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The Born cross sections of the e+e− → �+�̄− and e+e− → �−�̄+ processes are determined for center-
of-mass energy from 2.3864 to 3.0200 GeV with the BESIII detector. The cross section lineshapes can 
be described properly by a pQCD function and the resulting ratio of effective form factors for the 
�+ and �− is consistent with 3. In addition, ratios of the �+ electric and magnetic form factors, 
|G E/G M |, are obtained at three center-of-mass energies through an analysis of the angular distributions. 
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These measurements, which are studied for the first time in the off-resonance region, provide precision 
experimental input for understanding baryonic structure. The observed new features of the �± form 
factors require more theoretical discussions for the hyperons.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Nucleons, as the lightest baryons, are the largest component 
of the observable matter in the universe, and were shown to be 
non-pointlike particles in the middle of last century [1,2]. How-
ever, nucleon properties, such as their radii and the sources of 
their spin, are still not well understood [3]. The hyperons are the 
SU (3)-flavor-octet partners of the nucleons that contain one or 
more strange quarks, and offer crucial additional dimensions to 
the study of nucleon structures [4,5]. Treating the heavier strange 
quarks as spectators, hyperons can provide valuable insight into 
the behavior of the lighter up and down quarks in different en-
vironments. Electromagnetic form factors (EMFFs) are fundamental 
observables of baryons that are intimately related to their internal 
structure and dynamics [6–8]. Despite the fact that much work has 
been done on the EM structures of protons in both the space-like 
and time-like regions [9–14], experimental information regarding 
the EMFFs of hyperons remains limited [15–18]. Moreover, the few 
existing measurements of time-like neutron FFs [19,20] differ from 
each other and lead to conflicting conclusions when compared to 
those for the proton [21,22]. A �+ hyperon is formed by replacing 
the proton’s down quark with a strange quark; likewise a �− is 
formed by replacing the neutron’s up quark with a strange quark. 
The corresponding ratio of FFs between the �+ and �− hyperons 
could provide guidance for the nucleons. Therefore, experimental 
measurements for � hyperons, especially the �− , which has never 
been measured in the time-like region, provide essential tests of 
various theoretical models [22–24] and produce important input 
for the understanding of baryonic structures.

The differential, one-photon exchange cross section for the 
e+e− → B B̄ process, where B is a spin-1/2 baryon, can be ex-
pressed in terms of the electric and magnetic FFs G E and G M

as [25]:

dσ B(s)

d�
= α2βC |G M |2

4s

[
(1 + cos2 θ) + 1

τ

∣∣∣∣ G E

G M

∣∣∣∣
2

sin2 θ

]
, (1)

where α is the fine-structure constant, s is the square of center-

of-mass (c.m.) energy, β =
√

1 − 4m2
B/s is a phase-space factor, 

τ = s
4m2

B
, mB is the baryon mass, and θ is its c.m. production 

angle. The Coulomb correction factor C [26,27] accounts for the 
electromagnetic interaction of charged point-like fermion pairs in 
the final state. It reads C = y/(1 −e−y) with y = πα(1 +β2)/β for 
a charged point-like fermion pair and C = 1 for a neutral point-like 
fermion pair. For charged point-like fermion pairs, the cross section 
at threshold is non-zero, σ(4m2

B ) = π2α3/2m2
B = 848(mp/mB)2 pb, 

where mp is the proton mass [28], and then grows with increas-
ing β . Experimentally, a rapid rise of the e+e− → pp̄ cross sec-
tion near threshold followed by a plateau is observed [12,13]. 
The cross section of plateau near threshold is consistent with the 
848 pb expectation for a point-like charged particle. However, in 
this case, the pp̄ is produced by a virtual photon with Q 2 =
4m2

p = 3.53 GeV2, which corresponds to a Compton wavelength of 
∼0.1 fm, a scale at which the proton is definitely not point-like. A 
similar feature of the cross section for e+e− → �+

c �̄−
c is observed 

by the BESIII experiment [29], where the cross section of plateau 
near threshold is around 240 pb. This is 1.6 times the predicted 
value for point-like charged particles. These unexpected threshold 
4

effects have been widely discussed in the literature where they 
are interpreted as final state interactions [30], bound states or 
near-threshold meson resonances [31], or an attractive Coulomb 
interaction [32]. To understand the nature of these threshold ef-
fects, experimental measurements of the near threshold charged 
pair production of other hyperons will be of critical importance.

2. Detector and data sample

In this Letter, we present precision measurements of e+e− →
�+�̄− and e+e− → �−�̄+ with a data sample of 329.7 pb−1 col-
lected at BESIII with c.m. energies between 2.3864 and 3.0200 GeV 
[33]. The threshold energies for �+�̄− and �−�̄+ pair production 
are 2.3787 GeV and 2.3949 GeV, respectively. The BESIII detec-
tor is described in detail in Ref. [34]. The critical elements for the 
measurements reported here are: the main drift chamber (MDC), 
which measures the momenta of charged particles with 0.5% reso-
lution for 1 GeV/c tracks and the dE/dx for charged-particle identi-
fication (PID); a barrel array of scintillation counters that measures 
charged particles’ time of flight for additional PID information; 
and an electromagnetic calorimeter (EMC) comprising an array of 
CsI(Tl) crystals that measures photon energies with a resolution of 
2.5% at 1 GeV.

Simulated event samples produced with a geant4-based [35]
Monte Carlo (MC) package that includes the geometric description 
of the BESIII detector and its response, are used to determine the 
detection efficiency and to estimate the backgrounds. The signal 
processes e+e− → �±�̄∓ are generated according to the differen-
tial amplitude presented in Ref. [36]. Initial state radiation (ISR) 
is simulated with conexc [37] and the corresponding correction 
factors are calculated for higher order processes. Background from 
the QED processes e+e− → l+l− (l = e, μ) and e+e− → γ γ are 
investigated with babayaga [38], while for e+e− →hadrons and 
two-photon processes we use lundarlw [39] and bestwogam [40], 
respectively.

3. Data analysis

In the process e+e− → �+�̄− , there are four dominant final 
state topologies which account for more than 99% of its total de-
cay width: pπ0 p̄π0, nπ+ p̄π0, pπ0n̄π− and nπ+n̄π− . All four 
configurations are selected in this analysis, significantly improving 
the statistics. At BESIII, charged particles are efficiently detected 
and identified by the MDC and PID systems and π0 mesons are 
reconstructed in the EMC via their π0 → γ γ decay mode. The se-
lection criteria for charged tracks, PID, and photon candidates are 
the same as those used in Ref. [41]. Most of the anti-neutrons (n̄) 
annihilate in the EMC and produce several secondary particles with 
a total energy deposition that can be as high as 2 GeV; the posi-
tion of the n̄ interaction and, from this, the n̄ direction can be 
inferred from the weighted center-of-energy of the shower [17]. 
Neutron (n) detection is not done because of its low interaction 
efficiency and small energy deposition.

The pπ0 p̄π0 and nπ+ p̄π0 final-state configurations, classi-
fied as category A, can be analyzed by a partial reconstruction 
technique in which only the detection of �̄− → p̄π0 is required. 
Candidate events are required to have at least one charged track 
that is identified as a p̄ by the PID system and at least two 
good photons that are consistent with originating from π0 →

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. The mass spectra of Mbc (category A) and Mrec
n̄π− (category B) for e+e− → �+�̄− candidate events at a,b) √s = 2.3864 GeV. Dots with error bars are the data; 

histograms are the background events in MC samples after normalization. Solid curves are the fit results, dashed curves are the signal, and dot-dashed curves are the 
background.
γ γ . The mass spectrum of γ γ is required to be from 0.127 <
Mγ γ < 0.139 GeV/c2 to 0.123 < Mγ γ < 0.14 GeV/c2, depending 
on c.m. energies. The �̄− is reconstructed using all combinations 
of the selected p̄γ γ . The two-body process exploits two variables 
that are based on energy and momentum conservation: the en-
ergy difference 
E ≡ E − Ebeam and the beam-constrained mass 
Mbc ≡

√
E2

beam − p2. Here, E(p) is the total measurement energy 
(momentum) of the p̄γ γ combinations in the c.m. system, and 
Ebeam is the beam energy. Candidates are accepted with optimized 

E requirements of −16 < 
E < 7 MeV to −24 < 
E < 13 MeV, 
depending on c.m. energies, and with Mbc > 1.15 GeV/c2.

The pπ0n̄π− and nπ+n̄π− final states, classified as category 
B, are reconstructed by requiring two good charged tracks with 
one identified as a π− and the other identified as either a π+
or p, and the most energetic shower in these events is assigned 
as the n̄ candidate. To discriminate n̄-initiated showers from those 
produced by photons, three variables are retained for further se-
lection based on c.m. energy-dependent requirements: the total 
energy in the n̄-assigned EMC shower, the second moment of the 
shower [17], and the number of crystals with above-threshold sig-
nals within a 40◦ cone around the shower. After that, kinematic 
fits that include the n̄ direction are performed to identify signal 
events. Since the n̄ shower does not provide a good measure of 
its total energy, En̄ , this is left as a free parameter in the kine-
matic fits. If a π+ is identified, the fit imposes the nn̄π+π−
hypothesis with a missing n. If a p is identified, the fit imposes 
the pn̄π−π0 hypothesis with a missing π0. In both fits, total 
energy-momentum conservation is constrained and Mn̄π− is also 
constrained to the mass of the �̄− . The pπ− invariant mass is re-
quired to be |M(pπ−) − m(�)| > 0.005 GeV/c2 to eliminate back-
ground from e+e− → ��̄ → pπ−n̄π0. Furthermore, the χ2 value 
from the kinematic fit is required to be less than 20.

The reconstruction of e+e− → �−�̄+ is similar to that for 
nπ+n̄π− in the e+e− → �+�̄− analysis since they have the same 
final states. The only difference is that Mn̄π+ is constrained to the 
mass of the �̄+ in the kinematic fit.

Fig. 1 shows the distributions of Mbc for category A and the re-
coil mass of n̄π− , Mrec

n̄π− , for category B using selected e+e− →
�+�̄− candidates, where significant signals in both categories are 
observed in data at 

√
s = 2.3864 and 2.3960 GeV. Backgrounds 

are studied with MC samples and only hadronic final states sur-
vive the selection criteria. In category A, the backgrounds are from 
e+e− annihilation events with the same final states as the signal 
process, with one or more additional π0, and with an additional 
γ -ray. In category B, the backgrounds are from annihilation events 
with the same final states as the signal process, multi-π processes 
such as π+π−π0π0 and processes with one more π0 in the final 
states. These background processes are mainly from contributions 
including intermediate states such as 
, � and � baryons, but 
none of them produce peaks in the signal regions as shown by 
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Fig. 2. The Mnπ− distributions for selected e+e− → �−�̄+ events at a) √
s =

2.3960 GeV and b) √s = 2.6444 GeV. Dots with error bars are the data; histograms 
are the background events in MC after normalization. Solid curves are the fit results, 
dashed curves are the signal, and dot-dashed curves are the background.

the histograms of Fig. 1. Fig. 2 shows distributions of Mnπ− for 
e+e− → �−�̄+ candidate events at 

√
s = 2.3960 and 2.6444 GeV, 

respectively, where significant signals in data are observed. In the 
background study, no peaking background is observed in the nπ−
mass spectrum.

The Born cross section for e+e− → �+�̄− is determined from 
the relation:

σ B = Ni

L(1 + δr) 1
|1−�|2 δ

data/MC
i Biεi

, (i = A, B), (2)

where N is the signal yield extracted from the fits; L is the inte-
grated luminosity; 1 + δr is the ISR correction factor incorporating 
the input cross section from this analysis iteratively; 1

|1−�|2 is the 
vacuum polarization factor [42]; ε is the detection efficiency de-
termined from signal MC events. The factor δdata/MC is a correction 
factor for efficiency differences between data and MC simulation, 
determined from studies of high statistics, low-background control 
samples of J/ψ → �+�̄− and J/ψ → ��̄−π+ , respectively. The 
decay branching fraction B accounts for the intermediate states in 
the �̄− decay (51.57% for �̄− → p̄π0 and 48.31% for �̄− → n̄π−).

To determine the signal yields, un-binned maximum likelihood 
fits are performed to the Mbc and Mnπ+ distributions for cate-
gories A and B, respectively. The probability density function (PDF) 
for the signal is described with a MC-simulated shape convolved 
with a Gaussian function to account for mass resolution differences 
between data and MC simulation. The background PDF for category 
A is described by an Argus function [43]; for category B by a sec-
ond order polynomial. In the fit, the two categories are constrained 
by the same Born cross section σ Born, and the expected signal 
yields are calculated from Ni = σ Born · L · εi · (1 + δ) · δdata/MC

i · Bi . 
The fit results at 

√
s = 2.3864 and 

√
s = 2.3960 GeV are shown in 

Fig. 1. Similarly, the signal yield of e+e− → �−�̄+ is determined 
by fitting the nπ− mass spectrum, where the signal is described 
with the MC simulated shape convolved with a Gaussian function 
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Table 1
Summary of the calculated cross section for e+e− → �+�̄− and effective FFs of �+ at each c.m. energy and 
the quantities used in the calculation, ε = ε(1 + δr) 1

|1−�|2 δdata/MC, defined in the text. The energy points with 
asterisks are combined data samples with c.m energies weighted by the luminosities of the subsamples. The 
2.7500 GeV is a combined data set of 2.7000 and 2.8000 GeV, and 2.9884 GeV is a combined data set of 2.9500, 
2.9810, 3.0000 and 3.0200 GeV. The last column shows the results of |G E/G M | ratio of �+ .

√
s (GeV) L (pb−1) εA (%) εB (%) σ Born (pb) |Geff|(×10−2) |G E /G M |

2.3864 22.6 5.8 12.6 58.2 ± 5.9+2.8
−2.6 16.5 ± 0.9 ± 0.9 -

2.3960 66.9 9.5 14.1 68.6 ± 3.4 ± 2.3 15.0 ± 0.4 ± 0.5 1.83 ± 0.26 ± 0.24
2.5000 1.10 18.4 21.6 130 ± 29 ± 11 14.0 ± 1.6 ± 0.6 –
2.6444 33.7 24.4 20.5 59.9 ± 3.6 ± 3.2 8.6 ± 0.3 ± 0.2

0.66 ± 0.15 ± 0.11
2.6464 34.0 24.2 20.7 58.9 ± 3.5 ± 2.4 8.5 ± 0.3 ± 0.2
*2.7500 2.04 25.0 19.7 36.9 ± 12.8 ± 3.2 6.7 ± 1.2 ± 0.3 –
2.9000 105. 26.5 20.6 16.7 ± 1.2 ± 1.1 4.5 ± 0.2 ± 0.2 1.06 ± 0.36 ± 0.09
*2.9884 65.2 25.5 21.4 12.4 ± 1.3 ± 1.3 3.9 ± 0.2 ± 0.2 –

Table 2
Summary of the calculated cross section for e+e− → �−�̄+ and effective FFs of �− at each 
c.m. energy and the quantities used in the calculation.

√
s (GeV) L (pb−1) ε(%) N σ Born (pb) |Geff|(×10−2)

2.3864 22.6 (below threshold)
2.3960 66.9 18.8 29.6 ± 6.7 2.3 ± 0.5 ± 0.3 3.9 ± 0.5 ± 0.6
2.5000 1.10 20.2 4.8+2.9

−2.2 21.2+12.7
−9.5 ± 1.4 5.9+1.8

−1.3 ± 0.2
2.6444 33.7 16.7 33.1 ± 7.7 5.8 ± 1.4 ± 0.4 2.8 ± 0.3 ± 0.1
2.6464 34.0 16.8 38.0 ± 8.4 6.6 ± 1.5 ± 0.5 2.9 ± 0.3 ± 0.1
2.9000 105. 14.2 18.0 ± 7.1 1.2 ± 0.5 ± 0.1 1.2 ± 0.2 ± 0.1
*2.9884 65.2 14.9 9.4+5.4

−4.6 1.0+0.6
−0.5 ± 0.1 1.1 ± 0.3 ± 0.1
and the background is described with a 2nd-order polynomial. Fit 
results at 

√
s = 2.3960 and 

√
s = 2.6444 GeV are shown in Fig. 2.

The quantities used in the cross section calculations for e+e− →
�+�̄− and e+e− → �−�̄+ are summarized in Tables 1 and Ta-
ble 2, respectively. It should be noted that, due to limited statistics, 
data at c.m energies 2.7000 and 2.8000 GeV are combined; data at 
2.9500, 2.9810, 3.0000 and 3.0200 GeV are combined. Currently, 
individual measurements on |G E | and |G M | at each energy point 
are not possible due to statistics. Therefore, the effective FFs of �± , 
defined as |Geff|2 ≡ (|G E |2 + 2τ |G M |2)/(2τ + 1) [44], are reported 
here and shown in Table 1, 2.

Systematic uncertainties associated with the cross section mea-
surements include event selection, cross section line-shape, angu-
lar distribution, fitting method, energy scale, and luminosity. In the 
nominal results, the differences of data and MC efficiencies are 
corrected with control samples. We vary the data/MC correction 
factors within their ±1σ uncertainty and the resulting differences 
in the cross sections are taken as the uncertainty from the event 
selection. The uncertainty associated with the cross section line-
shape is 1.0%, which includes both the theoretical uncertainty and 
the parameter uncertainty in the line-shape fit. The uncertainty 
from the angular distribution is evaluated by varying |G E/G M |
ratios within ±1σ at the three energy points with the highest 
statistics. For the energy points with unknown |G E/G M | values, 
two extreme cases G E = 0 and G M = 0 are considered and the 
difference in the efficiencies divided by a factor of 

√
12 is taken 

as the uncertainty [45]. Alternative fits are performed to study the 
uncertainty from the fit procedure. These include varying the fit-
ting range, varying the signal shape by fixing the resolution of the 
convolved Gaussian to be ±1σ different from its nominal value, 
and changing the background PDF from a second order to a third 
order polynomial. The effects of the c.m. energy and energy res-
olution uncertainties are studied for energy points near threshold. 
The difference of the cross sections in e+e− → �+�̄− is very small 
and the corresponding uncertainty on the cross sections can be ne-
glected. The uncertainty on the effective FFs are 4.9% and 2.8% at √

s = 2.3864 and 2.396 GeV due to the change of Coulomb cor-
rection factors. For the e+e− → �−�̄+ process, the variation of 
c.m energy and energy resolution introduce uncertainties of 12.0% 
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and 14.2% in the cross section and effective FF, respectively, at √
s = 2.396 GeV. The integrated luminosity is determined with 

large angle Bhabha events with an uncertainty of 1.0% [33]. All 
sources of systematic uncertainties are treated as uncorrelated and 
summed in quadrature; they are in the range between 3.5% and 
13.0% of the cross sections, depending on the c.m. energy.

4. Line shape analysis

The measured cross section line-shapes of e+e− → �±�̄∓ from √
s = 2.3864 to 3.0200 GeV are shown in Fig. 3. The near threshold 

cross sections for e+e− → �+�̄− and e+e− → �−�̄+ are mea-
sured to be 58.2 ± 5.9+2.8

−2.6 and 2.3 ± 0.5 ± 0.3 pb, respectively, 
both are inconsistent with the value of 520 pb expected for point-
like charged baryons. Instead, a new feature is observed in which 
the cross sections for e+e− → �−�̄+ are consistently smaller than 
those for e+e− → �+�̄− . A perturbative QCD-motivated energy 
power function [46,47], given by

σ B(s) = βC

s

(
1 + 2m2

B

s

)
c0

(s − c1)4[π2 + ln2(s/�2
QCD)]2

(3)

is used to fit the line-shapes, where c0 is the normalization, c1
is the mean effect of a set of intermediate states that mediates 
the coupling between the virtual photon [48] and is regarded 
as common for the two processes, and �QCD is the QCD scale, 
fixed to 0.3 GeV. The fit results are shown in Fig. 3 with a fit 
quality of χ2/ndof = 9.7/12, where ndof is number of degrees 
of freedom. The cross section ratio between e+e− → �+�̄− and 
e+e− → �−�̄+ is obtained from c0 to be 9.7 ± 1.3, and c1 is 
2.0 ± 0.2 GeV2. Since the effective FF is proportional to the square 
root of the Born cross section, the ratio of the effective �+ and 
�− FFs is consistent with 3, which is the ratio of the incoherent 
sum of the squared charges of the �+ and �− valence quarks, ∑

q∈B Q 2
q .

The results are in disagreement with the prediction from octet 
baryon wave functions [22], where the typical SU (3)-symmetry 
breaking effects for hyperon FFs are about 10 ∼ 30%. In the di-
quark model, the �+ FFs should be comparable to that of � [23]. 
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Fig. 3. The cross section lineshapes for e+e− → �+�̄− (circles) and e+e− → �−�̄+
(squares). The solid line is the pQCD fit for e+e− → �+�̄− and the dashed line for 
e+e− → �−�̄+ . The vertical dashed and dotted lines denote production thresholds 
for e+e− → �+�̄− and e+e− → �−�̄+ .

Fig. 4. Simultaneous fit of efficiency corrected angular distribution at √
s =

2.396 GeV for a) category A b) category B for e+e− → �+�̄− events. Dots with 
error bars are data, solid curves are the fit results, the contributions from G E and 
G M are indicated by dashed and dotted curves.

The �± FFs are also predicted in Ref. [24] from Unitary and 
Analytic model. We notice that a recent prediction for the non-
resonant cross section of e+e− → �±�̄∓ at the J/ψ mass [49], 
based on an effective Lagrangian density, is consistent with our re-
sult when extrapolated to 

√
s = 3.097 GeV using Eq. (3).

5. Extraction of |G E/G M | ratio

The value of |G E/G M | can be obtained by fitting the differ-
ential angular distribution according to Eq. (1). The statistics at √

s = 2.3960, 2.6444, 2.6464 and 2.9000 GeV for e+e− → �+�̄−
allow us to perform a study of the polar angle of �+ in the 
c.m. frame. The angular distributions for categories A and B at √

s = 2.3960 GeV are shown in Fig. 4. These angular distributions 
have been corrected for the detection efficiency and ISR, which are 
obtained from signal MC simulation. Additional bin-by-bin correc-
tions due to the data/MC detection differences, for categories A 
and B, respectively, have also been applied. Simultaneous fits to the 
two data sets to the expression in Eq. (1) sharing a common value 
for |G E/G M | are performed. The result of |G E/G M | = 1.83 ± 0.26
is significantly higher than 1. Using the normalized number of 
events, |G M | is determined to be (9.14 ± 1.42) × 10−2 and (9.30 ±
1.53) × 10−2 for category A and B, respectively. Similar angular 
distribution fits are performed for the combined 

√
s = 2.6444 and 

2.6464 GeV data sets, denoted as 2.6454 GeV, and 
√

s = 2.90 GeV 
and the results are listed in Table 1. The systematic uncertainties 
on |G E/G M | considered here are the difference between data and 
MC efficiency, the bin size, and the fit range. For the �− , on the 
other hand, the statistics only allow for the determination of |Geff|; 
they are not sufficient to extract |G E/G M |.
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6. Summary

In summary, the data collected by BESIII at c.m. energies be-
tween 2.3864 and 3.0200 GeV, are exploited to perform mea-
surements of e+e− → �±�̄∓ . This is the first time that cross 
sections of e+e− → �±�̄∓ in the off-resonance region are pre-
sented. The precision has been significantly improved by recon-
structing all dominant decay modes of the �. Cross sections near 
threshold are observed for e+e− → �+�̄− and e+e− → �−�̄+
to be 58.2 ± 5.9+2.8

−2.6 and 2.3 ± 0.5 ± 0.3 pb, respectively. The 
values disagree with the point-like expectations near threshold, 
848(mp/mB)2 pb, as has been seen for the proton [12,13]. The 
cross section line-shapes for e+e− → �+�̄− and e+e− → �−�̄+
are well-described by pQCD-motivated functions. The ratio of the 
σ Born(e+e− → �+�̄−) to σ Born(e+e− → �−�̄+) is determined to 
be 9.7 ± 1.3, which is inconsistent with predictions from various 
models [22–24]. The EMFF ratio |G E/G M | of the �+ is determined 
from its production angle dependence at three high-statistics en-
ergy points. The |G E/G M | of the �+ shows similar features to 
those of the proton [12,14], � [18], and �c [29], that is larger 
than 1 within uncertainties near threshold and consistent with 1 
at higher c.m. energies.
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