i
c2

)
= 0 , (6)

where ρ̄i = 3H2Ωi

8πG and Ωi is the fluid density parame-
ter. To solve the previous expression, it is necessary to
specify a relation between pressure and density. This is
usually done by introducing the background equation-of-
state parameter wi = P̄i/(ρ̄ic

2), so that one solves the
equation ˙̄ρi + 3H(1 + wi)ρ̄i = 0, once the time depen-
dency of wi is provided.
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To study the perturbations, we introduce comoving co-
ordinates ~x = ~r/a, with a the scale factor, and define

ρi(~x, t) = ρ̄i(1 + δi(~x, t)) , (7)

Pi(~x, t) = P̄i + δPi , (8)

Φ(~x, t) = Φ0(~x, t) + φ(~x, t) , (9)

~vi(~x, t) = a[H(a)~x+ ~ui(~x, t)] , (10)

where H(a) is the Hubble function and ~u(~x, t) the comov-
ing peculiar velocity. We relate pressure perturbations to
density perturbations by introducing the effective sound
speed c2s,i = δPi/(δρic

2). In a standard cold dark matter

model, c2s,i = 0, as there are no pressure perturbations.
Inserting Eqs. (7)–(10) into Eqs. (3)–(5), and taking

into account the background equations, we derive the
following equations for the perturbed quantities:

δ̇i + 3H
(
c2s,i − wi

)
δi = −

[
1 + wi +

(
1 + c2s,i

)
δi
]
~∇ · ~ui ,

(11)

~̇ui + 2H~ui + (~ui · ~∇)~ui +
~∇φ
a2

= 0 , (12)

∇2φ = 4πGa2
∑
k

ρ̄k
(
1 + 3c2s,k

)
δk . (13)

Note that, as commonly done, we assumed a top-hat pro-

file for the density perturbations. This leads to ~∇δi = 0,
which considerably simplifies the equations. In addition,
both wi and c2s,i are functions of time only. While this is
justified for the equation of state, it is a simple approx-
imation for the sound speed, but nevertheless in agree-
ment with current literature [21].

The previous sets of equations allow us to study the
evolution of the linearly extrapolated overdensity δc,
which represents an important ingredient for the mass
function, a tool used to infer the effects of dark energy
and modified gravity on some observables like cluster
abundance. In this work, we will follow a similar line
of thinking, but use the mass function to test properties
of the dark matter component, rather than the gravita-
tional sector.

In full generality, to derive the equation of motion of
the (generalized) dark matter component, one takes the
time derivative of Eq. (11) and substitutes in it the di-
vergence of Eqs. (12) and (13). Nevertheless, when doing
so, the final expression becomes very complicated as both
the equation of state and the effective sound speed can be
time dependent. This expression will give very little in-
sight to understand the physics of the problem. We will,
therefore, first derive the full equation by defining addi-
tional coefficients which will help to write the final result
in a rather compact form and, subsequently, we will spe-
cialize it to the simpler case where c2s = 0, but w 6= 0.
This will correspond to the case where dark matter fully
clusters.

Following [27], we define the following quantities:

Ai ≡ 3H
(
c2s,i − wi

)
δi , Bi ≡ 1 + wi +

(
1 + c2s,i

)
δi ,

so that Eq. (11) can be written as

δ̇i +Ai +Biθi = 0 , (14)

where θi ≡ ~∇ · ~ui.
At the same time, the divergence of Eq. (12) can be

written as

θ̇i + 2Hθi +
1

3
θ2
i +
∇2φ

a2
= 0 , (15)

where spherical symmetry is assumed.
Taking the time derivative of (14) and using Eq. (15)

to replace θ̇i and Eq. (14) for θi, we finally get

δ̈i + Ȧi +

(
2H − Ḃi

Bi

)(
Ai + δ̇i

)
−

1

3

(
δ̇i +Ai

)2

Bi
− Bi
a2
∇2φ = 0 .

(16)

For c2s = w = 0, Ai = 0 and Bi = 1 + δi, leading to
the standard equation describing matter perturbations in
the presence of the cosmological constant or smooth dark
energy:

δ̈i + 2Hδ̇i −
4

3

δ̇2
i

1 + δi
− 4πG

∑
k

ρ̄kδk = 0 . (17)

Note that here the sum over the perturbed species is
done for baryons (considered to be a pressureless fluid)
and (generalized) dark matter. Therefore, we need to
solve two differential equations of motion for the pertur-
bations, one for baryons and one for generalized dark
matter. Nevertheless, since baryons are subdominant at
all times, considering only the GDM component would
not alter our conclusions.

Let us now consider a specific case where c2s,i = wi to
grasp more understanding of the evolution of matter per-
turbations. The previously defined coefficients simplify
to Ai = 0 and Bi = (1 + wi)(1 + δi), and perturbations
are adiabatic, with Pgdm = wgdmc

2ρgdm also at the per-
turbative level. Similarly to what was shown in [13] for
homogeneous dark energy models, the equation of motion
now reads

δ̈ +

(
2H − ẇgdm

1 + wgdm

)
δ̇ − 1

3

4 + 3wgdm

1 + wgdm

δ̇2

1 + δ

−(1 + wgdm)(1 + δ)
∇2φ

a2
= 0 ,

(18)

where, for simplicity, from now on, we drop the index
i and consider only the expressions for generalized dark
matter.

These expressions show that the nonlinear dynamics of
matter perturbations can be heavily affected by the pres-
ence of a background equation-of-state parameter wgdm

and therefore we expect its value to be severely con-
strained. Similar conclusions can be reached for the effec-
tive sound speed c2s , as a value different from zero defines



4

a sound horizon scale associated to perturbations which
generally implies that the fluid is not fully clustering.

Having derived the expressions for the nonlinear evolu-
tion of matter density perturbations, we stress that, de-
spite we consider constant wgdm and sound speed c2s,gdm,
the formalism does not rely on this assumption and can
be used without modifications also in the case of time
dependence.

To determine the virial overdensity ∆V, we assume
energy conservation during the collapse. This condition
leads to a relation between the potential and kinetic en-
ergy of the collapsing sphere at turn-around and virial-
ization time [28]:

Ugdm,ta + UΛ,ta = Ugdm,vir + Tgdm,vir + UΛ,vir + TΛ,vir ,
(19)

where U and T are the potential and kinetic energy, re-
spectively, of the GDM and dark energy Λ component.
The subscripts ta and vir refer to turn-around and viri-
alization, respectively. For simplicity, we will assume the
dark energy component to be in the form of a cosmolog-
ical constant, but our results can be easily extended to
more general models.

The potential energy for a fluid endowed with pressure

as the GDM is Ugdm = − 3
5 (1 + 3wgdm) GM

2

R and for the

cosmological constant is UΛ = 4π
5 GMρΛR

2, where M
and R are the mass and the radius of the spherical per-
turbation, respectively. For a system with the potential
energy of the form U ∝ Rn, the kinetic energy will be
T = nU/2 [29]. Then, according to the virial theorem,
we find

Ugdm,ta + UΛ,ta =
1

2
Ugdm,vir + 2UΛ,vir . (20)

Defining θ = ρΛ

ρgdm
and η = rvir

rta
as in [12, 30], we find

a cubic equation describing the evolution of η

θη3 +

(
1 +

θ

2

)
η − 1/2 = 0 , (21)

where we used(
ρ̄X,eff

ρ̄

)
vir

= θη3

(
avir

ata

)−3(1+wΛ)

. (22)

In the previous expression, wΛ = −1 and ρ̄X,eff = ρ̄X +
3P̄X/c

2.
Solving for η, the virial overdensity at collapse redshift

zc is

∆V(zc) =
ρvir

ρ̄vir
= η−3 ρcluster

ρ̄

∣∣∣∣
ta

(
1 + zta

1 + zcoll

)3

, (23)

where ρcluster = ρ̄(1+δ) is the total density of the pertur-
bation. Since the constrained values for wgdm � 1 and
c2s,gdm � 1 [23, 25, 26], we assumed, for simplicity, that
matter scales as in the standard CDM model.

III. RESULTS

In this section we present some results for the spherical
collapse model for the generalized dark matter models
previously discussed, taking into account the effects of
both the background equation-of-state parameter wgdm

and the effective sound speed c2s,gdm. We concentrate
on the linear overdensity parameter δc and the virial
overdensity ∆V. These quantities have both their own
theoretical importance: the linear overdensity parame-
ter is a key ingredient for the halo mass function, while
the virial overdensity is a measure of how dense cosmic
structures are and ultimately, in first approximation, as-
suming spherical symmetry, it gives a measure of their
radius knowing their mass. Whilst quite often the halo
mass function is evaluated under the approximation that
δc ≈ δEdS

c , it is necessary, in our opinion, in an era of pre-
cision cosmology where data become progressively more
accurate, to perform an exact and detailed analysis to
avoid introducing artificial biases in the study of the mass
function which will hamper a proper comparison between
analytical predictions and future observational data and
lead to erroneous conclusions. The virial overdensity is
indirectly related to the mass function and it can be used
to determine the weak-lensing peaks, as discussed in [16],
where the authors studied the effect of different virializa-
tion recipes and were able to show that one of the recipes
proposed in the literature provides results which are at
odds with current numerical and observational results.
In this work, we will not pursue this specific analysis,
as our analysis would need to be validated with N -body
simulations, but we will, nevertheless, comment upon it.

A. Evolution of the spherical collapse parameters

To evaluate the evolution of the spherical collapse pa-
rameters, we follow [13, 19] and we look for an initial
overdensity δini such that the nonlinear equation (18), in
the general case where wgdm 6= c2s,gdm and both not null,
diverges at the chosen collapse time. This same value is
then used as an initial condition of the linearized version
of (18), which describes the evolution of δc. The value of
∆V, instead, simply follows by evaluating η as explained
in [12], which, as said above, is an approximation to the
true behavior of the GDM, but due to the strong con-
straints, this does not introduce a significant bias.

In Fig. 1 we show the evolution of the critical overden-
sity δc as a function of redshift z assuming Einstein-de
Sitter-like (EdSGDM) and flat ΛGDM as cosmological
models. Different curves refer to different values of the
effective sound speed, while keeping wgdm = 0 as for the
standard cold dark matter model. This setup allows us
to study the effect of the modified clustering properties of
dark matter. Note that for stability reasons, c2s,gdm > 0.
For comparison, in cyan, we also show the evolution of
the reference ΛCDM cosmology. The values chosen for
the effective sound speed are motivated by the constraints
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TABLE I. Constraints on the GDM parameters using linear theory and different combinations of cosmological probes (CMB,
CMB lensing, and BAO) from Thomas et al. [26]. The values provided correspond to the 95% confidence regions.

CMB CMB + lensing CMB + lensing + BAO

102 × wgdm −0.040+0.473
−0.468 0.066+0.434

−0.427 0.074+0.111
−0.110

106 × c2s,gdm < 3.31 < 1.92 < 1.91

106 × c2vis,gdm < 5.70 < 3.27 < 3.30

0 1 2 3 4 5 6
z

1.676

1.678

1.680

1.682

1.684

1.686

1.688

1.690

δ c

c 2
s,gdm =10−4 , Ωm =0.3

c 2
s,gdm =10−4 , Ωm =1.0

c 2
s,gdm =10−5 , Ωm =0.3

c 2
s,gdm =10−5 , Ωm =1.0

c 2
s,gdm =10−6 , Ωm =0.3

c 2
s,gdm =10−6 , Ωm =1.0

c 2
s,gdm =0.0 , Ωm =0.3

FIG. 1. The linear critical density contrast δc as a function
of the collapse redshift z for different values of the general-
ized dark matter sound speed c2s,gdm for an EdSGDM and
flat ΛGDM cosmology. For reference, we consider also the
standard ΛCDM model, where c2s,gdm = 0.

obtained studying the evolution of linear perturbations
[22, 25, 26]. For completeness, in Table I we provide the
constraints obtained in [26].

As expected, all the models asymptotically approach
the EdS limit at high redshifts, regardless of the sound
speed value. Differences for δc between the ΛGDM and
the standard ΛCDM model are absolutely negligible,
and likely due to numeric, except for high values of the
sound speed, well above the linear constraints limits, i.e.,
c2s,gdm ∼ 10−4. This shows that to modify the evolu-
tion of δc, relatively high values of the sound speed are
required.

As the sound speed c2s,gdm influences how much the
fluid collapses, we can understand the dependence of δc
if we vary this parameter. As the sound speed increases,
a higher δc is needed, because there is an additional pres-
sure effect that resists the collapse and opposes structure
formation. We remind the reader that a higher value of
the sound speed implies a smoother component.

We do not show the effect of the sound speed on the
virial overdensity ∆V as this parameter is not directly
included in its definition, but it enters in it through the
nonlinear evolution of matter perturbations.

In Fig. 2, we present the evolution of δc (top panel)

0 1 2 3 4 5 6
z

1.660

1.665

1.670

1.675

1.680

1.685

1.690

δ c

wgdm =0.0 , Ωm =0.3

wgdm =5×10−3 , Ωm =0.3

wgdm =5×10−3 , Ωm =1.0

wgdm =10−3 , Ωm =0.3

wgdm =10−3 , Ωm =1.0

wgdm =10−4 , Ωm =0.3

wgdm =10−4 , Ωm =1.0

0 1 2 3 4 5 6
z

170

180

190

200

210

220

230

240

250

∆
V

wgdm =10−2 , Ωm =0.3

wgdm =10−2 , Ωm =1.0

wgdm =10−3 , Ωm =0.3

wgdm =10−3 , Ωm =1.0

wgdm =10−4 , Ωm =0.3

wgdm =10−4 , Ωm =1.0

wgdm =0.0 , Ωm =0.3

FIG. 2. Top (bottom) panel: The linear critical density con-
trast δc (virial overdensity ∆V) as a function of the collapse
redshift z for different values of the generalized dark matter
equation of state parameter wgdm for an EdSGDM and flat
ΛGDM cosmology.

and ∆V (bottom panel) as a function of redshift z for
different values of the generalized dark matter equation-
of-state parameter wgdm, while setting c2s,gdm = 0. It
is immediately clear that wgdm has a much stronger ef-
fect than that induced by the sound speed and it be-
comes more pronounced for δc than ∆V for values around
wgdm ∼ 10−3 where we also checked that the relative dif-
ference of δc with the ΛCDM result is few times higher
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than that of ∆V even if we go to wgdm ∼ 10−2 for the
latter.

To see why the equation-of-state parameter wgdm has
a stronger effect than c2s,gdm, we remind the reader that
when wgdm 6= 0, the background expansion history is
modified and pressure effects are not negligible even at
early times, while c2s,gdm only affects the perturbations.
This also explains why increasing wgdm leads to a de-
crease of δc: a positive wgdm makes the contribution
of the dark matter component less important (as it de-
creases faster) than that of the cosmological constant at
late times and to overcome the additional contribution
to the expansion one needs lower overdensities to achieve
the collapse.

So far, we have considered the influence of wgdm and
c2s,gdm separately, but to span the full parameter space of
the model, we need to consider their combined effect and
we do so by solving the full equation of motion (16). We
verified that for realistic values of the two parameters, the
resulting δc is in agreement with ΛCDM. For the highest
values considered for both wgdm and c2s,gdm, the relative
difference is still below the percent level.

Our analysis led us to the conclusion that the values
allowed for wgdm and c2s,gdm from previous works on the

evolution of linear perturbations (see Table I) have a neg-
ligible impact on δc and ∆V. Nevertheless, these two
quantities are not directly observable and therefore it is
important to study how the mass function is influenced.

Before we study the impact on the mass function,
though, we want to take a step further and investigate the
combined action of varying the background matter den-
sity parameter Ωm while fixing the two parameters of the
GDM model to wgdm = 5×10−4 and c2s,gdm = 5×10−7, as
there might be additional degeneracies among the three
parameters at the perturbative level. The reason behind
this is that Ωm has a very strong impact on the growth
of cosmic structures [31, 32] and its determination might
be affected when studying a more general dark matter
model, as is the case for this work.

In the following, therefore, we vary Ωm between 0.1 and
0.8 and compare the results for a GDM with the standard
CDM model having the same matter density parameter.
We present our results in Fig. 3. Stronger effects take
place for low matter density parameters for both δc and
∆V as in this case very overdense initial perturbations are
required to overcome the accelerated cosmic expansion
and collapse. We note that in this case, the effect is of
the order of 0.1% for δc and up to 8% for ∆V. Differences
become much smaller at high redshifts, as the EdS is a
good approximation of the true cosmology. For a model
with Ωm ≈ 0.3 (roughly the current accepted value), at
z = 0, we find a 0.08% difference for δc and 2% for ∆V.
Deviations for ∆V are obviously stronger as this quantity
is derived by solving the nonlinear equation of motion for
the matter overdensity δ.

B. The mass function

The previous discussion shows that for realistic val-
ues of wgdm and c2s,gdm allowed by previous studies

[23, 25, 26], the parameter to take more into consider-
ation is the equation of state wgdm and that the quantity
being mostly affected is the virial overdensity ∆V, with
differences up to a few percent for accepted values of the
matter density parameter Ωm. Although these numbers
are small, we remind the reader that their combined effect
enters exponentially into the evaluation of the halo mass
function, therefore even small differences can be ampli-
fied and lead to appreciable differences, therefore making
it a very sensible probe for cosmology when its high-mass
end is investigated (i.e., massive galaxy clusters).

The halo mass function is defined as [33]

dn(M)

dM
= − ρ̄

M

dν

dM
F(ν) , (24)

where ρ̄ is the mean matter density today, F(ν) the mul-
tiplicity function and ν = δc/σ(M) with σ(M) the vari-
ance within a sphere of radius R and mass M = 4π/3 ρ̄R3

for a cosmology described by a linear matter power spec-
trum P (k). The mass variance is defined as σ2(M, z) =

1
2π2

∫∞
0
k2P (k, z)W 2(kR)dk, where W (kR) is an appro-

priate window function representing the Fourier trans-
form of the top-hat function in real space.

In order to compute the linear matter power spec-
trum for GDM, we have followed [23, 25] in modifying
the Einstein-Boltzmann solver CLASS [34, 35]. Thus,
at a linear level of perturbations and in the synchronous
gauge, the conservation of the energy momentum tensor
yields [36]

δ̇ + (1 + wgdm)

(
θ +

ḣ

2

)
+ 3H

(
δP

δρ
− wgdm

)
δ = 0 ,

(25a)

θ̇ +H(1− 3wgdm)θ +
ẇgdm

1 + wgdm
θ − δP/δρ

1 + wgdm
k2δ+

k2σ = 0 . (25b)

The system is closed by supplying the relations associ-
ating the GDM equation of state parameter wgdm, the
pressure perturbation δP and scalar anisotropic stress σ
to the density fluctuation δ, the divergence of its velocity
θ and the synchronous metric perturbations h and η,

δP = c2s,gdmδρ− ρ̇(c2s,gdm − c2a,gdm)θ/k2 , (26)

σ̇ + 3H
c2a,gdm

wgdm
σ =

4

3

c2vis,gdm

1 + wgdm
(2θ + ḣ+ 6η̇) , (27)

where the adiabatic sound speed is c2a,gdm ≡ (wgdmρ̄)̇/ ˙̄ρ

and c2vis,gdm is a viscosity parameter we set to zero in
this work. The public version of CLASS already includes
a parametrization of a dark energy fluid with constant
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FIG. 3. Relative differences between the ΛCDM and ΛGDM linear critical density parameter δc (left) and virial overdensity
∆V (right) as a function of the collapse redshift z for different values of the matter density parameter Ωm. We assume
wgdm = 5 × 10−4 and c2s,gdm = 5 × 10−7 as reference values for the parameters of the GDM model.

equation of state parameter and constant sound veloc-
ity [37]. We used this parametrization as GDM, while
we kept a cosmological constant for the dark energy con-
tribution, and a negligible fraction of CDM. Note that
the perturbations of this fluid must then be added to the
total matter perturbations, which is not the case in the
public version, since this fluid is supposed to behave as
dark energy.

For the multiplicity function, we adopt the functional
form proposed by [38, 39]

νFST(ν) = A

√
2a

π

[
1 +

(
1

aν2

)p]
ν exp

{[
−aν

2

2

]}
,

(28)
with the parameters A, a and p more recently fitted by
[40] using the abundance matching technique in N -body
simulations and ν = δc/(D+σM), with σM the mass vari-
ance. While the mass function depends explicitly on δc,
the fitted parameters are a function of the virial overden-
sity ∆V and read

a = 0.4332x2 + 0.2263x+ 0.7665 ,

p = − 0.1151x2 + 0.2554x+ 0.2488 ,

A = − 0.1362x+ 0.3292 ,

where x = log (∆(z)/∆V(z)) and ∆(z) is a given over-
density, such as a multiple of the critical density.1

Thus, the overall effect on the mass function is given by
the combination of a few factors: a different background

1 Note that our definition of the virial overdensity refers to the
background density rather than the critical one. Therefore, in
the evaluation of the mass function we scale it by Ωm, where
necessary.

expansion induced by wgdm, the evolution of structures
given by the linear growth factor D+(a) and δc, the evo-
lution of ∆V and the linear matter power spectrum P (k).

Despite the parameterization adopted here has been
originally proposed as an improved fit to ΛCDM simula-
tions [38], it has been soon afterward justified theoreti-
cally based on the ellipsoidal collapse [39]. It has been
also shown that the Sheth and Tormen parametrization
has a more general validity than just the standard ΛCDM
model, as demonstrated by [15] comparing the results
of N -body simulations for nonminimally coupled models
with theoretical estimations of the halo mass function.
The agreement was shown to be very good, provided,
though, that the model-dependent parameters (i.e., δc)
were used, rather than the common assumption in the
literature where the linear overdensity parameter for the
EdS model is used instead of the correct one. According
to this, we are confident that our choice is justified.

We present the results of our investigation in the top
panel of Fig. 4, where we show the mass function at differ-
ent redshifts, considering both ΛCDM and ΛGDM mod-
els assuming wgdm = 5 × 10−4 and c2s,gdm = 5 × 10−7

for the latter, two values within the constraints obtained
from probes of large scale structure formation [25, 26].

We note immediately that despite δc is hardly affected
and ∆V only at the percent level by the combined action
of the equation-of-state parameter wgdm and the sound
speed c2s,gdm as we previously discussed, the differential

mass function (top panel) shows strong signatures due
to the additional physics investigated. One of the main
reasons is the strong suppression of power in the linear
matter power spectrum due to c2s,gdm especially on small

scales, as shown by [21] and as we checked but do not
show here by changing the value of ∆V. As we will discuss
more in detail later, this directly explains why there is, in
general, a lower number of structures, especially for small
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FIG. 4. In the top panel we show the differential mass func-
tion as a function of mass for different redshifts using the
appropriate linear matter power spectrum for each model
(ΛCDM and ΛGDM). In the middle panel we present the evo-
lution of the square root of the mass variance as a function of
mass for different redshifts and for both models. In the bot-
tom panel we show the differential mass function as in the top
panel but using the ΛCDM matter power spectrum for both
ΛCDM and ΛGDM, while the rest of GDM model-dependant
quantities are kept. In all panels we assume wgdm = 5× 10−4

and c2s,gdm = 5 × 10−7 for the ΛGDM model.

mass objects. Finally, a part of the contribution could

also come from ∆V, as we showed that at the nonlinear
level this is the quantity more affected.

More quantitatively, there is a decrement of about 75%
and 80% for objects of ≈ 5× 1013M� h

−1 for z = 0 and
z = 2, respectively. At higher masses, differences be-
tween the ΛCDM and ΛGDM models are comparable and
of the order of 40%. At low masses though, according to
expectations, differences steadily increase with redshift.

To see why we obtain the counterintuitive result of
stronger effects at low masses, in the middle panel of
Fig. 4, we show the evolution of the square root of the
variance σ(M) as a function of the perturbation mass M
for different redshifts z. We consider both the ΛCDM and
the ΛGDM models with the same set of parameters we
used to study the halo mass function. We immediately
see that σΛGDM < σΛCDM at all masses and redshifts,
thus explaining the smaller number of halos in the GDM
model. In addition, and this is the key to explain the
results for the halo mass function, stronger differences
occur at low masses and low redshifts, as the ΛGDM
model approaches ΛCDM at higher redshifts.

To disentangle the effect of the matter power spec-
trum from that of the virial overdensity ∆V entering in
the definition of the parameters of the mass function, we
evaluate the mass function for ΛCDM and ΛGDM by as-
suming the same ΛCDM linear matter power spectrum
for both models, but keeping the other quantities rela-
tive to each model. We show this in the bottom panel of
Fig. 4.

With respect to before, we now see a completely differ-
ent situation, which is more in line with usual expecta-
tions as the major differences occur, as one would expect,
for high-mass objects. Nevertheless, differences are very
small and probably more likely due to numerical effects
rather than genuine physical effects.

These results thus show that the additional physics of
the dark matter sector has a strong impact on the observ-
ables, not only on the linear evolution of perturbations
but also on the nonlinear evolution of the formation of
structure through the halo mass function (top panel).
However, within the current linear constraints on c2s,gdm

and wgdm (see Table I), there is no significant modifi-
cation coming from changes to δc and ∆V, and this is
confirmed in the bottom panel where we replaced the
correct linear matter power spectrum for the GDM with
that expected from the ΛCDM cosmology.

C. Comparison with observations

The comparison between the theoretical and the ob-
servational halo mass function is not an easy task as one
has to take into account complications inferring the halo
mass. The determination of the mass can be done via x-
ray observations: measuring the x-ray temperature func-
tion of galaxy clusters and assuming a mass-temperature
relation, it is possible to transform it into a mass func-
tion.
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This is easy to see noticing that the halo number is a
conserved quantity and we can write

n(T, z)dT = n(M(T, z))dM , (29)

where T denotes the x-ray temperature. We have, there-
fore, to establish the relation dM/dT .

We also point out that this approach needs the catalog
used to be flux complete, which is indeed the case for
high-mass clusters. But this also implies that a proper
selection function should be used to take into account
this bias.

For a precise determination of the halo mass function
from a given sample catalog, we will use the same pro-
cedure outlined in [41]. The catalog used contains mas-
sive clusters with M > 8× 1014M� h

−1 within a comov-
ing radius R = 1.5h−1 Mpc and span a redshift range
0.05 <∼ z <∼ 0.83 which consists of four bins, each with an
effective fraction of the observed bin volume (see Table I
of [41]). The x-ray temperatures, as reported in Table II
of [41], to which we refer for a complete list of the objects
used, are taken from [42–46].

The mass-temperature relation is [47, 48]

M ′ = 1.5× 1014M� h
−1κ∆

TX
keV

1

1 + z
, (30)

where M ′ is the virial mass contained in a comoving ra-
dius R′0 = 1.5h−1 Mpc, TX the cluster x-ray temperature
and κ∆ = 0.76.

Putting this together, the observed number of clusters
in a redshift bin i is

N ′i = αi

∫ zi2

zi1

dz
dV

dz
N ′(M ′ > M ′0, z) , (31)

with

N ′(M ′ > M ′0, z) =

∫ ∞
g(M ′

0)

dM n(M, z) , (32)

and the function g relates the observed mass M ′ to the
virial mass and returns the fiducial mass adopted in the
observations. We refer the reader to Appendix B of [41]
for details on how to evaluate this function. The param-
eter αi represents the fraction of the volume observed at
that redshift bin. In other words, this means that for a
given redshift bin, there is a minimum mass below which
the object cannot be detected by the particular survey
considered. As the sample is at relatively small redshifts,
effects on the selection function due to the cosmology are
negligible, taking into account that the background ex-
pansion for the GDM model is extremely close to that of
ΛCDM. Finally note that this cluster sample was used
by [49] to put constraints on the parameters of the non-
spherical collapse model in the ΛCDM framework.

In Fig. 5 we present a comparison for the number of
objects above a given mass and in a given redshift in-
terval for three different models: the reference ΛCDM
and two GDM models with realistic values for the two
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FIG. 5. Number of objects above a given mass, as explained in
the text, in a given redshift bin. We consider 25 bins between
z = 0 and z = 1 and three different cosmological models:
ΛCDM (black line), GDM with wgdm = 5×10−4 and c2s,gdm =

5 × 10−7 (orange line), and GDM with wgdm = 5 × 10−4 and
c2s,gdm = 5 × 10−6 (purple line).

parameters wgdm and c2s,gdm. For the GDM models, we

set wgdm = 5× 10−4 and c2s,gdm = {5× 10−7, 5× 10−6}.
We consider 25 redshift bins between the redshift inter-
val 0 ≤ z ≤ 1 and we show the number of objects with
respect to the central value of the bin. It is clear that the
sound speed has an important quantitative effect on the
halo count, but the shape of the curves is generally the
same. The overall effect of increasing the sound speed is
a decrease in the number of objects above a given mass,
rather independent of the mass. Some stronger effect is
seen, as expected, for the high-mass end. From a more
quantitative point of view, increasing the sound speed by
an order of magnitude leads to about 3 orders of magni-
tude less objects over the redshift interval investigated.
For the GDM model with c2s,gdm = 5 × 10−6 the differ-
ences with respect to ΛCDM are about a factor of 2 and
for high redshifts, due to the low number of objects, usu-
ally within the uncertainties of the observational probes.

We can now evaluate the χ2 for the three models dis-
cussed in Fig. 5 using the data and the procedure dis-
cussed in [41] constructing a likelihood function L based
on Poisson statistics [50]

lnL = lnP(Ni|ni) =

Nb∑
i=1

[Ni lnNi − ni − ln (Ni!)] ,

(33)
where P(Ni|ni) is the probability of finding Ni clusters
in each of the nb bins given an expected number of ni in
each bin in redshift.

For the ΛCDM model we find χ2/dof ≈ 6.7/4 with
fixed values of the cosmological parameters (Ωm =
0.33, σ8 = 0.81, h = 0.675, ns = 0.965), while for the
GDM models with c2s,gdm = 5 × 10−7 and c2s,gdm =
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5×10−6 (and the same cosmological parameters) we find
7.9/4 and 60.6/4, respectively. It is immediately clear
that the ΛCDM model is in better agreement with data
with respect to these particular ΛGDM models, and this
is a direct consequence of the strong suppression induced
by the large sound speeds chosen. It is important to
note that this does not disfavor ΛGDM in any way, since
ΛCDM is a particular case of it. What can be extracted
from these results is that values of the GDM parameters
currently allowed by measurements in the linear regime
(Table I), provide a worse χ2 for GDM. Therefore, small-
scales cosmological probes, like cluster counts, will enable
to improve our constraints on the GDM parameters and
allow us to improve our knowledge on the nature of dark
matter.

D. The nonlinear matter power spectrum

The final part of our investigation deals with the evo-
lution of the matter power spectrum. In general, there
are no theoretically motivated procedures which allow us
to evaluate the nonlinear evolution of structures. The
spherical collapse model is a welcome exception to that
and, despite its simplifications, it has proven to be very
useful and in very good agreement with results from N -
body simulations about the evolution of the mass func-
tion. This has been shown with detailed studies for
ΛCDM cosmologies comparing the Sheth-Tormen mass
function [38, 39] with the Millennium simulation [51] or
for nonminimally coupled models [15].

For the nonlinear matter power spectrum, the situa-
tion is rather different. Usually, one can use some fitting
function for the ΛCDM model [52] or the halo model [9]
and adapt them to the particular model considered. This
has been done, for example, in [53] for f(R) models.

For GDM models, in a recent work [26], the authors de-
veloped a formalism in the framework of the halo model
to explore how the nonlinear matter power spectrum
could evolve. To do so, they used a modified concentra-
tion parameter based on the recipe for warm dark matter
of [54, 55]. As the halo model also requires the knowledge
of the halo mass function, [26] related the evolution of δc
to that of the ΛCDM model according to the idea that
if in GDM models power is removed, then the collapse
should be inhibited.

The final result of their machinery is given in their
Fig. 2. Nonlinear effects kick in at smaller scales than the
ΛCDM, but the main feature is that also the nonlinear
spectrum shows a strong suppression of power. We note
that this procedure needs, of course, to be validated with
suitably modified N -body simulations and it relies, at
this stage, on several, albeit plausible, assumptions.

In this work, we, therefore, follow a different approach,
which is also used for modified gravity models and does
not rely on the knowledge of the nonlinear evolution
of perturbations in GDM models, but only on that of
a ΛCDM model. The idea is, in fact, to consider a
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FIG. 6. Evolution of the linear (solid lines) and nonlinear
(dot-dashed lines) matter power spectra for the ΛCDM (pur-
ple lines) and ΛGDM (red lines) models at z = 0. The blue
dot-dashed line represents the nonlinear matter power spec-
trum using the halo-model prescription of [26]. For the GDM
model, we assumed the following parameters: wgdm = 10−4

and c2s,gdm = 10−6.

ΛCDM model with the same cosmological parameters of
the GDM model, determine its nonlinear matter power
spectrum using the recipe of [56] and divide it by the
linear spectrum. This quantity represents a nonlinear
transfer function mapping the linear power spectrum into
the nonlinear one. Multiplying the linear GDM matter
power spectrum by the nonlinear transfer function, one
obtains the corresponding nonlinear evolution of the mat-
ter power spectrum. We note that this approach has been
used by [57] to constrain Horndeski models using cosmic
shear, galaxy-galaxy lensing and galaxy clustering with
the KIDS [58, 59] and GAMA surveys [60–62]. As the
laws of gravity are not modified, we do not need to take
into account further screening mechanisms.

Our results are presented in Fig. 6, where we com-
pare the linear and nonlinear matter power spectrum of
a ΛGDM model with the corresponding ΛCDM ones at
z = 0. For the GDM model we assumed wgdm = 10−4

and c2s,gdm = 10−6, in agreement with constraints in [26].
With such a low value of the sound speed, the linear

spectra of the ΛCDM and ΛGDM models agree rather
well up to k ≈ 0.02 hMpc−1, but on smaller scales the
new physics kicks in and we easily see a strong suppres-
sion in structure, which becomes more and more pro-
nounced the smaller the scale is: for k ≈ 1 hMpc−1 the
two spectra differ by about a factor of 300.

A very similar behaviour is obtained when comparing
the nonlinear matter power spectra for the two models.
This is easy to understand as the linear GDM spectrum
was scaled by the nonlinear transfer function defined
above. We remark that this does not have to be the case
in general. In addition, it is useful to take into account
that our nonlinear mapping is purely phenomenological
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and, if we exclude the behavior at the linear level, there
is no direct dependence on the GDM parameters.

It is therefore important to compare our predictions
with the generalized halo model of [26]. The two dif-
ferent approaches give very similar results up to k ≈
0.4 hMpc−1, but on smaller scales the rescaling method
proposed here shows much less power than the halo-
model approach discussed in [26]. To see whether this
is a general feature, we also considered the case with
wgdm = 10−4 and c2s,gdm = 10−5. In this case, while
our approach still shows an increase of power on small
scales, the halo model does not lead to any difference be-
tween the linear and nonlinear matter power spectrum,
as a high sound speed completely hampers nonlinearities.
This probably shows a failure in the regime of validity of
the halo model which, though, should not have practical
consequences as this value has been already ruled out by
linear analysis.

IV. CONCLUSIONS

In this work we discussed how the equation-of-state
parameter wgdm and the sound speed c2s,gdm for general-

ized dark matter (GDM) affect the properties of the two
main quantities of the spherical collapse model, the lin-
ear overdensity parameter δc and the virial overdensity
∆V.

We compared them with the corresponding quantities
derived for the standard ΛCDM model for different values
of wgdm and c2s,gdm. We demonstrated that the parameter
mostly affecting their evolution is the background equa-
tion of state wgdm, while the sound speed c2s,gdm, within
the constraints from linear probes, has a negligible con-
tribution to the overall nonlinear evolution.

The effect of the two additional quantities describing
the GDM properties is strongly dependent on the matter
density parameter Ωm. We saw that the lower the matter
density parameter, the stronger are the deviations from a
ΛCDM model, as higher initial overdensities are required
to overcome the accelerated expansion of the Universe to
allow structures to collapse.

Since the spherical collapse parameters are not di-
rect observables, we used their evolution, together with
the linear matter power spectrum P (k) obtained for the
GDM model, as building blocks for the halo mass func-
tion. We found that major deviations take place on
smaller mass objects, rather than at higher masses and
this is a direct consequence of the modifications on the
linear matter power spectrum, as we verified by using
the linear matter power spectrum of the ΛCDM model
for both cosmologies (bottom panel of Fig. 4). In this
case in fact, differences are much smaller and in line with
expectations: the decrease is stronger at higher masses,
albeit in general at the subpercent level. The overall
effect of the GDM dynamics is that of decreasing the
number of halos, as additional pressure terms kick in the
equations of motion. This is a strong effect, up to 70% al-

ready at z = 0 and 80% at z = 2 and of the order of 40%
for objects of M ≈ 1015M� h

−1. Due to the abundance
of galactic objects, this effect should be easily seen and
therefore put strong constraints on the GDM parameters.

We finally note that, while both important to com-
pletely characterize the dynamics of GDM models, the
equation-of-state parameter wgdm and the sound speed
c2s,gdm act on two different sets of observables. The first is
important mainly at the nonlinear level, while the latter
is very important for the evolution of the linear matter
power spectrum, which reflects, of course, on the halo
mass function. Therefore, while heavily constrained at
the linear level already, the two GDM parameters can be
further strongly constrained if probes at the nonlinear
level are combined.

With the effect on the mass function being detectable
with present and most importantly, near-future deep sur-
veys, we remark that a proper analysis of the additional
degrees of freedom in a particular cosmological model
needs to be taken into full consideration, especially if we
do not fix the matter density parameter to the fiducial
value. As a practical example for GDM models, a robust
measurement of the matter power spectrum and of the
mass function, or more generally in the nonlinear regime,
can lead to stronger constraints on the GDM parameters.

To this purpose, we implemented a phenomenological
approach to study the evolution of the nonlinear mat-
ter power spectrum P (k). Knowing the linear and non-
linear matter power spectrum for a ΛCDM model, we
derive a “nonlinear” transfer function which we multi-
ply with the GDM linear spectrum to infer its nonlinear
counterpart. While being approximated, we checked that
this approach gives results in good agreement with the
more sophisticated approach based on the halo model
discussed in [26] up to k ≈ 0.4 hMpc−1 and on small
scales a strong lack of power in our approach with re-
spect to [26]. For large values of the sound speed, while
the approach presented in this work still clearly shows a
different evolution between linear and nonlinear spectra,
this is not the case anymore for the halo-model approach,
as the sound speed completely wipes out any nonlinear
evolution. This might, eventually, show a breakdown of
the halo model in its current form. We caution, however,
that a proper determination of this quantity can be done
with accurate N -body simulations.

Rather than the differential mass function itself, it is
possible to compare theoretical predictions with the num-
ber counts one can infer from observed halo catalogs. For
that, we compared our predictions with the halo cata-
log used by [41, 49] to put constraints on the dark en-
ergy models and to extensions of the spherical collapse
model. We chose the catalog used by [41] as it allows
us a study also at higher redshifts, where stronger dif-
ferences are expected. Studying the χ2, we showed that
ΛGDM models with GDM parameters allowed by obser-
vations in the linear regime provide worse χ2 values than
ΛCDM. This shows that cluster counts, and especially fu-
ture larger and deeper surveys, will allow us to put more
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stringent constraints on the nature of dark matter. Note
that an increase in our dark matter knowledge is very
important, since we showed that a change in the values
of GDM parameters could translate into changes of large
scale structure abundance. These could then help to ex-
plain recent discrepancies between local and deep large
scale structure measurements of the growth of structures,
which common modifications to ΛCDM failed to achieve
[63].
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B. Moore, MNRAS 424, 684 (2012), arXiv:1112.0330
[astro-ph.CO].

[55] D. J. E. Marsh, arXiv e-prints , arXiv:1605.05973 (2016),
arXiv:1605.05973 [astro-ph.CO].

[56] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and
M. Oguri, ApJ 761, 152 (2012), arXiv:1208.2701 [astro-
ph.CO].

[57] A. Spurio Mancini, F. Köhlinger, B. Joachimi, V. Pet-
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