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Abstract: We consider possible discretizations for a gauge-fixed Green-Schwarz action of

Type IIB superstring. We use them for measuring the action, from which we extract the

cusp anomalous dimension of planar N = 4 SYM as derived from AdS/CFT, as well as the

mass of the two AdS excitations transverse to the relevant null cusp classical string solu-

tion. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC)

algorithm and two Wilson-like fermion discretizations, one of which preserves the global

SO(6) symmetry of the model. We compare our results with the expected behavior at vari-

ous values of g =
√
λ

4π . For both the observables, we find a good agreement for large g, which

is the perturbative regime of the sigma-model. For smaller values of g, the expectation

value of the action exhibits a deviation compatible with the presence of quadratic diver-

gences. After their non-perturbative subtraction the continuum limit can be taken, and

suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT.

Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that

for small g leads to a sign problem not treatable via standard reweigthing. The continuum

extrapolations of the observables in the two different discretizations agree within errors,

which is strongly suggesting that they lead to the same continuum limit. Part of the results

discussed here were presented earlier in [1].

Keywords: AdS-CFT Correspondence, Lattice Quantum Field Theory, Sigma Models

ArXiv ePrint: 1605.01726

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2016)014

mailto:lorenzo.bianchi@desy.de
mailto:m.s.bianchi@qmul.ac.uk
mailto:valentina.forini@physik.hu-berlin.de
mailto:leder@physik.hu-berlin.de
mailto:edoardo.vescovi@physik.hu-berlin.de
http://arxiv.org/abs/1605.01726
http://dx.doi.org/10.1007/JHEP07(2016)014


J
H
E
P
0
7
(
2
0
1
6
)
0
1
4

Contents

1 Introduction 1

2 The model in the continuum and its linearization 4

3 Discretization and lattice perturbation theory 6

4 Simulations, continuum limit and the phase 10

4.1 The 〈xx∗〉 correlator 13

4.2 The cusp action 16

4.3 The phase 20

5 Conclusions 21

A The model in the continuum 23

B Alternative discretization 25

1 Introduction

The maximally supersymmetric and superconformal N = 4 super Yang-Mills (SYM) the-

ory is a unique example of non-trivially interacting, four-dimensional gauge theory which is

believed to be exactly integrable [2]. A plethora of results, obtained relying on the assump-

tion of an all-loop integrability for this model and exploiting therefore sophisticated Bethe-

Ansatz-like techniques, have been confirmed by direct perturbative computations both in

gauge theory and in its AdS/CFT dual — the Type IIB, Green-Schwarz string propa-

gating in the maximally supersymmetric background AdS5 × S5 supported by a self-dual

Ramond-Ramond (RR) five-form flux. Without the assumption of quantum integrability, a

restricted class of BPS-protected observables can be computed at finite coupling via super-

symmetric localization techniques [3], which are however only defined on the field theory

side. The superstring sigma-model, for which integrability is a solid fact only classically, is a

complicated, highly non-interacting 2d theory which is under control only perturbatively.1

The natural, genuinely field-theoretical way to investigate the finite-coupling region

and in general the non-perturbative realm of a quantum field theory is to discretize the

spacetime where the model lives, and proceed with numerical methods for the lattice field

theory so defined. A rich and interesting program of putting N = 4 SYM a space-time

lattice is being carried out for some years [28–33] (see also the numerical, non-lattice for-

mulation of N = 4 SYM on R×S3 as plane-wave (BMN) matrix model [34–40]). Alterna-

tively, one could discretize the worldsheet spanned by the Green-Schwarz string embedded

1See [4, 5] for reviews, [6–14] for studies of the models of interest here and [15–27] for related studies.
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in AdS5×S5. This much less explored route has been first proposed in [41], where the most

studied observable of the AdS/CFT integrable system — the cusp anomaly of N = 4 SYM

— has been investigated with lattice techniques from the point of view of string theory.

In this paper, we revisit and extend the analysis of [41]. We will therefore discretize

the two-dimensional worldsheet spanned classically by an open string ending, at the AdS5

boundary where the four-dimensional field theory lives, on a light-like cusp which is the

countour of the dual Wilson loop. The renormalization of the latter is governed by the cusp

anomaly f(g), a function of the coupling g =
√
λ

4π (λ is the ’t Hooft coupling of the AdS/CFT

dual gauge theory)2 which in this framework is often simply referred to as “scaling func-

tion”.3 According to AdS/CFT, any Wilson loop expectation value should be represented

by the path integral of an open string ending at the AdS boundary [43, 44], in this case

〈W [Ccusp]〉 ≡ Zcusp =

∫
[DδX][DδΨ] e−Scusp[Xcl+δX,δΨ] = e−Γeff ≡ e− 1

8
f(g)V2 . (1.2)

Above, Xcl = Xcl(t, s) — with t, s the temporal and spatial coordinate spanning the string

worldsheet — is the classical solution of the string equations of motion describing the

world surface of an open string ending on a null cusp [8]. This vacuum, also known as

GKP [15] string, is of crucial and persisting importance in AdS/CFT, as holographic dual

to several fundamental observables in the gauge theory [45] which can be studied exploting

the underlying integrability of the AdS/CFT system (see e.g. [46–50]). Scusp[X + δX, δΨ]

is the action for field fluctuations over it — the fields being both bosonic and fermionic

string coordinates X(t, s), Ψ(t, s) — and is reported below in equation (2.1) in terms of

the effective bosonic and fermionic degrees of freedom remaining after gauge-fixing. Since

the fluctuation Lagrangian has constant coefficients, the worldsheet volume V2 =
∫
dtds

simply factorizes out4 in front of the function of the coupling f(g), as in the last equivalence

in (1.2). The scaling function f(g) can be evaluated perturbatively in gauge theory [51]

(g � 1), and in sigma-model loop expansion [8, 15, 16] (g � 1) as in (2.3) below. Assuming

all-order integrability of the spectral problem for the relevant operators and taking a ther-

modynamic limit of the corresponding asymptotic Bethe Ansatz, an integral equation [52]

can be derived which gives f(g) exactly at each value of the coupling, and when expanded

in the corresponding regimes gives back (2.3).

2In the AdS/CFT context, where the ’t Hooft coupling λ ∼ g2 is used as relevant parameter, the large g

region is naturally referred to as “strong coupling” regime. The string worldsheet sigma-model of interest

here, for which perturbation theory is a 1/g expansion, is however weakly-coupled at large g.
3The “scaling function” f(g) is in fact the coefficient of log S in the large spin S anomalous dimension ∆

of leading twist operators ∆ = f(g) log S +O(log S/S). It equals [42] twice the cusp anomalous dimension

Γcusp of light-like Wilson loops

〈W [Ccusp]〉 ∼ e−Γcusp γ ln
ΛUV
ΛIR , (1.1)

where γ is the large, real parameter related to the geometric angle φ of the cusped Wilson loop by iγ = φ.

The expectation value above is in fact extracted in the large imaginary φ limit. The same function f(g)

also governs the infrared structure of gluon scattering amplitudes.
4As mentioned above, f(g) equals twice the coefficient of the logarithmic divergence in (1.1), for which

the stringy counterpart should be the infinite two-dimensional worldsheet volume. The further normaliza-

tion of V2 with a 1/4 factor follows the convention of [8].
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Rather than partition functions, in a lattice approach it is natural to study vacuum

expectation values. In simulating the vacuum expectation value of the “cusp” action

〈Scusp〉 =

∫
[DδX][DδΨ]Scusp e

−Scusp∫
[DδX][DδΨ] e−Scusp

= −g d lnZcusp

dg
≡ g V2

8
f ′(g) , (1.3)

we are therefore supposed to obtain information on the derivative of the scaling function.5

It is important to emphasize that the analysis here carried out is far from being a non-

perturbative definition, à la Wilson lattice-QCD, of the Green-Schwarz worldsheet string

model. For this purpose one should work with a Lagrangian which is invariant under

the local symmetries — bosonic diffeomorphisms and κ-symmetry — of the model, while

below we will make use of an action which fixes them all. There is however a number of

reasons which make this model interesting for lattice investigations, within and hopefully

beyond the community interested in holographic models. If the aim is a test of holography

and integrability, it is obviously computationally cheaper to use a two-dimensional grid,

rather than a four-dimensional one, where no gauge degrees of freedom are present and

all fields are assigned to sites — indeed, only scalar fields (some of which anticommuting)

appear in Scusp. Also, although we are dealing with superstrings, there is here no subtlety

involved with putting supersymmetry on the lattice (see e.g. [29] and [39] for different

approaches to the problem), both because of the Green-Schwarz formulation of the action

(with supersymmetry only manifest in the target space)6 and because κ-symmetry is gauge-

fixed. As computational playground this is an interesting one on its own, allowing in

principle for explicit investigations/improvements of algorithms: a highly-nontrivial two-

dimensional model with four-fermion interactions, for which relevant observables have not

only, through AdS/CFT, an explicit analytic strong coupling expansion — the perturbative

series in the dual gauge theory — but also, through AdS/CFT and the assumption of

integrability, an explicit numerical prediction at all couplings. In general, one merit of the

analysis initiated in [41] and that we readdress here is to explore another route via which

lattice simulations7 could become a potentially efficient tool in numerical holography (see

also [41] for a discussion on further examples of interesting observables that could be

investigated with a Green-Schwarz string sigma-model approach).

The paper proceeds as follows. In section 2 we describe in the continuum the model

and the linearization of its quartic fermionic interactions [41]. In section 3 we present the

SO(6)-preserving Wilson-like discretization adopted for the simulations shown in the main

body. In section 4, after commenting on the way we perform the continuum limit, we show

the result of our measurements for the correlator of two bosonic fields (the AdS lagrangean

excitations transverse to the classical string solution), for the expectation value of the

action (1.3), and for a complex phase implicit in the linearization. Conclusions are drawn

5Here our analysis is different from the one in [41]. In particular, 〈S〉 ∼ f(g)
V2/2

only when f(g) is linear in

g, which happens as from (2.3) for large g.
6In perturbation theory, both in the continuum and on the lattice, one can however observe an ef-

fective two-dimensional supersymmetry spontaneously broken by the classical solution. This ensures a

non-vanishing, finite (due to mass — squared sum rule) vacuum energy.
7See for example [53] and reference therein on possible further uses of lattice techniques in AdS/CFT.
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in section 5. Details of the model in the continuum and on an alternative discretization

used are collected in appendices A and B respectively.

2 The model in the continuum and its linearization

In the continuum, the AdS5 × S5 superstring “cusp” action, which describes quantum

fluctuations above the null cusp background can be written after Wick-rotation as [8]

Scusp = g

∫
dtdsLcusp

Lcusp = |∂tx+
1

2
x|2 +

1

z4
|∂sx−

1

2
x|2 +

(
∂tz

M +
1

2
zM +

i

z2
zNηi

(
ρMN

)i
j
ηj
)2

+
1

z4

(
∂sz

M − 1

2
zM
)2

+i
(
θi∂tθi + ηi∂tηi + θi∂tθ

i + eηi∂tη
i
)
− 1

z2

(
ηiηi

)2

(2.1)

+2i

[
1

z3
zMηi

(
ρM
)
ij

(
∂sθ

j − 1

2
θj −i

z
ηj
(
∂sx−

1

2
x

))
+

1

z3
zMηi(ρ

†
M )ij

(
∂sθj −

1

2
θj +

i

z
ηj

(
∂sx−

1

2
x

)
∗
)]

Above, x, x∗ are the two bosonic AdS5 (coordinate) fields transverse to the AdS3 subspace

of the classical solution. Together with zM (M = 1, · · · , 6) (z =
√
zMzM ), they are the

bosonic coordinates of the AdS5 × S5 background in Poincaré parametrization remaining

after fixing a “AdS light-cone gauge” [54, 55]. In appendix A we briefly review the steps

leading to the action (2.1). The fields θi, ηi, i = 1, 2, 3, 4 are 4+4 complex anticommuting

variables for which θi = (θi)
†, ηi = (ηi)

†. They transform in the fundamental representation

of the SU(4) R-symmetry and do not carry (Lorentz) spinor indices. The matrices ρMij are

the off-diagonal blocks of SO(6) Dirac matrices γM in the chiral representation

γM ≡
(

0 ρ†M
ρM 0

)
=

(
0 (ρM )ij

(ρM )ij 0

)
(2.2)

The two off-diagonal blocks, carrying upper and lower indices respectively, are related by

(ρM )ij = −(ρMij )∗ ≡ (ρMji )∗, so that indeed the block with upper indices, denoted (ρ†M )ij ,

is the conjugate transpose of the block with lower indices. (ρMN ) ji = (ρ[Mρ†N ]) ji and

(ρMN )ij = (ρ†[MρN ])ij are the SO(6) generators.

In the action (2.1), as standard in the literature, the light-cone momentum has been

consistently set to the unitary value, p+ = 1. Clearly, in the perspective adopted here it

is crucial to keep track of dimensionful quantities, which are in principle subject to renor-

malization. In the following we will make explicit the presence of one massive parameter,

defined as m, as well as its dimensionless counterpart M = am. The latter and the (di-

mensionless) g are the only “bare” parameters characterizing the model in the continuum.

In (2.1), local bosonic (diffeomorphism) and fermionic (κ-) symmetries originally present

in the Type IIB superstring action on AdS5×S5 [56] have been fixed in a “AdS light-cone

gauge” [54, 55]. On the other hand two important global symmetries are explicitly real-

ized. The first one is the SU(4) ∼ SO(6) symmetry originating from the isometries of S5,

which is unaffected by the gauge fixing. Under this symmetry the fields zM change in the

6 representation (vector representation), the fermions {ηi, θi} and {ηi, θi} transform in the

4 and 4̄ (fundamental and anti-fundamental) respectively, whereas the fields x and x∗ are

simply neutral. The second global symmetry is a SO(2) ∼ U(1) arising from the rotational

– 4 –
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symmetry in the two AdS5 directions orthogonal to AdS3 (i.e. transverse to the classical

solution) and therefore, contrary to the previous case, the fields x and x∗ are charged (with

charges 1 and −1 respectively) while the zM are neutral. The invariance of the action

simply requires the fermions ηi and θi to have charge 1
2 and consequently ηi and θi ac-

quire charge −1
2 . An optimal discretization should preserve the full global symmetry of the

model. In section 3 we will see that in the case of the SO(2) symmetry this is not possible.

With the action (2.1) one can directly proceed to the perturbative evaluation of the

effective action in (1.2), as done in [8] up to two loops in sigma-model perturbation theory,

obtaining for the cusp anomaly (K is the Catalan constant)

f(g) = 4 g

(
1− 3 log 2

4π g
− K

16π2 g2
+O(g−3)

)
. (2.3)

Furthermore, with the same action it is possible to study perturbatively the (non-

relativistic) dispersion relation for the field excitations over the classical string surface.

For example, the corrections to the masses of the bosonic fields x, x∗ in (2.1) (defined as

the values of energy at vanishing momentum) read [9]

m2
x(g) =

m2

2

(
1− 1

8 g
+O(g−2)

)
, (2.4)

where, as mentioned above, we restored the dimensionful parameter m. Both (2.3) and (2.4)

are results obtained in a dimensional regularization scheme in which power divergent contri-

butions are set to zero. In what follows, we will compute the lattice correlators of the fields

x, x∗ so to study whether our discretization changes the renormalization pattern above.

While the bosonic part of (2.1) can be easily discretized and simulated, Graßmann-odd

fields are either ignored (quenched approximation) or formally integrated out, letting their

determinant become part — via exponentiation in terms of pseudofermions, see (2.9) below

— of the Boltzmann weight of each configuration in the statistical ensemble. In the case of

higher-order fermionic interactions — as in (2.1), where they are at most quartic — this is

possible via the introduction of auxiliary fields realizing a linearization. Following [41], one

introduces 7 auxiliary fields, one scalar φ and a SO(6) vector field φM , with the following

Hubbard-Stratonovich transformation

exp

{
− g

∫
dtds

[
− 1

z2

(
ηiηi

)2
+

(
i

z2
zNηiρ

MNi

jη
j

)2]}
(2.5)

∼
∫
DφDφM exp

{
− g

∫
dtds

[
1

2
φ2 +

√
2

z
φ η2 +

1

2
(φM )2 − i

√
2

z2
φM

(
i

z2
zNηiρ

MNi

jη
j

)]}
.

Above, in the second line we have written the Lagrangian for φM so to emphasize that it

has an imaginary part. Indeed, the bilinear form in round brackets is hermitian

(
i ηiρ

MNi
jη
j
)†

= −i(ηj)†(ρMNi
j)
∗(ηi)

† = −iηj ρMN
i
j ηi = iηj ρ

MNj
i η
i , (2.6)

– 5 –
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as follows from the properties of the SO(6) generators (A.13). Since the auxiliary vector

field φM has real support, the Yukawa-term for it sets a priori a phase problem,8 the only

question being whether the latter is treatable via standard reweighting. Below we will see

that this is not the case for small values of g, suggesting that a different setting (alternative

linearization) should be provided to explore the full nonperturbative region.

After the transformation (2.5), the Lagrangian reads

L = |∂tx+
m

2
x|

2
+

1

z4

∣∣∂sx− m

2
x|

2
+
(
∂tz

M +
m

2
zM
)2

+
1

z4

(
∂sz

M − m

2
zM
)2

+
1

2
φ2 +

1

2
(φM )2 + ψTOFψ , (2.7)

with ψ ≡ (θi, θi, η
i, ηi) and

OF =


0 i∂t −iρM

(
∂s + m

2

)
zM

z3 0

i∂t 0 0 −iρ†M
(
∂s + m

2

)
zM

z3

i z
M

z3 ρ
M
(
∂s − m

2

)
0 2 z

M

z4 ρ
M
(
∂sx−mx

2

)
i∂t −AT

0 i z
M

z3 ρ
†
M

(
∂s − m

2

)
i∂t +A −2 z

M

z4 ρ
†
M

(
∂sx
∗ −mx

2
∗)


A=
1√
2z2

φMρ
MNzN −

1√
2z
φ + i

zN
z2
ρMN ∂tz

M . (2.8)

Notice that (2.7) and the integration measure involve only the field ψ and not its complex

conjugate,9 thus formally integrating out generates a Pfaffian Pf OF rather than a deter-

minant. In order to enter the Boltzmann weight and thus be interpreted as a probability,

Pf OF should be positive definite. For this reason, we proceed as in [41]∫
DΨ e−

∫
dtdsΨTOFΨ = Pf OF ≡ (detOF O

†
F )

1
4 =

∫
DξDξ̄ e−

∫
dtds ξ̄(OFO

†
F )−

1
4 ξ , (2.9)

where the second equivalence obviously ignores potential phases or anomalies.

3 Discretization and lattice perturbation theory

In order to investigate the lattice model corresponding to (2.7), we introduce a two-

dimensional grid with lattice spacing a. We assign the values of the discretised (scalar)

fields to each lattice site, with periodic boundary conditions for all the fields except for

antiperiodic temporal boundary conditions in the case of fermions. The discrete approxi-

mation of continuum derivatives are finite difference operators defined on the lattice. While

this works well for the bosonic sector, a Wilson-like lattice operator must be introduced

such that fermion doublers are suppressed. Due to the rather non-trivial structure of the

8In other words, the second quartic interaction in (2.5) is the square of an hermitian object and comes

in the exponential as a “repulsive” potential. This has the final effect of an imaginary part in the auxiliary

Lagrangian, precisely as the i b x in e−
b2

4a ∼
∫
dx e−ax

2+ibx, with b ∈ R.
9The vector ψ in (2.7) collects the 8 complex θ and η in a formally “redundant” way which includes

both the fields and their complex conjugates. Explicitating real and imaginary parts of θ, η, it is easy to

see that the fermionic contribution coming from this 16 × 16 complex operator OF is then the one of 16

real anti-commuting degrees of freedom.

– 6 –
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Dirac-like operator in (2.8) there are in principle many possible ways of introducing a

Wilson-like operator. An optimal discretization should preserve all the symmetries of the

continuum action and should lead to lattice perturbative calculations reproducing, in the

a → 0 limit, the continuum behavior (2.3). Furthermore, in order not to prevent Mon-

tecarlo simulations the discretization should not induce complex phases in the fermionic

determinant — here, no complex phase should be added to the one already implicit in the

Hubbard-Stratonovich procedure adopted. We will find that it is not possible to satisfy

all these requirements and therefore we choose to give up the global U(1) symmetry. Let

us discuss the procedure in details. For simplicity we start with the continuum model

(reviewed in appendix A) and we denote with uM a particular SO(6) direction (i.e. such

that uMuM = 1) defining the vacuum around which we expand the operator (2.8) pertur-

batively (as an example, in (A.9) uM = (0, 0, 0, 0, 0, 1) has been chosen). The free, kinetic

part of the fermionic operator (2.8) in Fourier transform reads

KF =


0 −p01 (p1 − im2 )ρMuM 0

−p01 0 0 (p1 − im2 )ρ†Mu
M

−(p1 + i m2 )ρMuM 0 0 −p01

0 −(p1 + i m2 )ρ†Mu
M −p01 0

 ,

(3.1)

and to compute its determinant one can use the block matrix identity

detKF = det

(
K1 K2

K3 K4

)
= det(K1) det(K4 −K3K

−1
1 K2) = det(K4) det(K1 −K2K

−1
4 K3)

(3.2)

The simplicity of the matrix K3K
−1
1 K2 (or, equivalently K2K

−1
4 K3)

K3K
−1
1 K2 =

 0 − i(m2+4p2
1)

4p0
1

− i(m2+4p2
1)

4p0
1 0

 (3.3)

immediately shows that

detKF =

(
p2

0 + p2
1 +

m2

4

)8

. (3.4)

From this result it is immediate to realize that for the fermionic degrees of freedom the

naive discretization [57]

pµ → p̊µ ≡
1

a
sin(pµa) (3.5)

gives rise to fermion doublers.10 Notice that the vanishing entries in (3.1) are set to zero

by the U(1) symmetry, as they couple fermions with the same charge. A U(1)-preserving

discretization should not affect those entries of the fermionic matrix, and should act only

on the non-vanishing entries. Furthermore SO(6) symmetry fixes completely the structure

10The doubling phenomenon corresponds to the denominator of the fermionic propagator vanishing on

the lattice not only for p2 equal to the physical mass, but also in other 2d − 1 (here three) points — the

ones which have at least one component equal to π/a and all the others vanishing. Fermionic propagators

are here proportional to the relevant entries of the inverse of the fermionic kinetic operator (3.1).

– 7 –
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of the matrix (3.1) so that the only Wilson term preserving all the symmetries would be

of the form p0 → p0 + ai and p1 → p1 + bi for different ai and bi in the four entries where

p0 and p1 appear in (3.1). Implementing such a shift and computing the determinant of

the fermionic operator one immediately finds that this would not yield the perturbative

result (2.3) for any value of ai and bi. Therefore we choose to break U(1) symmetry and

introduce the following Wilson-like lattice operator

K̂F =


W+ −p̊01 (p̊1 − im2 )ρMuM 0

−p̊01 −W †+ 0 (p̊1 − im2 )ρ†Mu
M

−(p̊1 + im2 )ρMuM 0 W− −p̊01

0 −(p̊1 + i m2 )ρ†Mu
M −p̊01 −W †−

 .

(3.6)

where

W± =
r

2

(
p̂2

0 ± i p̂2
1

)
ρMuM , (3.7)

with |r| = 1, and [57]

p̂µ ≡
2

a
sin

pµa

2
. (3.8)

The analogue of (3.4) reads now

det K̂F =

(
p̊2

0 + p̊2
1 +

r2

4

(
p̂4

0 + p̂4
1

)
+
M2

4

)8

(3.9)

and can be used together with its bosonic counterpart — obtained via the naive replacement

pµ → p̂µ in the numerator of the ratio (A.12) — to define in this discretized setting the

one-loop partition function

Γ
(1)
LAT = − lnZ

(1)
LAT = I(a) (3.10)

where, explicitly, for an infinite lattice

I(a) =
V2

2 a2

+π∫
−π

d2p

(2π)2
ln

[
48(sin2 p0

2 + sin2 p1

2 )5(sin2 p0

2 + sin2 p1

2 + M2

8 )2(sin2 p0

2 + sin2 p1

2 + M2

4 )(
4 sin4 p0

2 + sin2 p0 + 4 sin4 p1

2 + sin2 p1 + M2

4

)8

]
(3.11)

and the integral above has been obtained rescaling the momenta with the lattice spacing

and setting r = 1. A consistent discretization will be the one for which (3.10)–(3.11)

converge in the a→ 0 limit to the value in the continuum (A.12). The integral (3.11) can

be indeed quickly performed numerically, leading to

Γ(1) = − lnZ(1) = lim
a→0
I(a) = −3 ln 2

8π
N2M2 , (3.12)

where we used that V2 = L2 = (Na)2. Namely, expanding the integrand in (3.11) around

a ∼ 0 (recall that M = ma) the O(a0) and O(a1) terms vanish. Then, with this discretiza-

tion the cancellation in I(a) of quadratic ∼ 1
a2 and linear ∼ 1

a divergences (which in the

continuum are related to the equal number of fermionic and bosonic degrees of freedom and

to the mass-squared sum rule) is ensured. The O(a2) term provides then the continuum

expected finite part.
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Given the structure of the Wilson term in the vacuum it is quite natural to generalize

the prescription to the interacting case. The discretized fermionic operator reads

ÔF =


W+ −p̊01 (p̊1 − im2 )ρM zM

z3 0

−p̊01 −W †+ 0 ρ†M (p̊1 − im2 ) z
M

z3

−(p̊1 + im
2

)ρM zM

z3 0 2 z
M

z4 ρ
M
(
∂sx−mx

2

)
+W− −p̊01−AT

0 −ρ†M (p̊1 + i m
2

) z
M

z3 −p̊01 +A −2 z
M

z4 ρ
†
M

(
∂sx
∗ −mx

2
∗)−W †−


(3.13)

with

W± =
r

2 z2

(
p̂2

0 ± i p̂2
1

)
ρMzM , (3.14)

where a factor 1/z2 is present, which appears to be useful for stability in the simulations

(to clarify/justify this structure a two-loop calculation in lattice perturbation theory would

be needed). As we said, together with the requirement that the resulting determinant (in

combination with the bosonic contribution) should reproduce the number in (3.12), one

important point is that the discretization should not induce (additional) complex phases.

Indeed, consider the continuum fermionic operator obtained setting to zero in (2.8) those

auxiliary fields φM whose Yukawa-term is responsible for the phase problem. It is easy to

check that it satisfies the properties (antisymmetry and a constraint which is reminiscent

of the γ5-hermiticity in lattice QCD [57])(
OF |φM=0

)T
= −OF |φM=0 ,

(
OF |φM=0

)†
= Γ5

(
OF |φM=0

)
Γ5 (3.15)

where Γ5 is the following unitary, antihermitian matrix

Γ5 =


0 1 0 0

−1 0 0 0

0 0 0 1
0 0 −1 0

 , Γ†5Γ5 = 1 Γ†5 = −Γ5 . (3.16)

The properties (3.15) are enough to ensure that detOF |φM=0 is real and non-negative. Re-

quiring that the addition of Wilson terms in the discretization of the (full) fermionic opera-

tor should preserve (3.15) is one of the criteria leading to ÔF in (3.13). This is indeed what

happens, as can be checked both numerically and analytically, confirming that the phase

problem described in section 4.3 is only due to the Hubbard-Stratonovich transformation.

To answer the question about how restricted the choice of Wilson-like operator intro-

duced in (3.6) is, one can show that starting from a generic 16×16 matrix shift V such that

K̂F = KF + V it is possible to impose a set of constraints singling out the structure (3.6).

Here we summmarize these requirements:

• SO(6) invariance;

• Antisymmetry K̂T
F = −K̂F ;

• Γ5-hermiticity K̂†F = Γ5 K̂F Γ5;

• Determinant of K̂F equal to (3.9);

– 9 –
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• Block structure for the matrix K3K
−1
1 K2 =

(
M1 M2

M3 M4

)
with [M1,M2]=[M1,M3]=0.

The SO(6) invariance constrains the matrix V to have a 4× 4-block structure constructed

out of the available SO(6)-invariant structures: 1, ρMuM and ρ†Mu
M . The second and third

requirements, as already mentioned, prevent the appearance of an unwanted phase in the

fermionic determinant. The fourth condition allows to reproduce the next-to-leading order

perturbative result and the last constraint has been added to fix completely the form of

the shift matrix V . In principle this last condition could be relaxed, but since we were able

to find a matrix V satisfying all these constraints, there is no need to do so.

In appendix B we present simulations obtained with another fermionic discretization

— see (B.1)–(B.2) — consistent only with lattice perturbation theory performed around

vacua coinciding with one of six cartesian coordinates uM , M = 1, · · · , 6 (and no general

linear combination of them) it breaks explicitly the SO(6) invariance of the model (again,

the U(1) symmetry is broken down as in the previous case). It is interesting to mention

that, at least in the range of the couplings explored, measurements of the two observables

of interest here — the x-mass and the derivative of the cusp — and for the phase appear

not to be sensitive to the different discretization.

4 Simulations, continuum limit and the phase

As discussed above, in the continuum model there are two “bare” parameters, the di-

mensionless coupling g =
√
λ

4π and the mass scale m. In taking the continuum limit, the

dimensionless physical quantities that it is natural to keep constant when a → 0 are the

physical masses of the field excitations rescaled with L, the spatial lattice extent. This is our

line of constant physics in the bare parameter space. For the example in (2.4), this means

L2m2
x = const , leading to L2m2 ≡ (NM)2 = const , (4.1)

where we defined the dimensionless M = ma with the lattice spacing a.

The second equation in (4.1) relies first on the hypothesis that g is not (infinitely)

renormalized.11 Second, one should investigate whether the relation (2.4), and the analogue

ones for the other fields of the model, are still true in the discretized model — i.e. the

physical masses undergo only a finite renormalization. In this case, at each fixed g fixing

L2 m2 constant would be enough to keep the rescaled physical masses constant, namely

no tuning of the “bare” parameter m would be necessary. In the present study, we start

by considering the example of bosonic x, x∗ correlators, where indeed we find no (1/a)

divergence for the ratio m2
x/m

2 — see section 4.1 below — and in the large g region

that we investigate the ratio considered approaches the expected continuum value 1/2.

Having this as hint, and because with the proposed discretization we have recovered in

11This supposition is somewhat supported, a posteriori, by our analysis of the (derivative of the) scaling

function, which can be used as a definition of the renormalized coupling. As discussed in section 4.2,

occurring divergences in SLAT can be consistently subtracted showing an agreement with the continuum

expectation, at least for the region of lattice spacings and couplings that we explore.
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Figure 1. Monte Carlo histories for the correlator 〈xx∗〉 at time separation T/4 and for 〈Scusp〉,
at g = 10 and L/a = 16, in terms of Molecular Dynamic Units (MDU). The HMC produces a series

of bosonic field configurations, on each of them the observable is evaluated and plotted here for

the same series at the given parameters. The fact that successive configurations produced by the

RHMC are statically correlated might lead to strong so-called auto-correlations in the data, which

would appear in these plots as fluctuations with long periods. As one can see, the histories presented

here do not suffer from such long fluctuations, and sample well the observables under investigation.

perturbation theory the one-loop cusp anomaly (3.12), we assume that in the discretized

model no further scale but the lattice spacing a is present. Any observable FLAT is therefore

a function of the input (dimensionless) “bare” parameters g,N and M

FLAT = FLAT(g,N,M) = F (g) +O
(

1

N

)
+O

(
e−MN

)
(4.2)

where

g =

√
λ

4π
, N =

L

a
, M = am . (4.3)

At fixed coupling g and fixed mL ≡ M N (large enough so to keep finite volume effects

∼ e−mL small), FLAT is evaluated for different values of N and it differs from its con-

tinuum equivalent by lattice artifacts O
(

1
N

)
. The continuum limit F (g) is obtained via

an extrapolation to infinite N . While most runs are done at mL = 4, for one value of

the coupling (g = 30) we perform simulations at a larger value (mL = 6, orange point in

the continuum plots) to explicitly check finite volume effects. For the physical observables

under investigation, figures 3 (right panel) and 7 , we find these effects to be very small

and within the present statistical errors. They appear to play a role only in the case of

the coefficient of the divergences which must be subtracted non-perturbatively in order to

define the cusp action, see section 4.2, as in figure 4 (right panel).

In table 1 we list the parameters of the simulations presented in this paper. The Monte

Carlo evolution of each FLAT(g,N,M) is generated by the standard Rational Hybrid Monte

Carlo (RHMC) algorithm [58, 59]. The rational approximation for the inverse fractional

power in the last equation of (2.9) is of degree 15, and we checked for a subset of the

configurations that its accuracy is always better than 10−3 for ξ̄(OFO
+
F )−1/4ξ. In figure 1
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g T/a× L/a Lm am τSint τmxint statistics [MDU]

5 16× 8 4 0.50000 0.8 2.2 900
20× 10 4 0.40000 0.9 2.6 900
24× 12 4 0.33333 0.7 4.6 900,1000
32× 16 4 0.25000 0.7 4.4 850,1000
48× 24 4 0.16667 1.1 3.0 92,265

10 16× 8 4 0.50000 0.9 2.1 1000
20× 10 4 0.40000 0.9 2.1 1000
24× 12 4 0.33333 1.0 2.5 1000,1000
32× 16 4 0.25000 1.0 2.7 900,1000
48× 24 4 0.16667 1.1 3.9 594,564

20 16× 8 4 0.50000 5.4 1.9 1000
20× 10 4 0.40000 9.9 1.8 1000
24× 12 4 0.33333 4.4 2.0 850
32× 16 4 0.25000 7.4 2.3 850,1000
48× 24 4 0.16667 8.4 3.6 264,580

30 20× 10 6 0.60000 1.3 2.9 950
24× 12 6 0.50000 1.3 2.4 950
32× 16 6 0.37500 1.7 2.3 975
48× 24 6 0.25000 1.5 2.3 533,652
16× 8 4 0.50000 1.4 1.9 1000
20× 10 4 0.40000 1.2 2.7 950
24× 12 4 0.33333 1.2 2.1 900
32× 16 4 0.25000 1.3 1.8 900,1000
48× 24 4 0.16667 1.3 4.3 150

50 16× 8 4 0.50000 1.1 1.8 1000
20× 10 4 0.40000 1.2 1.8 1000
24× 12 4 0.33333 0.8 2.0 1000
32× 16 4 0.25000 1.3 2.0 900,1000
48× 24 4 0.16667 1.2 2.3 412

100 16× 8 4 0.50000 1.4 2.7 1000
20× 10 4 0.40000 1.4 4.2 1000
24× 12 4 0.33333 1.3 1.8 1000
32× 16 4 0.25000 1.3 2.0 950,1000
48× 24 4 0.16667 1.4 2.4 541

Table 1. Parameters of the simulations: the coupling g, the temporal (T ) and spatial (L) extent

of the lattice in units of the lattice spacing a, the line of constant physics fixed by Lm and the

mass parameter M = am. The size of the statistics after thermalization is given in the last column

in terms of Molecular Dynamic Units (MDU), which equals an HMC trajectory of length one. In

the case of multiple replica the statistics for each replica is given separately. The auto-correlation

times τ of our main observables mx and S are also given in the same units.
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Figure 2. Correlator Cx(t) =
∑
s1,s2
〈x(t, s1)x∗(0, s2)〉 of bosonic fields x, x∗ (left panel) and corre-

sponding effective mass meff
x = 1

a ln Cx(t)
Cx(t+a) normalized by m2 (right panel), plotted as functions of

the time t in units of mxLAT for different g and lattice sizes. The flatness of the effective mass indi-

cates that the ground state saturates the correlation function, and allows for a reliable extraction of

the mass of the x-excitation. Data points are masked by large errorbars for time scales greater than

unity because the signal of the correlator degrades exponentially compared with the statistical noise.

we show examples of Monte Carlo histories for our two main observables — the correlator

〈x∗x〉 and the action 〈Scusp〉. We determined auto-correlation times of the observables and

included their effect in the error analysis [60]. Multiple points at the same value of g and

N in figure 3 (left panel), figure 5 and figure 6 — and similarly in figure 10 (left panel),

figure 12 and figure 13 — indicate multiple replica.

4.1 The 〈xx∗〉 correlator

To motivate the line of constant physics (4.1), we investigate in this section the physical

mass of the bosonic fluctuation field x around the string vacuum (A.8) as determined from

the 〈xx∗〉 correlator. The masses of the bosonic fields x, x∗ in (2.1) (defined as the values

of energy at vanishing momentum) can be read off, at leading order, from the expansion

of the quadratic fluctuation Lagrangian (A.11). The leading quantum correction to their

dispersion relation have been computed in [9], leading to (2.4).12 One can estimate the

dependence of the physical mass on the coupling constant by measuring the connected two-

point correlation function of the discretised x-field on the lattice (see for example [57]). In

configuration space one defines the two-point function

Gx(t1, s1; t2, s2) = 〈x(t1, s1)x∗(t2, s2)〉 (4.4)

12The prediction for the whole spectrum of excitations was obtained via asymptotic Bethe ansatz in [61]

and later confirmed by semiclassical string theory around the folded closed string in AdS5 in the large spin

limit [9]. The world surface spanned by the latter is equivalent [62], via an analytic continuation and a

global SO(2, 4) transformation, to that of the null cusp solution (A.8). Notice that the mass spectrum in

light-cone gauge coincides with the one in conformal gauge up to a factor of 4 [8].
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Figure 3. Left panel: plot of m2
xLAT(N, g)/m2 = mx(g) + O(1/N), as from plateaux average of

results which for g = 30 are shown in figure 2 (right panel). To ensure better visibility of the fits

at different g values, ln g has been added. Dashed lines represent a linear fit to all the data points

for one value of g, while for dotted lines the fit is to a constant and only includes the two smallest

lattice spacings. Multiple points at the same value of g and N indicate multiple replica. Right

panel: continuum extrapolation corresponding to the linear fits in the left panel. The simulations

represented by the orange point (mL = 6) are used for a check of the finite volume effects, that

appear to be within statistical errors. The extrapolation is plotted as a function of the continuum

coupling gc = 0.04 g to facilitate the comparison with the prediction coming from the perturbative

expectation (PT) (2.4), and uses the matching procedure performed for the observable action. The

latter is described in section 4.2 and commented further in section 5.

and Fourier-transforms over spatial directions to define the lattice timeslice correlator

Cx(t; k) =
∑
s1, s2

e−ik(s1−s2)Gx(t, s1; 0, s2) . (4.5)

The latter admits a spectral decomposition over propagating states of different energies,

given spatial momentum k and amplitude cn

Cx(t; k) =
∑
n

|cn|2e−tEx(k;n) (4.6)

which is dominated by the state of lowest energy for sufficiently large temporal distance

t. This effectively single asymptotic exponential decay corresponds to a one-particle state

with energy equal — for vanishing spatial momentum — to the physical mass of the x-field

Cx(t; 0)
t�1∼ e−tmxLAT , mxLAT = Ex(k = 0) . (4.7)

On the lattice, the physical mass mxLAT is usefully obtained as a limit of an effective mass

meff
x , defined at a given timeslice extension T and fixed timeslice pair (t, t+ a) by the dis-

cretized logarithmic derivative of the timeslice correlation function (4.5) at zero momentum

mxLAT = lim
T, t→∞

meff
x ≡ lim

T, t→∞,

1

a
log

Cx(t; 0)

Cx(t+ a; 0)
. (4.8)
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Figure 4. Left panel: plots of 〈SLAT〉
2N2 , where fits (dashed lines) to data points are linear in 1/N2.

To ensure better visibility of the fits at different g values, ln g has been added. The extrapolation to

the continuum limit (symbol at infinite N) determines the coefficient c/2 of the divergent (∼ N2)

contribution in (4.9)–(4.10) and is represented in the diagram of the right of this figure. Right

panel: data points estimate the continuum value of c/2 as from the extrapolations of the linear fits

above. The simulations at g = 30, mL = 6 (orange point) are used for a check of the finite volume

effects, which appear here to be visible. Dashed and dotted lines are the results of, respectively, a

linear fit in 1/g and a fit to a polynomial of degree two.

Figure 2 shows the effective mass measured from (4.8) as a function of the time t in units

of mxLAT for different g and lattice sizes. To reduce uncertainty about the saturation

of the ground state in the correlation function — in (4.7), corrections to the limit are

proportional to e−∆E t, where ∆E is the energy splitting with the nearest excited state

— in our simulations the lattice temporal extent T is always twice the spatial extent

L. The flatness of the effective mass in figure 2 (right) indicates that the ground state

saturates the correlation function, and allows for a reliable extraction of the mass of the

x-excitation. Data points are masked by large errorbars for time scales greater than unity

because the signal in (4.8) degrades exponentially compared with the statistical noise.

Our simulations provide an estimate for the x mass, m2
x/m

2 = 1
2 that appears to be

consistent with the classical, large g prediction (2.4). We do not see a clear signal yet for

the expected bending down at smaller g. For decreasing couplings simulations become

compute-intensive and to obtain smaller errors longer/parallel runs would be necessary.

The most important corollary of the analysis for the 〈xx∗〉 correlator is the following.

As it happens in the continuum, also in the discretized setting there appears to be no

infinite renormalization occurring for (2.4), and thus no need of tuning the bare parameter

m to adjust for it. This corroborates the choice of (4.1) as the line of constant physics

along which a continuum limit can be taken.
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Figure 5. Plot of the ratio
〈SLAT 〉− c

2 (2N2)

S0
≡ f ′(g)

4 , where the coefficient of the divergent contri-

bution c has been here fixed to the exact value c = 15 and S0 = 1
2M

2 (2N2) g. For very large g,

there is agreement with the continuum prediction f ′(g) = 4 in (2.3). For smaller values (g = 10, 5,

orange and light blue data points) strong deviations appear, compatible with quadratic divergences.

4.2 The cusp action

In measuring the action (1.3) on the lattice, exploring first the “weak coupling” (large g)

region we are supposed to recover the following general linear behavior in g13

〈SLAT〉 ≡
c

2
(2N2) + S0 , g � 1, where S0 =

1

2
(2N2)M2 g . (4.9)

Above, we reinserted the parameter m, used the leading, classical behavior f(g) = 4 g

in (2.3), and used that V2 ≡ T L = a2 (2N2) since, as written above, in our simulations the

lattice temporal extent T is always twice the spatial extent L (therefore T = a 2N = 2L).

We also introduced S0 (which is linear in g) for later convenience, to remind that in each

simulation — performed at fixed g and at fixed (N M)2 — S0 is also fixed. In (4.9) we

also added c
2N

2, namely a contribution constant in g and (in the continuum limit N →∞)

quadratically divergent. This constant can be extrapolated for very large values of g with

a fit linear in 1
N2 from data points for 〈S〉

2N2 = c
2 + S0

2N2 . For g = 100, 50, 30 this gives

c/2 = 7.5(1) — red, green and violet fits in figure 4, left, respectively14 — consistently

with the number 15 = 8 + 7 of bosonic fields appearing in the path integral. Namely, such

a contribution to the vev 〈S〉 = −∂ lnZ/∂ ln g in (4.9), field-independent and proportional

to the lattice volume, is simply counting the number of degrees of freedom which appear

quadratically, and multiplying g, in the action. Indeed, for very large g the theory is

13We omit the label “cusp” in what follows.
14Recall that in figure 4 ln g has been added to ensure better visibility of the fits at different g values.
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Figure 6. Plots for the ratio
〈SLAT 〉− c

2 (2N2)

S0
+ ln g as a function of 1/N , where the divergent

contribution cN2/2 is now the continuum extrapolation determined in figure 4. To ensure better

visibility of the fits at different g values, ln g has been added. Dashed lines represent a linear fit

to all the data points for one value of g, while for dotted lines the fit is to a constant and only

includes the two smallest lattice spacings. Symbols at zero (infinite N) are extrapolations from the

fit constant in 1/N .

quadratic in the bosons15 and equipartition holds, namely integration over the bosonic

variables yields a factor proportional to g−
(2N2)

2 for each bosonic field species.16

Having determined with good precision the coefficient of the divergence, we can pro-

ceed first fixing it to be exactly c = 15 and subtracting from 〈SLAT〉 the corresponding

contribution. Having in mind an analysis at finite g, we perform simulations in order to

determine the ratio
〈SLAT 〉 − c

2 (2N2)

S0
≡ f ′(g)LAT

4
. (4.10)

On the right hand side we restored the general definition (1.3), which is the main aim of

our study here. At g = 100, 50, 30, 20 the plots in figure 5 show a good agreement with the

leading order prediction in (2.3) for which f ′(g) = 4. For lower values of g — orange and

light blue data points in figure 5 — we observe deviations that obstruct the continuum limit

15In lattice codes, it is conventional to omit the coupling form the (pseudo)fermionic part of the action,

since this is quadratic in the fields and hence its contribution in g can be evaluated by a simple scaling

argument.
16It is interesting to mention that in theories with exact supersymmetry this constant contribution of the

bosonic action (this time on the trivial vacuum) is valid at all orders in g, due to the coupling constant

independence of the free energy. For twisted N = 4 SYM this is the origin of the supersymmetry Ward

identity Sbos = 9N2/2 per lattice site, one of the observables used to measure soft supersymmetry breaking,

see [63]. We thank David Schaich and Andreas Wipf for pointing this out to us.
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Figure 7. Plot for f ′(g)/4 as determined from the N → ∞ extrapolation of (4.10), i.e. from the

extrapolations of the fits in figure 6, and plotted as a function of the (bare) continuum coupling

gc under the hypothesis that the latter is just a finite rescaling of the lattice bare coupling g

(gc = 0.04 g), see discussion at the end of section 4. The dashed line represents the first few terms

in the perturbative series (2.3), the continuous line is obtained from a numerical solution of the

BES equation and represents therefore the prediction from the integrability of the model. The

simulations at g = 30, mL = 6 (orange point) are used for a check of the finite volume effects, that

appear to be within statistical errors.

and signal the presence of further quadratic (∼ N2) divergences. They are compatible with

an Ansatz for 〈SLAT〉 for which the “constant” contribution multiplying 2N2 in (4.9)–(4.10)

is actually g-dependent. It seems natural to relate these power-divergences to those arising

in continuum perturbation theory, where they are usually set to zero using dimensional

regularization [8]. From the perspective of a hard cut-off regularization like the lattice one,

this is related to the emergence in the continuum limit of power divergences — quadratic,

in the present two-dimensional case — induced by mixing of the (scalar) Lagrangian with

the identity operator under UV renormalization. Additional contributions to these devi-

ations might be due to the (possibly wrong) way the continuum limit is taken, i.e. they

could be related to a possible infinite renormalization occurring in those field correlators

and corresponding physical masses which have been not investigated here (fermionic and

z excitations). While to shed light on the issue such points should be investigated in the

future — see further comments in section 5 — we proceed with a non-perturbative sub-

traction of these divergences. Namely, from the data of figure 5 we subtract the continuum

extrapolation of c
2 (multiplied by the number of lattice points, 2N2), as determined in the

right diagram of figure 4, for the full range of the coupling explored. The result is shown

in figure 6. The divergences appear to be completely subtracted, confirming their purely

quadratic nature. The flatness of data points — which can be fitted by a constant — in-
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dicates very small lattice artifacts. At least in the region of lattice spacings explored from

our simulations errors are small, and do not diverge as one approaches the N →∞ limit.

We can thus use the extrapolations at infinite N of figure 6 to show the continuum limit

for the left hand side of (4.10), figure 7. This is our measure for f ′(g)/4, and it allows in

principle a direct comparison with the perturbative series (dashed line) and with prediction

obtained via the integrability of the model (continuous line, representing the first derivative

of the cusp as obtained from a numerical solution of the BES equation [52]17). To compare

our extrapolations with the continuum expectation, we match the lattice point for the

observable f ′(g) at g = 10 — as determined from the N → ∞ limit of f ′(g)LAT (4.10) —

with the continuum value for the observable f ′(gc)c as determined from the integrability

prediction, i.e. as obtained from a numerical solution of the BES equation [52]. This is

where in figure 7 the lattice point lies exactly on the (integrability) continuum curve. The

value g = 10 has been chosen as a reference point since it is far enough from both the

region where the observable is substantially flat and proportional to one (which ensure a

better matching procedure) and the region of higher errors (also, where the sign problem

plays no role yet, see section 4.3). Assuming that a simple finite rescaling relates the lattice

bare coupling g and the (bare) continuum one gc, from f ′(g) = f ′(gc)c we then derive that

gc = 0.04g. A simple look at figure 7 shows that, in the perturbative region, our analysis —

and the related assumption for the finite rescaling of the coupling — is in good qualitative

agreement with the integrability prediction. About direct comparison with the perturba-

tive series (2.3), since we are considering the derivative of (2.3) the first correction to the

expected large g behavior f ′(g)/4 ∼ 1 is positive and proportional to the Catalan constant

K. The plot in figure 7 does not catch the upward trend of such a first correction (which is

too small, about 2 percent, if compared to the statistical error). Notice that, again under

the assumption that such simple relation between the couplings exists — something that

within our error bars cannot be excluded — the nonperturbative regime beginning with

gc = 1 would start at g = 25, implying that our simulations at g = 10, 5 would already test

a fully non-perturbative regime of the string sigma-model under investigation. The mild

discrepancy observed in that point of this region (g = 5 or gc = 0.2) which is not fixed by

definition via the “matching” procedure discussed above could be the effect of several con-

tributing causes. Among them, systematic factors as the ones related to the complex phase

— and its omission from the measurements, see below — as well as finite volume effects

with related errors in the non-perturbative subtraction of divergences. We emphasize that

the relation between the lattice and continuum bare couplings might well be not just a finite

rescaling. To shed light on this point, the matching procedure should use points at further

smaller values of g. We summarize and further comment these questions in section 5, and

discuss in more detail one of the most relevant issues — the observed complex phase which

inhibits measurements at the interesting, small values of g — in the next section.
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Figure 8. Histograms for the frequency of the real part of the reweighting phase factor eiθ of

the Pfaffian Pf OF = |(detOF )
1
2 | eiθ, based on the ensembles generated at g = 30, 10, 5, 1 (from

left to right, top to down) for L/a = 8. The plots here shown use the discretization (B.1)–(B.2),

however we found no substantial difference between this analysis and the one performed with the

discretization (3.13)–(3.14).

4.3 The phase

After the linearization realized via the Hubbard-Stratonovich transformation (2.5), the

formal integration over the fermionic components leads to a Pfaffian. For any given bosonic

configuration, the latter is manifestly not real. As discussed in section 2, one of the Yukawa

terms resulting from linearization — specifically, this is the last term in the second line

of (2.5) — introduces a phase, so that Pf OF = |(detOF )
1
2 | eiθ. The standard way to

proceed is to perform “phase-quenched” simulations, omitting eiθ from the integration

measure which includes only the absolute value of the Pfaffian, employing pseudofermions

as in (2.9). Such a procedure ensures drastic computational simplifications, and still can

deliver the true expectation value of the observable under analysis via phase reweighting.

Namely, the nonpositive part of the Boltzmann weight (which is the complex phase) is

17We thank D. Volin for providing us with a numerical solution to the BES equation.
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incorporated into the observable in the measurement

〈S〉reweight =
〈S eiθ〉
〈eiθ〉 . (4.11)

If 〈eiθ〉 averages to zero (due to θ fluctuating far from zero on a significant part of the

bosonic field configurations generated via phase-quenched approximation) the reweighting

procedure breaks down. The corresponding sign problem is known to be a serious obstacle

for numerical simulations.

We have explicitly computed the reweighting (phase) factor for smaller lattices, up

to L/a = 12, and observed that the reweighting has no effect on the central value of the two

observables that we study — namely, for the observables O it holds 〈O〉reweight = 〈O 〉 within

errors.18 Thus, in the analysis presented in the previous sections and in appendix B we

omit the phase from the simulations in order to be able to consistently take the continuum

limit. In absence of data for the phase factor in the case of larger lattices, we do not assess

the possible systematic error related to this procedure.

To explore the possibility of a sign problem in simulations, we have then studied the

relative frequency for the real part (the imaginary part is zero within errors, as predicted

from the reality of the observables studied) of the Pfaffian phase eiθ, as shown in figure 8,

at g = 30, 10, 5, 1 (from left to right, top to down). At g = 1, right bottom histogram,

the observed 〈eiθ〉 is consistent with zero, thus preventing the use of standard reweighting.

In the sense explained above, the analysis we present here is thus also limited to the

values g = 100, 50, 30, 20, 10, 5 of the coupling (and with the further parameters listed

in tables 1 and 2). Therefore, a severe sign problem is appearing precisely for values of

the coupling referring to a fully non-perturbative regime (corresponding to weakly-coupled

N = 4 SYM). Therefore, in order to investigate this interesting and crucial region of the

couplings alternative algorithms or settings (in terms of a different, phase-free linearization)

should be considered.

5 Conclusions

In this paper we have considered two possible discretizations for the AdS-lightcone gauge-

fixed action for the Type IIB Green-Schwarz superstring. We have used them for measuring

the (derivative of the) cusp anomalous dimension of planar N = 4 SYM as derived from

string theory, as well as the masses of two bosonic fields, namely the AdS Lagrangian

excitations transverse to the relevant, classical string solution. In both cases, our continuum

extrapolations show a good agreement (qualitative for the mass and quantitative for the

action) in the large g =
√
λ/(4π) regime, which is the perturbative regime of the sigma-

model. For smaller values of g, further work appears to be necessary to address both

numerical and conceptual challenges indicated by our analysis.

Lattice simulations were performed employing a Rational Hybrid Monte Carlo

(RHMC) algorithm and two Wilson-like fermion discretizations, breaking different sub-

groups of the global symmetry for the relevant sigma-model. Interestingly, continuum

18This is suggesting the absence of correlation between the two factors in the numerator of (4.11).
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results seem not to be sensitive to the differences in the discretisation. Our line of constant

physics demands physical masses to be kept constant while approaching the continuum

limit, which in the case of finite mass renormalization requires no tuning of the “bare”

mass parameter of the theory (the light-cone momentum P+). For one of the bosonic

fields entering the Lagrangian we determine the correlator and physical mass, confirming

the expected finite renormalization and thus no need of tuning. At large g, the mentioned

agreement of our measures with the expected behavior for both the mass and the action is

very encouraging.

In measuring the action at small values of the coupling g, we observe a divergence

compatible with a quadratic behavior ∼ a−2. It is certainly possible that the reasoning

leading to the line of constant physics (4.1) might be subject to change once all fields

correlators are investigated — something which we leave for the future. However, in the

lattice regularization performed here such divergences are expected. In continuum per-

turbation theory, power-divergences arising in this [8] and analogue models [11] are set to

zero using dimensional regularization. From the perspective of a hard cut-off regulariza-

tion like the lattice one, this is related to the emergence in the continuum limit of power

divergences — quadratic, in the present two-dimensional case — induced by mixing of the

(scalar) Lagrangian with the identity operator under UV renormalization. The problem of

renormalization in presence of power divergences is in general non trivial, and one of the

ways to proceed — which is our way here — is via non-perturbative subtractions of those

divergences. While with the present data we are able to reliably and non-perturbatively

subtract them, in general this procedure leads to potentially severe ambiguities, with errors

diverging in the continuum limit. In the future it may be therefore worthwhile to explore

whether other schemes — e.g. the Schrödinger functional scheme [64] — could be used as

a proper definition of the effective action under investigation. We remark however that for

the other physical observable here investigated, the 〈xx∗〉 correlator, we encountered no

problems in proceeding to the continuum limit.

For both observables, the comparison of our continuum extrapolation with the predic-

tions coming from integrability — figures 3 and 7 — is done matching at a given coupling

the corresponding values for the continuum extrapolation of f ′(g)LAT and the integrability

prediction f ′(gc)c. Assuming that a simple finite rescaling relates the lattice bare coupling

g and the (bare) continuum one gc, one simply derives that gc = 0.04g and proceeds with

the comparison of further data points. It might well be that this assumption is wrong,

which could be supported from further data at smaller values of g — something at present

inhibited by the sign problem occurring there — and would also explain the (mild) discrep-

ancy observed in figure 7 at g = 5. Clearly, a non-trivial relation between g and gc would

take away any predictivity from the lattice measurements for the (derivative of the) cusp.

To proceed, one could then define the continuum (BES) prediction as the point where to

study the theory and tune accordingly the lattice bare coupling, i.e. numerically determine

such non-trivial interpolating function of the bare couplings. This could then be used as

an input for the — this time fully predictive — measurements of other physical observables

(like the mass m2
x here).
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As mentioned, our results seems not to be sensitive to the discretization adopted. We

used a discretization which breaks an SO(2) rotational symmetry in the two AdS5 directions

orthogonal to AdS3 (i.e. transverse to the classical solution), and analized the observables

also in another setting (see appendix B) where the Wilson-like term explicitly breaks the

SO(6) symmetry of the model. Since both the observables we study — f(g) and x, x∗

correlators — are SO(6) singlets, we would expect significant differences only in the way

the continuum limit is taken (mainly due to the larger mixing pattern in the UV renormal-

ization for simulations with broken SO(6) symmetry). However, at least in the range of

the coupling explored, this does not seem to be the case. Furthermore, the continuum ex-

trapolations of the same observable in the two different discretizations agree within errors,

which is strongly suggesting that the two discretizations lead to the same continuum limit.

One further important result of our analysis is the detection of a phase in the fermionic

determinant, resulting from integrating out the fermions. This phase is caused by the

linearization of fermionic interactions introduced in [41]. For values of the coupling ap-

proaching the non-perturbative regime (corresponding to weakly-coupled N = 4 SYM) the

phase undergoes strong fluctuations, signaling a severe sign problem. It would be desirable

to find alternative ways to linearize quartic fermionic interactions, with resulting Yukawa

terms leading to a real, positive definite fermionic determinant.

Progress about these issues is ongoing and we hope to report on it in the near future.
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A The model in the continuum

In this appendix we briefly recall the steps leading to the action (2.1).

The AdS5×S5 background metric in Poincaré patch is (setting to 1 the radius of both

AdS5 and S5)

ds2 = z−2 (dxm dxm + dzM dzM ) = z−2(dxm dxm + dz2) + duMduM

xmxm = x+x− + x∗x , x± = x3 ± x0 , x = x1 + ix2 , (A.1)

zM = z uM , uM uM = 1 z = (zMzM )
1
2 .

Above, x± are the light-cone coordinates, xm = (x0, x1, x2, x3) parametrize the four-

dimensional boundary of AdS5 and z ≡ eφ is the radial coordinate.

The AdS light-cone gauge [54, 55] is defined by fixing the local symmetries of the

superstring action, bosonic diffeomorphisms and κ-symmetry, via a sort of “non-conformal”
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gauge and a more standard light-cone gauge on the two Majorana-Weyl fermions of Type

IIB superstring action respectively as follows19

√−ggαβ = diag(−z2, z−2) , x+ = p+τ , (A.2)

Γ+θI = 0 (A.3)

The resulting AdS5 × S5 superstring action can be written as (zM = z uM )

S =
1

2
T

∫
dτ

∫
dσ L , T =

R2

2πα′
=

√
λ

2π
, (A.4)

L = ẋ∗ẋ+ (żM + ip+z−2zNηiρ
MNi

jη
j)2 + ip+(θiθ̇i + ηiη̇i + θiθ̇

i + ηiη̇
i) +

−(p+)2z−2(η2)2 − z−4(x′∗x′ + z′
M
z′
M

)

−2
[
p+z−3ηiρMij z

M (θ′j − iz−1ηjx′) + p+z−3ηi(ρ†M )ijzM (θ′j + iz−1ηjx′∗
]

(A.5)

≡ ẋ∗ẋ+ (żM + ip+z−2zNηiρ
MNi

jη
j)2 + ip+(θiθ̇i + ηiη̇i − h.c.)− (p+)2z−2(η2)2

−z−4(x′∗x′ + z′
M
z′
M

)− 2
[
p+z−3ηiρMij z

M (θ′j − iz−1ηjx′) + h.c.
]
. (A.6)

Wick-rotating τ → −iτ, p+ → ip+, and setting p+ = 1, one gets Z = e−SE , where

SE = 1
2T
∫
dτdσ LE and

LE = ẋ∗ẋ+
(
żM + i z−2zNηi(ρ

MN )ijη
j
)2

+ i
(
θiθ̇i + ηiη̇i − h.c.

)
− z−2

(
η2
)2

+ z−4(x
′∗x
′
+ z

′Mz
′M ) + 2i

[
z−3zMηiρMij

(
θ
′j − i z−1ηjx

′)
+ h.c.

]
(A.7)

The null cusp background

x+ = τ x− = − 1

2σ
x = x∗ = 0 z =

√
τ

σ
, τ, σ > 0 , (A.8)

is the classical solution of the string action that describes a Euclidean open string surface

ending on a lightlike Wilson cusp in the AdS boundary at z = 0 [8]. This string vacuum is

actually degenerate as any SO(6) transformation on zM leaves the last condition above un-

altered. The fluctuation spectrum of this solution can be easily found by fixing a direction,

say uM = (0, 0, 0, 0, 0, 1), and defining the fluctuation fields

z =

√
τ

σ
z̃ , z̃ = eφ̃ = 1 + φ̃+ . . . , zM =

√
τ

σ
z̃M , z̃M = eφ̃ũM

ũa =
ya

1 + 1
4y

2
, ũ6 =

1− 1
4y

2

1 + 1
4y

2
, y2 ≡

5∑
a=1

(ya)2 , a = 1, . . . , 5 , (A.9)

x =

√
τ

σ
x̃ , θ =

1√
σ
θ̃ , η =

1√
σ
η̃ .

The further redefinition of the worldsheet coordinates

t = log τ s = log σ (A.10)

19As in the standard conformal gauge, the choice x+ = p+τ is allowed by residual diffeomorphisms after

the choice (A.2).
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which absorb powers of τ, σ so that the resulting fluctuation Lagrangian has constant

coefficients, leads to the Lagrangian Lcusp in (2.1). If we truncate it at quadratic order in

the fluctuations fields

L2 = (∂tφ̃)2 + (∂sφ̃)2 + φ̃2 + |∂tx̃|2 + |∂sx̃|2 +
1

2
|x̃|2 + (∂ty

a)2 + (∂sy
a)2

+2i (θ̃i∂tθ̃i + η̃i∂tη̃i) + 2i η̃i(ρ6)ij(∂sθ̃
j − θ̃j) + 2i η̃i(ρ

†
6)ij(∂sθ̃j − θ̃j) , (A.11)

it is easy to see that the bosonic excitation spectrum consists of one field (φ̃) with m2 = 1,

two fields (x, x∗) with m2 = 1
2 and five fields (ya) with m2 = 0 [8]. Adding the fermionic de-

terminant as in (3.4), this means that the full one loop effective action Γ(1) = − lnZ(1) reads

Γ(1) = V2
1

2

∫
dp0dp1

(2π)2
ln

[
(p2

0 + p2
1 + 1)(p2

0 + p2
1 + 1

2)2(p2
0 + p2

1)5

(p2
0 + p2

1 + 1
4)8

]
= −3 ln 2

8π
V2 . (A.12)

For the SO(6) generators built out of the ρMij of SO(6) Dirac matrices it holds

(ρMN )ij =
1

2
(ρM

i`
ρN`j − ρN

i`
ρM`j ) =

1

2
(ρMi` ρ

N`j − ρNi` ρM
`j

)∗ ≡
(

(ρMN ) ji

)∗
(ρMN )ij = −(ρMN ) i

j (ρMN ) ji = −(ρMN )ji ,
(A.13)

where in the last equation we used that 1
2(ρM

i`
ρN`j − ρN

i`
ρM`j ) = −1

2(ρMj` ρ
N`i − ρNj` ρM

`i
).

Useful flipping rules are

η ρM θ = ηi ρMij θ
j = −θj ρMij ηi = θj ρMji η

i ≡ θi ρMij ηj = θ ρM η (A.14)

η†ρ†M θ† = ηi ρ
Mij

θj = −θj ρMij
ηi = θj ρ

Mji
ηi ≡ θi ρMij

ηj = θ†ρ†M η† (A.15)

ηi (ρMN )ij θ
j = −θj (ρMN )ij ηi = θj (ρMN ) i

j ηi ≡ θi (ρMN ) ji ηj . (A.16)

B Alternative discretization

In this appendix we collect results on simulations performed employing an alternative

discretization, for which the fermionic operator reads

ÕF =


W̃+ −p̊01 (p̊1 − im2 )ρM zM

z3 0

−p̊01 −W̃ †+ 0 ρ†M (p̊1 − im2 ) z
M

z3

−(p̊1 + im
2

)ρM zM

z3 0 2 z
M

z4 ρ
M
(
∂sx−mx

2

)
+ W̃− −p̊01−AT

0 −ρ†M (p̊1 + i m
2

) z
M

z3 −p̊01 +A −2 z
M

z4 ρ
†
M

(
∂sx
∗ −mx

2
∗)− W̃ †−


(B.1)

where the only change with respect to (3.13) is in the Wilson term adopted, which now is

W̃± =
r

2 z3

(
p̂2

0 ± i p̂2
1

) (
ρ6 zm z

m + ρ1 (z6)2
)
, m = 1, · · · , 5 . (B.2)

This discretization, which is the one employed in [1] and for which simulation parameters

are reported in table 2, is consistent with lattice perturbation theory performed around

vacua coinciding with one of six cartesian coordinates uM , M = 1, · · · , 6 (and no general

linear combination of them). It also maintains all requirement listed in section 3, except

for the one on SO(6) invariance, which is explicitly broken (the other global symmetry of
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Figure 9. Correlator and mass for the x field, realized here using the SO(6)-breaking discretiza-

tion (B.1)–(B.2). Detailed explanation and comments as in figure 2.
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Figure 10. Plot of m2
xLAT(N, g)/m2 = mx(g) +O(1/N) and its continuum extrapolation, realized

here using the SO(6)-breaking discretization (B.1)–(B.2). Detailed explanation and comments as

in figure 3.

the model, U(1) , is also broken). One can compare the continuum extrapolations of the

two observables under investigation in the different discretizations, namely figure 3 with

figure 10 for the x-mass and figure 7 with figure 14 for the action. They agree within errors,

which is strongly suggesting that the two discretizations lead to the same continuum limit.
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2N2 and its continuum extrapolation to determine c/2, realized here using

the SO(6)-breaking discretization (B.1)–(B.2). Detailed explanation and comments as in figure 4.
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4 , realized here using the SO(6)-breaking dis-

cretization (B.1)–(B.2). Detailed explanation and comments as in figure 5.
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Figure 13. Plots for the ratio
〈SLAT 〉− c

2 (2N2)

S0
+ ln g as a function of 1/N , realized here using the

SO(6)-breaking discretization (B.1)–(B.2). Detailed explanation and comments as in figure 6.
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Figure 14. Plot for f ′(g)/4 as determined from the N → ∞ extrapolation of (4.10), realized

here using the SO(6)-breaking discretization (B.1)–(B.2). Detailed explanation and comments as

in figure 7.
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g T/a× L/a Lm am τSint τmxint statistic [MDU]

5 16× 8 4 0.50000 0.8 2.7 900

20× 10 4 0.40000 0.8 2.8 900

32× 16 4 0.25000 2.0 8.1 950,950

10 20× 10 8 0.80000 1.1 2.2 900

24× 12 8 0.66667 1.4 2.5 900

32× 16 8 0.50000 2.4 5.8 750,750

40× 20 8 0.40000 5.8 10.6 900,900

16× 8 4 0.50000 0.8 1.9 900

20× 10 4 0.40000 1.0 2.2 900

24× 12 4 0.33333 1.1 2.6 900,900

32× 16 4 0.25000 1.9 5.0 925,925

40× 20 4 0.20000 7.8 11.7 925,925

20 16× 8 4 0.50000 8.7 2.7 1000

20× 10 4 0.40000 10.9 2.3 1000

24× 12 4 0.33333 4.7 2.0 1000

32× 16 4 0.25000 6.5 3.3 850

48× 24 4 0.16667 6.2 3.2 918

30 16× 8 4 0.50000 1.3 2.0 800

20× 10 4 0.40000 1.2 2.1 800

24× 12 4 0.33333 1.7 2.9 900

32× 16 4 0.25000 2.7 4.1 950,950

40× 20 4 0.20000 3.7 11.0 950,900

64× 32 4 0.12500 6.9 31.1 579,900

100 16× 8 4 0.50000 1.6 3.3 900

20× 10 4 0.40000 2.0 3.8 750

32× 16 4 0.25000 2.8 3.8 900,900

40× 20 4 0.20000 6.2 10.4 900,900

Table 2. Parameters of the simulations performed with the discretization (B.1)–(B.2). The

temporal extent T is always twice the spatial extent, which helps studying the correlators. The

size of the statistic after thermalization is given in terms of Molecular Dynanic Units (MDU) which

equal an HMC trajectory of length one. The typical auto-correlation time of the correlators is given

in the last column.
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