
25 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

PRL: A game theoretic large margin method for interpretable feature learning

Published version:

DOI:10.1016/j.neucom.2022.01.016

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1843638 since 2022-02-25T12:05:38Z

PRL: A game theoretic large margin method for
interpretable feature learning

Mirko Polatoa,∗, Guglielmo Faggiolib, Fabio Aiollia

aDepartment of Mathematics, University of Padova, Via Trieste, 63, 35121 Padova, Italy.
bDepartment of Engineering, University of Padova, Via Gradenigo, 6/b, 35131 Padova, Italy.

Abstract

The crucial role played by interpretability in many practical scenarios has lead a large

part of the research on machine learning towards the development of interpretable ap-

proaches. In this work, we present a game-theory based method capable of achieving

state-of-the-art accuracy, yet keeping the focus on the interpretability of the predic-

tions. The proposed approach is an instance of the more general preference learning

framework. By design, the method identifies the most relevant features even when

dealing with high-dimensional problems. This is possible thanks to an online features

generation mechanism. Moreover, the algorithm is proven to be theoretically well-

founded, thanks to a game theoretical analysis on its convergence. To assess the qual-

ity of the proposed approach, it has been compared against state-of-the-art methods

in a plethora of different classification settings. The experimental evaluation focuses

on interpretability, with an in-depth analysis on visualization, feature selection and ex-

plainability.

Keywords: game theory, preference learning, large margin, feature selection,

interpretability

∗Corresponding author
Email addresses: mpolato@math.unipd.it (Mirko Polato),

guglielmo.faggioli@phd.unipd.it (Guglielmo Faggioli), aiolli@math.unipd.it (Fabio
Aiolli)

Preprint submitted to Neurocomputing March 9, 2021

1. Introduction

Game theory (GT) and computer science have always had a strong bond. Much of

the current research in GT dates back to the work of computer science pioneers like, for

example, John Von Neumann and Alan Turing. In its early days, artificial intelligence

research made an extensive use of games as training environments for the development5

of novel algorithms. Game theoretical concepts are at the core of many machine learn-

ing (ML) approaches: reinforcement learning and imitation learning are two of many

possible examples. However, Adversarial learning [1] is by far the hottest ML topic

related to GT, since its competitive nature made it the perfect learning framework for

applicative areas such as cyber security [2].10

Historically, adversarial concepts are also at the basis of the seminal work that

introduced Adaboost [3], in which GT is applied to on-line learning. The GT-ML

connection has been also extensively studied in the context of Support Vector Machine

(SVM). For instance, it can be shown that the hard margin SVM can be cast into a

two-players zero-sum game [4, 5].15

In this paper, we present a principled algorithm, dubbed PRL (Preference and Rule

Learning), inspired by preference learning [6] and game theory. PRL aims at maximiz-

ing the minimum margin in the space of preferences represented using the Kessler’s

construction [7]. In PRL, the learning problem is cast into a two-players zero-sum

game, where a player tries to select hypotheses for maximizing the margin, and the20

opponent chooses adversarial preferences in order to minimize it. The considered hy-

potheses spaces consist in a set of preference prototypes along with (possibly non-

linear) features. One important characteristic of PRL is that, by design, feature selec-

tion represents an integral part of the learning process.

To deal with high dimensional data and high dimensional feature spaces, PRL gen-25

erates features in an on-line fashion. As we will show later, the on-line feature gen-

eration plays a very important role in PRL, especially when it comes to interpret the

solution of the model, which is very useful for producing explanations.

Nowadays, machine learning methods are widely used by non-practitioners and

having the ability of interpreting their model is often desirable. There are plenty of30

2

applications in which explanation plays a key role, such as bioinformatic applica-

tions, recommender systems, and support systems for physicians, just to mention a

few. Moreover, the notion of explainability of automatic systems is also one of the

most controversial subject contained in the recently introduced European regulation

GDPR (General Data Protection Regulation). PRL offers the ability to design feature35

spaces composed by logical rules and thanks to its feature selection capabilities gives

the opportunity to interpret the provided prediction.

To summarize, the main contributions of this work are listed in the following:

• a new large margin method based on preference learning and game theoreti-

cal concepts for label ranking/multi-class classification. The method naturally40

comes with feature selection capabilities. PRL is also able to deal with (non

linear) feature spaces of infinitely many dimensions, thanks to the online feature

generation;

• the framework is general enough to deal with different kinds of features and rules

that are very useful when interpretability is desired;45

• a theoretical study on the convergence to the optimal solution;

• a parallelized version of Fictitious Play [8] for solving game matrices;

• an extensive set of experiments is reported. Experiments have been performed

with the aim of assessing different aspects of PRL: (i) effectiveness, (ii) feature

selection capability, and (iii) interpretability. Results show that PRL is able to50

provide sparse solutions that are suitable when the explanation of the decision is

desirable.

The work presented here extends the paper [9], in particular:

• we propose a parallelized version of the algorithm Fictitious Play for solving

game matrices and demonstrate its convergence (Section 3);55

• we introduce the decision path rules generation scheme (Section 6.3);

• we also present a dynamic budget version of PRL which automatically changes

the columns’ budget when needed;

3

• we add more details and experiments regarding the bias feature, showing its

usefulness in producing sparser solutions;60

• we integrate the evaluation with additional experiments, e.g., using the decision

path rules generation scheme (Section 7).

The remainder of this paper is structured as follows: Section 2 will introduce the

background knowledge useful to understand the theoretical concepts of the paper. Sec-

tion 3 presents Parallel Fictitious Play. Section 4 and 5 will present the main contribu-65

tion of the paper, that is the PRL method. In Section 6 the on-line feature generation

used in PRL is presented, providing different feature generation schemes. Section 7

is dedicated to the evaluation of the proposed approach. Section 8 discusses works

related to PRL, especially connections between machine learning and game theory, as

well as other on-line non-linear feature selection approaches. Finally, Section 9 wraps70

up the contribution of the paper and discusses possible future works.

2. Background

In this section we present all the necessary notions to understand the rest of the

paper. In particular, we introduce both Preference Learning (Section 2.1) and Game

Theory (Section 2.2) focussing on the key elements used throughout the paper. Finally,75

in Section 3 we present a parallel version of the classical Fictitious Play algorithm

which is described in sections 2.3 and 3.

2.1. Preference Learning

Preference learning (PL) is a sub-task in machine learning in which the input data

consists of preference relations. Such preferences are assumed to be in agreement with80

some utility function gθ. In PL problems, the goal is to build a preference model, i.e.,

find the parameters θ of the utility function g able to predict preferences for previously

unseen items. In the context of label ranking, for instance, the training set consists of

a set of pairwise preferences yi �x yj , i 6= j, that is, for the pattern x, label yi is

preferred to label yj .85

4

In this work we consider one of the main PL tasks, that is label ranking [6]:

given a set of input patterns xi ∈ X , i ∈ [1, . . . , n], and a finite set of labels Y ≡

{y1, y2, . . . , ym} the goal is to learn a scoring function gθ : X ×Y → R which assigns

a score for each instance-label pair (x, y). It is worth to notice that label ranking repre-

sents a generalization of a classification task since gθ implicitly defines, for an instance90

x, a total order over Y . We focus on linear preference models [10, 11] of the form

gθ(x, y) = wᵀψ(x, y), where θ ≡ w ∈ Rd·m is the vector of model parameters, and

ψ : X × Y → Rd·m, X ≡ Rd, Y ≡ {1, . . . ,m} is a joint representation of instance

and label pairs.

Given an item, the goal of the model gθ is to correctly rank the labels according to95

the preferences, that is, given a preference yi �x yj then gθ(x, yi) > gθ(x, yj) should

hold, and thus

wᵀψ(x, yi) > wᵀψ(x, yj)⇒ wᵀ(ψ(x, yi)− ψ(x, yj)) > 0. (1)

Equation (1) can be interpreted as the margin (or confidence) of the preference yi �x yj

and, intuitively, large margin on training instances lead to good generalization capabil-

ity of the ranker [12].100

The instance-label joint representation used in PRL is based on the Kessler’s con-

struction for multi-class classification [13, 14, 15, 7]. The Kessler’s construction is a

very powerful tool to reduce learning problems [6] that allows, through an appropriate

instances’ representation, to solve multi-class problems using a single linear function

instead of decomposing them into many binary sub-problems. The Kessler’s construc-

tion can be formalized as in the following: given an instance (possibly) embedded in a

feature space, i.e., φ(x), associated with label y, we define the instance-label represen-

tation ψ as

ψ(φ(x), y) = emy ⊗ φ(x) = (0

↑
1

; 0

↑
2

; . . . ; φ(x)

↑
y

; 0; . . . ; 0

↑
m

) ∈ Rd·m,

where the symbol ⊗ indicates the Kronecker product, emy is the y-th canonical basis of

5

Rm, and 0 are d-dimensional zero vectors. Therefore, given a preference yi �x yj we

can construct its corresponding embedding z ∈ Rd·m as

z = ψ(φ(x), yi)− ψ(φ(x), yj) = (emyi − emyj)⊗ φ(x)

= (0; . . . ; φ(x)

↑
yi

; 0; . . . ; −φ(x)

↑
yj

; 0; . . . ; 0) ∈ Rd·m.

With this definition of a preference z, we can rewrite the margin (Equation (1)) as

wᵀz. Note that, if x is defined directly in the input space, φ corresponds to the identity

function. At prediction time, given a new instance xnew, labels are ranked according to

the score gw(φ(xnew), y), ∀y ∈ Y . In case of classification, the predicted label for xnew

is the one that maximizes the achieved score, that is,

ŷ = arg max
y∈Y

gw(φ(xnew), y).

2.2. Game Theory

Game theory is a branch of mathematics that studies the behaviour of rational game

players who are trying to maximize their utility. For the purposes of this work, we focus

on two-players zero-sum games, which are by definition non-cooperative games.

The strategic form of a two-players zero-sum game is defined by a triplet (P,Q,M),105

where P and Q are finite non-empty set of (pure) strategies for player P and Q, respec-

tively, and M : P × Q → R is a function that associates a value M(i, j) to each pair

of pure strategies (i, j) s.t. i ∈ P , and j ∈ Q. Since P and Q are finite sets, the func-

tion M can be represented as a matrix M ∈ R|P |×|Q|, dubbed payoff matrix (or game

matrix), such that Mi,j = M(i, j), where |P | and |Q| are the number of available pure110

strategies for P and Q, respectively. Each matrix entry Mi,j represents the loss of P, or

equivalently the payoff of Q, when the strategies i and j are simultaneously played by

the two-players.

The game is held in rounds. At each round, the row player P and the column player

Q, play simultaneously: P picks a row, while Q picks a column of M ∈ R|P |×|Q|.115

The correspondent entry in M is the loss incurred by P or equivalently the payoff of

6

Q. Clearly, the two players have opposite goals: player P wants to find a strategy that

minimizes its loss, while player Q aims at defining a strategy that maximizes its payoff.

Typically, the players strategies are randomized over the rows/columns of the game

matrix, that is, player P selects a row according to a probability distribution p over the120

rows, and, similarly, player Q selects a column according to a probability distribution

q over the columns. This type of strategies are called mixed strategies, and they are

typically represented as stochastic vectors, i.e., p ∈ SP and q ∈ SQ, respectively,

where SP = {p ∈ R|P |+ | ‖p‖1 = 1} and SQ = {q ∈ R|Q|+ | ‖q‖1 = 1}.

It is well known [16] that the best pair of optimal strategies (p∗,q∗), that is, the125

saddle-point (or Nash equilibrium) of M, can be computed by

V ∗ = p∗ᵀMq∗ = min
p

max
q

pᵀMq = max
q

min
p

pᵀMq, (2)

where V ∗ is known as the value of the game.

The saddle-point solution of Equation (2) can be found in polynomial time using

linear programming.

2.3. Approximating the solution130

From a computational point of view, solving high dimensional game matrices through

linear programming can become prohibitive. A possible way for addressing this com-

putational issue is to rely on approximated solutions. There is a large body of research

in the game theory community which deals with the problem of approximating the

value of the game for huge game matrices.135

Freund et al. [17, 18] proposed an adaptive approach to compute an approximate

saddle-point strategy using multiplicative weights. This algorithm, dubbed Adaptive

multiplicative weights (AMW), is guaranteed to come close to the minimum loss achiev-

able by any fixed strategy. An incremental version of AMW, called i-AMW, has been

recently proposed by Bopardikar et al. [19]. Same authors, previously presented a140

randomized approach in which each player chooses its best mixed strategy on a sam-

pled set of rows/columns, that is, the payoff matrix is a submatrix of the whole payoff

matrix. Authors showed that, with sufficiently large submatrices, there exists a proba-

7

bilistic guarantees about the quality of the approximation.

In this work we rely on the Fictitious Play (FP) algorithm [20] (a.k.a. Brown-145

Robinson learning process) that is one of the first methods proposed in the literature

for approximating the solution of a game. We opt for FP because of its simplicity and

its efficiency w.r.t. other approaches like AMW.

FP is a greedy approach that works as follows: a player picks an initial random

pure strategy, then, in turn, each player picks its next pure strategy as the best response,150

assuming the opponent picks at random according to the distribution defined by its

previous choices. In other words, at each round both players try to infer the opponent

mixed strategy on the basis of its previous selections. The pseudo-code of FictPlay is

reported in Algorithm 1.

Algorithm 1: FictPlay: Fictitious Play algorithm

Input: M ∈ RP×Q: matrix game,
Te: number of iterations

Output: p,q: row/column player strategy,
V : the value of the game

1 r ← randint[1, P]
2 sp,vp ← 0,0

3 sq,vq ←Mr,:, e
P
r

4 for t← 1 to Te do
5 q̂ ← arg max sq , sp ← sp + M:,q̂

6 p̂← arg min sp, sq ← sq + Mp̂,:

7 vq ← vq + eQq̂ , vp ← vp + ePp̂
8 end
9 p← vp/‖vp‖1

10 q← vq/‖vq‖1
11 V ← pᵀMq
12 return p,q, V

In Algorithm 1, sp represents the unnormalized expected value when player Q plays155

according to sq . Analogous considerations are valid for sq . Mr,: and M:,c indicate the

r-th row and the c-th column of the matrix M, respectively. Observe that, given the

starting pure strategy for player P, Fictitious Play is deterministic: subsequent execu-

tions of FictPlay will produce the same strategies p and q.

Considering that the result of Fictitious Play is an approximation of the optimal

8

strategies, it is necessary to define bounds to describe the quality of the approximation.

In particular, given qt and pt the approximated strategies after t iterations of Fictitious

Play, the bounds are computed as

V = min Mqt and V = max pᵀ
tM.

Namely, the lower bound V corresponds to the minimum payoff that player P160

would receive playing the best pure strategy against the mixed strategy qt for player Q.

On the other hand, the upper bound V is the payoff achieved by Q, playing its best pure

strategy against the approximated mixed strategy pt. Subsequent iterations of Ficti-

tious Play will lead (non monotonically) to a better approximation of q∗, and thus to

higher lower bounds until convergence is reached.165

If the optimal strategy q∗ is found, all pure strategies for P that have weight in

the optimal strategy p∗, will lead to the very same upper bound. The same reasoning

holds for player Q. Thus, as the Nash equilibrium requires, no player would benefit

from changing unilaterally their own strategy. In such case, upper and lower bound are

equal to the value of the game and convergence is reached.170

3. Parallel Fictitious Play

The computational cost of approximating the optimal strategies for players P and Q

using Fictitious Play isO(Te·max(|P |, |Q|)). Being actions chosen at time t dependent

on sp and sq , which are computed using previously selected pure strategies, Fictitious

Play cannot be directly parallelized.175

Empirically, the quality of the solution, computed as the gap between bounds (see

Figure 1(a)), has a fast initial drop toward the optimal strategies and a subsequent slow

asymptotic convergence toward the real values.

To exploit the advantages of the first part of the search, without burdening the algo-

rithm with the second part (slow and less fruitful), we propose a simple, yet effective,180

parallel research of the optimal strategies. This version of FictPlay, which will be re-

ferred to as Parallel FictPlay, consists in computing (possibly in a parallel fashion)

9

0.5 1

·106

2

4

6

8
·10−3

iterations

B
ou

nd
s

ga
p

1 execution
5 execution
20 executions

(a)

0.5 1

·106

2.6

2.8

3

3.2

3.4

·10−2

iterations

V
al

ue
of

th
e

ga
m

e

UB-LB: 1 execution
UB-LB: 20 executions

(b)

Figure 1: (a) Distance between lower and upper bound on the game value either using mixed strategies
approximated by a single run of Fictitious Play algorithm or averaging over multiple executions. The
payoff matrix∈ R958×(272·958) is based on a polynomial version in a preference learning setting of
tic-tac-toe dataset and describes a zero sum game, where the players can either win (+2), lose (-2)
or have a tie (0). The value of the game is approximatively 0.3. (b) Lower and upper bound on the value of
the game described by the same matrix used to build the plot in Figure 1(a).

different approximated strategies {p(t)
1 , . . . ,p

(t)
k } and {q(t)

1 , . . . ,q
(t)
k }, and then aver-

aging over the found strategies. Empirically, Figure 1(a) and Figure 1(b), show how

Parallel FictPlay can achieve better performances, with more strict bounds on the ap-185

proximated solutions. Given the low convergence rate as the bounds approach the real

value of the game, Parallel FP can achieve similar bounds to FP in almost half of the

iterations.

Finally, it can be noted that, given the deterministic nature of Fictitious Play, to

obtain different strategies using parallel FictPlay it is necessary, yet not sufficient, that190

the different executions of FictPlay have different starting points. Under this assump-

tion, we can see parallel FictPlay as the parallelized version of sequential FictPlay

with random restarts.

Theorem 1. Parallel FictPlay converges to the optimal solution.

Proof. We know that a single execution of FP converges to the optimal solution, so

there exists a number of iterations t ≥ T and an arbitrary small ε ≥ 0 such that

∀i ∈ [1, P], p∗i − ε ≤ p
(t)
i ≤ p

∗
i + ε and ∀i ∈ [1, Q], q∗i − ε ≤ q

(t)
i ≤ q

∗
i + ε.

10

Given an execution of Parallel FP with k FP, its strategy is the average of the

strategies of the single FP. Thus, given T and ε we have that:

p
(t)

=
1

k

k∑
s=1

p(t)
s , q

(t)
=

1

k

k∑
s=1

q(t)
s

where p
(t) and q

(t) are the strategies of Parallel FP after T iterations.195

Thus, we can bound the difference of p
(t) and q

(t) w.r.t. the optimal strategies, i.e.,

∀i ∈ [1, P], p∗i − ε ≤ p
(t)
i ≤ p∗i + ε and ∀i ∈ [1, Q], q∗i − ε ≤ q

(t)
i ≤ q∗i + ε.

Since ε is a bound for all the single FP, we can also affirm that on expectation the

Parallel FP bound on the strategies’ entries is stricter than ε. This is easy to show since

the bound is ε also for Parallel FP iff for all s ∈ [1, k] there exists an entry in either

p
(t)
s or q

(t)
s such that it differs from the corresponding entry in p∗ or q∗ of exactly ±ε.

In all other cases, averaging over the strategies guarantees a stricter bound than ε.200

4. Preference Learning: a game theoretic perspective

In this section we introduce the theoretical principles that underlies PRL. Through-

out the section we assume a training set of N preferences of the form (y+ �x y−).

Such preferences are converted into their corresponding vectorial representation using205

the Kessler’s construction as described in Section 2.1.

As mentioned previously, we consider an hypothesis space H composed by linear

functions of preference representations, i.e.,H ≡ {z 7→ wᵀz | w, z ∈ Rd·m}. Given a

preference z, we say that z is satisfied by a hypothesis w iff wᵀz > 0, that is, when the

margin of the preference ρ(z) = wᵀz is strictly positive. The margin of a preference210

can be considered as the confidence of the hypothesis w over the preference z.

PRL aims at finding the linear hypothesis w in the preference space that maximizes

the minimum margin over the training preferences. According to the Representer The-

orem [21, 22] we know that the maximal margin hypothesis w can be defined as a

11

convex combination of the training preferences, that is

w ∝
∑
j

αjzj ,α ∈ SP .

Hence, the margin of a preference z can be rewritten as

ρ(z) = wᵀz =

N∑
j=1

αjz
ᵀ
j z =

N∑
j=1

αj
∑
f∈F

µfzj [f]ᵀz[f]

=

N∑
j=1

∑
f∈F

αjµfzj [f]ᵀz[f] =
∑
(j,f)

q(j,f)zj [f]ᵀz[f],

where the dot product zᵀj z is generalized by assigning weights to the features according

to a distribution µ over the features, and q is a new distribution over all the possible

preference-feature pairs such that q(j,f) = αjµf . F is the (potentially infinite) set of

(possibly non-linear) features and z[f] is the sub-vector of z corresponding to the f -th215

feature in the Kessler’s construction.

Now, let assume that an adversary chooses a distribution p over the training prefer-

ences with the goal of minimizing the expected margin achieved by the hypothesis w

on the training preferences. Given p, the expected margin will be defined by

ρ̄(p,q) =

N∑
i=1

pi
∑
(j,f)

q(j,f)zi[f]ᵀzj [f] = pᵀMq (3)

where Mi,π(j,f) = zi[f]ᵀzj [f], with π the function which maps preference-feature220

pairs onto univocal indexes, i.e., π(j,f) ∈ [1, N |F|].

It is pretty evident that Eq. (3) has a strong relation with the two-players zero-sum

game presented in Section 2.2. Specifically, consider a two-players zero-sum game

where the row player P (the nature) picks a preference from a distribution over the

whole set of training preferences (i.e., the rows) aiming at minimizing the expected

margin ρ̄. Simultaneously, the opponent player Q (the learner) picks a column from a

distribution over the set of preference-feature pairs (i.e., the columns) aiming at maxi-

mizing the expected margin (payoff). Then, the value of the game, that is the maximal

12

minimum margin solution is given by

V = ρ̄(p∗,q∗) = min
p

max
q

pᵀMq,

that is exactly the same as Equation (2). In other words, searching for the distribution

q maximizing the minimum margin in the training set is equivalent to find the saddle-

point solution of the game matrix M.

5. PRL: Preference and Rule Learning225

The number of columns of the game matrix M is equal to the number of all possi-

ble preference-feature pairs., i.e., N |F|. In general, such amount is huge and solving

the game using standard off-the-shelf algorithms from game theory is infeasible. Un-

fortunately, using approximated methods does not solve the issue especially because,

potentially, the number of columns can also be infinite (|F| → ∞).230

To overcome this problem, we propose a new incremental method for solving the

game, that we call PRL (Preference and Rule Learning algorithm). The main idea

behind PRL is to consider only a fraction of the columns of the whole game matrix. It-

eratively, each sub-game is solved and the columns that do not contribute to the strategy

of the column player are replaced by new randomly selected columns.235

Formally, let M be the game matrix and let (p∗,q∗, V ∗) be its corresponding opti-

mal solution. At each iteration the algorithm considers a subset of columns of M, that

is Mt = MΠt where Πt ∈ {0, 1}Q×B are left-stochastic (0,1)-matrices, i.e., matrices

whose entries belong to the set {0, 1} and whose columns add up to one. B, that we

call budget, is the number of columns considered at each iteration.240

Let now consider the solution (p∗t ,q
∗
t , V

∗
t) of the matrix Mt computed at iteration

t. At the end of each iteration, the algorithm replaces the columns of Mt correspond-

ing to null entries in q∗t (which do not contribute in the solution) with new columns

randomly drawn from the whole set of available columns. In this setting, the following

theorem holds.245

Theorem 2. In PRL, at each iteration, the value of the game increases monotonically

13

and it is upper bounded by the optimal margin, that is the value of the game when

considering the full matrix M.

Proof. Let assume of being at iteration t+ 1: a new left-stochastic (0,1)-matrix Πt+1

is taken into account that is Πt where every row corresponding to null entries in q∗t

have been substituted with a new random stochastic vector eQh . Thus, it holds that

V ∗t = p∗ᵀt Mtq
∗
t = p∗ᵀt MΠtq

∗
t (4)

≤ p∗ᵀt+1MΠtq
∗
t (5)

= p∗ᵀt+1MΠt+1q
∗
t (6)

≤ p∗t+1MΠt+1q
∗
t+1 (7)

= p∗ᵀt+1Mt+1q
∗
t+1 = V ∗t+1 (8)

and

∀t, V ∗t = p∗ᵀt MΠtq
∗
t ≤ p∗ᵀM Πtq

∗
t︸ ︷︷ ︸

q̂t

≤ p∗ᵀMq∗ = V ∗.

Equivalence (4) is trivial since Mt = MΠt by definition. Inequality (5) holds

because the strategy p∗t+1 is suboptimal for Mt. In (6) we simply replaced columns250

of the game matrix corresponding to null entries of q∗t which does not affect the value.

Finally, inequality (7) is true because q∗t is suboptimal for Mt+1, and similar consid-

erations can be done for the last series of inequalities.

The pseudo-code of the full algorithm is given in Algorithm 2.

It is worth to notice that the algorithm does not require any prior knowledge about255

M, and the number of columns can be also infinite. Thus, a natural approach for

dealing with potentially infinite game matrices is to use an on-line column generation

approach as we will discuss in Section 6.

Figure 2 shows a visual overview of PRL. In the figure the three main phases of

PRL are highlighted: (i) the learning phase takes the training preferences and the fea-260

ture generator to produce the game matrix that it is incrementally solved as described

in Section 5; (ii) the learned hypothesis is then used to make prediction for unseen

14

Algorithm 2: PRL: Preference and Rule Learning
Input: P: set of training preferences

Fgen : random feature generator
B: size of the working set
T : number of epochs
Te: number of iterations of FictPlay

Output: Q: working set of hypothesis
q: mixed strategy in Q

1 random initialization of the set Q such that |Q| = B
2 compute the matrix game M on the basis of P (rows) and Q (cols)
3 for t← 1 to T do
4 p,q, v ← FictPlay(M, Te)
5 if t < T then
6 foreach (j, f) | q(j,f) = 0 do
7 (j′, f ′)← pick(P), Fgen()
8 update Q: replace (j, f) with (j′, f ′)
9 update columns of M w.r.t. Q:

10 let k the position of (j′, f ′) in Q,
11 for all i ∈ P , Mi,k = zi[f]ᵀzj′ [f]

12 end
13 end
14 end
15 return q,Q

preferences, and when it is possible (iii) the prediction is explained using the learned

feature weights.

5.1. PRL with dynamic budget265

Generally speaking, there is not a valid heuristic for setting the budget B to a value

that can give some guarantees. For this reason the hyper-parameter B could be over-

estimated leading to poor efficiency of the algorithm, or conversely, underestimated

leading to weak solutions. To tackle this problem, we propose a variant of PRL with

dynamic budget. The main difference w.r.t. the classical PRL is that B now represents270

the minimum number of columns that are replaced at each iteration, and not the total

number of available columns.

Let us make an example. Let B = 10 and let the initial number of columns of

M be equal to 20. Let assume that after iteration 1, there are 14 columns such that

15

Figure 2: Visual overview of PRL. The black section represent the training phase with a “zoom” on the
columns replacement policy; The blue section is the prediction phase that is necessary for the interpretation
phase (red section) which uses the learned feature weights and the test preference to interpret the prediction.

q(j,f) > 0. Then, at the end of iteration 1, these 14 columns will be kept in M and275

other B randomly generated columns will be added (actually, 6 columns are replaced

and 4 added). In this way, the total number of columns of M at iteration 2 will be 24.

The drawback of this technique is that the number of column of M can potentially

become very big. However, empirically (see Section 7), in all the performed experi-

ments, M has always kept a reasonable number of columns (not much higher than the280

initial B). It is worth noticing that for this variant of the algorithm all the theoretical

properties of PRL are preserved.

6. On-line feature generation

In PRL, on-line columns generation is one of the most important component. As

mentioned in the previous sections each column of the game matrix is defined by a285

preference-feature pair. So, in order to generate a column, we need to independently

16

draw a preference and a feature. Hence, it is crucial to define how the on-line feature

generator works. We propose different feature generation schemes based on different

types of features, specifically: polynomial features, decision rules, and decision tree

paths.290

In Algorithm 2 the function Fgen refers to a generic feature generator scheme.

6.1. Polynomial features generation

The polynomial feature generation scheme produces features that are taken from

the feature space of the homogenoeus polynomial kernel. For instance, given an n-

dimensional instance x some possible polynomial features of degree 3 are: x1x2xn,295

x21x3 and x3n. It is worth to notice that, when the input variables are binary-valued,

polynomial features are highly interpretable since monomials correspond to logical

conjunctions, e.g., if xi ∈ {0, 1} then x1x2xn := x1 ∧ x2 ∧ xn.

6.2. Rules generation

When it comes to interpret machine learning models, logical rules (as in decision300

trees) are the most natural choice. In order to introduce interpretable features in PRL,

we propose a rules generator scheme. To generate rules, we must take into account the

nature of the input variables. For example, in the case of binary valued input variables

a rule is simply their truth value. However, when dealing with continuous variables a

rule can be defined as a relation involving the values of the variables, e.g., by defining305

a threshold like x ≥ 5, or by checking the exact value such as x = 3.2. For generating

these type of rules, the generator randomly picks a continuous feature f , and a random

threshold value taken from the set of values assumed by f in the training set. Finally, a

random relation is drawn from the set {≤,≥,=}. In some of the experiments we used

a reduced set of relations (this is specified in Section 7). Note that discrete variables310

can be considered as a special case of binary variables since it is possible to convert

them into binary ones through one-hot encoding.

Finally, the generated rules can be also combined using conjunctions. Specifically,

given two or more rules, their product corresponds, from a logical point of view, to

the conjunction of the conditions. In the remainder we will refer to the arity of this315

combination as the degree of the rule.

17

Training Data

f1 ≤ t1

f2 ≤ t2

0 1

2

f3 ≤ t3

f2 ≤ t4

3 4

f1 ≤ t1

5 6

f2 ≤ t4

7 f3 ≤ t3

8 9

Figure 3: Simple example of a random forest with three decision trees: light blue circles are the decision
nodes, while the small red circles are the end nodes. In the figure it is assumed that left branches mean that
the rules in the decision nodes are satisfied. Each leaf represents a possible decision rule that the feature
generator can extract. In particular, the depicted forest allows to extract 10 possible rules. However, there is
a pair of rules that are actually the same: 4©= 8©, i.e., (f2 > t4) ∧ (f3 ≤ t3).

6.3. Decision path rules generation

Generating rules as described in Section 6.2 can not be optimal since the rules are

generated in a completely random fashion. The decision path rules generator tries to

overcome the limitation of the previous method by taking advantage of the nature of320

the decision paths in decision trees (DTs). DT paths are based on a split criterion that

is usually defined in terms of some entropic index.

At classification time a DT takes the instance and traverses the tree according to

the value of the features in the split nodes. When an example reaches a leaf, it means

that it has satisfied all the rules along the decision path. The Decision path rule gen-325

erator, given a random forest, picks at random one of the possible decision path (i.e.,

conjunction of relations) from a randomly picked tree of the random forest.

Figure 3 shows an example of a random forest composed by three decision trees.

The total number of decision nodes corresponds to the total number of possible decision

paths. However, some paths represent the same rule, e.g., 4©= 8©, i.e., (f2 > t4)∧(f3 ≤330

t3). In PRL, once the set of all possible decision paths is extracted, the Decision path

rule generator randomly picks one path and generates the corresponding rule.

18

6.4. Bias feature

As we will see in the experimental section, whenever a class can be defined by

reasonably simple rules, PRL has the capability of identifying them all. However, when335

there are classes which cannot be characterized by rules (or the rules are too complex)

PRL may fail in extracting reasonable explanations. This is due to the fact that when

a class A is logically defined as the negation of another class B, by design PRL still

searches for features that characterize A � B even though it cannot be defined in a

reasonable amount of rules.340

Let us make a toy example using the tic-tac-toe game to explain this concept. The

task is to classify whether a tic-tac-toe configuration is a win for the cross (×) or not.

It is clear that it is quite simple to define when there is a win: whenever there are three

crosses in line. However, how can a configuration that is not a win be defined? The

easiest way is by rejecting all the winning configurations. Otherwise the only way is345

analytically describing each non winning configuration for the cross that is however

not convenient. Unfortunately, in this scenario the best PRL can achieve is to identify

a set of rules that are able to discriminate only small subsets of not winning training

instances, but with rather small generalization capabilities. In some sense we can say

that PRL is overfitting.350

To address this issue, we introduce an artificial feature (i.e., rule) that is set to be

true for every preference. That is, each example in the training set has the feature >

whose value is equal to 1. Then, we allow the feature generation mechanism to pick the

> rule together with the other rules. We will call it bias rule/feature. When such feature

is selected and associated with a preference, it will give a bias towards the preferred355

class. Clearly, the bias feature per se has no discriminative capabilities, thus if a class

can be characterize with a small subset of rules PRL will still be able to do it. However,

in cases similar to the tic-tac-toe example, where a class is simply the negation of the

other, then the bias rule will play a key role. All examples of such class trivially satisfy

the bias rule and hence its weight will be reasonably high. This can be interpreted as360

“label A is preferred to label B because there is no evidence to say the opposite”.

The bias feature has been used in all experiments concerning the poker dataset

and also in some experiments on tic-tac-toe.

19

7. Evaluation

In this section, we describe the empirical evaluation of PRL1 and the assessment365

of its effectiveness. Specifically, our experiments focused on three main aspects asso-

ciated with PRL: evaluating the degree of interpretability of the proposed model, the

possibility of visualizing the model decisions, and assessing the performance of the

feature selection.

In all the experiments the number of iterations Te of Parallel FictPlay has been set370

to 105 (8 parallel executions of FictPlay have been run), while the number T of epochs

of PRL has been set to 103. All experiments have been performed using dynamic

budget PRL with initial budget B = 500. We group the set of experiments on the basis

of their purposes. The first set aims to assess the degree of interpretability of PRL as

well as its effectiveness on some benchmark datasets. The second set of experiments,375

instead, focuses on the evaluation of the performance on datasets with a huge number

of features.

7.1. Model interpretation

In the first set of experiments, we employed PRL to select the most relevant features

for interpreting the decisions. We ran PRL on four benchmark datasets. The details of380

the datasets are summarized in Table 1.

Dataset #Instances #Features #Classes

tic-tac-toe 958 27 2
breast-cancer 682 9 2
poker 25010 52/69/74* 10**
mnist 10000 784 10

Table 1: Datasets information: name, number of instance, number of features, and number of classes. All the
dataset are freely available in the UCI repository. (*) the poker dataset has 3 versions with different number
of features. (**) the original dataset has 10 classes, however in our experiments three binary classification
tasks have been defined.

1Implementation available at https://github.com/makgyver/PRL

20

https://github.com/makgyver/PRL

7.1.1. The tic-tac-toe dataset

As a general test bed, we selected the tic-tac-toe dataset, in which each ex-

ample describes a possible final configuration of the tic-tac-toe game, and examples are

labeled as positive iff the × player is the winner. The dataset has been converted into385

a binary-valued dataset through one-hot encoding, obtaining 27 binary input variables

for each instance. The 27 features represent a specific position on the board, in which

each cell can have a cross (×), a nought (◦) or can be empty. Each cell is encoded in

three consecutive binary features xi, xi+1, xi+2 where xi means empty, xi+1 means

nought and xi+2 means cross, for i = 3n with n ∈ [0, . . . , 8]. Note that with this en-390

coding the positive class can always be expressed as a single DNF rule which describes

all the possible eight 3-cross-in-a-line configurations, and negative otherwise.

A winning position is characterized by the simultaneous activation of three specific

features (either columns, diagonals or rows), thus can use such a-priori knowledge

to select an appropriate feature space. For example, polynomial features are suited395

for this purpose because they correspond to conjunctions when the input features are

binary. Thus, we used the polynomial features generator of degree 3. The experiment

setup was the following: 70% of the dataset has been used as training set, while the

remaining 30% was used as test set.

After the training phase, the top 10 features that PRL weighted the most were the400

following: x8x17x26, x2x11x20, x2x14x26, x8x14x20, x20x23x26, x11x14x17, x2x5x8,

x5x14x23, x̃313 and x̃325. Features marked with ∼ are the ones characterizing a negative

preference (no win for ×). Observe how the first 8 features correspond correctly to the

winning configurations (three-in-a-line) for the cross. The remaining features represent

respectively a naught in the central and in the bottom right cell. The last one does not405

seem to be particularly informative. Conversely, the former suggests negative evidence

that cross won, since occupying the centre is often a good strategy. In fact, a naught

in the centre is correctly associated with a negative preference (if naught occupies the

centre, it is less likely that cross has won). This highlights the strong interpretability

of the model. Overall, the algorithm has been able to identify all the conditions that410

determine a win for the cross.

21

Moreover, using the tic-tac-toe dataset, we provide a further investigation

on the bias feature: we ran two different versions of PRL with degree 3 polynomial

features generator: one including the bias feature and one without it. Figure 4 shows

the weights associated with rules. Both versions correctly identify as strongest rules415

the three-in-a-line for the cross (first 8 rules). As 9th feature, we found either the bias

feature (in the version of PRL that includes it) or, as previously described, a naught

in the centre of the grid. This is particularly evident considering the plots in Figure 4.

Without the bias, negative rules, that can describe a losing configuration for cross,

are more and more relevant (higher tail for the red line). When the bias feature is420

available, the weight shared among rules for non-winning configurations is aggregated

onto the bias feature. Additionally, rules that describe winning situations are weighted

more. The bias feature expresses a single rule that says “if the configuration is not

winning for cross, then it is either losing or a tie”, without specifying how a non-

winning configuration looks like.425

Other than using polynomials of degree 3, we tried to extract logical rules as pro-

posed in Section 6.2. Polynomial features correspond to conjunctions of positive lit-

erals, while through the rule generation scheme we can encode also negative literals.

This allows the introduction of new rules, such as ¬x1 ∧ ¬x13 ∧ ¬x25 to which PRL

assigned an high weight. In fact, this rule expresses, in a human-readable fashion, the430

concept that exist some winning configurations with no naught on the diagonal. It is

easy to demonstrate that the suggested rule (although not intuitive for a human being)

correctly describes a sufficient (yet not necessary) condition to define a winning config-

uration for cross. If there isn’t any naught on the diagonal, then it cannot be a winning

configuration for naught. Moreover, it cannot be a tie, since any tie requires the entire435

grid to be filled, but if no naught is on the diagonal, then the diagonal is occupied by

crosses, and thus it must be a winning grid for cross.

7.1.2. The poker dataset

The poker dataset consists of a set of examples representing poker hands. Each

hand is composed by 5 cards taken from a standard poker deck of 52 cards, with 4 suits440

and 13 ranks (Ace to King) for each suit. The original task of this dataset is to identify

22

0 5 10 15

0

5 · 10−2

0.1

0.15

n-th rule

w
ei

gh
t

bias feature included
no bias feature included
9th rule extracted

Figure 4: Rule weights of the most relevant rules extracted by PRL on tic-tac-toe using polynomial
feature generator of degree 3 with (blue) and without (red) the bias feature.

the value of the hand. The 10 possible hand values are: Nothing, Pair, Double pairs,

Three of a Kind (TOK), Straight, Flush, Full house, Four of a kind (FOK), Straight

flush and Royal flush.

The experiments performed on the poker dataset was intended to assess the qual-445

ity of the features selected by PRL to explain the decision. To this end, we have created

a hierarchy of features with the aim of investigating whether PRL could identify, at each

level, the best subset of features/rules useful to accomplish the task. The hierarchy of

features was defined as in the following:

• Level 1: The first representation of the dataset describes a poker hand as a triv-450

ial enumeration of the cards contained in it. The hand is described through a

vector of dimension 52, where each dimension corresponds to a specific card

and has value equal to 1 or 0, whether the card is present in the hand or not:

[A♥, 2♥, . . . ,A♦, 2♦, . . . , J♠,Q♠,K♠] ∈ {0, 1}52.

• Level 2: The second level considers aggregated features obtained by counting455

either the suits or the ranks of the cards in the hand. Specifically, this new level

is obtained by adding 4 new dimensions to the previous 52, that describe the

counting of the suits, and 13 additional dimensions that describe the counting of

the ranks, i.e., [#♥,#♦,#♣,#♠] ∈ [0, 5]4 and [#A,#2,#3, . . . ,#Q,#K] ∈

[0, 4]13.460

23

Note that the Ace is assumed of rank 1, while J=11, Q=12, and K=13.

• Level 3: In this level we create 5 features that are a further aggregation of the

features in Level 2. Specifically:

– max{#♥, . . . ,#♠}: number of cards of the most popular suit in the hand;

– max{#A, . . . ,#K}: number of cards of the most popular rank in the hand;465

– card({♥, . . . ,♠}): number of different suits in the hand;

– card({A, . . . ,K}): number of different ranks in the hand;

– max(diff(ranks)): the largest ranks difference between two cards in the

hand. In this case we associate to the Ace the rank 1 or 14 which minimizes

the maximum difference between the other cards.470

Let us make an example to clarify this features hierarchy. Given the hand A♥, 7♥,

A♠, J♠, 3♣, at the first level of the hierarchy 5 entries out of 52, the ones correspond-

ing to the cards in the hand are equal to 1 and all the rest are zero. At the second level,

the suit vector is [2, 0, 1, 2], while the rank vector is [2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0].

These vectors are appended to the previous one giving a 69 dimensional vector. At the475

third and final level the features values are the following:

• max{#♥, . . . ,#♠} = #♠ = #♥ = 2;

• max{#A, . . . ,#K} = #A = 2;

• card({♥, . . . ,♠}) = card({♥,♠,♣}) = 3;

• card({A, . . . ,K}) = card({A, 3, 7, J}) = 4;480

• max(diff(ranks)) = J−A = 10. In this case the Ace is associated with the value

1 since J− 1 < 14− 3,

which produces the vector [2, 2, 3, 4, 10]. Thus, in this last level the total number of

features is 74.

We defined three binary classification tasks: TOK (2.05% of the dataset) versus485

rest, Flush (0.22% of the dataset) versus rest, and Straight (0.37% of the dataset) versus

24

rest. It is worth noticing that these combinations are included in more valuable hands,

for example: TOK is also part of the Full house and the FOK. However, a TOK is not

a FOK or a Full house. This fact can cause false positives at classification time.

Alongside evaluating the extracted rules, we assessed the quality of our model using

balanced accuracy. Balanced accuracy has been chosen over the more standard accu-

racy measure due to the strong imbalance between the positive class and the negative

one. The balanced accuracy is defined as:

BACC =
1

2

(
TP

P
+
TN

N

)
× 100,

where TP stands for true positives (P = positives), and TN for true negatives (N =490

negatives).

PRL has been compared against SVM with polynomial and RBF kernels. In partic-

ular, SVM has been validated via 5-fold cross validation so that the C hyper-parameter

was validated among the set {10−3, . . . , 104}, the degree of the polynomial kernel in

the range [1,3], and the shape parameter γ of the RBF kernel has been validated in495

the set {10−2, . . . , 102, (# features ∗ var(X))−1}. PRL has been trained using rules

of degree 1 on the set of relations {=}. A possible example of rule is the follow-

ing: x13 = 1 which corresponds to stating that the fourteenth feature, i.e., the ace

of diamonds, is set to 1, and thus available in the hand. Experiments have been per-

formed using a 70-30% training and test split division. Moreover, our model has been500

compared against the Random Forest Classifier, validated using 5-fold cross valida-

tion, selecting the hyper-parameter associated with the number of estimators in the set

{10, 100, 1000, 5000}, the maximum depth in {2, 5, 10, until pure leaves} and the split

criterion in {Gini, entropy}

The achieved results are reported in Table 2. With the name PRL we refer to PRL505

with the rule generation scheme, while PRL-RF means PRL with the decision path rule

generation scheme.

A remarkable difference w.r.t. the SVM can be noticed in the Straight classification,

which is the hardest task. SVM simply classifies the majority of instances as negative

due to the strong unbalancing of the dataset. This behavioural pattern is repeated in510

25

Method # Level TOK Straight Flush
SVM 1 79.20 53.00 59.38
RF 1 51.76 50.00 50.00
PRL 1 48.08 49.97 59.03
PRL-RF 1 61.42 51.48 50.00

SVM 2 85.42 56.04 59.43
RF 2 99.62 50.00 59.38
PRL 2 100.00 52.72 84.36
PRL-RF 2 98.10 52.72 84.36

SVM 3 99.99 96.43 96.85
RF 3 100.00 90.90 100.00
PRL 3 100.00 100.00 100.00
PRL-RF 3 100.00 100.00 100.00

Table 2: Balanced accuracy (%) on the poker dataset. The highest accuracies in all classification tasks, and
in all levels, are highlighted in bold.

all the tasks (except for TOK) both at the second and at the first level of the hierarchy.

Concerning the third level, SVM had one false negative in the TOK task and one false

positive in the Flush, achieving a BACC of 99.99% and 96.43%, respectively.

As shown in Table 2 in the first task, i.e., three of a kind, the best performance is

achieved by SVM. We explain this due to the different kind of combination of features515

considered. Rule-based algorithms like random forest or PRL have to enumerate cards

appearing in the three of a kind: on this dataset, where each hand appears only once,

this approach is unable to generalize. On the other hand, SVM, in particular the version

based on a polynomial kernel of degree 2, tries to describe a three of a kind using

couples of cards having the same rank. Due to the fact that a couple of cards of the520

same rank happens to be in two different versions of a three of a kind (depending

on the remaining card of the three), this mechanism is somehow able to generalize

to unseen examples and thus achieves better results in previously unseen examples.

PRL-RF (the PRL version based on rules extracted from threes of a random forest)

achieves the second best result: we guess this to be due to the fact that this approach can525

consider a number of conjunctions of cards of cardinality 2 (namely the pair of cards)

and thus behaves similarly to SVM. The first level of features is unable to explain a

Straight hand nor a Flush hand. PRL is completely able to gather rules to explain

26

0 20 40

0

0.1

0.2

iteration

va
lu

e
of

th
e

ga
m

e

0 20 40

0

0.2

0.4

iteration

Figure 5: Value of the game w.r.t. the iteration of PRL on the Straight (left) and Flush (right) task.

a three of a kind using the second level of features, whilst SVM achieves the worst

results, probably relying mainly on level 1 features and exploiting only partially level530

2 features. Almost all algorithms performs poorly on the straight hand task, using

level 2 features. Specifically, an hand contains a TOK anytime one of the rank has a

cardinality = 3. The rule “cardinality 3 of a rank”, yet suffers when it comes to false

positives detection: a full house hand is a false positive for such rule. Similarly, a flush

can be described with a suit of cardinality 5, but this also includes the straight flush and535

the royal flush as false positives. In both these tasks, PRL found the correct rules.

With the features contained in the third and final level of the hierarchy it is possible

to define all the considered concepts:

• TOK: # of ranks = 3, # of cards of the most popular rank = 3;

• Straight: # of ranks = 5, max difference between ranks = 4, # of suits 6= 1;540

• Flush: # of suits = 1, max difference between ranks 6= 4.

At this level, PRL was able to identify all the correct rules achieving a BACC of 100%

in all the tasks.

We have already demonstrated that the value of the game monotonically increases545

at any iteration of PRL. This fact is further confirmed by the plots in Figure 5. The

plots show how the value of the game changes until iteration 50. In both cases the

maximum value had been reached since PRL already had discovered the best rules.

27

In particular, Figure 5 regards the Straight classification and it can be noticed that

there have been 3 quick changes in the value: at iteration 16 (red dashed line), 39550

(green dashed line) and 46 (grey dashed line). Until iteration 16 the set of rules was

immature to make any analysis. At iteration 16, the 8 best rules were the following:

max(diff(ranks)) = 5, 6, . . . , 11, to support the negative class. These rules represent

almost all (12 is missing) the possible maximum differences for the ranks greater than

4, that is actually the value useful to identify the Straight. The only rule for the positive555

class was # ranks = 5, which is correct since in a Straight all ranks are different.

Then, at iteration 39, PRL found: max(diff(ranks)) = 5, 6, . . . , 12 for the negative

class and # ranks = 5 for the positive one. So the only difference is the inclusion of the

12 in the maximum difference between ranks. Even though the overall rule is correct,

it is still not optimal because, in order to express the positive rule max(diff(ranks)) = 4,560

PRL discovered the same concept but using a bunch of negative rules.

Finally, at iteration 46 the right set of rules has been found solving the task per-

fectly, that is, max(diff(ranks))= 4 and # ranks = 5 for the positive class, and # suits

= 1 for the negative one, that excludes the two cases in which the Straight is also a

Flush or a Royal flush. Here, the bias rule has been also extracted to represent all the565

other cases when the two rules for the flush are not satisfied.

On the Flush task, the value of the game had a similar behaviour as for the Straight.

In this case the value drastically jumped only twice: at iteration 8 (red dashed line) and

14 (green dashed line). At iteration 8 the discovered rules, despite being correct, were

a bit “chaotic”: max suit = 2,3 and # of suits = 2,3 for the negative class, as well as570

max(diff(ranks)) = 4 (to exclude a straight) and #♥,#♦,#♣,#♠ = 1. These rules

are all correct to exclude a flush, in fact, they require a suit with 5 cards and hence a

unique suit in the hand. For the positive class the only rule extracted was max rank =

1, which is also correct because a flush implies that all ranks in the hand are unique.

Nevertheless, some iterations later (14) PRL found the optimal set of rules, that is,575

max(diff(ranks)) = 4 for the negative class, and max suit = 5 for the positive. Similarly

to the Flush case, the bias rule has been extracted by PRL to include all the cases in

which the hand does not contain a straight.

28

7.1.3. The breast-cancer dataset

The Wisconsin Breast Cancer dataset (breast-cancer) is a standard UCI [23]580

dataset that contains 682 hospital patients’ values captured via a Fine-needle aspiration

test. Each patient is described by 9 attributes concerning breast tumoral cells. The task

consists in classifying a tumor between benign or malignant. The classes distribution

is 35% benign, and 65% malignant.

Compared to other testbeds, breast-cancer can be considered a real-world585

dataset in which simple rules are unable to completely describe whether the tumor is

malignant or not. Thus, it is not possible to compare retrieved rules w.r.t. a given

ground truth. To evaluate PRL, it was therefore necessary to compare it with other

rule extractions algorithms, as proposed in [24]. In particular, the quality of our ap-

proach was assessed by applying retrieved rules directly on the dataset and comparing590

the accuracy obtained by different approaches. Note that, differently from previous

experiments, in this case, the splitting between training and test set was 90-10%. This

evaluation procedure has been chosen because, for each model, we only had at our dis-

posal the set of extracted rules after a 10-fold cross validation procedure. To train PRL,

rules of degree 2 on the set of relations {≤,≥} have been used. In Table 3 the achieved595

results are summarized, while Table 4 shows the extracted rules of each method.

Figure 6 highlights an interesting observation on PRL applied to breast-cancer.

The figure shows performances achieved by PRL when only a subset of rules is con-

sidered. The size of the subset of rules goes from 1 up to 50. The first three rules are

not enough to get good results: they are likely associated with statistical occurrences600

on the dataset and are unable to capture insight over the data. This changes with the

fourth rule, which, alone, is able to achieve more than 92% of accuracy. The first four

rules together are able to exceed 95% of accuracy, while the remaining rules are used

to classify outliers and harder examples and produce an almost monotonic increase in

accuracy. Overall, the PRL approach is able to achieve 99.56% of accuracy, using 50605

rules. Being a model with 50 rules hardly interpretable, in Table 3 we present a compar-

ison of a PRL with a strongly limited set of rules (up to 10), against other approaches.

As highlighted in Table 3, PRL is able to achieve the best accuracy, using the 10 most

29

Method Ref # Rules Accuracy (%)

SSV [25] 3 86.36
GASVM [26] 2 90.03
C-MLP2LN [25] 5 96.92
QSVM-G [27] 12 96.48
ReRXJ48 [28, 24] 4 94.28

PRL only 4th - 1 92.67
PRL@5 - 5 96.12
PRL@10 - 10 97.95

Table 3: Accuracy of the rules extracted by the different algorithms. The highest accuracy is highlighted in
bold.

0 20 40

40

60

80

100

rules

A
cc

ur
ac

y
(%

)

Figure 6: Plot of the accuracy on breast-cancer w.r.t. the number of considered rules during the
classification.

relevant rules. Observe that, even with a lower number of rules (i.e., 5) the results

achieved by PRL are still very good, exceeded only by C-MLP2LN and QSVM-G.610

7.2. Visualization: mnist dataset

The mnist dataset is one of the most widely used dataset for the hand-written

digit classification task. The digits are stored in a grey scale 28 by 28 pixel matrix,

where each pixel can assume a value between 0 and 255 (0-1 normalized). The task is

to recognize the digit represented by an instance. For the purpose of this experiments615

we perform all possible 1-vs-1 binary classifications between digits.

Akin breast-cancer, the classification in mnist cannot be done through sim-

ple rules. To present the PRL in an interpretable fashion, we aim to show how the most

relevant visual features are leveraged by the model to distinguish examples belonging

30

Method Rules Class

C-MLP2N CT< 6 ∧ UCSH< 3 ∧ BC< 8 M
CT< 9 ∧MA< 4 ∧ BN< 2 ∧ BC< 5 M
CT< 10 ∧ UCSH< 4 ∧MA< 4 ∧ BN< 3 M
CT< 7 ∧ UCSH< 9 ∧MA< 3 ∧ 4 ≤ BN ≤ 9 ∧ BC< 4 M
3 ≤ CT ≤ 4 ∧ UCSH< 9 ∧MA< 10 ∧ BN< 6 ∧ BC< 8 M

SSV MA> 2.5 ∧ BC> 2.5 M
MA> 2.5 ∧ BN> 3.5 ∧ BC> 0 M
UCSI> 5.5 ∧MA< 2.5 ∧ BC> 1.6 M

GASVM CT< 7.09 ∧ UCSH < 7.91 ∧ SECS < 9.76 ∧ BC< 6.06 B
UCSH< 7.7 ∧ BN< 9.41 ∧ BC< 6.12 ∧M< 7.43 M

QSVM-G CT< 10 ∧ UCSH < 9.95 ∧ BN< 6.93 B
CT< 7.00 ∧ UCSI< 5.97 ∧ SECS< 4.97 ∧ BN< 4.94 ∧ NN< 9.94 B
UCSH> 2.97 ∧ BN> 4.94 M
CT> 4.96 ∧ UCSI> 4.00 M
UCSI> 4.98 M
CT> 2.984 ∧ BN> 6.93 M
CT> 5.98 ∧ UCSI> 3.00 ∧ UCSH> 3.99 M
UCSH> 2.97 ∧ SECS> 4.97 M
NN> 8.96 M
UCSI < 3.00 ∧ UCSH> 3.99 ∧ SECS< 4.97 B
CT< 2.98 ∧ UCSH< 4.95 ∧ BN> 9.95 B
CT> 10.00 ∧ UCSI< 3.00 ∧ BN< 7.96 B

ReRXJ48 BN = 1 B
CT ≤ 4 ∧ 1 <BN≤ 6 B
CT ≤ 4 ∧ BN> 6 M
CT> 4 ∧ BN> 1 M

PRL MA ≥ 2 ∧ UCSI ≥ 5 M
BN ≥ 3 ∧ SECS ≤ 4 M
MA ≤ 2 ∧ SECS ≥ 3 M
CT ≤ 6 ∧MA ≤ 5 B
NN ≤ 2 ∧ SECS ≥ 2 B
SECS ≤ 2 ∧MA ≥ 3 M
BN ≥ 6 ∧ BC ≥ 4 M
BN ≥ 5 ∧ NN ≤ 1 M
UCSH ≤ 3 ∧ BC ≥ 4 M
CT ≤ 6 ∧ NN ≤ 8 B

Table 4: Rule extracted by the rule extraction algorithms reported in (Hayashi and Nakano 2015) and PRL.
The class column indicates whether the rule define the positive class (M) or the negative class (B).

31

(a) 0 versus 9 (b) 4 versus 6

Figure 7: Visualization of the most relevant polynomial features of degree 2. The polynomial features are
visualized as segments limited by the involved input variables. The left hand side plot shows the features
relevant to discriminate the (a) 0 from the 9 and (b) 4 from the 6. Viceversa in the right hand side plots.

to either a class or the other.620

Experiments have been performed using polynomial features of degree 2. Figure 7

illustrates two examples of the most relevant features used by the model to distinguish:

(a) 0 from a 9 (left) and viceversa (right); (b) 4 from a 6 (left) and viceversa (right).

Each feature is presented using a segment between the two features (i.e. pixels)

that concur to the decision process, in each rule (i.e. monomial). The background625

represents the average digit of the depicted class.

Plots presented in Figure 7(a) show how curvatures are used to distinguish the 0

from the 9. In particular, the algorithm looks for a “big” curvature to recognize ele-

ments belonging to the 0 class, and a smaller one to identify the 9. Figure 7(b) depicts

a similar behaviour to distinguish 4 and 6. Again, the 6 is characterized by curvatures,630

while the horizontal dash is considered to be the important aspect to recognize the 4.

Figure 8 shows how the value of the game has changed over the iterations of PRL,

while Figure 9 shows the full set of digit-vs-digit plots. In the rows there are the

preferred class, while in the column the not preferred one w.r.t. the corresponding class

in the rows.635

7.3. Feature Selection

This set of experiments aims at assessing the effectiveness of PRL on datasets with

many noisy and redundant features. The chosen testbeds have been the datasets of

the NIPS 2003 Feature selection challenge [29]. All datasets are freely available at the

NIPS 2003 Feature selection challenge site, http://clopinet.com/isabelle/640

32

http://clopinet.com/isabelle/Projects/NIPS2003/
http://clopinet.com/isabelle/Projects/NIPS2003/
http://clopinet.com/isabelle/Projects/NIPS2003/

0 100 200

2

4

6

·10−3

iteration

va
lu

e
of

th
e

ga
m

e

Figure 8: Value of the game w.r.t. the iteration of PRL on the mnist dataset.

Dataset #Inst. #Feats. # Real feat. Class prior

dorothea 1150 100k 50k 90/10
gisette 7k 5k 250 50/50
madelon 2.6k 500 20 50/50

Table 5: Datasets information: name, number of instance, number of features, number of relevant features
(probes), and class prior.

Projects/NIPS2003/. Further details about the datasets are reported in [29] and

[30]. A common characteristic of these datasets is the huge number of features com-

pared to the number of training instances. All datasets consist of binary classification

tasks. Table 5 summarizes the characteristics of the used datasets.

We compared PRL with standard soft-margin SVM and Random Forest Classifier.645

Given the huge number of features of the target datasets, the linear kernel turned out to

be a good kernel for these tasks, with the exception of madelon in which the degree 2

homogeneous polynomial was the best performing kernel for SVM. Moreover, we eval-

uated the PRL using the Decision path rules generator (dubbed PRL-RF). TheC hyper-

parameter of the SVM has been validated in the set of values {10−4, . . . , 105} using a650

5-fold cross validation procedure. Experiments have been performed using a 70-30%

training and test split. The Random Forest Classifier has been tuned selecting the hyper-

parameter associated with the number of estimators in the set {10, 102, 103, 5000}, the

maximum depth in {2, 5, 10, until pure leaves} and the criterion between {Gini, entropy}

and validating them via 5-fold cross validation. In Table 6 the results achieved by both655

33

http://clopinet.com/isabelle/Projects/NIPS2003/
http://clopinet.com/isabelle/Projects/NIPS2003/

Figure 9: Depiction of the relevant features extracted by PRL for each possible pair of digits.

methods as well as the number of relevant features according to PRL are summarized.

As evident from the table, the proposed method is able to achieve better perfor-

mance than SVM. It is worth to mention that, generally, the number of features used

by PRL was orders of magnitude less than the number of original features. Both PRL

and PRL-RF have higher (or comparable) performance w.r.t. SVM and RF. It is inter-660

esting to observe that PRL-RF consistently achieves better performance than PRL, and

this can be ascribed to the quality of the features. Another observation that is worth to

mention is that PRL-RF consistently has better performance than RF (the same cannot

be said for PRL) and this underline the effectiveness of the feature selection capability

of PRL.665

34

Dataset SVM RF PRL PRL-RF # Relevant/Tot. feat.

dorothea 91.88 78.13 92.69 93.33 500/100k
gisette 96.71 97.22 97.19 97.67 900/5k
madelon 60.10 71.05 62.75 74.49 1225/250k

Table 6: Accuracy results achieved by SVM , RF, PRL and PRL-RF. The last column indicates the number
of support preference-feature pairs used by PRL. The best results are highlighted in bold.

8. Related work

In this section we discuss related work to the proposed method. We give particular

attention to game theoretical concepts related to machine learning especially to large

margin methods, and on-line (non linear) feature selection.

8.1. Game theory and machine learning670

Connections between large margin methods and game theory have been already

discussed in literature. In [5], Couellan investigates connections between supervised

classification and generalized Nash equilibrium problems. Specifically, the geometri-

cal properties of the separation hyperplane of SVM in the dual space are exploited to

formulate a non-cooperative game. The intuition behind this game theoretical formu-675

lation is that the two players are associated with the positive and the negative class,

respectively. The goal of each player is to “pull” the hyperplane close to himself. In

the paper, the proposed formulation is then extended for the multi-class setting. Similar

observation has also been done in [4] in which hard-margin SVM is cast into a two-

player zero some game. Starting from this observation, authors propose a kernel-based680

method for the direct optimization of the margin distribution.

In [31], Polato et al. propose a preference learning framework inspired by game

theory for multi-class classification problem. The framework defines a single opti-

mization problem related to the optimal strategies of a two-players zero-sum game. To

improve the efficiency, authors propose an approximated solution which requires the685

sequential optimization of many sub-games.

In [32], a game theory approach for solving multi-class classification is presented.

In this work pairwise classification is seen as a decision-making problem and authors

show that pairwise SVM can be cast into the proposed GT framework. They also

35

prove that the solution of the proposed approach is equivalent to the fuzzy pairwise690

SVM [33]. Game theory, specifically Shapley values, is also used as a surrogate model

for interpreting machine learning models. [34] propose FAE (Formulate, Approximate,

Explain), a conceptual unified framework for generating and interpreting explanations.

FAE generalized methods such as [35] and [36].

Under an applicative perspective, game theoretical concepts are highly exploited695

in the cyber-security community because it is related to the adversarial nature of an

attacker, e.g., [37, 2].

8.2. On-line feature selection

One of the first proposed approaches for performing feature selection in the feature

space has been [38]. In this work, Cao et al. extended Relief [39], a margin based700

feature selection approach, in kernel space by deriving a basis set in the feature space

that is used to compute the distance (useful in the computation of the nearhit and the

nearmiss) in the feature space using the kernel trick.

In [40], Nguyen et al. proposed a convex energy-based framework to jointly per-

form feature selection and non linear SVM parameter learning. Authors empirically705

show that the proposed method shows significant reduction of features used while

maintaining classification performance.

More recently, a similar approach has been proposed by Adeli et al. [41] for early

diagnosis of Parkinson’s disease. The core idea behind the proposed method is the

learning of different kernels for each feature, as in the Multiple Kernel Learning frame-710

work, but for each single feature. Then the optimization problem learns how to weight

these kernels and the weights represent how much discriminant the features are in the

feature space.

The main difference between PRL and the just mentioned approaches is that, thanks

to the feature generator component, PRL has the capability of treating problems with715

infinitely many features. PRL, like HOSFS [42], is also theoretically suitable for deal-

ing with streaming of features, however, its main limitation is the efficiency that it

could not be ideal in settings with high throughput.

One of the biggest challenges in feature selection is dealing with large scale data in

36

particular with (infinitely) many input features. This is a typical scenario in real-world720

applications when data instances have high dimensionality or it is expensive/inconvenient

to acquire all attributes. In these contexts, batch approaches are simply not applicable

for computational reasons. Thus, there is the need to move towards on-line feature

selection (OFS) approaches [43, 44], which can work with a small and limited number

of features. For a comprehensive comparison of linear and non-linear feature selection725

methods we refer the reader to [45].

9. Conclusions and future work

This paper proposed a new preference learning approach for classification (and

label ranking) based on game theoretical concepts. The learning problem is seen as

a two-players zero-sum game solved by a novel incremental algorithm. We provided730

theoretical guarantees about the convergence of the algorithm as well as an extensive

set of experiments demonstrating its effectiveness. We also showed the capability of

PRL in identifying explanation rules for interpreting the predictions.

In the future we aim at applying PRL for extracting feature correlations. For exam-

ple by creating artificial tasks where a target feature is used as label and the extracted735

rules describe how other features correlate with the target one. Moreover, we aim at

introduce new feature generation schemes. A possibility could be to explore random

feature generation methods such as the Rahimi and Recht random features [46]. Fi-

nally, we also intend to relax the PRL formulation in order to get a soft margin version

of the algorithm.740

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural
Information Processing Systems 27, 2014, pp. 2672–2680.

[2] D. P. Yufei Liu, A novel kernel SVM algorithm with game theory for network in-745

trusion detection, KSII Transactions on Internet and Information Systems 11 (8).

[3] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.

37

[4] F. Aiolli, G. Da San Martino, A. Sperduti, A kernel method for the optimization
of the margin distribution, in: Artificial Neural Networks - ICANN 2008, 2008,750

pp. 305–314.

[5] N. Couellan, A Note On Supervised Classification and Nash-Equilibrium
Problems, RAIRO - Operations Researchdoi:10.1051/ro/2016024.
URL https://hal-univ-tlse2.archives-ouvertes.fr/
hal-01354857755

[6] J. Fürnkranz, E. Hüllermeier, Preference Learning, 1st Edition, Springer, 2010.

[7] S. Har-Peled, D. Roth, D. Zimak, Constraint classification for multiclass clas-
sification and ranking, in: Proceedings of the 15th International Conference on
Neural Information Processing Systems, NIPS’02, MIT Press, Cambridge, MA,
USA, 2002, pp. 809–816.760

URL http://dl.acm.org/citation.cfm?id=2968618.2968719

[8] G. Brown, Iterative solution of games by fictitious play, Activity Analysis of Pro-
duction and Allocation (1951) 374–376.

[9] M. Polato, F. Aiolli, Interpretable preference learning: A game theoretic frame-
work for large margin on-line feature and rule learning, in: AAAI, 2019, pp.765

4723–4730.

[10] I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector machine
learning for interdependent and structured output spaces, in: Proceedings of the
Twenty-first International Conference on Machine Learning, ICML ’04, ACM,
New York, NY, USA, 2004, pp. 104–. doi:10.1145/1015330.1015341.770

[11] F. Aiolli, A. Sperduti, A preference optimization based unifying framework for
supervised learning problems, in: Preference Learning, 2010.

[12] R. E. Schapire, Y. Freund, P. Barlett, W. S. Lee, Boosting the margin: A new
explanation for the effectiveness of voting methods, in: Proceedings of the Four-
teenth International Conference on Machine Learning, ICML ’97, 1997, pp. 322–775

330.

[13] N. J. Nilsson, Learning machines: foundations of trainable pattern-classifying
systems, McGraw-Hill, New York, NY, USA, 1965.

[14] R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis, John Willey &
Sons, 1973.780

[15] S. Har-Peled, D. Roth, D. Zimak, Constraint classification: A new approach to
multiclass classification, in: N. Cesa-Bianchi, M. Numao, R. Reischuk (Eds.),
Algorithmic Learning Theory, Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 365–379.

[16] J. von Neumann, Zur theorie der gesellschaftsspiele 100 (1928) 295–320.785

38

https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
https://doi.org/10.1051/ro/2016024
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01354857
http://dl.acm.org/citation.cfm?id=2968618.2968719
http://dl.acm.org/citation.cfm?id=2968618.2968719
http://dl.acm.org/citation.cfm?id=2968618.2968719
http://dl.acm.org/citation.cfm?id=2968618.2968719
https://doi.org/10.1145/1015330.1015341

[17] Y. Freund, R. E. Schapire, Adaptive game playing using multiplicative weights,
Games and Economic Behavior 29 (1-2) (1999) 79–103.

[18] Y. Freund, R. E. Schapire, Game theory, on-line prediction and boosting, in:
COLT, 1996, pp. 325–332.

[19] S. D. Bopardikar, C. Langbort, Incremental approximate saddle-point compu-790

tation in zero-sum matrix games, in: 53rd IEEE Conference on Decision and
Control, 2014, pp. 1936–1941.

[20] G. W. Brown, Iterative solutions of games by fictitious play, In: Activity Analysis
of Production and Allocation (1951) 374–376.

[21] G. S. Kimeldorf, G. Wahba, Some results on tchebycheffian spline functions,795

Journal of Mathematical Analysis and Applications 33 (1) (1971) 82–95.

[22] T. Hofmann, B. Scholkopf, A. J. Smola, Kernel methods in machine learning, The
Annals of Statistics 36 (3) (2008) 1171–1220.

[23] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml800

[24] Y. Hayashi, S. Nakano, Use of a recursive-rule extraction algorithm with j48graft
to achieve highly accurate and concise rule extraction from a large breast cancer
dataset, Informatics in Medicine Unlocked 1 (2015) 9 – 16.

[25] D. Nauck, R. Kruse, Obtaining interpretable fuzzy classification rules from med-
ical data, Artificial Intelligence in Medicine 16 (2) (1999) 149 – 169. doi:805

https://doi.org/10.1016/S0933-3657(98)00070-0.

[26] Y.-C. Chen, C.-T. Su, T. Yang, Rule extraction from support vector machines by
genetic algorithms, Neural Computing and Applications 23 (3) (2013) 729–739.

[27] G. Bologna, Y. Hayashi, Qsvm: A support vector machine for rule extraction,
in: Advances in Computational Intelligence, Springer International Publishing,810

Cham, 2015, pp. 276–289.

[28] Y. Hayashi, Y. Tanaka, T. Takagi, T. Saito, H. Iiduka, H. Kikuchi, G. Bologna,
S. Mitra, Recursive-rule extraction algorithm with j48graft and applications to
generating credit scores, J. Artif. Intell. Soft Comput. Res. 6 (2016) 35.

[29] I. Guyon, S. Gunn, A. Ben-Hur, G. Dror, Result analysis of the nips 2003 feature815

selection challenge, in: L. K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural
Information Processing Systems 17, MIT Press, 2005, pp. 545–552.

[30] N. Johnson, A study of the nips feature selection challenge (2009).
URL https://web.stanford.edu/˜hastie/ElemStatLearn/
comp.pdf820

39

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/https://doi.org/10.1016/S0933-3657(98)00070-0
https://doi.org/https://doi.org/10.1016/S0933-3657(98)00070-0
https://doi.org/https://doi.org/10.1016/S0933-3657(98)00070-0
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf

[31] M. Polato, G. Faggioli, I. Lauriola, F. Aiolli, Playing the large margin preference
game, in: Artificial Neural Networks and Machine Learning – ICANN 2019:
Deep Learning, Springer International Publishing, 2019, pp. 792–804.

[32] M. Petrovskiy, A game theory approach to pairwise classification with support
vector machines, in: 2004 International Conference on Machine Learning and825

Applications, 2004. Proceedings., 2004, pp. 115–122.

[33] S. Abe, T. Inoue, Fuzzy support vector machines for multiclass problems, in:
10th European Symposium on Artificial Neural Networks, ESANN 2002, pp.
113–118.

[34] L. Merrick, A. Taly, The explanation game: Explaining machine learning mod-830

els using shapley values, in: A. Holzinger, P. Kieseberg, A. M. Tjoa, E. Weippl
(Eds.), Machine Learning and Knowledge Extraction, Springer International Pub-
lishing, Cham, 2020, pp. 17–38.

[35] A. Datta, S. Sen, Y. Zick, Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems, in: 2016 IEEE Symposium835

on Security and Privacy (SP), 2016, pp. 598–617. doi:10.1109/SP.2016.
42.

[36] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
in: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017,840

pp. 4768–4777.

[37] M. Zolotukhin, T. Hamalainen, Support vector machine integrated with game-
theoretic approach and genetic algorithm for the detection and classification of
malware, in: 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 211–
216.845

[38] B. Cao, D. Shen, J.-T. Sun, W. Yang, Z. Chen, Feature selection in a kernel space,
in: International Conference on Machine Learning, IMCL’07, 2007.

[39] I. Kononenko, Estimating attributes: Analysis and extensions of relief, in:
F. Bergadano, L. De Raedt (Eds.), Machine Learning: ECML-94, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1994, pp. 171–182.850

[40] M. H. Nguyen, F. de la Torre, Optimal feature selection for support vector ma-
chines, Pattern Recognition 43 (3) (2010) 584 – 591. doi:https://doi.
org/10.1016/j.patcog.2009.09.003.

[41] E. Adeli, G. Wu, B. Saghafi, L. H. An, F. Shi, D. Shen, Kernel-based joint feature
selection and max-margin classification for early diagnosis of parkinson’s disease,855

in: Scientific reports, 2017.

[42] S. Sandhiya, U. Palani, A novel hosfs algorithm for online streaming feature se-
lection, in: 2020 International Conference on System, Computation, Automation
and Networking (ICSCAN), 2020, pp. 1–6. doi:10.1109/ICSCAN49426.
2020.9262401.860

40

https://doi.org/10.1109/SP.2016.42
https://doi.org/10.1109/SP.2016.42
https://doi.org/10.1109/SP.2016.42
https://doi.org/https://doi.org/10.1016/j.patcog.2009.09.003
https://doi.org/https://doi.org/10.1016/j.patcog.2009.09.003
https://doi.org/https://doi.org/10.1016/j.patcog.2009.09.003
https://doi.org/10.1109/ICSCAN49426.2020.9262401
https://doi.org/10.1109/ICSCAN49426.2020.9262401
https://doi.org/10.1109/ICSCAN49426.2020.9262401

[43] J. Wang, P. Zhao, S. C. H. Hoi, R. Jin, Online feature selection and its appli-
cations, IEEE Transactions on Knowledge and Data Engineering 26 (3) (2014)
698–710.

[44] X. Wu, K. Yu, W. Ding, H. Wang, X. Zhu, Online feature selection with streaming
features, IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (5)865

(2013) 1178–1192.

[45] O. Krakovska, G. Christie, A. Sixsmith, M. Ester, S. Moreno, Performance com-
parison of linear and non-linear feature selection methods for the analysis of large
survey datasets, PloS one 14 (3).

[46] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Pro-870

ceedings of the 20th International Conference on Neural Information Processing
Systems, NIPS’07, 2007, pp. 1177–1184.

41

	Introduction
	Background
	Preference Learning
	Game Theory
	Approximating the solution

	Parallel Fictitious Play
	Preference Learning: a game theoretic perspective
	PRL: Preference and Rule Learning
	PRL with dynamic budget

	On-line feature generation
	Polynomial features generation
	Rules generation
	Decision path rules generation
	Bias feature

	Evaluation
	Model interpretation
	The tic-tac-toe dataset
	The poker dataset
	The breast-cancer dataset

	Visualization: mnist dataset
	Feature Selection

	Related work
	Game theory and machine learning
	On-line feature selection

	Conclusions and future work

