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Abstract. A quasi-static approximation (QSA) for modified gravity can be applied in a number
of ways. We consider three different analytical formulations based on applying this approximation
to: (1) the field equations; (2) the equations for the two metric potentials; (3) the use of the attractor
solution derived within the Equation of State approach. We assess the veracity of these implementa-
tions on the effective gravitational constant (µ) and the slip parameter (η), within the framework of
Horndeski models. In particular, for a set of models we compare cosmological observables, i.e., the
matter power spectrum and the CMB temperature and lensing angular power spectra, computed using
the QSA, with exact numerical solutions. To do that, we use a newly developed branch of the CLASS
code: QSA_class. All three approaches agree exactly on very small scales. Typically, we find
that, except for f (R) models where all the three approaches lead to the same result, the quasi-static
approximations differ from the numerical calculations on large scales (k . 3 − 4 × 10−3 h Mpc−1).
Cosmological observables are reproduced to within 1% up to scales K = k/H0 of the order of a few
and multipoles ` > 5 for the approaches based on the field equations and on the Equation of State, and
we also do not find any appreciable difference if we use the scale-dependent expressions for µ and η
with respect to the value on small scales, showing that the formalism and the conclusions are reliable
and robust, fixing the range of applicability of the formalism. We discuss why the expressions derived
from the equations for the potentials have limited applicability. Our results are in agreement with pre-
vious analytical estimates and show that the QSA is a reliable tool and can be used for comparison
with current and future observations to constrain models beyond ΛCDM.
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1 Introduction

The current accelerated expansion of the Universe has been established by many different probes
[1–8]. Observations are all compatible with the presence of a cosmological constant Λ. However, its
tiny value is disconcertingly smaller than what naturally expected in quantum field theory (see, for
example [9–11]). This has led to investigate many extensions of the standard cosmological model
where dark energy and modified gravity are responsible for the cosmic acceleration [12–19].

In models alternative to ΛCDM there is, in general, a different structure formation history which
can be seen in modifications of the matter power spectrum P(k) and angular temperature anisotropy
power spectrum CTT

` . Since the field equations describe the evolution of two metric potentials, these
modifications can be, in general, parameterised with two independent functions [20–24]: the effective
gravitational constant µ and the slip parameter η. For a generic model, these are functions of time (or
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of the scale factor a) and scale k. Often, though, simplified and phenomenological expressions that
only depend on time are used to study deviations from the ΛCDM fiducial model.

These two functions are often thought of as being derived from the quasi-static approximation
(QSA) [25]. The basic idea is that time derivatives are subdominant with respect to spatial derivatives.
This relies on the assumption that the relevant time scale for cosmological perturbations is the Hubble
parameter (i.e., d/dt ∼ H). This is the same assumption which leads to the Newtonian limit in general
relativity, which on scales smaller than the horizon has proven to be an excellent approximation as
demonstrated by N-body simulations. However, the application of the QSA formalism can be applied
to different, but physically equivalent, equations of motion.

The QSA has been applied to the linearized field equations or gravitational potentials [25–
28], and more recently, within the formalism of the Equation of State (EoS) approach [29–37] in
[38] and time- and scale-dependent expressions for µ and η were derived. These were verified to
exactly recover expressions already presented in the literature [27, 28, 39–41] in the small-scale limit
K = k/(aH) → ∞. Different methods appear to disagree in the limit K → 0, but this is expected
because on these scales the QSA does not hold.

For the QSA to be valid, the scales considered have to be below the sound horizon Ksh =

csk/(aH) = csK, where cs is the sound speed associated to the scalar field perturbations [28, 42]. We
require, in particular, that k � aH/cs. Hence, for models with a very small sound speed, the QSA
might have very limited applicability or not be applicable at all.

In the literature, a few works concentrated on f (R) models and studied when the exact results
are recovered by applying the QSA. In [43], the authors derived a fourth-order growth-factor equation
in time1 and compared it to the QSA solution. The two, in general, differ unless w ∼ −1 (as for the
ΛCDM background) and if d f /dR = fR � 1 at a = 1. This happens because when fR � 1, the
coefficients of the fourth- and third-time derivative become negligible and the equation reduces to a
second-order one. Moreover, if w ∼ −1, the coefficients of δ′ and δ have the right QSA limit, i.e.,
they reduce to the standard expression derived in other works.

In [42, 44], the analysis is based on the evolution of the scalar field and it specifies the evolution
of the background and of the perturbation part. For the latter, oscillations may arise. If oscillations
are negligible on scales smaller than the horizon, the QSA works well, otherwise this is not the case.
A fundamental assumption in this analysis is that fR � 1 and the background is close to ΛCDM.
Nevertheless, it has been shown by [25] and [42] that, in general, the QSA works in most viable
models.

In the literature, there is an impressive body of work studying the properties and the conse-
quences of the QSA, ranging from the determination of the expressions for selected models to its use
to rule out dark energy and modified gravity models based on the properties of µ, η and Σ (which we
will define later) [45]. We refer to [46] for a recent and exhaustive review of the phenomenology of
the QSA.

The QSA is important for two related reasons: (i) the equations to be solved are much simpler
than the full ones, being algebraic rather than differential, hence simplifying the numerical imple-
mentation in software; (ii) the formalism allows us to interpret results quickly and in a simple way in
terms of quantities already known (e.g., a modified gravitational constant). Hence, on scales where
it is reliable, it is a crucial tool to be applied to observations and to advance in our knowledge of the
theory of gravity on cosmological scales.

In this work we will provide a detailed study of three different expressions (field equations, met-
ric potentials and EoS approach) for the modified gravity functions µ and η obtained by applying the

1This is a consequence of the presence of two degrees of freedom.
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QSA to the Horndeski theories [47–49]. Our goal is to understand how well they recover the correct
behaviour as a function of scale K, by comparing them to the exact numerical solution obtained from
the code EoS_class [38] which was tested against hi_class [50, 51] and showed to agree at the
sub-percent level. We do this by comparing to the exact forms of µ and η extracted from the code and
with observables, such as the matter power spectrum, P(k), angular power spectrum of temperature
anisotropies, CTT

` , and the CMB lensing power spectrum, Cφφ
`

. This is done by implementing the
equations of motion modified to include µ and η as described in [52] in a newly designed branch of
the Einstein-Boltzmann solver CLASS [53, 54], which we call QSA_class.

The plan of the paper is as follows: in Section 2 we provide a short introduction to the un-
derlying mathematical framework which will serve as basis for the subsequent discussion, while in
Section 3 we present the different expressions for µ and η using the QSA for different approaches. In
Section 4 we perform a detailed comparison of the expressions for the different approaches and spec-
ify them to selected classes of models. In Section 5 we compare the analytical expressions derived in
Section 3 with the exact numerical expectations for the same classes of models studied in [38], assess
their regime of validity, and discuss when they break down and depart from the numerical solution.
In Section 6 we show the spectra obtained from the different expressions for the modified gravity
parameters and discuss their performance, comparing the approximated spectra with the exact ones.
We finally conclude in Section 7. In the Appendices A, B, and C we outline the application of the
QSA to the field equations, to the metric potentials and to the EoS expressions, respectively. We also
provide the coefficients required to derive the final expressions.

For this work, where necessary, we will use the same fiducial cosmological parameters used in
[38, 50]: the CMB temperature TCMB = 2.725 K, the Hubble parameter today H0 = 67.5 kms−1Mpc−1,
flat spatial geometry Ωk = 0, baryon density parameter today ωb = Ωbh2 = 0.022, cold dark matter
density parameter today ωCDM = ΩCDMh2 = 0.12, effective number of neutrino species Neff = 3.046,
dark sector density parameter today, as inferred by the closure relation (

∑
i Ωi = 1), Ωds = 0.688.

We further assume that the normalisation of the amplitude of the initial density perturbations is
As = 2.215 × 10−9, the slope of the primordial power spectrum is ns = 0.962 and the reioniza-
tion redshift is zreio = 11.36 under the assumption of instantaneous reionization. We will assume that
the background equation of state for the dark sector is wds = −1, as for a ΛCDM background. We
also denote with Ωm the total matter density parameter. For model 1 (defined later), however, having
wds = −1 leads to conceptual problems, therefore, we will assume wds = −0.95. Although the as-
sumption wds = −1 leads to a particular class of Lagrangians for Horndeski theories (see, for example
[55]), it is possible for many others to have a background equation-of-state parameter arbitrary close
to that of the ΛCDM model, justifying our assumption.

To facilitate the comparison of our results with other works in the literature, we provide an
extensive dictionary between our notation and those of previous works in a Supplementary data doc-
ument entitled: Supplementary Materials.

2 Preliminaries

2.1 Basic notions

For our calculations, we will closely follow the approaches and definitions of [28] (for the field
equations and the two equations for the metric potentials) and [38] for the EoS approach, introduced
before in [34] and used also in [35–37]. We define the perturbed Newtonian metric for scalar density
perturbations [28]

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Ψ)δi jdxidx j , (2.1)
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and the total matter (cold dark matter, baryons, photons, neutrinos) stress-energy tensor

T 0
0 ≡ − (ρm + δρm) , (2.2)

T 0
i ≡ ∂iqm ≡ (ρm + Pm) ∂ivm = −a2T i

0 , (2.3)

T i
j ≡ (Pm + δPm) δi

j +

(
∂i∂ j − 1

3
δi

j∂
2
)
σm , (2.4)

where ρm and Pm denote the background matter density and pressure, and δρm and δPm the corre-
sponding perturbed quantities; the velocity potential is denoted by vm and qm is the rescaled velocity.
The matter anisotropic stress is σm. At late times, matter pressure and anisotropic stress are, in
general, negligible, but we will keep them for completeness, as they are important for the study of
neutrinos, as shown in [52].

Using the gauge-invariant notation of [34, 38], the matter variables introduced in the stress-
energy tensor become

qm → −ρmΘm
3H , δm → ∆m − Θm , δPm/ρm → wmΓm + c2

a,m(∆m − Θm) , σm → −a2PmΠm/k2 ,

where c2
a,m ≡ dPm/dρm is the matter adiabatic sound speed and δm the matter density constrast

δρm/ρm. The (total) matter entropy perturbations and anisotropic stress are, respectively, wmΓm and
wmΠm. We also identify, using the gauge-invariant notation,

Φ ≡ Y , Ψ ≡ Z , W ≡ 1
2

(Z + Y) , X ≡ Z′ + Y =
1
2

(ΩmΘm + ΩdsΘds) ,

where W is the Weyl potential which describes light deflection (i.e., gravitational lensing) and the
variable X is used later in the EoS approach. The prime represents the derivative with respect to ln a
and Θds is the rescaled velocity of the dark sector. With respect to the notation used in the CLASS
code, φ → Z and ψ → Y . For other variables used in CLASS the reader might be interested to, we
refer to [38] for details.

2.2 Parameterization of modified gravity models

For each of the three potentials defined above, Z, Y and W, we can associate an “effective gravitational
constant” Geff = Gµx, with G the Newton gravitational constant and x ∈ {Z,Y,W}, which is now a
function of time and scale. In particular, if we write a “Poisson-like” equation, then we can define

µZ ≡ − 2
3

K2Z
Ωm∆m

, µY ≡ µ = −2
3

K2Y
Ωm∆m

, µW ≡Σ = −2
3

K2W
Ωm∆m

=
1
2

(µZ + µ) , (2.5)

η ≡ Z
Y

=
µZ

µ
, γ ≡ Y − Z

Z
=

1
η
− 1 , g ≡Z − Y

Z + Y
=
µZ − µ
µZ + µ

=
η − 1
η + 1

. (2.6)

For simplicity and for a better intuition of the physics involved, we will perform our calculations in
the Newtonian gauge.

The field equations describe the evolution of two degrees of freedom, the Bardeen potentials Ψ,
the space-space perturbation, and Φ, the time-time perturbation, following the notation of [28]. We
can, therefore, describe a generic cosmological model with two independent parameters among those
in Eq. (2.5) and all the others can be derived from them. The function Gµ is sometimes called Geff

(or Gmatter) in the literature [23, 28] and it represents the effects of modifications of gravity on non-
relativistic particles, as matter perturbations are sensitive to the gradient of the gravitational potential
associated to this function.
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The effect of µZ is not directly observable, and therefore it is customary to consider another
function, the gravitational slip η (also often called γ in the literature [28, 52]), which parameterises
the different evolution of Φ and Ψ relative to each other. In other words, when η = 1, the gravitational
potentials are the same and evolve exactly in the same way (as, for example, in general relativity and
minimally coupled models) at late times, when no matter anisotropic stress is present, but they evolve
differently when η , 1.

Another function which can be defined is Σ, associated to the Weyl potential, which probes the
effect of weak gravitational lensing. In the literature, it is also sometimes called Glight = GµW [45].
In general relativity, for a ΛCDM model, these functions are constant and all equal to unity.

One can also define other functions related to the slip η [56]: γ (denoted with $ in [57]) and
g. The function g is of great importance for the studies of gravity in the Solar System, as it is the
quantity constrained by the Cassini mission [58].

What is the best choice of the pair of functions used is somehow arbitrary, so long as they are
independent. Commonly studied pairs are: (µZ , µ), (µ, η) and (µ,Σ). The first set is in general not
used because only the effects of µ are more easily observed, but the other two are widely employed
in cosmological studies. Here we focus on the last pair of parameters, (µ,Σ). One can measure µ by
studying matter evolution and Σ by light propagation. A nice property of the pair (µ,Σ) is observed
by writing µ in terms of Σ and η [59]:

µ − 1 = 2
Σ − 1
1 + η

− η − 1
1 + η

,

which shows a 45°correlation when η ' 1. This can help distinguishing specific classes of models,
in particular late and early dark energy scenarios, as opposed to early modified gravity models, as
discussed in depth in [59]. Focusing on the second pair of observables, (µ, η), would not change the
conclusions of the paper.

Effects of these functions (µ, η and Σ) have been studied in the widely used code MGCAMB
[60, 61] which has been recently extended to include effects of massive neutrinos [52]. This code,
which represents a patch to the Einstein-Boltzmann code CAMB [62], offers the user the possibility
of choosing between two different sets of modified gravity parameters, (µ, η) and (µ,Σ),2 and it also
implements the time- and scale-dependent functions R and Q introduced in [23].3 The MGCAMB code
allows not only phenomenological parametrisations, but also expressions for specific models. We
refer the reader to [52] for a thorough discussion of the several parametrisations implemented.

2.3 Horndeski models

We limit our analysis to the Horndeski models for modified gravity. Perturbation dynamics is de-
scribed by four functions: the kineticity αK, the braiding αB, the rate of running of the Planck mass
αM, and the tensor speed excess αT [27]. Each of them has a precise physical meaning: αK only
affects scalar perturbations and describes perfect fluid (no energy flow and anisotropic stress) dark
energy models; αB also only affects scalar perturbations and describes the mixing of the kinetic terms
of the scalar field and of the metric giving rise to a fifth-force; αM contributes to both scalar and
tensor perturbations and to the anisotropic stress (η , 1); αT parameterises deviations of the speed of
gravitational waves cT from that of light: c2

T = 1 + αT. Defining the effective Planck mass M2, the
relation between M2 and αM is αM ≡ d ln M2

d ln a . For their definition in terms of the Horndeski functions,
see references [27, 28, 38].

2The actual implementation does not change as η = 2Σ/µ − 1.
3In the notation used in this work, Q ≡ µ and R ≡ η.
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Gravitational waves measurements [63–65] suggest that within the Horndeski class of models
one should set αT ≡ 0, but for completeness we will consider models with αT , 0 to study the
performance of the QSA.

We consider the same benchmark models discussed in [38], to which we refer the reader for
more details. Here, it suffices to remember which of the α are different from zero and the generic
class of models they represent.

1. k-essence-like models: αK , 0, αB = αM = αT = 0 [66].

2. f (R)-like models: αK = αT = 0, αM , 0, αB , 0. These models reduce to f (R) cosmologies
[67–69] when αM = 2αB and have been studied and compared in our previous works [36, 70].

3. KGB-like models: αK , 0, αB , 0, αM = αT = 0 [71–75].

4. αK , 0, αM , 0, αB = αT = 0. These are a particular subclass of the next more general class
of models and satisfy a differential relation between the Horndeski functions G3 and G4 such
that XG3,X + G4,φ = 0. We refer to [38] for more details. Note that here X = ∇µφ∇µφ is the
kinetic term of the scalar field φ.

5. cT = 1 models: αK , 0, αB , 0, αM , 0, αT = 0. These represent the most generic Horndeski
model compatible with GW constraints [76–78]. Within this class of models, there often exists
a relation between αB and αM, such as in the no slip gravity model proposed by [79] and
analysed in detail by [80, 81], where αB = αM. Models with αM = 2αB are conformally related
to general relativity (i.e., they possess an Einstein frame where the gravitational kinetic term is
described by the Einstein-Hilbert action; see, e.g., [82]). In this case, for αK = 0 one reduces
to f (R) models. However, differences with respect to f (R) appear only on large scales [38].

6. Generic Horndeski models: αK , 0, αB , 0, αM , 0, αT , 0. This is the most general
Horndeski model.

3 Derivation of the QSA expressions for µ and η

In this section, we discuss the three approaches to the QSA that we will study and present the func-
tions µ and η. After a brief discussion of the steps required to correctly apply the approximation,
we present the form of µ and η. For a more detailed derivation of the equations, we refer to the
corresponding appendices A, B and C.

As we have already explained, the basic idea of the QSA is that the time derivatives are assumed
to be negligible with respect to spatial derivatives, as we usually deal with scales smaller than the
(sound) horizon Ksh = csk/(aH) � 1, where k is the wavelength mode, cs the sound speed of the
scalar field perturbations, a the scale factor and H the Hubble function. In this way, dynamical
equations are turned into constraint equations and can be written as generalised “Poisson equations”,
where Newton’s constant is replaced, in the Fourier space, by a function of space and time due to the
presence of additional fluids or new degrees of freedom.

The QSA applied to different sets of equations can lead to different expressions in the large scale
limit (K→ 0) as the approximations break down on these scales. On small scales (K→ ∞), however,
it is easy to show that all the expressions have the same limit which we label µ∞ and η∞ (and also
µZ,∞ and µW,∞). This is because there is a precise hierarchy: K2Φ ∼ K2Ψ ∼ ∆m and δφ/Mpl ∼ Φ ∼ Ψ,
where δφ is the perturbed scalar field. Hence, an important aspect of the analysis performed in this
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work is to understand where the different expressions coincide and results are robust and where they
differ.

To derive the expressions for the modified gravity parameters under the QSA, in each case we
apply the following procedure:

• neglect time derivatives;

• consider only relevant terms on sub-horizon scales, i.e., assume K � 1;

• for the equation of motion of the perturbed scalar field, take also into account (i.e., keep the
corresponding coefficient of) the mass term associated to the scalar degree of freedom;

• if dark sector variables are present, rewrite them in terms of matter variables;

• write the expressions as “Poisson-like equations”;

• use Eqs. (2.5) to infer µ, µZ and Σ;

• infer η from the relation between the potentials.

We need to assume a functional form for µ, µZ , η and Σ and we will use a notation similar to
that of [40]; in particular we shall use

µQSA
Z =

µZ,+0 + µZ,+2K2 + µZ,+4K4

µ−0 + µ−2K2 + µ−4K4

1
M̄2

,

µQSA =
µ+0 + µ+2K2 + µ+4K4

µ−0 + µ−2K2 + µ−4K4

1
M̄2

,

ηQSA =
µZ,+0 + µZ,+2K2 + µZ,+4K4

µ+0 + µ+2K2 + µ+4K4 ,

where M̄2 = M2/M2
pl, M−2

pl = 8πG and M2 is the effective Planck mass squared. In the previous three
expressions, the different coefficients used represent time-dependent functions, written in terms of
the αX, which can be derived by applying one of the three QSA approaches described in this work.
A positive (negative) subscript is used for the numerator (denominator) and its numerical value refers
to the corresponding power of K, while the index Z is used for µZ (and η as a derived quantity).

The superscript QSA will be replaced by the acronym referring to the particular approximation
scheme used: EFE for the effective field equations, MP for the two equations for the metric poten-
tials and EoS when using the attractor solution based on the EoS approach. In the semi-dynamical
approach of [40], the above expressions contain terms proportional to K6, as time derivatives of the
potentials are taken into account. The expressions for the semi-dynamical approach have the same
limit on small scales M̄2µ∞ = µ+6/µ−6 as the one found in this and in previous works. In fact
µ+4 = µ+6 and µ−4 = µ−6 and our expressions with lower powers in K can be derived from those in
[40] as there at least µ+0 and µ−0 are zero. However, it is not guaranteed that µ+0 (µ−0) in this work
coincides with µ+2 (µ−2) in [40].

3.1 Effective Field Equations (EFE) approach

Our starting point are the four field equations augmented by the equation of motion for the perturbed
scalar field, which, following the notation of [28], is denoted by π. In a more common notation
where the perturbations of the scalar field φ are denoted by δφ, one has π = δφ/φ̇. We anticipate that
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choosing π or δφ does not affect the functional form of µ and η, but it changes the mass term for the
scalar field, i.e., M2

π , M2
δφ. We will discuss this point later on in the section.

Here, we briefly outline the procedure followed to derive the expressions for µ and η and we
refer the reader to appendix A for a detailed derivation. We start from Eqs. (A.1) and neglect all terms
containing time derivatives. We further assume a sub-horizon limit where K � 1 and we, therefore,
only consider terms with explicit dependence on K2. Among the terms without a dependence on scale,
we consider the term Cπ

π in Eq. (A.1e) as it represents a mass term associated with the perturbed scalar
field which can be comparable to K2, as is the case of f (R) models [69].

This procedure leads to Eqs. (A.2) and we can solve the system for the two potentials and the
perturbed scalar field π. Using the gauge invariant notation and the definitions in Eq. (2.5), it is easy
to find the expressions for µ and η, whose coefficients are

µ+0 = (1 + αT) µp , µ−0 = µp , µZ,+0 = µp , (3.1a)

µ+2 =αc2
s M̄2µ∞ , µ−2 =αc2

s , µZ,+2 =αc2
s M̄2µZ,∞ , (3.1b)

where

µp = 6



(
Ḣ +

ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H

∂
(
ḢαB

)

∂t


/H4 , (3.2)

and µ+4 = µ−4 = µZ,+4 = 0. We also defined α = αK + 6α2
B and c2

s represents the sound speed of the
perturbations. Its explicit expression is given in Appendix C, Eq. (C.12).

For completeness, we also consider the relationship between the perturbed scalar field π and the
gauge-invariant matter density perturbation ∆m

Hπ = − µπ

µ−0 + µ−2K2

1
M̄2

Ωm∆m , (3.3)

where µπ = 3[αB(1 + αT) + αT − αM].
It is interesting to consider the limits of µ, η and π on small and large scales. On small scales

(K→ ∞), µ = µ∞ and η = η∞ in agreement with [38] and references therein, while π = π∞ ∝ ∆m/K2,
i.e., on small scales the perturbed scalar field is of the same order of magnitude of the potentials
and the velocity perturbations. This can be understood by looking at Eq. (A.1b). On large scales
(K → 0), we find µ = µ0 = 1 + αT and η = η0 = 1/(1 + αT), that is, models where gravitational
waves do not propagate luminally will be clearly distinguishable from general relativity. This is
also one of the conclusions reached in [45], to which we refer for an in-depth discussion. However,
in [83–85] the authors discuss a class of models where (in the notation of this work) µ = η = 1
with all the α functions different from zero. This is achieved by fixing the sound speed c2

s = 1 and
deducing a relation between αT and αM (see their Eq. (2.22)). Assuming an exact ΛCDM background,
these models are completely degenerate with ΛCDM, both at the level of the background and linear
perturbations. In other words, linear perturbations are indistinguishable from the ΛCDM, even at
large K. To break the degeneracy in measurement of the large scale structure, αT has to be inferred,
with the help of gravitational waves. Our result, based on the use of a QSA, is clearly at odds with
these works. This can be interpreted as an artefact of making a QSA, as on the horizon scale the
assumptions behind it break down.

The resulting expressions for µ and η are quadratic in K, consistent with previous works. In
particular, we find that the values of the coefficients of the expressions for µ and η are in agreement
with those provided by [39, 41, 45, 59, 86–90]. We also note that the coefficients for µ and η discussed
in [88] reduce to Eqs. (3.1) in the Horndeski limit.
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Similar expressions were first derived by [91] and later confirmed by [92]. The main difference
with respect to our approach is that we have chosen a different variable for the scalar field perturba-
tion; we used π, whereas [91] used δφ. These choices lead to the same result on small scales (we
verified that their expressions are in agreement with the coefficients µ±2 and µZ,+2) and on the same
limit on large scales µ0 and η0, but the coefficients µ±0 and µZ,+0 differ from ours, as these terms are
proportional to the mass associated to the scalar degree of freedom, which is different when using π
or δφ. One can show that, in general,

M2
δφ =



2
(
φ̈

φ̇

)2

−
...
φ

φ̇

Cπ
π̈ −

φ̈

φ̇
Cπ
π̇ + Cπ

π


M2

φ̇2
, (3.4)

where, as before φ represents the value of the scalar field at the background level and Cπ
π is the mass

of the scalar field using the variable π.
To understand why this is the case, it suffices to consider again the relation between π and δφ,

δφ = φ̇ π. When considering the equation of motion of the scalar field, there are terms involving its
derivatives and since they contain terms proportional to π, it is clear that M2

δφ , Cπ
π. We will give

more details on the relation between the set of coefficients in the field equations in the Supplementary
data. As the limits on both large and small scales coincide, we will only consider the expression for
π, as in this case there is no dependence on the background evolution of the scalar field.

3.2 Metric potentials approach

The field equations can be combined into two independent equations, one describing the evolution of
the potential Ψ (Z in the gauge-invariant notation) in terms of the matter variables and a constraint
equation relating Φ (Y in the gauge-invariant notation) to Ψ.

For compactness, here we only describe, as before, the necessary steps to derive the expressions
for the QSA. In Appendix B we will provide a more detailed derivation, together with the relevant
coefficients required to derive our expressions.

We start from Eqs. (B.5) and we apply a QSA by neglecting the time derivatives of the potential.
We also neglect matter anisotropic stress σm, pressure perturbations δPm (as negligible for the dark
matter component) and combine δρm and qm into the gauge-invariant density perturbation ρm∆m =

δρm − 3Hqm.
These approximations lead to Eqs. (B.6) and solving for Z and Y , it is straightforward to derive

the expressions for µZ and µ:

µZ =
K2Cδρm

CΨ

1
M̄2

, µ =


αB(1 + αT) + αT − αM

αB

K2Cδρm

CΨ

− αT − αM

αB


1

M̄2
. (3.5)

The expression for µZ is obtained directly from Eq. (B.6a) while the expression for µ is derived by
inserting Eq. (B.6a) into (B.6b). The ratio of these two functions gives the slip parameter η:

η =

[
αB(1 + αT) + αT − αM

αB
− αT − αM

αB

CΨ

K2Cδρm

]−1

. (3.6)

Inserting the relevant coefficients leads to quartic expressions in K and the relevant coefficients
for µ and η are

µ+0 = β1β4(αM − αT)/αB , µ+2 = β1[(1 + αT)β6 + (αT − αM)(β6 − β5)/αB] , (3.7a)

µ−0 = β1β4 , µ−2 = β1β5 , µZ,+0 = 0 , µZ,+2 = β1β6 , (3.7b)

µ−4 =α2
Bc2

s , µ+4 = α2
Bc2

s M̄2µ∞ , µZ,+4 = α2
Bc2

s M̄2µZ,∞ , (3.7c)
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and the βi are given in Appendix B.
These expressions cannot be used when αB = 0 (such as in k-essence models), as µ+0 diverges.

To avoid this, we can first set αB = 0 in Eqs. (B.5) and then apply the QSA assuming negligible
contribution from δPm and σm. This leads to a straightforward derivation of the expression for µZ ,
but µ does not have the correct small-scale limit, as it is easy to verify. This shows a failure of this
QSA, as discussed in [27, 42]. A simple way to see this is to set αB = 0 in (B.5b); in the resulting
equation there is no explicit K2 term and the remaining leading terms are of the same order of those
neglected before.

Therefore, in this case, we assume that η = η∞, i.e., the small scale limit is always valid also on
large scales, and µ = µZ/η∞:

µZ =
c2

sµZ,∞K2

β4 + c2
s K2

, µ =
c2

sµ∞K2

β4 + c2
s K2

. (3.8)

In contrast to the general case of Eq. (3.7), these expressions are only quadratic (and not quartic) in
K.

To see why the QSA is broken for models where the braiding is not present, it is useful to note
that when αB , 0 there exists a new scale, called braiding scale KB defined as K2

B = β1/α
2
B [27].

This scale appears in both the dynamical and constraint equations and it is easy to see that the gauge-
invariant potential Z can cluster on small scales only if αB , 0 (µZ , 1). When there is no braiding
(αB = 0), there is no scale dependence as well as no dependence on δρm in the constraint equation
and it is, therefore, not correct to neglect the time derivative of the potential (especially if c2

s � 1), as
this is the only scale dependence which can appear in the system.

When limiting ourselves to the case of quintessence and k-essence, the expressions above lead
to µZ = µ , 1 and η = 1 (as γ9 = 0). We will comment more on the differences with the expressions
from the field equations (Section 3.1) and from the EoS (Section 3.3) approach later.

To the best of our knowledge, the expressions in Eq. (3.7) have not been derived before, even if
in [27, 28] the scale-independent small-scale limit has been derived.

3.3 Equation of State approach

In this section, we briefly discuss the derivation of the modified gravity parameters µ and η obtained in
[38] within the EoS approach. As in the previous sections, we will just sketch the general procedure,
and leave to appendix C a more detailed derivation of the equations.

In this formalism, modifications to gravity are identified with an effective fluid described by a
non-trivial stress-energy tensor Uµν. Its background evolution is completely described by the knowl-
edge of the equation of state wds = Pds/ρds, where ρds and Pds are the background density and
pressure, respectively, while at the linear perturbation level two new gauge-invariant equations of
state are introduced, the entropy perturbations wdsΓds and the anisotropic stress wdsΠds.

The evolution of the perturbations can be derived by considering the linearly perturbed stress-
energy tensor δUµν and from the condition ∇µδUµν = 0, one derives the continuity and Euler equa-
tions (C.2). It is useful to combine Eqs. (C.2) into a single second order equation for ∆ds which
describes the evolution of perturbations and it is analogous to the standard growth factor equation for
matter perturbations. We only consider scales where K � 1, which correspond to k & 10−3 Mpc−1 at
z = 0. In this regime, [38] showed that Θ � ∆, for both matter and dark sector perturbations, and it
is, therefore, safe to neglect any velocity contribution.

Applying a QSA to Eq. (C.6) implies neglecting the time derivatives of ∆ds. From a physical
point of view, we are imposing that the time variation on cosmological time scales is small. We are
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then left with a relation between dark sector and matter density perturbations which manifests in the
form of an attractor solution

Ωds∆ds = − Cζ∆m

c2
a,ds + Cζ∆ds

Ωm∆m . (3.9)

In Fig. 6 of [38], it has been shown that this analytical relation is in excellent agreement with the full
numerical solution over a wide range of scales and times for all the models investigated, as long as K
is of the order of a few. When K ' 1, the attractor solution becomes progressively less accurate.

To relate the modified gravity parameters to the attractor solution, we use Einstein field equa-
tions [34]

−2
3

K2Z = Ωm∆m + Ωds∆ds ,
1
3

K2(Y − Z) = ΩmwmΠm + ΩdswdsΠds ,

so that

µZ = 1 +
Ωds∆ds

Ωm∆m
= 1 − Cζ∆m

c2
a,ds + Cζ∆ds

, µ = µZ − 2
ΩdswdsΠds

Ωm∆m
, (3.10)

and η = µZ/µ. As discussed before, we can safely neglect the matter anisotropic stress wmΠm.
The coefficients for the modified gravity parameters are

µ+0 = γ1(γ2 − γ7)(1 + αT) , µ−0 = γ1(γ2 − αT/3) , µZ,+0 = γ1(γ2 − γ7) , (3.11a)

µ+2 =α2
Bc2

s M̄2µ∞ , µ−2 =α2
Bc2

s , µZ,+2 =α2
Bc2

s M̄2µZ,∞ , (3.11b)

where the functions γi are given in Appendix C and µ+4 = µ−4 = µZ,+4 = 0.

4 Comparison of the different expressions

4.1 Small- and large-scale limit of the expressions

In this section we provide a comprehensive comparison between the different expressions for µ and
η. As discussed already, all three approaches lead to the same result for K → ∞, as the MP and the
EoS expressions directly result from combining the field equations. We do not discuss this limit here,
as it was addressed previously in [38], but we only report the expressions for µ∞, µZ,∞, and η∞ for
completeness [27, 38, 39, 59, 89]:

µ∞ =
αc2

s (1 + αT) + 2[αB(1 + αT) + αT − αM]2

αc2
s M̄2

, (4.1)

µZ,∞ =
αc2

s + 2αB[αB(1 + αT) + αT − αM]
αc2

s M̄2
, (4.2)

η∞ =
αc2

s + 2αB[αB(1 + αT) + αT − αM]
αc2

s (1 + αT) + 2[αB(1 + αT) + αT − αM]2
. (4.3)

We, instead, focus on the limit for K→ 0, which represents the regime of interest for this work,
and consider the coefficients for the different quantities previously defined. A summary of our results
is presented in Table 1, where we present expressions for µ0, µZ,0, η0, Σ0, γ0 and g0. We remind the
reader that the functions g and γ are derived from the slip parameter η, and Σ from the knowledge
of µ and µZ (or alternatively µ and η). Below we investigate µ and η in more detail, as they are the
quantities also implemented in our code.

Different approaches give a different limit when K → 0. For the EFE and EoS approaches,
η0 = 1/(1 +αT), but as we will see in the next section, the exact numerical solution for η differs from
this value on large scales, as, not unexpectedly, the approximations we have made break down.
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EFE MP MP (αB = 0) EoS
M̄2µZ,0 1 0 0 γ2−γ7

γ2−αT/3
M̄2µ0 1 + αT

αM−αT
αB

0 M̄2µZ,0(1 + αT)
η0

1
1+αT

0 η∞ 1
1+αT

M̄2Σ0 1 + αT/2 αM−αT
2αB

0 1
2
(
µZ,0 + µY,0

)

γ0 αT ∞ γ∞ αT
g0 − αT

2+αT
−1 g∞ − αT

2+αT

Table 1. Limit on large scales (K→ 0) of the phenomenological MG functions.

In the MP approach, for a generic model, µ0 = 0 and this is a consequence of the particular
structure of the dynamical equation for Z: as density perturbations and potentials differ by a factor
K2, this term will dominate over higher powers on large scales, leading to η0 = µ0 = 0. For the
reasons discussed in Section 3.2, models with αB = 0 need special care as the QSA breaks, therefore,
in this case, we assume η0 = η∞, even if we anticipate that this will not be necessarily the case.

Although the expressions in Table 1 are relatively simple and we can appreciate similarities es-
pecially for the EFE and EoS approaches (they are both quadratic in K), it is instructive to investigate
them in detail for particular Horndeski sub-classes, where one or more αs are set to zero. We will not
give the full expressions (they can be easily derived from the coefficients given in each section), but
we will discuss generic features for selected models, to appreciate differences and similarities of the
different approaches.

In the following, we will discuss in more detail models 1-5. We do not present model 6 as its
expressions have already been presented in Table 1 and no further simplifications are possible.

4.2 Model 1 - k-essence-like

For model 1 (k-essence-like models), only αK , 0 and the expressions simplify considerably, making
it a good test case for a theoretical analysis and comparison. In this case, it is easy to show that
µ = η = 1 identically for the EFE and EoS expressions, but for the MP equations, we find that η = 1
identically and µ = 0 on large scales and µ = 1 on small scales

µMP =
c2

s K2

β4 + c2
s K2

,

where β4 = 3
(
1 + c2

a,ds

)
+ 2Ḣ/H2. Note that without a link to a specific Lagrangian, in these models

c2
s = 0 for a ΛCDM background where wds = −1. According to our previous discussion, the QSA is

valid only on scales smaller than the sound horizon of the scalar field, which means that in this case
the QSA is hardly applicable. For this model only, therefore, we will consider a wCDM background
where wds = −0.95 in Sections 5 and 6.

4.3 Model 2 - f (R)-like models

Model 2 is characterised by having αK = αT = 0. We shall first discuss the general expressions and
then specialise them to f (R) models where αM = 2αB � 1, with αB =

ḟR
2H(1+ fR) .
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The expressions for the modified gravity parameters are

µEFE =
µEFE

+0 + α2
Bc2

s M̄2µ∞K2

µEFE
+0 + α2

Bc2
s K2

1
M̄2

, ηEFE =
µEFE

+0 + α2
Bc2

s M̄2µZ,∞K2

µEFE
+0 + α2

Bc2
s M̄2µ∞K2

,

µEoS =
γ1(γ2 − γ7) + α2

Bc2
s M̄2µ∞K2

γ1γ2 + α2
Bc2

s K2

1
M̄2

, ηEoS =
γ1(γ2 − γ7) + α2

Bc2
s M̄2µZ,∞K2

γ1(γ2 − γ7) + α2
Bc2

s M̄2µ∞K2
,

where µEFE
+0 = µp has been defined in Eq. (3.2). For the MP expressions, the coefficients do not

simplify enough to obtain a concise expressions, therefore, we do not report them here, but we refer
the reader to the expressions in Appendix B.

For f (R) models, the QSA has been studied and expressions are given by [69, 91]. Due to the
importance of these models in the scientific literature and their relative simplicity which allows to
obtain several exact results, we will consider their expressions in detail, as it was shown that the QSA
works well for these models [93]. Taking into account that M̄2 = 1 + fR ≈ 1, c2

s = 1, and 1/αB � 1,
we find the following expressions for all the three approaches investigated in this work

µ =
µ+0 + 4

3 K2

µ+0 + K2

1
1 + fR

, η =
µ+0 + 2

3 K2

µ+0 + 4
3 K2

,

where

µ+0 =
4 + Γ

αB

Ḣ
H2 =

1
3

1 + fR
H2 fRR

, Γ =
Ḧ

HḢ
.

To go from the first to the second equality in the definition of µ+0, we used ḟR = Ṙ fRR and the
definition of the Ricci scalar R = 6(2H2 + Ḣ).

This result is a consequence of the high mass of the scalaron (∝ 1/αB), which dominates on
large scales (see also [36]). This is not the case in general for model 2, though. Note that while this
result is exact for the EFE approach, for the MP and EoS we only considered the leading terms.

Since both [69] and [91] provided similar expressions, it is useful to make a comparison with
our results and verify whether they match or not. [69], starting from the perturbed equations written
in terms of the degree of freedom δR found

µ =
M2
δφ/H

2 + 4
3 K2

M2
δφ/H

2 + K2

1
1 + fR

, (4.4)

where the mass squared of the scalaron is M2
δφ = R

3

(
1
m − 1

)
[67], and m =

R fRR
1+ fR

so that M2
δφ ≈ 1

3
1+ fR
fRR

,
in perfect agreement with our results.

In [91], the authors write the perturbed field equations for a generic Horndeski model in terms
of the perturbed scalar field δφ. Applying the QSA, they find

µ =

2
3

φ
Mpl

M2
δφ/H

2 + 4
3 K2

2
3

φ
Mpl

M2
δφ/H

2 + K2

Mpl

φ
, (4.5)

where φ = (1 + fR)Mpl and the mass squared of the scalar degree of freedom is M2
δφ = −G2φφ =

(2 fRR)−1, with G2 = −1
2 M2

pl[R fR − f (R)]. Also in this case, the expressions provide the same result.
In the limit of fRR → 0, that is infinite scalaron mass, f (R) cosmologies reduce to the standard ΛCDM
dynamics with µ = η = 1 at all scales.
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4.4 Model 3 - KGB-like models

In model 3, KGB-like models, αK and αB are both non zero and the braiding scale defined in sec-
tion 3.2 plays a role. For this model, µ will take on different forms in the three approaches, but η ≡ 1
for all. More in detail, the expressions for µ are

µEFE =
µEFE

+0 + αc2
sµ∞K2

µEFE
+0 + αc2

s K2
,

µEoS =
γ1(γ2 − γ7) + α2

Bc2
sµ∞K2

γ1(γ2 − γ7) + α2
Bc2

s K2
,

µMP =
β1β6K2 + α2

Bc2
sµ∞K4

β1β4 + β1β5K2 + α2
Bc2

s K4
,

where µEFE
+0 = µp has been defined in Eq. (3.2) and the coefficients βi and γi can be inferred from the

general expressions in Appendices B and C, respectively. We note that the expressions for the EFE
and EoS approaches are both quadratic (top and middle) in K and have the same large scale limit
(µ0 = 1), while in the MP approaches the expressions are quartic in K, and tend to zero on large
scales.

4.5 Model 4

Model 4 is a particular subclass of model 5, where the functions G3 and G4 satisfy the differential
relation XG3,X + G4,φ = 0. Linear dynamics is described by two functions, αK and αM, while αB =

αT = 0. Since G4 is a function of the scalar field φ, to achieve αT = 0 we are free to write it as
G4(φ) = 1

2 M2
pl f (φ/Mpl), where f (φ/Mpl) is a dimensionless function of the scalar field φ. The solution

of the differential equation is therefore G3 = − 1
2 Mpl

[
f ′

(
φ/Mpl

)
ln

(
X/m4

)
+ g

(
φ/Mpl

)]
, where the

prime represents the derivative with respect to φ/Mpl, m is an arbitrary mass scale and g(φ/Mpl) a
dimensionless function of φ.

Since αB = 0, the expressions for µ and η simplify significantly, not only at the level of the
coefficients (as for the EFE approach), but also regarding the functional form. For example, the MP
expressions are now quadratic and not quartic. A comment is necessary for the EoS approach: for-
mally, the expressions would be scale-independent as the coefficients of the K2 terms are proportional
to α2

B. This would mean that the small-scale limit will not be reached, in contrast to its derivation
which sees first taking the limit of K → ∞ and later on specifying the values of the α functions.
Therefore, in our numerical implementation, we set the coefficients of the K2 terms to a small, but
finite and different from zero, value.

The coefficients of interest then read

µEFE =
µEFE

+0 + αc2
s M̄2µ∞K2

µEFE
+0 + αc2

s K2

1
M̄2

, ηEFE =
µEFE

+0 + αc2
s K2

µEFE
+0 + αc2

s M̄2µ∞K2
,

µEoS =
γ1γ2 + α2

Bc2
s M̄2µ∞K2

γ1γ2 + α2
Bc2

s K2

1
M̄2

, ηEoS =
γ1γ2 + α2

Bc2
s K2

γ1γ2 + α2
Bc2

s M̄2µ∞K2
,

µMP =
c2

s M̄2µ∞K2

β4 + c2
s K2

1
M̄2

, ηMP = η∞ ,

where µEFE
+,0 = 6

(
Ḣ +

ρm+Pm
2M2

)
Ḣ/H4 and η = η∞ due to the breakdown of the QSA, as previously

discussed.
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4.6 Model 5 - cT = 1 models

Finally, in model 5 (cT = 1 models), only αT = 0 and this represents the most general model allowed
by current observations of gravitational waves. Expressions and numerical values of the effective
gravitational constant and the slip differ, in general, for all the three approaches. It is nevertheless
useful to consider a particular model, the no slip gravity model [79] where αB = αM, while αK is
independent from them. The model is given his name as η∞ = 1, and the relevant expressions

µEFE = µEoS = µMP =
1

M̄2
, ηEFE = ηEoS = 1 , ηMP =

β1β6K2 + α2
Bc2

s K4

β1β4 + β1β5K2 + α2
Bc2

s K4
.

This model has the interesting property that µ = µ∞ for all the approaches and ηEFE = ηEoS = η∞
at all scales and times. For M̄2 ≈ 1, the phenomenology of the no slip model is similar to that of
k-essence. Note that these results do not apply to the slip parameter derived from the metric potentials
(ηMP

0 = 0 and ηMP∞ = 1), but it is interesting to see that for selected models, the different approaches
can lead to the same effective gravitational constant.

5 Comparison with the exact numerical results

In this section we compare the analytical predictions for µ and η from Sections 3.1, 3.2 and 3.3
with the exact numerical results obtained with our numerical code EoS_class [38]. We present
results for µ and η as a function of the scale k only, assuming the widely used phenomenological
parameterization for the α functions αX = αX,0Ωds(a), where X ∈ {K,B,M,T} and Ωds(a) represents
the evolution of the dark sector component. In our previous work [38], we considered a range of
values for αX,0, but here we specialise to the following values: αK,0 = 1, αB,0 = 0.625, αM,0 = 1 and
αT,0 = 1. For model 6, we set αM,0 = 0.47 as in [94]. This is because αM = αT leads to additional
cancellations in the coefficients which make the model not sufficiently general. We remind the reader
that for model 2 αK,0 = 0. Note that αK is usually unconstrained by observations and important only
on scales larger than the sound horizon. For constraints on αK, see [95, 96]. We also limit ourselves
to study µ and η at z = 0, as this is the epoch with largest differences, since at earlier times the αX

are closer to the ΛCDM values within the framework we have used. For all the models we assume
wds = −1, except for model 1, where we set wds = −0.95.

From Fig. 7 of [38], we can infer the value of the sound speed for the models considered here
at z = 0. This ranges from c2

s ' 0.5 for model 3 to c2
s ' 2.5 for model 4, with c2

s ' 2 for all the other
models.4 In [38], c2

s = 0 for model 1, while here, having assumed wds = −0.95, we have c2
s = 0.15.

These numbers will be useful in the next section when discussing the regime of validity of the QSA
in recovering the observables.

Our results are shown in Figures 1 (for models 1–4) and 2 (for models 5 and 6). For models 1
and 3 we do not show the slip η as all the approaches predict η = 1 exactly, in agreement with the
numerical result. Note that this is expected, as the anisotropic stress for the dark sector is null in these
models.

For model 1 (top left panel), the EFE and EoS approach show an excellent agreement over
all scales, while the MP expression reproduces the exact numerical values only on small scales and
goes to zero on large scales, as already discussed. The divergence appearing for µMP is due to the
denominator β4 + c2

s K2 → 0, as β4 ≤ 0. We verified that a very similar behaviour is also present

4We observe that the choice of these parameters sometimes leads to a superluminal speed of propagation [97]. This does
not necessarily imply closed timelike curves [98] but can nevertheless be problematic in theories with a Lorentz-invariant
UV completion [99].
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Figure 1. Scale-dependence of the effective gravitational constant, µ, and the slip, η, at z = 0 for different
models. The black solid line represents the exact numerical solution of the code EoS_class, the blue dashed
line the prediction for EFE, the red dot-dashed line the MP prediction and the orange dashed-dot-dotted line
the EoS solution. Top left panel: Model 1 (k-essence-like) for αK,0 = 1 and αB = αM = αT = 0. Top right
panel: Model 3 (KGB-like) for αK,0 = 1, αB,0 = 0.625 and αM = αT = 0. Middle panels: Model 2 ( f (R)-like)
for αK,0 = αT = 0, αB,0 = 0.625 and αM,0 = 1. Left (right) panel shows µ (η). Bottom panels: Model 4 for
αK,0 = 1, αM,0 = 1 and αB = αT = 0. Left (right) panel shows µ (η).
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Figure 2. Scale-dependence of the effective gravitational constant, µ, and the slip, η, at z = 0 for different
models. Line styles and colours are as in Fig. 1. Top panels: Model 5 for αK,0 = 1, αB,0 = 0.625, αM,0 = 1 and
αT = 0. Bottom panels: Model 6 for αK,0 = αT,0 = 1, αB,0 = 0.625 and αM,0 = 0.47. Left (right) panel shows µ
(η).

at higher redshifts. Smaller values of the sound speed result in deviations between the analytical
and the numerical solution on smaller scales. For the expected value of quintessence models, c2

s =

1, the analytical solution for the MP approach starts deviating from the numerical solution at k ≈
10−3h Mpc−1 (K ≈ 4).

In the middle panels we show results for model 2 with αK = αT = 0, αB,0 = 0.625 and
αM,0 = 1. For a generic f (R)-like model, the analytical expressions exactly recover the small-scale
limit (K � 1), but we notice substantial differences on large scales (K . O(1)) which diminish at
earlier times when deviations from general relativity are less important. These deviations are a clear
sign of the breaking of the approximations made (sub-horizon scales). We notice a general better
agreement between EoS_class and the EFE expressions, while EoS overestimates this quantity.
At the same time though, the EoS expression agrees longer with the numerical expectation with
respect to EFE, but this is likely a coincidence due to the parameter choice. The predictions of the
MP approach show a departure from the exact solution at k ≈ 7× 10−3h Mpc−1 (K ' 20) and on very
large scales it becomes negative. The analytical predictions for η are identical for EFE and EoS, in
agreement with expressions in Table 1 and η0 = 1, a factor of two lower than the numerical solution,
showing that the analytical expressions under-predict the true result. Differences start to arise for K
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of order of a few, as one approaches the horizon scale. Once again the MP expressions show the
strongest differences with respect to the numerical solution, both at large and intermediate scales.

As explained in detail in Section 4, for f (R) models all the three approaches lead to the same
expression for µ and η as on large scales the mass of the scalaron is the dominating term. When
comparing the analytical predictions with the numerical ones for a model with B0 = 10−5, we find
an excellent agreement for both µ and η, justifying the widely adopted QSA for this class of models.
Thanks to the above considerations, it is easy to understand that this agreement holds also at high
redshifts. Note though, that at high redshifts, the dominant component is the mass of the scalaron,
therefore, the regime of applicability of µ∞ and η∞ is pushed to smaller scales. This ensures that
the correct general relativistic limit is reached. At z = 0, both µ and η do not depend on scale as
the transition to µ∞ and η∞ takes place on very small scales, i.e., K ' 200. For this reason, being
µ = η = 1 over the scales of the plot, we do not show the results for f (R) models.

For model 3 (KGB-like) with αB,0 = 0.625, the EFE prediction is in very good agreement
with the numerical one, while EoS overestimates µ and starts deviating from the exact solution at
k ≈ 10−3h Mpc−1. Once again, the MP expression diverges as the numerator goes to zero. On very
large scales, µMP

0 → 0. To explain our results, it is useful to refer to Table 1. There, we see that
µEFE

0 = 1, µMP
0 = 0 and µEoS

0 = 1 − γ7
γ2

, where γ7 = −2α2
B/α. It is the coefficient γ7 responsible

for the differences between EFE and EoS. We also verified that for higher values of αB,0, differences
between EoS and EoS_class are more pronounced.

In the bottom panels of Figure 1 we present the results for model 4 with αM,0 = 1. The behaviour
of the MP result is very similar to the models already discussed, including the divergence which seems
to be quite a generic feature for this approach for the parameters adopted. Note that for this model,
αB = 0 and as discussed in the previous section, the QSA is no longer satisfied. We derived µZ ,
and assuming η = η∞, we inferred µ = µZ/η. In contrast to previous cases, EoS and EFE exhibit
a similar qualitative behaviour, with differences appearing at the transition scale between small and
large scales.

To understand why this is the case, we refer again to Table 1. It is straightforward to see that
µEFE

0 = 1/M̄2, and since M̄2 > 1, µEFE
0 < 1 on very large scales. Regarding the EoS expression,

we now have γ7 = 0 and this forces µEoS
0 = µEFE

0 . Interestingly enough, for stronger deviations
from general relativity, αM,0 = 4, the numerical solution approaches 0, being therefore in agreement
with the MP prediction, while the EFE and EoS expectations differ from each other in the range
10−4h Mpc−1 . k . 2 × 10−3h Mpc−1. Similar conclusions can be deduced analysing the slip
parameter. All the models underpredict the numerical expectation and depart from it at k . 2 ×
10−3h Mpc−1. We remind the reader that we cannot make a proper comparison for ηMP due to the
breakdown of the QSA in this class of models.

In the top panels of Figure 2 we consider model 5 (cT = 1 models), which is the most generic
Horndeski model allowed by gravitational wave observations. We assume αB,0 = 0.625 and αM,0 = 1.
The behaviour of the analytical predictions is very similar to what we found for models 3 and 4. We
see, once again, a divergence for µMP and very good agreement between the numerical solution and
the EFE prediction. The EoS prediction, instead, is about a factor of two higher than the numerical
solution on large scales, once again due to the term γ7/γ2. This term is also responsible for the
major deviations we observe between the numerical and the EoS solution when we increase the
parameters of the model, while the EFE prediction stays always very close to the numerical one and
the MP is no longer diverging. However, as for the others, this departs from the exact result for
k . ×10−2h Mpc−1. It is also easy to see that µMP

0 ∝ αM/αB < 0, explaining its behaviour on large
scales.5 At higher redshifts, all the analytical predictions, except for MP, agree with the results of

5We remind the reader that our definition of αB differs by a factor −2 with that adopted by [27, 50]. In our code,
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our code EoS_class. When considering the slip parameter η, right panel, we clearly see that none
of the theoretical models reproduces the numerical behaviour on large scales and deviates from it for
k . 5 × 10−3h Mpc−1.

Finally, in the bottom panels of Figure 2, we present the behaviour for model 6, the most
general Horndeski model, assuming αK,0 = αT,0 = 1, αB,0 = 0.625 and αM,0 = 0.47.6 All the
approaches show an identical behaviour for the effective gravitational constant µ, but underpredict
the numerical value for K . 30. The EFE and EoS approaches predict the same behaviour for the
slip η and differ from that of the MP. All three approaches deviate from the numerical solution for
k . 5 × 10−3h Mpc−1.

This discussion shows that, in general, the analytical predictions do not reproduce the numerical
behaviour of µ and η on large scales, even if for some particular models the agreement is better than
for others. This normally happens for models where modifications to gravity are small, a condition
which can be realised, for example, at early times or when αX,0 is small. Deviations between the
analytical predictions and the numerical results arise when K is of the order unity, as expected, as
the sub-horizon condition is violated and it is no longer correct to neglect time derivatives and scale-
independent terms. For f (R) models, however, we find an excellent agreement at all scales, due to
the large mass for the scalaron. When this is not the case, as for a generic model 2, the agreement
on large scales is lost. Therefore, in the next section we will investigate in detail how strongly the
differences between the analytical predictions and the numerical expectation of µ and η affect the
spectra derived by solving the equations of the QSA, rather than the full ones.

We would also like to comment further on the divergence seen for the expressions derived
within the MP approach and the consequences it carries. We will discuss in detail models 1 and 4,
as the expressions are considerably simpler than other cases. For these models, the only relevant
function is β4, which, for a k-essence-like model reads β4 = 2Ḣ/H2 + 3(1 + c2

a,ds). Assuming a
ΛCDM background, c2

a,ds = wds = −1, this coefficient reduces to β4 = 2Ḣ/H2 ∝ −(ρm + Pm) < 0
at all times and smaller at earlier times, when matter dominates. This implies that at earlier times
the divergence is shifted towards smaller scales, which are those of interest, being in the regime of
validity of the quasi-static approximation. The scale where the divergence takes place is therefore
K2 ∝ 1/c2

s . To shift the divergence to scales not affecting the whole analysis (K → 0), the sound
speed of perturbations must be very large, c2

s � 1. This is the case, for example, of the cuscuton
model [100, 101], where the sound speed of perturbations is infinite. This model can be realised
as the incompressible limit of a k-essence theory. Since it can be shown that perturbations do not
introduce any additional dynamical degree of freedom but simply satisfy a constraint equation, the
theory is causal in that no microscopic information is carried. Similar conclusions can be reached
for model 4, where additional terms involving αM will be present. This implies that for the set of
parameters and models considered, the formulation of the metric potentials is not viable.

To see this from another point of view, we can refer to the equations for the potentials. When
the denominator goes to zero, it means that the coefficient CΨ in Eq. (B.5) is zero and the only
terms surviving are those with Ψ̈ and Ψ̇, illustrating a break down of the QSA in this case. These
divergences are also present in the EoS approach, but only for models which are very different from
the ΛCDM, which are of much less interest as they are already ruled out.

One might wonder what happens, in general, to µ−0 for the EFE approach. While this is difficult
to establish in general due to the interplay between αM, αB and the Ḧ term, we can consider, for

therefore, the braiding is negative.
6We change the value of αM,0 with respect to our previous work, as when αM = αT some of coefficients go to zero,

leading to simplifications which reduce the generality of the model.
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simplicity, model 4 where αB = 0. It turns out that µ−0 = Ḣ2(M2−M2
pl)/M

2 which is always positive,
explaining why the expression for µ does not show any divergence.

For the EoS approach, it is not that simple to establish, in general, whether µ−0 is positive or
negative. We can make some progress though, considering again model 4 with αK , 0 and αM , 0,
so that µ−0 = γ1γ2 = (ρm + Pm + 2M2Ḣ)2/(4H4M4) > 0. There exist, therefore, models where the
approach is viable and does not lead to divergences/negative values for µ and/or η. We stress that this
is not necessarily true in general, due to the complexity of the coefficients.

After this discussion, one can ask whether including terms with the derivatives to derive the
expressions for µ (and η) as done in the semi-dynamical approach [40] can avoid the divergences.
It turns out that the answer depends on the pivot scale: if the pivot scale is nonzero then µ → 0,
however, choosing the pivot scale at K = 0, µ can become undefined (of the form 0/0). This is,
though, not very accurate as one should also consider the fact that fζ scales as K2 (see [56]) and a
proper determination of the limit on large scales require to take into account that correction.

We conclude this section by commenting more in detail upon the differences between the ex-
pressions for EFE and EoS. We only consider these two as they are quadratic in the scale and results
easier to interpret. We saw that, for example, the slip has the same limit on small and large scales,
while this is not necessarily the case on intermediate scales. This implies that the transition scale K∗
between small and large scales is different for the two approaches. Since the expressions for EFE and
EoS are quadratic in K, it is easy to infer it. Rewriting the expression for µ (and similarly for µZ) as

µ =
µ0 + µ∞(K/K∗)2

1 + (K/K∗)2 , (5.1)

where
µ0 ≡ µ+0

µ−0

1
M̄2

, K2
∗ ≡

µ−0

µ−2
,

we find that the transition scale reads

KEFE
∗ ≡


6
{(

Ḣ +
ρm+Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
/H4

αc2
s



1/2

,

KEoS
∗ ≡


γ1(γ2 − αT/3)

α2
Bc2

s


1/2

,

(5.2)

for EFE and EoS, respectively. These expressions, in general, differ from each other, but reduce to
the same value for f (R) models, as αB � 1.

6 Observable spectra

In the previous section, we compared our analytical results with the exact numerical calculation
obtained with our code EoS_class. We saw that, in general, the exact numerical behaviour for µ
and η, obtained by solving the full equations, is not reproduced correctly on large scales by any of
the three different QSA recipes. This is a direct consequence of the QSA which turns differential
equations into constraint equations, by neglecting terms in the dynamical equations.

In this section, we explore the observational consequences of the differences between exact
numerical and approximated analytical expression discussed in the previous section and understand
how well the spectra derived by applying the QSA reproduce the spectra obtained by solving the full
equations. In particular, we consider CTT

` , Cφφ
`

, and P(k). We implemented the analytical expressions
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for µ and η derived in Section 3 in a suitably modified version of the code CLASS which we call
QSA_class. For a better quantification of the impact of the differences on large scales, we also
approximate the effective gravitational constant and the slip parameter with their value on small
scales. We do not report results for f (R) models as we saw that there is an excellent agreement
between the numerical and the analytical prediction and for MP expressions, due to the problems
arising with the divergences and explained in detail in Section 5. We also do not show results for
k-essence-like models, as µ = η = 1 identically and the approximated dynamics reproduce the exact
ones.

Our results are presented in Figure 3, where we show the relative difference ∆C/C, where C =

{CTT
` ,Cφφ

`
, P(k)}, ∆C = CQSA − CEoS_class and C = CEoS_class in the denominator. For all the models

considered, we found an excellent agreement, in general at the subpercent level, on most scales
and multipoles. Differences appear only on very large scales, ` . 4 − 5 and k . 2 × 10−3 h Mpc−1,
where they might exceed the percent level, but are having a little impact, as shown in Figure 3. This is
because such scales are cosmic-variance-dominated and beyond the range of scales observed by future
surveys. For example, Euclid7 [18] will be able to probe scales up to ` = 10 and k ≈ 6×10−3 h Mpc−1

for galaxies up to z = 1.8 [102] using the cosmology of this work. We also verified that the spectra
obtained with the expressions in the QSA do not modify the value found for the normalization of
the matter power spectrum, as differences of about 0.1% are more likely due to numerics. Larger
deviations between the spectra obtained by solving the full dynamical equations and the approximated
ones appear for CTT

` and P(k), while for Cφφ
`

they can be smaller by a factor of a few. The model
deviating more in the angular power spectrum of the lensing potential Cφφ

`
is model 4, but it differs

only by about 1% at ` = 2 from the exact spectrum.
It is also noteworthy that all the recipes studied in this work are virtually indistinguishable

from each other, regardless of the particular cosmological model or probe considered. This leads
to the strong suggestion that the particular limit on large scales is irrelevant, as are the differences
between the two analytical predictions (EFE and EoS) and the exact numerical expectation of the
modified gravity parameters. This conclusion is supported by the spectra derived by approximating
the modified gravity parameters µ and η with their value on small scales, i.e., µ = µ∞ and η = η∞. As
this limit is identical to all the approaches, we do not need to specify any of them in particular. We
immediately see that there is no appreciable difference between µ = µ∞ and any of the more complete
approaches, indicating, once more, that large scales have only weak influence on the observables.
This leads to the conclusion that it is possible to use the simplest small-scale limit to recover, with
very good accuracy, the full dynamics of the model. This has two advantages: from a theoretical
point of view, it is easy to understand the phenomenology of a model knowing the behaviour of µ∞
and η∞ as demonstrated in [38]; from a numerical point of view, instead, the implementation is much
simpler and less error-prone.

In fact, the numerical implementation of µ∞ and η∞ is much simpler than any of the other
recipes. Also, the expressions for MP and EoS are, in general, more complex than for EFE. While
we cannot say anything about the performance for MP, there is no appreciable difference in running
time for EFE and EoS, but the simple use of the small scale limit can result in a general speedup
of the code. In general, though, due to simpler dynamics, QSA_class is faster than EoS_class.
However, an exact determination of how faster (or slower) a recipe is with respect to the others goes
beyond the purpose of this work, but we can safely suggest the use of the small scale limit for a quick
determination of the QSA on observables.

An important question one might ask is: why does the QSA appear to work so well for generic

7https://www.euclid-ec.org/
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Figure 3. Relative difference between the approximated (obtained with QSA_class) and the exact spectra
(obtained with EoS_class). Left panels show the angular temperature anisotropy power spectrum CTT

` ,
middle panels the angular power spectrum of the lensing potential Cφφ

`
and the rightmost panels present the

linear matter power spectrum P(k). From top to bottom, we present models 2 to 6. Different QSA schemes
are shown with different line styles and colours: blue dashed for EFE, orange dashed-dot-dotted for EoS and
green dotted for the approximation µ = µ∞ and η = η∞ on all scales.
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subclasses of the Horndeski models? An answer to this question is detailed in [42], to which we
refer to for an in-depth analysis.8 In the following, we will briefly outline the procedure, translating
their notation into that used in this work. Note that although in [42] only KGB-like models were
considered, their conclusions have more general validity, as the relation between the two potentials
is given by a constraint equation, rather than by a differential equation. In other words, the QSA is
either a good approximation, or not, for both potentials.

The starting point is Eq. (B.5a) in the limit K � 1, such that the coefficient of the term Ψ is
written as M2

π/H
2 + c2

s K2, where M2
π is a mass term. Hence, by construction, the assumption fails for

K ' 1. The potential Ψ can be written as Ψ ≡ ΨQS +ψ, where ψ satisfies a homogeneous equation and
has an oscillating behaviour, while ΨQS is the particular solution of the non-homogeneous equation
(B.5a) and satisfies the QSA approximation. Under the (conservative) assumption that at the sound
horizon crossing the amplitude of the oscillations is at most as large as the amplitude of the quasi-
static solution, the oscillations of ψ decay fast enough to leave ΨQS. While solving the equations for
the two components is difficult, it is though rather straightforward to show that the maximum range
of validity of QSA is within the sound-horizon, rather than the cosmological horizon.

The main conclusion, based on the analysis in [42], is that the QSA is a good approximation
up to corrections of the order O(1/K2) for modes inside the sound horizon. This allows us to infer
up to which scales the QSA can be trusted. For models with cs ∼ O (1) (which is indeed the case for
the models studied here as discussed in the previous section), being H ' 3 × 10−4 h Mpc−1 today, the
QSA is supposed to work well for k & 3 × 10−3 Mpc h−1, in perfect agreement with our numerical
results. This scale translates to ` ' 8, again in agreement with our findings, hence explaining why
the approximate expressions for µ and η reproduce well the observed spectra.

Finally, we can determine, using Eq. (14) in [42], whether the QSA can be applied to a survey
such as Euclid with an accuracy of 1%. Whilst in [42] a few surveys are considered, here we limit
ourselves to Euclid, which will probe much larger scales. The result is that models with cs & 0.1 can
be safely analysed in the quasi-static limit. This condition is satisfied by all the models analysed in
this work.

We can, therefore, conclude that, in general, the QSA is a good approximation for scales below
the sound horizon and can be safely applied when the oscillations of the solution of the homogeneous
equation for the potential Ψ decay fast enough and their amplitude never exceeds that of the quasi-
static solution.

When the conditions discussed above are not satisfied, then we should expect the QSA to be
inaccurate. Some additional conditions can be derived for specific models. This has been done, for
example, for f (R) models [43, 44], where it was pointed out that in these cosmologies the QSA fails
whenever fR,0 ∼ O(1) and the background substantially differs from wds ' −1.

7 Conclusions

In this work we studied the effects of the QSA limit on observables such as the angular temperature
anisotropy power spectrum CTT

` , the angular power spectrum of the lensing potential Cφφ
`

and the
linear matter power spectrum P(k) within the framework of the Horndeski models.

The QSA transforms dynamical equations into constraint equations and it is based on the as-
sumption that time derivatives are smaller than spatial derivatives. This means that the metric poten-
tials are slowly varying in time and one can neglect their oscillations [25, 42, 44]. The QSA intro-
duces a hierarchy in the system: the metric potentials are of the order of the scalar field perturbations

8This reference also shows how to consistently extend the QSA to larger scales expanding order by order the solutions
to the equations of motion.
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and the velocity perturbations while density perturbations are a factor K2 larger. For consistency, as
discussed in [25], neglecting time derivatives requires one to consider only scales smaller than the
scalar-field sound horizon (c2

s K2 � 1).
We considered three different approaches: the first one is based on the field equations aug-

mented with the equation of motion of the scalar field π = δφ/φ̇; the second one is based on the
equations describing the evolution of the metric potentials (a dynamical equation and a constraint
one); the third is based on the Equation of State approach which interprets the modifications of grav-
ity in terms of a fluid endowed with pressure perturbations and anisotropic stress.

The equations for the metric potentials are obtained by combining the field equations and ex-
pressing the perturbations of the scalar field and its derivatives in terms of the potentials and of the
matter variables, while the expressions for the Equation of State are obtained by rewriting the metric
potentials and the scalar degree of freedom in terms of the fluid variables, matter and dark sector.

For the field equations, the QSA is achieved by neglecting the time derivatives of the metric
potentials and the perturbations of the scalar degree of freedom, but retaining the terms proportional
to K2 and the mass of the scalar field (for models such as f (R), the mass of the scalaron can be of
the same order of magnitude of K). For the approach based on the metric potentials, one neglects
the time derivatives of the potentials and keeps only the terms proportional to K2 and matter density
perturbations, while neglecting velocity perturbations as, on sub-horizon scales, they are negligible
with respect to density perturbations. Finally, for the EoS approach, one derives a growth-factor-
like equation for the dark sector density perturbations, and neglecting its time derivatives, one can
establish a relation between dark sector and matter density perturbations.

The derivation of the modified gravity parameters µ and η in the QSA in these different ap-
proaches is given in Section 3 and details are provided, respectively for the three approaches, in
Appendixes A, B and C. We compared these approaches in Section 4. The expressions differ, with
respect to each other, in the limit for K → 0, but agree in the small-scale limit K → ∞. A notable
exception is represented by f (R) models: all the approaches return the same result which perfectly
agrees with the numerical solution.

In Section 5, we compared the analytical expressions with the exact numerical solutions and
found that while they agree on small scales, they differ from the numerical solution when K . O(1),
as the sub-horizon approximation is violated and time derivatives and velocity perturbations cannot
be neglected with respect to other terms. The transition takes place at a scale of k ≈ 10−3h Mpc−1

(at z = 0) which corresponds to K of order of a few. These differences, which appear only for low
multipoles and small values of k, are expected exactly because of the break down of the QSA, but
one can confidently rely on the small scale limit. Going from the perturbations to the observables,
though, large scales have little influence and the small-scale limit captures the whole physics of the
model, as shown in Section 6. While on one hand this means that none of the above calculations
might indeed be necessary to understand the physics of the model, it is actually a welcome fact
that the small scale limit of the modified gravity parameters suffices in recovering the spectra, as
the numerical implementation and the physical interpretation are simpler and less error-prone than
for the full expressions. These differences appearing on large scales are not problematic from an
observational point of view, as even future surveys such as Euclid will not be able to probe these
scales.

In Section 6 we also discussed the reasons behind the very good performance of the QSA in
recovering the exact spectra. As explained in [42], this is because the scales considered are well inside
the sound horizon of the model and because oscillatory solutions for Eq. (B.5a) decay fast enough
and have a smaller amplitude than the quasi-static solution. The main result is thus that the QSA is
exact up to corrections of the order 1/K2, which correspond to scales of a few times 10−3 h Mpc−1, in
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perfect agreement with our numerical findings.
In Section 5, we also discussed the problems associated with the expressions derived from the

equations of the metric potentials, as we explained a distinctive feature is that they diverge on scales
of interest, K ' O(1). We explained this for some simple models which allow us to perform the
calculations, and linked the problem to the failure of the QSA approximation: since the coefficient
of the potential Ψ becomes zero, it is not justified to apply the QSA and neglect time derivatives, as
these are the only terms surviving.

We finally comment more in detail upon the differences we see among the three different ap-
proaches. The final expressions differ from each other because the QSA is applied differently in the
three approaches. However, if we make sure to apply the QSA in exactly the same way for all the
approaches, i.e., we force, for example, dropping exactly the same terms of the QSA for EFE on the
other two approaches, then the expressions of the other approaches turn out to be identical to those of
EFE. This can be done by establishing a hierarchy among the coefficients in EFE comparing terms in
an equation and establishing which one is dominant and it is a direct consequence of the fact that the
starting equations are the same (although written differently) and the same coefficients are now kept
(or neglected).

Finally, in the Supplementary data, we provide an extensive comparison between results in this
and in previous works, translating the relevant expressions in the notation used here.
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A Derivation and coefficients from the effective field equations (EFE)

The field equations and the equation of motion for the perturbed scalar field read

C00
Ψ̇

Ψ̇ + C00
Φ Φ + C00

Ψ K2Ψ + C00
π̇ π̇ +

(
C00
π + C00

π2K2
)
π = −δρm

M2 , (A.1a)

C0i
Ψ̇

Ψ̇ + C0i
ΦΦ + C0i

π̇ π̇ + C0i
π π = − qm

M2 , (A.1b)

Ci j,trl
Φ

Φ + Ci j,trl
Ψ

Ψ + Ci j,trl
π π = −σm

M2 , (A.1c)

Ci j,tr
Ψ̈

Ψ̈ + Ci j,tr
Ψ̇

Ψ̇ + Ci j,tr
Φ̇

Φ̇ + Ci j,tr
Φ

Φ + Ci j,tr
π̈ π̈ + Ci j,tr

π̇ π̇ + Ci j,tr
π π =

1
M2

(
δPm − 2

3
H2K2σm

)
, (A.1d)

Cπ
π̈π̈ + Cπ

π̇π̇ +
(
Cπ
π + Cπ

π2K2
)
π + Cπ

Ψ̈
Ψ̈ + Cπ

Φ̇
Φ̇ + Cπ

Ψ̇
Ψ̇ +

(
Cπ

Φ + Cπ
Φ2K2

)
Φ + Cπ

Ψ2K2Ψ = 0 , (A.1e)

where the CX
Y coefficients can be easily read off from Eqs. (109)–(113) of [28] and are only a function

of time. Note that not all the coefficients are dimensionless and we keep explicit the K2 term, to
single out the hierarchy for the application of the QSA. The superscripts trl and tr stand for traceless
and trace part, respectively. These equations represent the 00, 0i, traceless and trace part of the i j
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components of the field equations, respectively, and the last expression is the equation of motion for
the perturbed scalar field.

Here we describe in detail the procedure followed to derive the expressions for µ and η. We
start from Eqs. (A.1) and combine Eq. (A.1a) with Eq. (A.1b) to have on the right hand side the
gauge-invariant matter density perturbation ∆m; we solve for σm in Eq. (A.1c) and substitute it in
Eq. (A.1d). In the remaining 3 equations [combined Eqs. (A.1a) and (A.1b), Eqs. (A.1c) and (A.1d),
Eq. (A.1e)], we neglect the time derivatives of the potentials Φ and Ψ and of the perturbed scalar
field π. We also only consider terms proportional to K2, as this is appropriate on sub-horizon modes
(K � 1). We recall that Eq. (A.1e) represents the equation of motion of the perturbed scalar field,
therefore, we also include in our discussion the term Cπ

π, as this represents a mass term which can
be, in principle, of the same order of magnitude as K2 (this is the case, for example, for f (R) models
[69]).

We note that as σm appears with the pre-factor K2 in Eq. (A.1d), the only terms contributing
after considering the QSA and the sub-horizon limit are those coming from Eq. (A.1c). In other
words, the relevant equations which contribute to µ and η are Eqs. (A.1a)–(A.1c).

After applying the QSA to the field equations (A.1), we are left with

C00
Ψ K2Ψ + C00

π2K2π = − ρm∆m

M2 , (A.2a)

Ci j,trl
Φ

Φ + Ci j,trl
Ψ

Ψ + Ci j,trl
π π = 0 , (A.2b)

Cπ
Φ2K2Φ + Cπ

Ψ2K2Ψ +
(
Cπ
π + Cπ

π2K2
)
π = 0 , (A.2c)

and the coefficients read

C00
Ψ = 2H2 , C00

π2 = −2H3αB , Ci j,trl
Φ

= 1 , Ci j,trl
Ψ

= −(1 + αT) , (A.3a)

Ci j,trl
π = (αM − αT)H , Cπ

Φ2 = −2αBH3 , Cπ
Ψ2 = 2(αM − αT)H3 , (A.3b)

Cπ
π = 6

{(
Ḣ +

ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H

∂(ḢαB)
∂t

}
, (A.3c)

Cπ
π2 = − 2H2

{
Ḣ +

ρm + Pm

2M2 + H2 [αB(1 + αM) + αT − αM] +
∂(HαB)
∂t

}
. (A.3d)

The system of equations above can be conveniently written in matrix form. Switching to the
gauge-invariant notation of [38], it reads



0 C00
Ψ

K2 C00
π2K2

Ci j,trl
Φ

Ci j,trl
Ψ

Ci j,trl
π

Cπ
Φ2K2 Cπ

Ψ2K2 Cπ
π + Cπ

π2K2




Y
Z
π

 = −ρm∆m

M2


1
0
0

 . (A.4)

It is now simple to derive the expressions for the modified gravity parameters. By denoting withM
the matrix of the coefficients, the solution to the previous equation is


Y
Z
π

 = −



[
M−1

]
11[

M−1
]
12[

M−1
]
13


ρm∆m

M2 , (A.5)
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where

[
M−1

]
11

=
−Ci j,trl

Ψ
Cπ
π +

(
Ci j,trl
π Cπ

Ψ2 −Ci j,trl
Ψ

Cπ
π2

)
K2

C00
Ψ

Ci j,trl
Φ

Cπ
πK2 +

[
C00

Ψ

(
Ci j,trl

Φ
Cπ
π2 −Ci j,trl

π Cπ
Φ2

)
+ C00

π2

(
Ci j,trl

Ψ
Cπ

Φ2 −Ci j,trl
Φ

Cπ
Ψ2

)]
K4

, (A.6)

[
M−1

]
12

=
Ci j,trl

Φ
Cπ
π + (Ci j,trl

Φ
Cπ
π2 −Ci j,trl

π Cπ
Φ2)K2

C00
Ψ

Ci j,trl
Φ

Cπ
πK2 +

[
C00

Ψ

(
Ci j,trl

Φ
Cπ
π2 −Ci j,trl

π Cπ
Φ2

)
+ C00

π2

(
Ci j,trl

Ψ
Cπ

Φ2 −Ci j,trl
Φ

Cπ
Ψ2

)]
K4

, (A.7)

[
M−1

]
13

=
Ci j,trl

Ψ
Cπ

Φ2 −Ci j,trl
Φ

Cπ
Ψ2

C00
Ψ

Ci j,trl
Φ

Cπ
πK2 +

[
C00

Ψ

(
Ci j,trl

Φ
Cπ
π2 −Ci j,trl

π Cπ
Φ2

)
+ C00

π2

(
Ci j,trl

Ψ
Cπ

Φ2 −Ci j,trl
Φ

Cπ
Ψ2

)]
K4

. (A.8)

We can immediately see that µZ = 2
[
M−1

]
12

H2K2/M̄2 and µ = 2
[
M−1

]
11

H2K2/M̄2, where
M̄ = M/Mpl. Knowing µZ and µ, the slip is η = µZ/µ and reads

η =
Ci j,trl

Φ
Cπ
π + (Ci j,trl

Φ
Cπ
π2 −Ci j,trl

π Cπ
Φ2)K2

−Ci j,trl
Ψ

Cπ
π +

(
Ci j,trl
π Cπ

Ψ2 −Ci j,trl
Ψ

Cπ
π2

)
K2

. (A.9)

B Derivation and coefficients from the metric potentials (MP)

It is instructive to consider the derivation of the equations for the metric potentials for a system made
up of baryons, cold dark matter, photons and neutrinos, which we collectively call matter (m), and
the cosmological constant Λ. This will be a warm-up for the substantially more involved derivation
of the full equations taking into account the scalar field contribution.

The field equations can be rewritten generically as (following the notation of [28])

k2

a2 Ψ + 3H
(
Ψ̇ + HΦ

)
= − 1

2M2
pl

δρm , (B.1a)

Ψ̇ + HΦ = − 1
2M2

pl

qm , (B.1b)

Φ − Ψ = − 1
M2

pl

σm , (B.1c)

Ψ̈ + HΦ̇ + 2ḢΦ + 3H
(
Ψ̇ + HΦ

)
=

1
2M2

pl

(
δPm − 2

3
k2

a2σm

)
, (B.1d)

where the constraint equation is simply given by the traceless part of the i j-components, Eq. (B.1c).
The equation describing the evolution of Ψ is obtained by expressing Φ in terms of Ψ and σm using
Eq. (B.1c) and Φ̇ by taking the time derivative of Eq. (B.1c). This leads to

Ψ̈ + 4HΨ̇ +
(
3H2 + 2Ḣ

)
Ψ =

1
2M2

pl

[
δPm + 2

(
3H2 + 2Ḣ

)
σm − 2

3
H2K2σm + 2Hσ̇m

]
, (B.2)

Ψ − Φ =
σm

M2
pl

, (B.3)

which agree with expressions (132) and (133) of [28] in the absence of the scalar field perturbations.
Assuming σm ≈ 0 (as it is the case for cold dark matter), δPm = c2

sδρm, and further considering
Eq. (B.1a) to express δρm in terms of Ψ, in real space Eq. (B.2) simply reads

Ψ̈ +
(
4 + 3c2

s

)
HΨ̇ +

[
3H2

(
1 + c2

s

)
+ 2Ḣ

]
Ψ − c2

s∇2Ψ = 0 , (B.4)
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which is equivalent to Eq. (5.22) of [103] and Eq. (5.30) of [104] when Φ = Ψ and we consider flat
spatial geometry.

Let us now consider again Eqs. (A.1). A similar procedure to the one outlined before can be
applied to derive an equation for Ψ in terms of the matter variables and a second one which expresses
Φ in terms of Ψ, its first time derivative and the matter variables. To derive the equation for Ψ, one
combines Eqs. (A.1a)–(A.1c) and solve for π, π̇ and Φ in terms of Ψ, Ψ̇ and the matter variables.
To solve for Φ̇ one uses the time derivative of Eq. (A.1c) and π̈ is expressed in terms of all the
other quantities using the equation of motion of the scalar field (A.1e). In this way, the scalar field
fluctuation, π, and its time derivatives are expressed in terms of the potentials and the matter variables
and the equation for Ψ is derived. The constraint equation is then obtained by replacing π and π̇ in
Eq. (A.1d).

The two equations describing the evolution of the potentials read [27, 28]

Ψ̈ + CΨ̇HΨ̇ + CΨH2Ψ = − 1
2M2

[
Cδρmδρm + Cqm Hqm + Cσm H2σm +

αK

α
δPm − 2Hσ̇m

]
, (B.5a)

α2
BK2

[
Φ −

(
1 + αT +

2γ9

ααB

)
Ψ +

σm

M2

]
+ β1

[
Φ − Ψ(1 + αT)

γ1

β1
+
σm

M2

]
=

γ9

H2M2

[
αB

α
(δρm − 3Hqm) + HM2Ψ̇ +

αK

2α
Hqm − H2σm

]
. (B.5b)

The CX coefficients depend on both time and space and can be easily read off from Eq. (132) in [28].
Applying a QSA as described in Section 3.2, the two equations above simplify to

CΨH2Z = − 1
2M2 Cδρmρm∆m , (B.6a)

α2
BK2

[
Y −

(
1 + αT +

2γ9

ααB

)
Z
]

=
γ9

H2M2

αB

α
ρm∆m . (B.6b)

The coefficients CX relevant for the QSA are

CΨ =
β1β4 + β1β5K2 + c2

sα
2
BK4

β1 + α2
BK2

, Cδρm =
β1β6 + β7α

2
BK2

β1 + α2
BK2

, (B.7)

where the coefficients βi were previously introduced in [27, 28] and read

β1 ≡ −αK
ρm + Pm

4H2M2 −
1
2
α

(
Ḣ
H2 + αT − αM

)
, β2 ≡ 2(2 + αM) + 3Υ ,

β3 ≡ 3 + αM +
α2

B

Hα


αK

α2
B


·
, β4 ≡ (1 + αT)

[
2

Ḣ
H2 + 3(1 + Υ) + αM

]
+
α̇T

H
,

β5 ≡ c2
s −

2αB(β3 − β2)
α

+
α2

B

β1
(1 + αT)(β3 − β2) +

α2
Bβ4

β1
,

β6 ≡ β7 − 2
αB(β3 − β2)

α
, β7 ≡ c2

s + 2
α2

B(1 + αT) + αB(αT − αM)
α

,

with

12β1H3M2Υ ≡ 2αM2
{[

Ḣ + (αT − αM)H2
]·

+ (3 + αM)H
[
Ḣ + (αT − αM)H2

]}

+ αKṖm − (ρm + Pm)H(αK − 6αB)(αT − αM) + 6(ρm + Pm)
α4

B

α


αK

α2
B


·
,

(B.8)
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and γ9 = α(αT − αM)/2. Note that for αB = 0, αBβ3 = 0 and for models where only αK , 0
(quintessence and k-essence) one has Υ = dPds/dρds = c2

a,ds, i.e., the adiabatic sound speed for the
dark sector component.

C Derivation and coefficients from the Equation of State approach (EoS)

In this section we describe in detail the derivation of the attractor solution, Eq. (C.7), linking dark
sector (∆ds) and dark matter (∆m) perturbations, and provide explicit expressions for the coefficients
necessary to evaluate it.

To derive the equations of state wdsΓds and wdsΠds, one starts from the field equations and
expresses the scalar degree of freedom and its derivatives in terms of the fluid variables. More in
detail, following [28], we consider Eqs. (A.1) and their compact form in terms of matter and dark
energy variables

k2

a2 Ψ + 3H
(
Ψ̇ + HΦ

)
= − 1

2M2

(
δρm + δρGLV

de

)
, (C.1a)

Ψ̇ + HΦ = − 1
2M2

(
qm + qGLV

de

)
, (C.1b)

Ψ − Φ =
1

M2

(
σm + σGLV

de

)
, (C.1c)

Ψ̈ + HΦ̇ + 2ḢΦ + 3H
(
Ψ̇ + HΦ

)
=

1
2M2

[
δPm + δPGLV

de − 2
3

k2

a2

(
σm + σGLV

de

)]
. (C.1d)

In Eqs. (C.1), δρGLV
de , qGLV

de , σGLV
de and δPGLV

de are the dark energy fluid variables which represent,
collectively, the modifications to Einstein field equations induced by the modifications of gravity.
Their expressions are given in Eqs. (147)–(150) of [28]. Note that at the background level, the dark
energy and the pressure component satisfy a non-standard continuity equation (see their Eqs. (116)
and (117)).

We then solve Eqs. (A.1a)–(A.1c) for Ψ, Ψ̇ and π̇ and plug these solutions in Eqs. (C.1a) and
(C.1b) so that π and Φ can be expressed in terms of the density (δρ) and velocity perturbations (q)
and matter anisotropic stress σm. From the time derivative of Eq. (A.1c) we derive an expression for
Φ̇. Eqs. (A.1d) and (A.1e) are finally used to infer Ψ̈ and π̈. Combining all these expressions together
allows to express δPGLV

de and σGLV
de in terms of the other fluid variables.

At this point, we can express the equations of state in terms of gauge-invariant quantities using
the following relations linking the variables used here and those in [28] (GLV):

δρGLV
de = M̄2δρds +

(
M̄2 − 1

)
δρm ,

δPGLV
de = M̄2δPds +

(
M̄2 − 1

)
δPm ,

qGLV
m + qGLV

de = −M̄2 ρdsΘds + ρmΘm

3H
,

qGLV
de = − 1

3H

[
M̄2ρdsΘds +

(
M̄2 − 1

)
ρmΘm

]
,

σGLV
m + σGLV

de = −a2

k2 M̄2(PdsΠds + PmΠm) ,

σGLV
de = −a2

k2

[
M̄2PdsΠds +

(
M̄2 − 1

)
PmΠm

]
,
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while at the background level we have

ρGLV
de = ρds + 3

(
M2 − M2

pl

)
H2 , PGLV

de = Pds −
(
3H2 + 2Ḣ

) (
M2 − M2

pl

)
.

Note that entropy perturbations can be related to pressure perturbations via the relation wΓ = δP/ρ −
c2

a(∆ − Θ).
Dark sector variables satisfy the following continuity and Euler equations, respectively,

∆′ds − 3wds∆ds − 2wdsΠds + gKεHΘds = 3(1 + wds)X , (C.2a)

Θ′ds + 3
(
c2

a,ds − wds +
1
3
εH

)
Θds − 3c2

a,ds∆ds − 2wdsΠds − 3wdsΓds = 3(1 + wds)Y , (C.2b)

where the prime ′ represents the derivative with respect to ln a, εH = −H′/H, gK = 1 + K2/(3εH) and
X = Z′ + Y = (ΩmΘm + ΩdsΘds)/2 is a gauge-invariant quantity.

The perturbed equations of state wdsΓds and wdsΠds are a linear combination of the matter (m)
and dark sector (ds) perturbed fluid variables

wdsΓds = CΓ∆ds∆ds + CΓΘdsΘds +
Ωm

Ωds
CΓ∆m∆m +

Ωm

Ωds
CΓΘmΘm +

Ωm

Ωds
CΓΓmwmΓm , (C.3a)

wdsΠds = CΠ∆ds∆ds + CΠΘdsΘds +
Ωm

Ωds
CΠ∆m∆m +

Ωm

Ωds
CΠΘmΘm +

Ωm

Ωds
CΠΠmwmΠm , (C.3b)

where wmΓm and wmΠm are the matter entropy perturbations and anisotropic stress, respectively, and
the coefficients CXY are a function of the scale factor a and quadratic in the scale K.

To derive the second order equation for ∆ds, we take the derivative of Eq. (C.2a) with respect
to ln a and replace the term Θ′ds with the expression in Eq. (C.2b). Considering scales K � 1, where
Θ � ∆ as shown in [38] and neglecting the terms wmΠm and wmΓm because unimportant at late times
(wmΓm ≈ 0 and wmΠm ≈ 0), the two perturbed equations of state simplify to

wdsΓds ≈ CΓ∆ds∆ds +
Ωm

Ωds
CΓ∆m∆m , wdsΠds ≈ CΠ∆ds∆ds +

Ωm

Ωds
CΠ∆m∆m . (C.4)

Neglecting the X and Y terms, and time variation of the coefficients CXY in wdsΠds and wdsΓds,
we find

∆′′ds +

(
2 + 3c2

a,ds − 6wds +
H′

H
− 2CΠ∆ds

)
∆′ds + K2

(
c2

a,ds∆ds +
2
3

Πds + Γds

)
= 0 . (C.5)

Plugging the simplified equations of state wdsΓds and wdsΠds into Eq. (C.5) leads to

∆′′ds +

(
2 + 3c2

a,ds − 6wds +
H′

H
− 2CΠ∆ds

)
∆′ds +

(
c2

a,ds + Cζ∆ds

)
K2∆ds = −Ωm

Ωds
Cζ∆mK2∆m , (C.6)

where Cζ∆ds = 2
3CΠ∆ds + CΓ∆ds and Cζ∆m = 2

3CΠ∆m + CΓ∆m .
Applying a QSA implies neglecting the time derivatives of ∆ds. From a physical point of view,

we are imposing that the time variation on cosmological time scales is small, as we did for the
coefficients CXY . We are then left with a relation between dark sector and matter density perturbations
which manifest in the form of an attractor solution for Eq. (C.6)

Ωds∆ds = − Cζ∆m

c2
a,ds + Cζ∆ds

Ωm∆m . (C.7)
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Note that it is possible to derive the attractor solution by neglecting the time derivatives of ∆ds
and Θds in Eqs. (C.2), and substituting Θds as derived from the Euler equation into the continuity
equation. The attractor solution is then given by considering only terms proportional to K2.

The coefficients of the simplified equations of state are

CΓ∆ds =
γ1γ2 + γ̃3K2

γ1 + α2
BK2

− c2
a,ds , (C.8)

CΓ∆m =
γ1γ2 + γ̃3K2

γ1 + α2
BK2

1 −
M2

pl

M2

 + γ7

M2
pl

M2 +


M2

pl

M2

αK

α
− 1

 c2
a,m , (C.9)

CΠ∆ds = −1
2
γ1αT + γ̃8K2

γ1 + α2
BK2

, (C.10)

CΠ∆m = −1
2


M2

pl

M2 αT +
γ1αT + γ̃8K2

γ1 + α2
BK2

1 −
M2

pl

M2



 , (C.11)

where

γ1 ≡ αK

ρds + Pds − 2(M2 − M2
pl)Ḣ

4H2M2 − 3α2
B

Ḣ
H2 ,

γ2 ≡ c2
s +

αT

3
− 2

2αB + Γ̃ + (1 + αB)(αM − αT)
α

,

γ3 ≡ c2
s +

γ8

3
, γ̃3 = α2

Bγ3 ,

γ7 ≡
αKαM − 6α2

B

3α
− (6αB − αK)(αT − αM)

3α
,

γ8 ≡ αT +
αT − αM

αB
, γ̃8 = α2

Bγ8 = α2
BαT + αB(αT − αM) ,

and a dot stands for the derivative w.r.t. cosmic time t. We also have α = αK + 6α2
B and

c2
s = −

2(1 + αB)
[
Ḣ + H2αB(1 + αT) − (αM − αT)H2

]
+ 2Hα̇B + (ρm + Pm) /M2

αH2 , (C.12)

is the sound speed of perturbations. We finally have γ1Γ̃ = γ1αBΓ, where

Γ =
α2

B

H3γ1

∂

∂t


H2γ1

α2
B

 .

Note that in the derivation of the expressions for µ and η, we neglected the term proportional to
c2

a,m as it is negligible at late times.
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1 General definitions

Some of the following definitions have already been presented in the main manuscript, but we report
them here as well for completeness and to have all the necessary expressions self-contained in a sin-
gle document. As already discussed, the resulting expressions for the effective gravitational constant
µ and the slip parameter η in previous works starting from the field equations are substantially equiv-
alent, even if the coefficients are written in a different form. An exception is given by the mass of the
perturbed scalar field as derived by [13], since the degree of freedom is δφ rather than π = δφ/φ̇. We
will see later on how using the two variables leads to a mixing of the coefficients and ultimately to
differences in the final expressions for the terms proving the limit for k → 0.

We assume the following metric

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Ψ)δi jdxidx j , (1.1)

where Φ and Ψ are the two metric potentials and the total matter stress-energy tensor is

T 0
0 ≡ − (ρm + δρm) , (1.2)

T 0
i ≡ (ρm + Pm)∂iυm ≡ ∂iqm , (1.3)

T i
j ≡ (Pm + δPm)δi

j +

(
∂i∂ j − 1

3
δi

j∂
2
)
σm , (1.4)

– 1 –



where ρm and Pm are the (total) matter background density and pressure, respectively; δρm and δPm
density and pressure perturbations; υm and qm the 3-velocity and 3-momentum potentials, respec-
tively and σm the anisotropic stress.

Using the standard EFT formalism for the action, limiting ourselves to the background part,
[1, 2, 5, 12, 15]

S =

∫
d4x
√−g

[
M2∗
2

f (t)R − Λ(t) − c(t)g00
]
, (1.5)

with R = 6(2H2 + Ḣ) the Ricci scalar, the background can be written as

c + Λ = 3M2
pl

(
f H2 + ḟ H

)
− ρm , Λ − c = M2

pl

(
2 f Ḣ + 3 f H2 + 2 ḟ H + f̈

)
+ Pm . (1.6)

One can, therefore, express c(t) and Λ(t) in terms of the other variables

c = − 1
2

(ρm + Pm) − M2
∗ f

(
Ḣ +

1
2

f̈
f
− 1

2
H

ḟ
f

)
, (1.7)

Λ =
1
2

(Pm − ρm) + M2
∗ f

(
3H2 + Ḣ +

5
2

H
ḟ
f

+
1
2

f̈
f

)
, (1.8)

where we used the continuity equation for matter ρ̇m + 3H(ρm + Pm) = 0. For later calculations, the
following relation is also useful

ċ + Λ̇ + 6Hc = 3M2
∗ ḟ

(
2H2 + Ḣ

)
.

As the definition of the braiding function αB is related to that of the Horndeski Lagrangian, we
write it as

L2 ≡ G2(φ, X) , (1.9)

L3 ≡ G3(φ, X)�φ , (1.10)

L4 ≡ G4(φ, X)R − 2G4,X(φ, X)
[
(�φ)2 −

(
∇µ∇νφ

)2
]
, (1.11)

L5 ≡ G5(φ, X)Gµν∇µνφ +
1
3

G5,X(φ, X)
[
(�φ)3 − 3�φ

(
∇µ∇νφ

)2
+ 2

(
∇µ∇νφ

)3
]
, (1.12)

where φ is the scalar field and X = gµν∇µφ∇νφ the canonical kinetic term.
The variables building up the perturbed quantities are time-dependent operators in the quadratic

EFT action

S (2) =

∫
d4x
√−g


M4

2(t)
2

(δg00)2 − m3
3(t)

2
δKδg00 − m2

4(t)
(
δK2 − δKµ

ν δKν
µ

)
+

m̃2
4(t)
2

δRδg00

 . (1.13)

In terms of the coefficients used in Eqs. (1.5) and (1.13), the αX functions read

M2 = M2
∗ f + 2m2

4 , αK =
2c + 4M4

2

M2H2 , αB =
M2∗ ḟ − m3

3

2M2H
,

αM =
M2∗ ḟ + 2

(
m2

4

)·

M2H
, αT = −2m2

4

M2 , αH =
2
(
m̃2

4 − m2
4

)

M2 .

Note that in [4, 7, 16], the definition of αB differs by a factor −2, so that αthere
B = −2αhere

B .
Given this basic introduction of the notation adopted in this work, in Table 1 we present a

comparison of the variables used in other works both at the background and linear perturbation, with
those adopted here.

In the next sections we will write the explicit expressions used by other authors in terms of the
α functions.
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c Λ M2∗ f M4
2 m3

3 m2
4 m̃2

4

Refs. [1, 3, 12] c Λ M2∗ f M4
2 m3

3 m2
4 m̃2

4

Refs. [2, 15] c Λ M2∗ f M4
2 m̄3

1
M̄2

2
2 µ2

1

Refs. [5–7] c c − Λ m2
0Ω M4

2 M̄3
1

M̄2
2

2 M̂2

Refs. [17, 18] M2
pl

Γ
2 M2

pl

(
Λ + Γ

2

)
M2

plΩ M2
plM

4
2 M2

plM̄
3
1 M2

pl
M̄2

2
2 M2

plM̂
2

Refs. [19, 20] M2
pl

Γ
2 M2

pl

(
Λ + Γ

2

)
M2

plΩ M4
2 M̄3

1
M̄2

2
2 M̂2

Refs. [8–10] M2C M2λ M2 M2µ2
2 M2µ3

M2ε4
2

M2ε4
2

Ref. [21] c c − Λ m2
0(1 + Ω) M4

2 M̄3
1

M̄2
2

2 M̂2

Ref. [22] c c − Λ M2
Pl(1 + Ω) M4

2 M̄3
1

M̄2
2

2 M̂2

Table 1. Dictionary between the different EFT approaches for the background and the linear perturbation
quantities.

2 Gubitosi, Piazza & Vernizzi, 2013; Ref. [2]

Using the relation between the EFT parameters and the α functions and expressing c in terms of the
sound speed of perturbations when necessary, we can work out the expressions appearing in [2]. The
sound speed and the effective gravitational constant of Eqs. (69) and (70) are

c2
s =

c + 3
4 M2∗ ḟ 2/ f − 1

2 m̄3
1 ḟ / f − 1

4 m̄6
1/(M2∗ f ) + 1

2

(
˙̄m3

1 + Hm̄3
1

)

c + 2M4
2 + 3

4 M2∗ ḟ 2/ f − 3
2 m̄3

1 ḟ / f + 3
4 m̄6

1/(M2∗ f )
, (2.1)

=
−1

2 M2
{
2(1 + αB)

[
Ḣ + H2(αB − αM)

]
+ 2Hα̇B +

ρm+Pm
M2

}

1
2 H2M2α

,

8πGN =
1

M2∗ f

c + M2∗ ḟ 2/ f + 1
2

(
˙̄m3

1 + Hm̄3
1

)

c + 3
4 M2∗ ḟ 2/ f − 1

2 m̄3
1 ḟ / f − 1

4 m̄6
1/(M2∗ f ) + 1

2

(
˙̄m3

1 + Hm̄3
1

) , (2.2)

=

1
2 H2M2

[
αc2

s + 2(αB − αM)2
]

1
2 H2M2αc2

s

1
M2 ,

identical to the expressions used in the main manuscript for αT = 0.
With the notation introduced in the main manuscript to denote the coefficients of the field equa-

tions, noting that [2] uses our same metric convention and ∇2 → −k2, we find

C00
Ψ̇

= − 3
(
M2
∗ ḟ − m̄3

1 + 2HM2
∗ f

)
= −6M2H(1 + αB) , (2.3a)

C00
Φ = − 2Λ − ρm + 4M4

2 + 6Hm̄3
1 = −M2H2(6 − αK + 12αB) , (2.3b)

C00
Ψ = − 2M2

∗ f = −2M2 , (2.3c)

C00
π̇ = −

(
2c + 4M4

2

)
+ 3H

(
M2
∗ ḟ − m̄3

1

)
= −(αK − 6αB)M2H2 , (2.3d)

C00
π = 3HM2

∗
(

f̈ + H ḟ
)
−

(
ċ + Λ̇

)
+ 3Ḣm̄3

1 = −6HM2
[
(1 + αB)Ḣ +

ρm + Pm

2M2

]
, (2.3e)

C00
π2 =

(
M2
∗ ḟ − m̄3

1

)
= 2M2HαB , (2.3f)
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for the 00-component [their Eqs. (145) and (146)],1

C0i
Ψ̇

= 2M2
∗ f = 2M2 , (2.4a)

C0i
Φ = 2HM2

∗ f +
(
M2
∗ ḟ − m̄3

1

)
= 2(1 + αB)HM2 , (2.4b)

C0i
π̇ = −

(
M2
∗ ḟ − m̄3

1

)
= −2HM2αB , (2.4c)

C0i
π = − (ρD + PD) = −2c − M2

∗
(

f̈ − H ḟ
)

= M2
(
2Ḣ +

ρm + Pm

M2

)
, (2.4d)

for the 0i-components [their Eq. (150)],2

Ci j,trl
Ψ

= −Ci j,trl
Φ

= M2
∗ f = M2 , Cπ = −M2

∗ ḟ = −αMM2H , (2.5)

for the i j-traceless components [their Eq. (149)], and

Ci j,tr
Ψ̈

= 2M2
∗ f = 2M2 , (2.6a)

Ci j,tr
Ψ̇

= 2M2
∗ f

(
3H + ḟ / f

)
= 2(3 + αM)HM2 , (2.6b)

Ci j,tr
Ψ2 =

2
3

M2
∗ f =

2
3

M2 , (2.6c)

Ci j,tr
Φ̇

= 2HM2
∗ f + M2

∗ ḟ − m̄3
1 = 2HM2(1 + αB) , (2.6d)

Ci j,tr
Φ

= M2
∗
[
f̈ + 5H ḟ + 2

(
3H2 + 2Ḣ

)]
+ ρD + PD − 3Hm̄3

1 , (2.6e)

= 2M2
[
Ḣ − ρm + Pm

2M2 + (HαB)· + (3 + αM)(1 + αB)H2
]
,

Ci j,tr
Φ2 = − 2

3
M2
∗ f = −2

3
M2 , (2.6f)

Ci j,tr
π̈ = − M2

∗ ḟ + m̄3
1 = −2HM2αB , (2.6g)

Ci j,tr
π̇ = − M2

∗
(

f̈ + 3H ḟ
)
− (ρD + PD) + 3Hm̄3

1 , (2.6h)

= 2M2
[
Ḣ +

ρm + Pm

2M2 − (HαB)· − (3 + αM)αBH2
]
,

Ci j,tr
π = − 3H2M2

∗ f − ṖD = 2M2
[
(3 + αM)HḢ +

Ṗm

2M2 + Ḧ
]
, (2.6i)

Ci j,tr
π2 = − 2

3
M2
∗ ḟ = −2

3
M2HαM , (2.6j)

for the i j-trace components [their Eqs. (147) and (148)].
Once again, we can easily see that they agree with the expressions in Eqs. (109)–(112) in [1]

for the special case αT = αH = 0. To convert dark energy variables into matter variables we used the
relations ρD = 3M2H2 − ρm and PD = −M2

(
2Ḣ + 3H2

)
− Pm.

1We corrected a typo in Eqs. (145) and (146) of [2], where −3Ḣπ should rather be 3Ḣπ.
2The 0i-components should read M2

∗∂i

[
2 f

(
Ψ̇ + HΦ

)
+ ḟ (Φ − π̇)

]
− (ρD + PD) ∂iπ − m̄3

1∂i (Φ − π̇) =

M2
∗∂i

[
2 f

(
Ψ̇ + HΦ

)
−

(
f̈ − H ḟ

)
π + ḟ (Φ − π̇)

]
− 2c∂iπ − m̄3

1∂i (Φ − π̇) = δTi0.

– 4 –



3 Piazza & Vernizzi, 2013; Ref. [3]

In a similar way as in the previous section, we can convert the relevant expressions of [3] into the
notation adopted here. The sound speed [their Eq. (79)] is

c2
s =

c + 3
4 M2∗ ḟ 2/ f − 1

2 m3
3 ḟ / f − 1

4 m6
3/(M2∗ f ) + 1

2

(
ṁ3

3 + Hm3
3

)

c + 2M4
2 + 3

4 M2∗ ḟ 2/ f − 3
2 m3

3 ḟ / f + 3
4 m6

3/(M2∗ f )
, (3.1)

=
− 1

2 M2
{
2(1 + αB)

[
Ḣ + H2(αB − αM)

]
+ 2Hα̇B +

ρm+Pm
M2

}

1
2 H2M2α

,

again for the more restrictive case of αT = 0. The expressions for α and β of their Eqs. (77) and (78),
respectively, correspond to the denominator and the numerator of the sound speed. Together with the
expressions introduced in their Eqs. (74) and (75) (labelled with Cζ̇ and C∂2ζ), they read3

A ≡H +
M2∗ ḟ − m3

3

2
(
M2∗ f + 2m2

4

) = H(1 + αB) , (3.2)

Cζ̇ ≡

3
2

(A − H)2 +
c + 2M4

2

M2∗ f + 2m2
4


1
A2 =

αK + 3α2
B

2(1 + αB)2 , (3.3)

C∂2ζ ≡
M2∗ f + 2m̃2

4

M2∗ f + 2m2
4

1
A

=
1 + αH

1 + αB

1
H
, (3.4)

α ≡ 1
A2

c + 2M4
2 +

3
4

(M2∗ ḟ − m3
3)2

M2∗ f + 2m2
4

 =
1
2

α

(1 + αB)2 M2 , (3.5)

β ≡ − M2
∗ f +

1
2a

d
dt


2
(
M2∗ f + 2m̃2

4

)
a

A

 , (3.6)

= − M2
{

1 + αT − 1
H

d
dt

(
1 + αH

1 + αB

)
− 1 + αH

1 + αB

(
1 + αM − Ḣ

H2

)}
.

The definition of c2
s = β/α leads to the same result of Eq. (85) of [1] in absence of matter.

4 Bellini & Sawicki, 2014; Ref. [4]

The expressions in Eqs. (3.13) and (3.17)–(3.21) of [4] are equivalent to Eqs. (85) and (109)–(113)
of [1], respectively, upon the following identifications and replacements

Ψ→ Φ , Φ→ Ψ , M2
∗ → M2 ,

ρ̃m + P̃m → ρm + Pm

M2 , πm → −σm , υX → −π ,

and αB → −2αB. For the functions appearing in the definition of the coefficients describing the
evolution of the two metric potentials, one needs only to divide the βi and Υ by the appropriate
powers of H to make them dimensionless and redefine β1 as β1/(4H2).

Their expressions (4.9) correspond to

ZQS = µZ,∞ , η̄QS =
2

1 + η∞
.

3The numerator should read c + 2M4
2 , rather than c + 4M4

2 .
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5 Bloomfield et al., 2013; Ref. [5]

The relation between the αs and the EFT parameters used in [5] is

M2 = m2
0Ω + M̄2

2 , αK =
2c + 4M4

2

H2M2 , αB =
m2

0Ω̇ + M̄3
1

2M2H
,

αM =
m2

0Ω̇ + (M̄2
2)·

M2H
, αT = − M̄2

2

M2 , αH =
2M̂2 − M̄2

2

M2 ,

and the coefficients in their Eqs. (4.13a)–(4.13c) become

A1 = 2m2
0Ω + 4M̂2 = 2M2(1 + αH) , (5.1a)

A2 = − m2
0Ω̇ − M̄3

1 + 2HM̄2
3 = −2HM2αB , (5.1b)

A3 = 0 , (5.1c)

B1 = − 1 − 2M̂2

m2
0Ω

= −1 + αH

1 + αT
, (5.1d)

B2 = 1 , (5.1e)

B3 = − Ω̇

Ω
+

M̄2
3

m2
0Ω

H +
2 ˙̄M3

M̄3

 =
αT − αM

1 + αT
H , (5.1f)

C1 = m2
0Ω̇ + 2HM̂2 + 4M̂ ˙̂M , (5.1g)

= M2 {H [αM + (1 + αM)αH − αT] + α̇H} ,
C2 = − 1

2
m2

0Ω̇ − 1
2

M̄3
1 −

3
2

M̄2
2 H − 1

2
M̄2

3 H + 2HM̂2 = M2H(αH − αB) , (5.1h)

C3 = c − 1
2

(H + ∂t)M̄3
1 − 3M̄2

2 Ḣ + M̄2
2

k2

2a2 + M̄2
3

(
k2

2a2 − Ḣ
)

+ 2
(
H2 + Ḣ + H∂t

)
M̂2 , (5.1i)

= − M2
{
Ḣ +

ρm + Pm

2M2 + H2 [1 + αB(1 + αM) + αT − (1 + αH)(1 + αM)] + [H(αB − αH)]·
}
,

M2
π =

1
4

m2
0Ω̇Ṙ(0) − 3cḢ +

3
2

(
3HḢ + Ḣ∂t + Ḧ

)
M̄3

1 +
9
2

Ḣ2M̄2
2 +

3
2

Ḣ2M̄2
3 , (5.1j)

= 3M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
.

We renamed the mass term for the scalar degree of freedom π as M2
π, to avoid confusion with the

effective Planck mass M2. In terms of the potentials, the following identification holds: φN → Ψ

and ψN → Φ and to have only second order equations of motion for the scalar field we assumed
M̄2

3 = −M̄2
2 . Assuming flat cosmologies, we set k0 = 0. These expressions are in perfect agreement

with those of [1].
These general results, valid for models beyond Horndeski with αH , 0, will be helpful for the

next section where, assuming an Horndeski model, the authors derived the functional form of the
modified gravity parameters µ and η using the quasi-static approximation.

6 Bloomfield, 2013; Ref. [6]

Using the same relations between the EFT and the α functions presented in the previous section (5)
also for [6], and considering that φ → Φ and ψ → Ψ, as the work specifically considers Horndeski
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models where αH = 0, we find that the coefficients for the equation of motion for π [their Eq. (56)]
are

Cπ
π̈ = c + 2M4

2 =
1
2

M2H2αK , (6.1a)

Cπ
π̇ = ċ + 3Hc + 2M4

2

(
3H + 4

Ṁ2

M2

)
=

1
2

M2H
{[

H2(3 + αM) + Ḣ
]
αK + (HαK)·

}
, (6.1b)

Cπ
π =

1
4

m2
0Ω̇Ṙ(0) − 3cḢ +

3
2

(3HḢ + Ḣ∂t + Ḧ)M̄3
1 + 3Ḣ2M̄2

2 (6.1c)

= 3M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
,

Cπ
π2 = c − 1

2
(H + ∂t) M̄3

1 +
(
H2 − Ḣ + H∂t

)
M̄2

2 , (6.1d)

= − M2
{
Ḣ +

ρm + Pm

2M2 + H2 [αB(1 + αM) + αT − αM] + (HαB)·
}
,

Cπ
ψ̈

=
3
2

(
m2

0Ω̇ + M̄3
1

)
= 3HM2αB , (6.1e)

Cπ
ψ̇

= − 3c + 6Hm2
0Ω̇ +

9
2

M̄3
1

H +
˙̄M1

M̄1

 + 3ḢM̄2
2 , (6.1f)

= 3M2
[
Ḣ +

ρm + Pm

2M2 + H2αB(3 + αM) + (αBH)·
]
,

Cπ
φ̇

= −
(
c + 2M4

2

)
+

3
2

H
(
m2

0Ω̇ + M̄3
1

)
=

1
2

H2M2 (6αB − αK) , (6.1g)

Cπ
φ = − ċ − 6Hc + 3m2

0Ω̇
(
2H2 + Ḣ

)
− 2M4

2

(
3H + 4

Ṁ2

M2

)
+

3
2

M̄3
1

3H2 + 2Ḣ + 3H
˙̄M1

M̄1

 + 3HḢM̄2
2 , (6.1h)

=
1
2

M2
[
6
(
Ḣ +

ρm + Pm

2M2

)
+ H2(6αB − αK)(3 + αM) + 2(9αB − αK)Ḣ + H(6α̇B − α̇K)

]
H ,

Cπ
φ2 = − 1

2

(
m2

0Ω̇ + M̄3
1

)
= −HM2αB , (6.1i)

Cπ
ψ2 = m2

0Ω̇ + ˙̄M2
2 + HM̄2

2 = HM2(αM − αT) , (6.1j)

the coefficients for the Poisson equation [their Eq. (54)] are

C00
ψ2 = 2

(
m2

0Ω + M̄2
2

)
= 2M2 , (6.2a)

C00
ψ̇

= 3
(
m2

0Ω̇ + M̄3
1

)
= 6HαB , (6.2b)

C00
φ = 3H

(
m2

0Ω̇ + M̄3
1

)
−

(
2c + 4M4

2

)
= (6αB − αK)M2H2 , (6.2c)

C00
π̇ = 2c + 4M4

2 = M2H2αK , (6.2d)

C00
π = 3Ḣ

(
m2

0Ω̇ + M̄3
1

)
= 6HḢM2αB , (6.2e)

C00
π2 = −

(
m2

0Ω̇ + M̄3
1

)
= −2M2HαB , (6.2f)
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and the coefficients for the anisotropic shear stress equation [their Eq. (55)] read

Ci j
ψ = m2

0Ω = M2(1 + αT) , (6.3a)

Ci j
φ = −

(
m2

0Ω + M̄2
2

)
= −M2 , (6.3b)

Ci j
π = −

m2
0Ω̇ + M̄2

2

H +
2 ˙̄M2

M̄2


 = −(αM − αT)M2H . (6.3c)

We can now work out the expressions for the modified gravity parameters µ and η. The relevant
coefficients used in [6] are defined in their Eqs. (57)–(60): Aψ = C00

ψ2, Aφ = 0, Aπ = C00
π2, Bψ = −1,

Bφ = −Ci j
φ /C

i j
ψ = 1/(1 +αT), Bπ = −Ci j

π /C
i j
ψ = H(αM −αT)/(1 +αT), Cψ = Cπ

ψ2, Cφ = Cπ
φ2, Cπ = Cπ

π2,
Cπ2 = Cπ

π.
They are defined as [their Eq. (66)]

µ = 2M2
pl

f1 + f2 a2

k2

f3 + f4 a2

k2

, η =
f5 + f6 a2

k2

f1 + f2 a2

k2

, (6.4)

where [their Eqs. (64) and (65)]

f1 = BπCψ − BψCπ =
1
2
αc2

s M̄2µ∞
1 + αT

H2M2 , (6.5a)

f2 = − BψCπ2 = 3M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
, (6.5b)

f3 = Aψ(BφCπ − BπCφ) + Aπ(BψCφ − BφCψ) =
αc2

s

1 + αT
H2M4 , (6.5c)

f4 = AψBφCπ2 =
6M4

1 + αT

{(
Ḣ +

ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
, (6.5d)

f5 = BφCπ − BπCφ =
1
2
αc2

s M̄2µZ,∞
1 + αT

H2M2 , (6.5e)

f6 = BφCπ2 =
3M4

1 + αT

{(
Ḣ +

ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
. (6.5f)

7 Pogosian & Silvestri, 2016; Ref. [7]

[7] use the same notation for the EFT functions and the metric potentials of [5], and define the coef-
ficients required to evaluate the effective gravitational constant and the slip in their Appendix A. The
expressions provided are given for generic models beyond Horndeski, whose equations of motion are
higher than second order. We report them here for completeness, but, focusing on beyond-Horndeski
where αH , 0 without higher spatial derivatives, to make a direct comparison with [1]. We will thus
assume m2

2 = 0.
With the help of their conversion table (and with the replacement M2∗ → M2)4

M2 = m2
0Ω + M̄2

2 , M2H2αK = 2c + 4M4
2 , 2M2HαB = m2

0Ω̇ + M̄3
1 , (7.1a)

M2HαM = m2
0Ω̇ + ˙̄M2

2 , M2αT = − M̄2
2 , M2αH = 2M̂2 − M̄2

2 , (7.1b)

4We corrected a typo in their (A18) where it should read H2 M2
∗αK, rather than HM2

∗αK.
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and M̄2
2 + M̄2

3 = 0, the coefficients [their Eqs. (A4)] read as

A1 = 2m2
0Ω + 4M̂2 = 2M2(1 + αH) , (7.2a)

A2 = − m2
0Ω̇ − M̄3

1 + 2HM̄2
3 + 4HM̂2 = 2HM2(αH − αB) , (7.2b)

A3 = − 8m2
2 = 0 , (7.2c)

B1 = − 1 − 2M̂2

m2
0Ω

= −1 + αH

1 + αT
, (7.2d)

B2 = 1 , (7.2e)

B3 = − Ω̇

Ω
+

M̄2
3

m2
0Ω

H +
2 ˙̄M3

M̄3

 = −αM − αT

1 + αT
H , (7.2f)

C1 = m2
0Ω̇ + 2HM̂2 + 4M̂ ˙̂M = M2 {H [αM + αH (1 + αT) − αT] + α̇H} , (7.2g)

C2 = − m2
0

2
Ω̇ − 1

2
M̄3

1 −
3
2

HM̄2
2 −

1
2

HM̄2
3 + 2HM̂2 = HM2 (αH − αB) , (7.2h)

C3 = c − 1
2

(H + ∂t)M̄3
1 +

(
k2

2a2 − 3Ḣ
)

M̄2
2 +

(
k2

2a2 − Ḣ
)

M̄2
3 + 2

(
H2 + Ḣ + H∂t

)
M̂2 , (7.2i)

= − M2
{
Ḣ +

ρm + Pm

2M2 + H2 [1 + αB (1 + αM) + αT − (1 + αH) (1 + αM)] + [H (αB − αH)]·
}
,

Cπ =
m2

0

4
Ω̇Ṙ(0) − 3cḢ +

3
2

(
3HḢ + Ḣ∂t + Ḧ

)
M̄3

1 +
9
2

Ḣ2M̄2
2 +

3
2

Ḣ2M̄2
3 , (7.2j)

= 3M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
. (7.2k)

These coefficients are in perfect agreement with [1].
With respect to the coefficients used in [6], we have the following identifications (with αH = 0)

A1 = Aψ , A2 = Aπ , A3 = Aφ , B1 = −Bφ , B2 = −Bψ ,

B3 = −Bπ , C1 = Cψ , C2 = Cφ , C3 = Cπ , Cπ = Cπ2 ,

and defining µ and η as in Eq. (6.4), we find [their Eqs. (A8)]

f1 = B2C3 −C1B3 = BπCψ − BψCπ , (7.3a)

f2 = B2Cπ = −BψCπ2 , (7.3b)

f3 = A1(B3C2 − B1C3) + A2(B1C1 − B2C2) + A3(B2C3 − B3C1) , (7.3c)

= Aψ(BφCπ − BπCφ) + Aπ(BψCφ − BφCψ) ,

f4 = (A3B2 − A1B1)Cπ = AψBφCπ2 , (7.3d)

f5 = B3C2 − B1C3 = BφCπ − BπCφ , (7.3e)

f6 = − B1Cπ = BφCπ2 , (7.3f)

which clearly shows that the final outcome is the same for [7] and [6] and, as already stated, in agree-
ment with our results for µ and η when derived from the field equations. Besides the dimensionfull
form of the previous expressions, they are in agreement with our Eq. (3.1) of the main test.

8 Piazza et al., 2014; Ref. [8] and Perenon et al., 2015, 2017; Ref. [9, 10]

In this section we will translate the expression for µ and η of [8–10], as they adopt the same notation
in terms of the metric potentials (as in Eq. (1.1)) and for the EFT dynamical variables. The only

– 9 –



difference is in the short-hand notation to indicate the time derivative of M2∗ f (M2 in their notation).
[8] and [9] define [their Eqs. (5) and (6), respectively] µ ≡ d ln M2

dt , while [10] uses µ1 ≡ d ln M2

dt [their
Eq. (2)]. We, therefore, have µ = µ1 = ḟ / f . In the following, for simplicity, we will use as variable
µ1, to avoid confusion with the effective gravitational constant µ and replace M2 with the equivalent
quantity, in our notation, M2∗ f .

The relation between the EFT variables and the αs is [9, 10]

M2 = M2
∗ f (1 + ε4) , αM =

1
H

[
ε̇4

1 + ε4
+ µ1

]
, µ1 =

ḟ
f
,

αK =
2C + 4µ2

2

H2(1 + ε4)
, αB =

µ1 − µ3

2H(1 + ε4)
, αT = − ε4

1 + ε4
, (8.1)

and background variables are defined as

C =
1
2

(
Hµ1 − µ̇1 − µ2

1

)
+
ρD + PD

2M2∗ f
, λ =

1
2

(5Hµ1 + µ̇1 + µ2
1) +

ρD + PD

2M2∗ f
, (8.2)

which differ from the quantities defined in other works.

We start our conversion with the coefficients A and B used to define the sound speed of pertur-
bations c2

s = B/A. They are defined in Eqs. (19) of [8], (22) and (23) of [9], and (23) and (24) of [10],
together with the auxiliary variables µ̊3 and ε̊4

µ̊3 ≡ µ̇3 + µ1µ3 + Hµ3 , ε̊4 ≡ ε̇4 + µ1ε4 + Hε4 , (8.3)

A =
(
C + 2µ2

2

)
(1 + ε4) +

3
4

(µ1 − µ3)2 =
1
2

α

(1 + αT)2 H2 , (8.4)

B =

(
C +

µ̊3

2
− Ḣε4 + Hε̊4

)
(1 + ε4) − (µ1 − µ3)

[
µ1 − µ3

4(1 + ε4)
− µ1 − ε̊4

]
=

1
2

αc2
s

(1 + αT)2 H2 . (8.5)

We can now analyse the expressions for µ and η. While [9, 10] only consider the limit on small
scales [their Eqs. (14) and (17), (15) and (20), respectively], [8], instead, performs a full analysis
including scale dependence. Here, we will, therefore, only consider the expressions provided by [8],
as the other two works agree with [8] on small scales.

The two quantities read [their Eqs. (11), (14) and (16)]5

µ =
a0 + YIR

b0 + YIR

1 + αT

M̄2
, η =

c0 + (1 + ε4)YIR

a0 + YIR
, (8.6)

5We corrected a typo in the definition of the slip parameter γsl = η.
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where6

a0 = 2C + µ̊3 − 2Ḣε4 + 2Hε̊4 + 2(µ1 + ε̊4)2 , (8.7a)

=
αc2

s (1 + αT) + 2[αB(1 + αT) + αT − αM]2

(1 + αT)2 H2 =
αc2

s M̄2µ∞
(1 + αT)2 H2 ,

b0 = 2C + µ̊3 − 2Ḣε4 + 2Hε̊4 + 2
(µ + ε̊4)(µ1 − µ3)

1 + ε4
− (µ1 − µ3)2

2(1 + ε4)2 , (8.7b)

=
αc2

s

1 + αT
H2 ,

c0 = (1 + ε4)(2C + µ̊3 − 2Ḣε4 + 2Hε̊4) − (µ1 + ε̊4)(µ1 + µ3 + 2ε̊4) + 2(µ1 + ε̊4)2 , (8.7c)

=
αc2

s + 2αB[αB(1 + αT) + αT − αM]
(1 + αT)2 H2 =

αc2
s M̄2µZ,∞

(1 + αT)2 H2 ,

YIR ≡ 3
(a
k

)2 [
−2ḢC − Ḣµ̊3 + 2Ḣ2ε4 + Ḧ(µ1 − µ3) − 2HḢµ3 + 4HḢµ1

]
, (8.7d)

= 6
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
/(1 + αT) .

The quantity often appearing in the previous expressions becomes

2C + µ̊3 − 2Ḣε4 + 2Hε̊4 =
H2

1 + αT

{
αc2

s + 2αB [αB(1 + αT) + 2(αT − αM)]
}
.

Finally, it is interesting to convert the expressions for the ratios of the several definitions of the
effective gravitational constant defined in [9]. The authors identify: i) µgw = 1/M̄2 as the coupling
of gravitational waves to matter; ii) µ as the gravitational coupling between two objects in the lin-
ear regime under the quasi-static approximation (therefore relevant on cosmological scales) without
the effect of any screening mechanism; and iii) µsc = (1 + αT)/M̄2 as the gravitational coupling be-
tween two objects under the quasi-static approximation and with the effects of screening mechanisms
(therefore relevant for Solar System scales). One can write Geff

GN
=

Geff

Gsc

Gsc
GN

=⇒ µ =
µ
µsc
µsc, where

µ

µsc
= 1 +

1 + ε4

B

[
µ1 − µ3

1 + ε4
− (µ1 + ε̊4)

]2

= 1 +
2 [2αB(1 + αT + αT − αM)]2

αc2
s

. (8.8)

9 Amendola et al., 2019; Ref. [11]

The quasi-static approximation has also been investigated by [11], providing time- and scale-dependent
expressions based on [13]. The expressions read (see also [23]):

µZ ≡ h1h2

(
1 + h4K2

1 + h3K2

)
, µ ≡ h1

(
1 + h5K2

1 + h3K2

)
, η ≡ h2

(
1 + h4K2

1 + h5K2

)
, (9.1)

where, by defining

α1 = − 2[αB(1 + αT) + αT − αM] , (9.2a)

α2 = − 2
[
(1 + αB)ξ +

α̇B

H
+
ρm + Pm

2H2M2

]
, (9.2b)

µ2 = − 3
{
ξα2 − 2αB

[
2ξ2 + ξ̇/H + (3 + αM)ξ

]}
. (9.2c)

6We corrected the definition of YIR, as the authors say it is equivalent to that of [12].
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with ξ = Ḣ/H2,

h1 =
1 + αT

M̄2
, h2 =

1
1 + αT

, (9.3a)

h3 =
1
µ2 [(1 + αB)α1 + α2] = αc2

s/µ
2 , (9.3b)

h4 =
1
µ2 (α1 + α2) = αc2

s M̄2µZ,∞/µ2 , (9.3c)

h5 =
1
µ2

(
1 + αM

1 + αT
α1 + α2

)
=

1
µ2

αc2
s M̄2µY,∞
1 + αT

. (9.3d)

The limits for K→ ∞ and K→ 0, are, respectively,

µZ,∞ ≡ h1h2h4

h3
, µ∞ ≡ h1h5

h3
, η∞ ≡ h2h4

h5
; µZ,0 ≡ h1h2 , µ0 ≡ h1 , η0 ≡ h2 .

These expressions are identical to those found starting from EFE, as
µ2 = f̃4 = 6

{(
Ḣ +

ρm+Pm
2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
/H4.

10 Gleyzes et al., 2013; Ref. [12]

This approach is based on the EFT formalism and uses a similar set of variables of [5–7]. The coeffi-
cients and expressions are provided for beyond Horndeski models, therefore, several coefficients will
be set to zero to match the Horndeski expressions.

For Horndeski models

m̄2
4 = m̄5 = λ̄ = 0 , M̄2

3 = −M̄2
2 , M̄2

2 = 2m2
4 , m̃2

4 = m2
4 ,

and one defines M2
4 ≡ 2m2

4 +3m̄2
4. Therefore, in the following expressions, the only relevant functions

will be f (t), Λ(t), c(t), M4
2 , m3

3 and m2
4. We will, although, also consider m̃2

4 , m2
4 to include terms

dependent on αH in the field equations, to be able to make a more direct comparison with [1].
In the following, we will present the coefficients of the field equations, which will later be

used for the functions in the quasi-static approximation. The functions Ax are the coefficients in the
00-component of the field equations:

AΦ = 2c + 4M4
2 − 6H

[
f HM2

∗ + M2
∗ ḟ − m3

3 + HM2
4

]
= −H2M2(6 − αK + 12αB) , (10.1a)

AΨ̇ = −3
[
2H

(
M2
∗ f + M2

4

)
+ M2

∗ ḟ − m3
3

]
= −6HM2(1 + αB) , (10.1b)

Aπ = 3H2M2
∗ ḟ + 3m3

3Ḣ − ċ − Λ̇ − 6M2
4 HḢ + 3HM2

∗ f̈ , (10.1c)

= 6Hc − 3
(
H2 + Ḣ

)
M2
∗ ḟ + 3HM2

∗ f̈ + 3m3
3Ḣ − 6M2

4 HḢ ,

= −6HM2
[
(1 + αB)Ḣ +

ρm + Pm

2M2

]
,

Aπ̇ = −2c − 4M4
2 − 3H

(
m3

3 − M2
∗ ḟ

)
= H2M2(6αB − αK) , (10.1d)

A(2)
Ψ

= −2 f M2
∗ + 6Hm̄5 − 4m̃2

4 = −2M2(1 + αH) , (10.1e)

A(2)
π = M2

∗ ḟ − m3
3 + 2HM2

4 − 4Hm̃2
4 + 6H2m̄5 = 2M2H(αB − αH) ; (10.1f)

– 12 –



the functions Bx are the coefficients in the 0i-component of the field equations:

BΦ = −m3
3 + 2H

(
f M2
∗ + M2

4

)
+ M2

∗ ḟ = 2HM2(1 + αB) , (10.2a)

BΨ̇ = 2
(
M2
∗ f + M2

4

)
= 2M2 , (10.2b)

Bπ = −2c + 2M2
4 Ḣ + M2

∗
(
H ḟ − f̈

)
= 2M2

(
Ḣ +

ρm + Pm

2M2

)
, (10.2c)

Bπ̇ = m3
3 − M2

∗ ḟ = −2M2HαB , (10.2d)

B(2)
Ψ

= −2m̄5 = 0 , (10.2e)

B(2)
π = −2(m̄2

4 + Hm̄5) = 0 ; (10.2f)

the functions Cx are the coefficients of the i j-trace component:

CΦ = 3
[
2c + 2

(
3H2 + Ḣ

)
M2

4 + 2M2
∗ f

(
3H2 + 2Ḣ

)
−

(
m3

3

)·
+

H
(
−3m3

3 + 4M2
∗ ḟ + 2

(
M2

4

)·)
+ 2M2

∗ f̈
]
, (10.3a)

= 6M2
[
Ḣ − ρm + Pm

2M2 + (HαB)· + (3 + αM)(1 + αB)H2
]
, (10.3b)

CΦ̇ = −3m3
3 + 6H

(
M2
∗ f + M2

4

)
+ 3M2

∗ ḟ = 6HM2(1 + αB) , (10.3c)

CΨ̇ = 6
[
3HM2

∗ f + 3HM2
4 + M2

∗ ḟ +
(
M2

4

)·]
= 6HM2(3 + αM) , (10.3d)

CΨ̈ = 6
(
M2
∗ f + M2

4

)
= 6M2 , (10.3e)

Cπ = −3
[
ċ − Λ̇ − 2Ḣ

(
M2

4

)· − 2
(
Ḧ + 3HḢ

)
M2

4 + M2
∗
(
2Ḣ ḟ +

...
f + 3H2 ḟ + 2H f̈

)]
, (10.3f)

= −3
[
2ċ + 6Hc − 2Ḣ(M2

4)· − 2(Ḧ + 3HḢ)M2
4 + M2

∗
(...

f − (3H2 + Ḣ) ḟ + 2H f̈
)]
,

= 6M2
[

Ṗm

2M2 + Ḧ + (3 + αM)HḢ
]
,

Cπ̇ = 3
[
−2c + 3Hm3

3 − 2HM2
∗ ḟ + 2M2

4 Ḣ +
(
m3

3

)· − 2M2
∗ f̈

]
(10.3g)

= 2M2
[
Ḣ +

ρm + Pm

2M2 − (HαB)· − (3 + αM)αBH2
]
,

Cπ̈ = 3
(
m3

3 − M2
∗ ḟ

)
= −2M2HαB , (10.3h)

C(2)
Φ

= −
(
2M2
∗ f − 6Hm̄5 + 4m̃2

4

)
= −2M2(1 + αH) , (10.3i)

C(2)
Ψ

= 2M2
∗ f − 6Hm̄5 − 6 ˙̄m5 = 2M2(1 + αT) , (10.3j)

C(2)
π = −2

[
M2
∗ ḟ +

(
M2

4

)·
+ HM2

4 + 3H2m̄5 + 3H ˙̄m5
]

= −2HM2(αM − αT) , (10.3k)

C(2)
π̇ = −2

(
M2

4 − 2m̃2
4 + 3Hm̄5

)
= 2M2αH , (10.3l)

C(4)
Ψ

= 16λ̄ = 0 , (10.3m)

C(4)
π = −2m̄5 + 16Hλ̄ = 0 ; (10.3n)
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the functions Dx are the coefficients of the i j-traceless component of the field equations:

D(2)
Φ

= M2
∗ f + 2m̃2

4 − 3Hm̄5 = M2(1 + αH) , (10.4a)

D(2)
Ψ

= −M2
∗ f = −M2(1 + αT) , (10.4b)

D(2)
Ψ̇

= −3m̄5 = 0 , (10.4c)

D(2)
π = M2

∗ ḟ + 2m2
4H + 2

(
m2

4

)· − 3Ḣm̄5 = M2H(αM − αT) , (10.4d)

D(2)
π̇ = 2m2

4 − 2m̃2
4 = −M2αH , (10.4e)

D(4)
Ψ

= −8λ̄ = 0 , (10.4f)

D(4)
π = m̄5 − 8Hλ̄ = 0 ; (10.4g)

and the functions Ex are the coefficients of the equation of motion for the perturbed scalar field π

EΦ = 6Hc + ċ + H2
(
9m3

3 − 6M2
∗ ḟ

)
+ 3Ḣ

(
2m3

3 − M2
∗ ḟ

)
− Λ̇+

3H
[
4M4

2 − 2M2
4 Ḣ + (m3

3)·
]

+ 4
(
M4

2

)·
(10.5a)

= 12Hc + 2ċ + 3m3
3(3H2 + 2Ḣ) − 6M2

∗ ḟ (2H2 + Ḣ) + 3H
[
4M4

2 − 2M2
4 Ḣ + (m3

3)·
]

+ 4(M4
2)· ,

= −HM2
[
6
(
Ḣ +

ρm + Pm

2M2

)
+ H2(6αB − αK)(3 + αM) + 2(9αB − αK)Ḣ + H(6α̇B − α̇K)

]
,

EΦ̇ = 2c + 4M4
2 + 3H(m3

3 − M2
∗ ḟ ) = M2H2(αK − 6αB) , (10.5b)

EΨ = 3
[
6cH + ċ + Λ̇ − 3M2

∗ ḟ (2H2 + Ḣ)
]

= 0 , (10.5c)

EΨ̇ = 3
[
2c + 3Hm3

3 − 4HM2
∗ ḟ − 2M2

4 Ḣ + (m3
3)·

]
, (10.5d)

= −6M2
[
Ḣ +

ρm + Pm

2M2 + H2αB(3 + αM) + (αBH)·
]
,

EΨ̈ = 3(m3
3 − M2

∗ ḟ ) = −6M2HαB , (10.5e)

Eπ = −
[
6M2

4 Ḣ2 − 3(m3
3)·Ḣ + 6Hċ − 9HḢm3

3 + c̈ − 3M2
∗ Ḣ f̈ − 6H2M2

∗ f̈ − 3m3
3Ḧ + Λ̈

]
, (10.5f)

= −
[
6M2

4 Ḣ2 − 3(m3
3)·Ḣ − 6Ḣc + 3M2

∗ (Ḧ + 4HḢ) ḟ − 9HḢm3
3 − 3m3

3Ḧ
]
,

= −6M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
,

Eπ̇ = −2
[
3H

(
c + 2M4

2

)
+ ċ + 2(M4

2)·
]
, (10.5g)

= −M2H
{[

H2(3 + αM) + Ḣ
]
αK + (HαK)·

}
,

Eπ̈ = −2
(
c + 2M4

2

)
= −M2H2αK , (10.5h)

E(2)
Φ

= −
[
m3

3 + H
(
−2M2

4 − 6Hm̄5 + 4m̃2
4

)
− M2

∗ ḟ
]

= −2M2H(αH − αB) , (10.5i)

E(2)
Ψ

= −2
[
2Hm̃2

4 + M2
∗ ḟ − 3m̄5Ḣ + 2(m̃2

4)·
]

= −2M2 {H[αM − αT + αH(1 + αM)] + α̇H} , (10.5j)

E(2)
Ψ̇

= 2M2
4 + 6Hm̄5 − 4m̃2

4 = −M2αH , (10.5k)

E(2)
π = −

[
2c − 4M2

4 Ḣ + 4m̃2
4Ḣ + (m3

3)· + 4H2m̃2
4 + Hm3

3 − 12m̄5HḢ + 4H(m̃2
4)·

]
, (10.5l)

= 2M2
{
Ḣ +

ρm + Pm

2M2 + H2 [1 + αB(1 + αM) + αT − (1 + αH)(1 + αM)] + [H(αB − αH)]·
}
,

E(4)
Ψ

= −2m̄5 + 16Hλ̄ = 0 , (10.5m)

E(4)
π = −2(m̄2

4 + 2Hm̄5) + 16H2λ̄ = 0 . (10.5n)

– 14 –



Finally, the functions Fx are the coefficients of the generalised Poisson equation
FΦΦ + FΨ̇Ψ̇ + Fππ + Fπ̇π̇ + H2K2(F(2)

Ψ
Ψ + F(2)

π π) = ρm∆m,

FΦ = −3M2
∗H ḟ + 2c + 4M4

2 + 3Hm3
3 = M2H2(αK − 6αB) , (10.6a)

FΨ̇ = −3M2
∗ ḟ + 3m3

3 = −6HM2αB , (10.6b)

Fπ = 6M2
∗H

2 ḟ − 6Hc − ċ − Λ̇ + 3m3
3Ḣ = −3Ḣ

(
M2
∗ ḟ − m3

3

)
= −6HḢM2αB , (10.6c)

Fπ̇ = −(2c + 4M4
2) = −H2M2αK , (10.6d)

F(2)
Ψ

= −(2M2
∗ f + 4m̃2

4) = −2M2(1 + αH) , (10.6e)

F(2)
π = M2

∗ ḟ − m3
3 + 4Hm2

4 − 4Hm̃2
4 = 2HM2(αB − αH) . (10.6f)

We now consider the effective gravitational constant and the slip. The effective gravitational
constant µ is

4πGeff(k) =
a−2(k/a)−2 + a0 + a2(k/a)2 + a4(k/a)4

b−2(k/a)−2 + b0 + b2(k/a)2 , (10.7)

where, for αH = 0,

a−2 = D(2)
Ψ

Eπ = 6(1 + αT)M4
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
, (10.8a)

a0 = D(2)
Ψ

E(2)
π − D(2)

π E(2)
Ψ

+ D(4)
Ψ

Eπ = H2M4αc2
s M̄2µY,∞ , (10.8b)

a2 = D(2)
Ψ

E(4)
π − D(4)

π E(2)
Ψ
− D(2)

π E(4)
Ψ

+ D(4)
Ψ

E(2)
π = 0 , (10.8c)

a4 = −D(4)
π E(4)

Ψ
+ D(4)

Ψ
E(4)
π = 0 , (10.8d)

b−2 = D(2)
Φ

EπF(2)
Ψ

= 12M6
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
, (10.8e)

b0 = D(2)
Ψ

E(2)
Φ

F(2)
π − D(2)

Φ
E(2)

Ψ
F(2)
π − D(2)

π E(2)
Φ

F(2)
Ψ

+ D(2)
Φ

E(2)
π F(2)

Ψ
= 2H2M6αc2

s , (10.8f)

b2 = −D(2)
Φ

E(4)
Ψ

F(2)
π − D(4)

π E(2)
Φ

F(2)
Ψ

+ D(2)
Φ

E(4)
π F(2)

Ψ
+ D(4)

Ψ
E(2)

Φ
F(2)
π = 0 . (10.8g)

The slip η ≡ Ψ/Φ is given by

η =
c−2(k/a)−2 + c0 + c2(k/a)2

a−2(k/a)−2 + a0 + a2(k/a)2 + a4(k/a)4 , (10.9)

with

c−2 = −D(2)
Φ

Eπ = 6M4
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + ḢαB

[
H2(3 + αM) + Ḣ

]
+ H(ḢαB)·

}
, (10.10a)

c0 = D(2)
π E(2)

Φ
− D(2)

Φ
E(2)
π = H2M4αc2

s M̄2µZ,∞ , (10.10b)

c2 = D(4)
π E(2)

Φ
− D(2)

Φ
E(4)
π = 0 . (10.10c)

The expressions for Geff and η generalise those given in [13] in absence of higher derivative
operators, in which case a2 = a4 = b2 = c2 = 0. When also a−2 = b−2 = c−2 = 0 we recover the
results of [2]. These expressions coincide with the expressions derived from the field equations, after
some simple simplifications.
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11 De Felice et al., 2011; Ref. [13]

In this section we convert the expressions for the perturbations in generic Horndeski models written
in terms of the Gi functions to expressions written in terms of the αX functions. For simplicity, we
will not write again the full expressions in terms of the Gi functions, but we refer to [13] for them.

The first thing to take into account is that in [13] a different definition is used for the metric
potentials (Ψ → Φ, Φ → −Ψ, χ → −χ). Secondly, the authors use the perturbed scalar field
as degree of freedom. As discussed in the main manuscript, the following relations between the
perturbed scalar field δφ and π hold:

π =
δφ

φ̇
, π̇ =

δ̇φ

φ̇
− φ̈
φ̇

δφ

φ̇
, π̈ =

δ̈φ

φ̇
− 2

φ̈

φ̇

δ̇φ

φ̇
+

2
(
φ̈

φ̇

)2

−
...
φ

φ̇


δφ

φ̇
,

δφ = φ̇π , δ̇φ = φ̈π + φ̇π̇ , δ̈φ = φ̇π̈ + 2φ̈π̇ +
...
φπ .

The background quantities are defined as

1
a3

d
dt

(a3J) = Pφ , E ≡
5∑

i=2

Ei = ρds−3H2M2
pl = −ρm , P ≡

5∑

i=2

Pi = Pds+
(
3H2 + 2Ḣ

)
M2

pl = −Pm ,

and their explicit expressions can be found in [13, 24].
One defines

FT ≡ M2(1 + αT) , GT ≡ M2 =
1
2
∂P
∂Ḣ

, (11.1)

such that c2
T ≡ 1 + αT = FT/GT. Moreover,

Θ ≡ −1
6
∂E
∂H

= M2H(1 + αB) , (11.2)

Σ ≡ X
∂E
∂X

+
1
2

H
∂E
∂H

=
1
2

M2H2(αK − 12αB − 6) , (11.3)

and

FS ≡ 1
a

d
dt

a
G2

T

Θ

 − FT = −M2 (1 + αB)[Ḣ − (αM − αT)H2 + αB(1 + αT)H2] + Hα̇B

H2(1 + αB)2 , (11.4)

GS ≡ Σ
G2

T

Θ2 + 3GT =
1
2

M2 α

(1 + αB)2 , (11.5)

which allow to write the sound speed for perturbations as

c2
s =
FS

GS
− ρm + Pm

H2M2α
. (11.6)

Taking into account the differences for the variables appearing in the perturbed metric, the
coefficients of the 00-component of the perturbed field equations are

A1 = 6Θ = 6HM2(1 + αB) , (11.7a)

A2 = −2(Σ + 3HΘ)/φ̇ = −M2H2(αK − 6αB)/φ̇ , (11.7b)

A3 = 2GT = 2M2 , (11.7c)

A4 = 2Σ + ρm + Pm = −M2H2(6 − αK + 12αB) + ρm + Pm , (11.7d)

A5 = −2Θ = −2HM2(1 + αB) , (11.7e)

A6 = 2(Θ − HGT)/φ̇ = 2HM2αB/φ̇ ; (11.7f)
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the coefficients of the trace of the i j-component of the perturbed field equations (more precisely
three times the trace minus 2k2/a2 the traceless part, using Eqs. (A.1) from the appendix in the main
manuscript)

B1 = 6GT = 6M2 , (11.8a)

B2 = 6(Θ − HGT)/φ̇ = 6HM2αB/φ̇ , (11.8b)

B3 = 6(ĠT + 3HGT) = 6HM2(3 + αM) , (11.8c)

B4 = 3
[(

4Hφ̈ − 4Ḣφ̇ − 6H2φ̇
)
GT − 2Hφ̇ĠT −

(
4φ̈ − 6Hφ̇

)
Θ + 2φ̇Θ̇ − (ρm + Pm)φ̇

]
/φ̇2 , (11.8d)

= −6M2
{
2HαBφ̈ +

[
Ḣ +

ρm + Pm

2M2 − (αBH)· − (3 + αM)αBH2
]
φ̇
}
/φ̇2 ,

B5 = −6Θ = −6HM2(1 + αB) , (11.8e)

B6 = 2FT = 2M2(1 + αT) , (11.8f)

B7 = 2
[
ĠT + H (GT − FT)

]
/φ̇ = 2HM2(αM − αT)/φ̇ , (11.8g)

B8 = 2GT = 2M2 , (11.8h)

B9 = −6(Θ̇ + 3HΘ) = −6M2
[
Ḣ + (αBH)· + (3 + αM)(1 + αB)H2

]
, (11.8i)

B10 = −2GT = −2M2 , (11.8j)

B11 = −2(ĠT + HGT) = −2HM2(1 + αM) ; (11.8k)

the coefficients of the 0i-component of the perturbed Einstein field equations are

C1 = 2GT = 2M2 , (11.9a)

C2 = 2(Θ − HGT)/φ̇ = 2HM2αB/φ̇ , (11.9b)

C3 = −2Θ = −2HM2(1 + αB) , (11.9c)

C4 =
[
2(Hφ̈ − Ḣφ̇)GT − 2φ̈Θ − (ρm + Pm)φ̇

]
/φ̇2 , (11.9d)

= −2M2
[
HαBφ̈ +

(
Ḣ +

ρm + Pm

2M2

)
φ̇
]
/φ̇2 ;
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the coefficients of the equation of motion of the perturbed scalar field are

D1 = 6(Θ − HGT)/φ̇ = 6HM2αB/φ̇ , (11.10a)

D2 = 2
(
3H2GT − 6HΘ − Σ

)
/φ̇2 = −H2M2αK/φ̇

2 , (11.10b)

D3 = −3
[
2H

(
ĠT + 3HGT

)
− 2

(
Θ̇ + 3HΘ

)
− (ρm + Pm)

]
/φ̇ , (11.10c)

= 6M2
[
Ḣ +

ρm + Pm

2M2 + H2αB(3 + αM) + (αBH)·
]
/φ̇ ,

D4 = 2
{
3H

[(
3H2 + 2Ḣ

)
φ̇ − 2Hφ̈

]
GT + 3H2φ̇ĠT + 6

[
2Hφ̈ −

(
3H2 + Ḣ

)
φ̇
]
Θ − 6Hφ̇Θ̇+

(
2φ̈ − 3Hφ̇

)
Σ − φ̇Σ̇

}
/φ̇3 , (11.10d)

= HM2
{
2HαKφ̈ −

[
H2(3 + αM) + Ḣ

]
αKφ̇ − φ̇(HαK)·

}
/φ̇3 ,

D5 = 2(Σ + 3HΘ)/φ̇ = H2M2(αK − 6αB)/φ̇ , (11.10e)

D6 = −2(Θ − HGT)/φ̇ = −2HM2αB/φ̇ , (11.10f)

D7 = 2
[
ĠT + H (GT − FT)

]
/φ̇ = 2HM2(αM − αT)/φ̇ , (11.10g)

D8 = 3
[
6
(
Ḣφ̇ − Hφ̈

)
Θ − 2φ̈Σ + 3H(ρm + Pm)φ̇ − µφ̇2

]
/φ̇2 , (11.10h)

= 3HM2
{
6φ̇

[
Ḣ(1 + αB) +

ρm + Pm

2M2

]
− Hφ̈(αK − 6αB)

}
/φ̇2 − 3µ ,

= 0 ,

D9 =
[
2H2FT − 4H

(
ĠT + HGT

)
+ 2

(
Θ̇ + HΘ

)
+ (ρm + Pm)

]
/φ̇2 , (11.10i)

= 2M2
{
Ḣ +

ρm + Pm

2M2 + H2 [αB(1 + αM) + αT − αM] + (HαB)·
}
/φ̇2 ,

D10 = 2(Θ − HGT)/φ̇ = 2HM2αB/φ̇ , (11.10j)

D11 =
{
6
[(

3H2 + Ḣ
)
φ̇ − Hφ̈

]
Θ + 6Hφ̇Θ̇ + 2(3Hφ̇ − φ̈)Σ + 2φ̇Σ̇ − µφ̇2

}
/φ̇2 , (11.10k)

= M2
{
φ̇H

[
(αK − 6αB)(3 + αM)H2 + 2Ḣ(αK − 6αB) + H(α̇K − 6α̇B)

]
− φ̈H2(αK − 6αB)

}
/φ̇2 − µ ,

= −M2
[
6
(
Ḣ +

ρm + Pm

2M2

)
+ H2(6αB − αK)(3 + αM) + 2(9αB − αK)Ḣ + H(6α̇B − α̇K)

]
H/φ̇ ,

D12 =
[
2H

(
ĠT + HGT

)
− 2

(
Θ̇ + HΘ

)
− (ρm + Pm)

]
/φ̇ , (11.10l)

= −2M2
{
Ḣ +

ρm + Pm

2M2 + H2αB(1 + αM) + (HαB)·
}
/φ̇ .

We finally have (we renamed the mass of the scalar field as M2
δφ to avoid confusion with the
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effective Planck mass M2)

µ = E,φ = −
[
2φ̈Σ + 6Θ

(
Hφ̈ − Ḣφ̇

)
+ 3Hφ̇ (E + P)

]
/φ̇2 (11.11a)

= −M2H
{
H(αK − 6αB)φ̈ − 6

[
(1 + αB)Ḣ +

ρm + Pm

2M2

]
φ̇
}
/φ̇2 ,

ν = P,φ = −2
[
ḦGT + Ḣ

(
ĠT + 3HGT

)]
/φ̇ − 2 (Θ − HGT)

...
φ/φ̇2− (11.11b)

[(
4Hφ̈ − 4Ḣφ̇ − 6H2φ̇

)
GT − 2Hφ̇ĠT −

(
4φ̈ − 6Hφ̇

)
Θ + 2φ̇Θ̇

]
φ̈/φ̇3−

(E + P) φ̈/φ̇2 + Ṗ/φ̇ ,
= −2HM2αB

(
φ̇

...
φ − 2φ̈2

)
/φ̇3 + 2M2

[
Ḣ +

ρm + Pm

2M2 − (αBH)· − (3 + αM)αBH2
]
φ̈/φ̇2

− 2M2
[
(3 + αM)HḢ +

Ṗm

2M2 + Ḧ
]
/φ̇ ,

M2
δφ =

[
µ̇ + 3H(µ + ν)

]
/φ̇ (11.11c)

= 6M2
{(

Ḣ +
ρm + Pm

2M2

)
Ḣ + αBḢ

[
(3 + αM)H2 + Ḣ

]
+ H(αBḢ)·

}
/φ̇2

− αKH2M2...
φ/φ̇3 + M2H

{
2αKHφ̈ − αK

[
(3 + αM)H2 + Ḣ

]
φ̇ − φ̇(αKH)·

}
φ̈/φ̇4 .

Applying the QSA approximation, the field equations reduce to

B8H2K2Z − A6H2K2δφ = −ρ̄m∆m , (11.12)

B6Z − B7δφ − B8Y = 0 , (11.13)

B7H2K2Z −
(
D9H2K2 − M2

δφ

)
δφ − A6H2K2Y = 0 , (11.14)

and, as explained in the main manuscript, we have µZ = 2[M−1]12H2M2
plK

2 and µ = 2[M−1]11H2M2
plK

2,
whereM is the matrix of the coefficients.

The inverse matrix coefficients are

[
M−1

]
11

=
B6M2

δφ +
(
B2

7 − B6D9
)

H2K2

B2
8M2

δφH2K2 + (2A6B7B8 − A2
6B6 − B2

8D9)H4K4
, (11.15)

[
M−1

]
12

=
B8M2

δφ + (A6B7 − B8D9) H2K2

B2
8M2

δφH2K2 + (2A6B7B8 − A2
6B6 − B2

8D9)H4K4
, (11.16)

[
M−1

]
13

=
A6B6 − B7B8

B2
8M2

δφ + (2A6B7B8 − A2
6B6 − B2

8D9)H2K2
, (11.17)

and the previous set of coefficients read
(
B2

7 − B6D9
)

H2 = 2H4M4αc2
s M̄2µY,∞/φ̇2 , (11.18)

B6M2
δφ = 2M2(1 + αT)M2

δφ , (11.19)

B2
8M2

δφH2 = 4H2M4M2
δφ , (11.20)

(2A6B7B8 − A2
6B6 − B2

8D9)H4 = 4H6M6αc2
s/φ̇

2 , (11.21)

(A6B7 − B8D9) H2 = 2H4M4αc2
s M̄2µZ,∞/φ̇2 , (11.22)

B8M2
δφ = 2M2M2

δφ , (11.23)

A6B6 − B7B8 = 4HM4[αB(1 + αT) + αT − αM]/φ̇ . (11.24)
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Following the notation of [7], we define

f1 = 2H4
(
B2

7 − B6D9
)
, f2 = 2H2B6M2

δφ , f3 = (2A6B7B8 − A2
6B6 − B2

8D9)H4 ,

f4 = B2
8M2

δφH2 , f5 = 2H4 (A6B7 − B8D9) , f6 = 2H2B8M2
δφ , f7 = 3H2(A6B6 − B7B8) ,

and using the following dimensionless coefficients

f̃1 = αc2
s M̄2µY,∞ , f̃5 = αc2

s M̄2µZ,∞ , f̃3 = αc2
s ,

f̃2 = (1 + αT)
φ̇2M2

δφ

H4M2 , f̃4 =
φ̇2M2

δφ

H4M2 , f̃6 =
φ̇2M2

δφ

H4M2 ,

f̃7 = 3[αB(1 + αT) + αT − αM] ,

the modified gravity functions and the relation between the perturbed scalar field and matter density
perturbations read

µZ ≡ f̃6 + f̃5K2

f̃4 + f̃3K2

1
M̄2

, µ ≡ f̃2 + f̃1K2

f̃4 + f̃3K2

1
M̄2

, η ≡ f̃6 + f̃5K2

f̃2 + f̃1K2
, H

δφ

φ̇
≡ Hπ =

f̃7
f̃4 + f̃3K2

1
M̄2

Ωm∆m .

Also these expressions are in agreement with what was found in previous works and in ours
when using the field equations. We verified that under the assumption that αT = 0, these expressions
coincide with those of [14]. Note though, that even if the limits for K → 0 coincide with what
generally found in the literature, the mass of the scalar field differs from ours and previous works,
due to the use of δφ rather than π. We verified that this choice does not affect f (R) models.

12 Arjona, Cardona & Nesseris, 2019; Ref. [14]

In [14], the authors apply an effective fluid approach, using exactly the same notation of [13] which
we also will follow in this section, under the basic idea that dark sector quantities (δPde, δde and Θde)
can be written in terms of the potentials, of the scalar field perturbations and their derivatives. To the
resulting equations one applies the quasi-static approximation.

With respect to [14], we will consider a generic Horndeski model, taking, therefore, into account
also the G5 Lagrangian and we will express the resulting expressions in terms of the coefficients
Ai, Bi, Ci and Di presented in the previous section. We will limit ourselves to the case where the
perturbations of the scalar field are given by δφ, rather than π.

The idea is that the field equations can be written in the standard form where the right-hand-
side is given by matter and dark sector perturbations. Therefore, subtracting from the equations
expressed in terms of the Ai, Bi, Ci and Di the general relativistic result, one obtains the expressions
for the dark sector perturbations in terms of the potential, the scalar field perturbations and their
derivatives. From the traceless part of the i j-component of the field equations, one expresses the
scalar field perturbations in terms of the two potentials and can evaluate its first and second time
derivative. Plugging them in the expressions for the dark sector perturbations, one can apply the QSA
and neglect time derivatives and express the perturbations in terms of the potentials. Ultimately, the
potentials can be related to matter perturbations as also explained in the main manuscript and the final
result is that dark sector perturbations are expressed in terms of matter perturbations.

For completeness, we report here the relevant equations needed to infer the final expressions.
From the traceless part of the i j-component

B6Φ + B8Ψ + B7δφ = 0 , (12.1)
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one expresses δφ in terms of the two potentials Φ and Ψ and evaluates its first and second time
derivatives. Applying the QSA to the field equations and using the relation between the scalar field
perturbations and the potentials, we find

Ψ =

(
B2

7 − B6D9
)

H2K2 + B6M2
δ(

A2
6B6 − 2A6B7B8 + B2

8D9
)

H4K4 − B8M2
δH2K2

δρm , (12.2)

Φ = − (A6B7 − B8D9) H2K2 + B8M2
δ(

A2
6B6 − 2A6B7B8 + B2

8D9
)

H4K4 − B8M2
δH2K2

δρm , (12.3)

δφ =
A6B6 − B7B8(

A2
6B6 − 2A6B7B8 + B8D9

)
H2K2 − B8M2

δ

δρm . (12.4)

The expressions for the dark sector density, velocity and pressure perturbations, the effective
anisotropic stress, the sound speed and the effective sound speed are7

δPde

ρde
' 1

3F4

F3 + F2H2K2 + F1H4K4

F6H2K2 + F5H4K4

ρm

ρde
δm , (12.5)

' 1
3F4

F3 + F2H2K2 + F1H4K4

F9 + F8H2K2 + F7H4K4 δde ,

δde ' F9 + F8H2K2 + F7H4K4

F6H2K2 + F5H4K4

ρm

ρde
δm , (12.6)

Vde ' a
F11 + F10H2K2

F6 + F5H2K2

ρm

ρde
δm , (12.7)

πde = M2
pl

k2

a2 (Φ − Ψ)

ρde
' − 1

2F4

F12 + F1H2K2

F6 + F5H2K2

ρm

ρde
δm , (12.8)

' − 1
2F4

F12H2K2 + F1H4K4

F9 + F8H2K2 + F7H4K4 δde ,

c2
s,de ≡

δPde

δρde
=

1
3F4

F3 + F2H2K2 + F1H4K4

F9 + F8H2K2 + F7H4K4 , (12.9)

c2
s,eff ≡ c2

s,de −
2
3
πde

δde
=

1
3F4

F3 + (F2 + F12) H2K2 + 2F1H4K4

F9 + F8H2K2 + F7H4K4 , (12.10)

Note that we have the following equivalence for the velocity perturbations:

a(ρm + Pm)Vm/k2
︸                ︷︷                ︸

[14]

= −(ρm + Pm)vm︸            ︷︷            ︸
[13]

= (ρm + Pm)vm = qm︸                  ︷︷                  ︸
[1]

= −ρmΘm/(3H)︸           ︷︷           ︸
[24]

.

7We corrected a typo in the expression of c2
s,de, as in [14] the coefficient F4 is missing.
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The Fi coefficients are then:

F1 = 2M2
plB

2
7 [B7 (A6 − B7) − D9 (B8 − B6)] , (12.11a)

F2 = 2M2
plB

2
7

[
3
(
3H2 + 2Ḣ

) (
B2

7 − B6D9
)

+ M2
δ (B8 − B6)

]
+ 3B2

7ν (A6B6 − B7B8) +
(
B2

7 − B6D9
) (

B2
7B9 − B4B7Ḃ8 + 2B2Ḃ7Ḃ8 − B2B7B̈8

)
−

(A6B7 − B8D9)
(
2B2Ḃ6Ḃ7 − B4B7Ḃ6 − B2B7B̈6

)
−

(A6B6 − B7B8)
[
B7

(
B2B̈7 + B4Ḃ7

)
− 2B2Ḃ2

7

]
, (12.11b)

F3 = M2
δ

{(
B4B7 − 2B2Ḃ7

) (
B8Ḃ6 − B6Ḃ8

)
+ B2B7

(
B8B̈6 − B6B̈8

)
+

B6B2
7

[
B9 + 6M2

pl

(
3H2 + 2Ḣ

)]}
, (12.11c)

F4 = B7 , (12.11d)

F5 = B7
(
A2

6B6 − 2A6B7B8 + B2
8D9

)
, (12.11e)

F6 = − B7B8M2
δ , (12.11f)

F7 = B7
[
A6 (A6B6 − B7B8) + (B8D9 − A6B7)

(
A3 − 2M2

pl

)]
, (12.11g)

F8 =
(
B2

7 − B6D9
) (

A4B7 − A2Ḃ8 + 6M2
plH

2B7
)
− A2 (B8D9 − A6B7) Ḃ6−

(A6B6 − B7B8)
(
A2Ḃ7 + B7 µ

)
− B7B8M2

δ

(
A3 − 2M2

pl

)
, (12.11h)

F9 = M2
δ

{
A2B8Ḃ6 + B6

[
B7

(
A4 + 6M2

plH
2
)
− A2Ḃ8

]}
, (12.11i)

F10 = B3
7

(
C3 + 2M2

plH
)
− B2

7

(
B8C4 + C2Ḃ8

)
−C2

[
B8D9Ḃ6 + B6

(
A6Ḃ7 − D9Ḃ8

)]
+

B7
[
A6

(
B6C4 + C2Ḃ6

)
+ B8C2Ḃ7 − B6D9

(
C3 + 2M2

plH
)]
, (12.11j)

F11 = M2
δ

{
B8C2Ḃ6 + B6

[
B7

(
C3 + 2M2

plH
)
−C2Ḃ8

]}
, (12.11k)

F12 = 2M2
plB

2
7M2

δ (B8 − B6) , (12.11l)

where A4 → A4 − (ρm + Pm) and we added F12 for compactness of notation.
In the limit for αT = 0, our expressions might differ from those in [14], as their G4φ terms come

from the anisotropic stress equation and the coefficient B7 is only replaced with its expression in this
case. Note also that the original coefficients in [14] are expressed in terms of G2 and G3 and then
rewritten to use the coefficients in the field equations.8
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