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We deform a defect conformal field theory by an exactly marginal bulk operator and we consider the
dependence on the marginal coupling of flat and spherical defect expectation values. For odd-dimensional
defects, we find a different qualitative behavior for the flat and spherical case, generalizing to arbitrary
dimensions the line-circle anomaly of superconformal Wilson loops. In the even-dimensional case, on the
other hand, we find a logarithmic divergence which can be related to a a-type anomaly coefficient. This
coefficient, for defect theories, is not invariant on the conformal manifold and its dependence on the bulk
coupling is controlled to all orders by the one-point function of the associated exactly marginal operator. In
particular, our results imply a nontrivial dependence on the bulk coupling for the recently proposed defect
C-function. We finally apply our general result to a few specific examples, including superconformal
Wilson loops and Rényi entropy.
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I. INTRODUCTION AND RESULTS

Extended probes play a distinguished role in a wide
range of physical phenomena. Wilson and ’t Hooft lines,
boundaries, interfaces and twist operators provide physi-
cally interesting examples of a broad class of observables
denoted as defects. In the hope of identifying universal
properties, it is convenient to restrict our attention to
nonlocal operators preserving conformal symmetry along
their profile. The study of conformal defects started a long
time ago in two dimensions [1,2], but only recently the
constraints of conformal symmetry have been systemati-
cally imposed in higher dimensions [3].
Among all the examples of conformal defects, super-

conformal Wilson lines provide an extremely useful labo-
ratory, both because we have lot of data at our disposal and
because of the variety of techniques that can be used to
access their nonperturbative regime. The most famous
example is certainly the Maldacena Wilson loop in N ¼ 4
Super Yang Mills theory [4]. In that case, the expectation
value for the circular Wilson loop is known to all orders
in the coupling [5–7] and it is different from the straight
line expectation value, despite the two configurations
are mapped to each other by a conformal transformation.
This fact can be attributed to a conformal anomaly in the
transformation relating the straight line and the circle [6].

Similar phenomena have been observed in all those cases
where the expectation value of the circular Wilson loop
could be computed exactly, such as N ¼ 2 theories in four
dimensions [7,8] or N ≥ 2 theories in three dimensions
[9–12]. It is therefore a natural question whether such an
anomaly is a more general feature of conformal defects,
i.e., whether it is always true that the flat defect expectation
value is different from the spherical one. More generally,
one may wonder whether it makes sense to compute the
defect expectation value in the flat case where the only
available scales are the IR and UV cutoff (we will say more
on this point in the following). In this letter, we argue that
flat and spherical defects exhibit indeed different qualitative
features and that, even assuming one could make sense
of the flat defect expectation value, the spherical one, in
general, is different and it is a nontrivial function of the
marginal coupling. Let us stress, however, that the plane-
sphere anomaly is not related to any geometric invariant
and it is qualitatively different from the more familiar case
of the defect Weyl anomaly.
The Weyl anomaly is an important feature of homo-

geneous conformal field theories (CFT) in even dimen-
sions. A way to describe such anomaly is through the
expectation value of the trace of the stress tensor Tμ

μ. When
the theory is embedded in an arbitrary curved manifold Tμ

μ

acquires a nonvanishing expectation value proportional to
a linear combination of Weyl invariants. The coefficients
of this linear combination are called anomaly coefficients
and their number grows with the spacetime dimension. It is
a well-known fact that for 2 and 4 dimensions all the Weyl
anomaly coefficients can be related to pieces of conformal
data, in particular to the two- and three-point functions of
the stress tensor [13].
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In the presence of defects, the number of geometric
invariants grows significantly, given the presence of
additional ingredients like the extrinsic curvature of the
defect profile. The simplest possible case is that of a two-
dimensional surface, for which the relevant invariants
have been classified [14]. In that case there is one a-type
and two b-type anomaly coefficients. Interestingly, the
two b-type coefficient could be mapped to the one-point
function of the stress tensor operator and the two-point
function of the displacement operator [15]. On the con-
trary, the a-type coefficient, which is particularly interest-
ing for its expected monotonicity property under RG flow
[16,17], has not been related to any piece of defect
conformal data yet.
In this paper, we study a particular class of conformal

field theories characterized by the presence of a scalar
operator of protected dimension d, i.e., an exactly marginal
operator. In that case the action can be deformed by

S → Sþ λ

Z
ddxOðxÞ ð1Þ

where we assumed the CFT lives in flat space and for
simplicity we restrict to a single marginal direction. The
argument easily generalizes to the case of several marginal
operators. Examples of such theories are very common in
the presence of supersymmetry in four dimensions and less
common in three dimensions (see [18] for a full classi-
fication), but the existence of nonsupersymmetric con-
formal manifolds in d > 2 is an interesting open question.
We consider the dependence of the defect expectation

value on the marginal coupling λ associated to the exactly
marginal operator. For the case of a flat defect, the result is
expected to be both IR and UV divergent and the two
cutoffs are the only available scales. It is therefore not clear
whether one could identify a part of the result which is
independent of the regularization scheme in order to make
sense of it for general defects. For the Wilson line, there is
a well-defined renormalization procedure that goes back
a long time [19,20] (a more recent discussion can be found
in [21]). Our result shows that, even if one could identify
a universal part for the flat defect, it will always be
independent of the marginal coupling.
For a spherical defect the situation is more interesting.

The dependence on the marginal coupling is controlled by
the one-point function of the exactly marginal operator

hOðxÞiplane ¼
CO

jx⊥jd
ð2Þ

and, as expected, it behaves differently for even and odd
dimensional defects. In particular, for a spherical conformal
defect Σ of dimension p and codimension q such that
pþ q ¼ d, we find that

∂λ loghΣi ¼

8>><
>>:

CO
ð−1Þ

p
2
þ1
4π

pþq
2

Γðp
2
þ1ÞΓðq

2
Þ log ϵ evenp

CO
ð−1Þ

pþ1
2 2π

pþq
2

þ1

Γðp
2
þ1ÞΓðq

2
Þ oddp

ð3Þ

where ϵ is a UV cutoff and the sphere radius has been set to
one. This is in agreement with general expectations, since
we know that for even p the universal part of the defect
expectation value is given by the coefficient of the loga-
rithmic divergence. In particular, this coefficient can be
expressed as a linear combination of Weyl invariants and
the expectation value of the spherical defect is related to the
a-type anomaly. More generally, the spherical defect expect-
ation value has been identified as the best candidate for a
monotonically decreasing function under defect RG flow
both in even and odd dimensions, i.e., a C-function [17]
(see also [22–25] for previous theorems and conjectures
encoded by the proposal in [17]). Here we find that this
proposed defectC-function depends nontrivially on the bulk
marginal couplings. This is no contradiction with usual
results since under a defect RG-flow a candidate defect
C-function should not depend on defect marginal couplings,
but could depend in general on bulk marginal couplings.

II. CONFORMAL DEFECTS AND MARGINAL
DEFORMATIONS

We start by considering the derivative of the logarithm of
the defect expectation value with respect to the exactly
marginal coupling. It is immediate to see that this derivative
is related to the one-point function of the exactly marginal
operator hOðxÞiΣ [26]

∂λ loghΣi ¼
Z

ddxhOðxÞiΣ ð4Þ

where the defect one-point function is normalized by the
defect vacuum

hOðxÞiΣ ¼ hOðxÞΣi
hΣi : ð5Þ

Importantly, the kinematics of this one-point function is
completely fixed by conformal invariance and the dynami-
cal content is encoded in a single constantCO, which would
depend, however, on all the free parameters in the bulk and
defect theory and, in particular, on the marginal parameter
λ. The explicit expression for the one-point function in flat
space is trivial and was given in (2). Also the extension to
the spherical case is not particularly difficult. Actually, it is
particularly simple using the embedding formalism devel-
oped in [3], where one just needs to pick two different
sections of the projective cone. The result is that, for the
case of a spherical defect of unit radius we can split
the Euclidean coordinates into pþ 1 “parallel” and q − 1
“orthogonal” coordinates
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xμ ¼ ðxîk; xâ⊥Þ ð6Þ

where we used quotation marks to highlight that the parallel
coordinates, labeled by an index î, are the pþ 1 directions
in which the sphere is embedded. Consistently the index â
runs over the q − 1 orthogonal directions. Specifically, the
sphere is defined by

xîkxkî ¼ 1 ð7Þ

In this coordinate system, the one-point function in
presence of a spherical defect reads

hOðxÞisphere ¼
CO�

x2⊥ þ ð1−x2⊥−x2kÞ2
4

�d=2 ð8Þ

Despite quite unusual, this system of coordinates is
particularly useful to perform the integration in (4).

A. A trivial case: The flat defect

The first question we would like to address is what
happens if one performs the integral (4) in the case of a flat
defect. The answer is quite trivial. The flat defect case is IR
and UV divergent and its expectation value, in general, is
bound to suffer from these divergences. If one tries to
regulate the integral (4) with a IR cutoff L and a UV cutoff
ϵ, the result is

∂λ loghΣi ¼ COSq−1Sp−1

Z
∞

ϵ
dr⊥

1

rd−qþ1
⊥

Z
L

0

drkr
p−1
k

¼ COSq−1Sp−1

�
L
ϵ

�
p

ð9Þ

where Sn ¼ 2 π
nþ1
2

Γðnþ1
2
Þ is the volume of the n-sphere. The result

(9) for integer values of p is a powerlike divergence and
therefore it is an artifact or the regularization procedure.
In particular, one can consider performing the integral in
dimensional regularization by allowing p to take non-
integer values. In that case, the integrals appearing in (9) are
the typical examples of scaleless integrals and therefore
must be set to zero in dimensional regularization. The
correct way to interpret this result is to affirm that there is
no universal part of the flat defect expectation value which
depends on the marginal coupling. In other words, even if
some symmetry protects the flat expectation value from the
aforementioned divergences or if one could identify a
universal part after renormalization, the result would not
depend on λ. In the literature, similar issues are discussed in
the context of supersymmetric Wilson lines [21].

B. The spherical defect

Wewill see that the story is quite different for the case of
a spherical defect. Using the coordinates introduced in (7)
and trivially performing the angular integrations we obtain

∂λ loghΣi ¼ COSq−2Sp

Z dr⊥drkrq−2⊥ rpk�
r2⊥ þ ð1−r2⊥−r2kÞ2

4

�d=2 ð10Þ

with rk ¼ jxkj and r⊥ ¼ jx⊥j. The location of the diver-
gence is geometrically very clear, since the defect is
positioned at r⊥ ¼ 0 and rk ¼ 1. As a double check of
our result, we perform the integrals in two different ways.

1. Dimensional regularization

In the first example, we will use a defect version of
dimensional regularization such that d ¼ pþ q is fixed,
but p and q are kept generic. That means we are not
changing the total dimension of the space, but we are
changing defect dimension and codimension. Introducing
polar coordinates ðrk ¼ r sin θ; r⊥ ¼ r cos θÞ we get

∂λ loghΣi¼COSq−2Sp

Z
∞

0

dr
Z π

2

0

dθ
ðcosθÞq−2ðsinθÞp

r
�
cosθ2þð1r−rÞ2

4

�
pþq=2

ð11Þ

and, after performing the integrals

∂λ loghΣi ¼ CO
2π

d
2Γð− p

2
Þ

Γðq
2
Þ : ð12Þ

Clearly this expression has single poles for even values
of p. This is expected since for even dimensional defects
the universal part of the free energy is proportional to a
logarithmic UV singularity. To extract the coefficient of the
logarithm we can simply take the residue

∂λ loghΣievenpuniv ¼ CO
ð−1Þp2þ14π

d
2

Γðp
2
þ 1ÞΓðq

2
Þ : ð13Þ

On the other hand, for odd p the result is finite and it is
simply

∂λ loghΣioddp ¼ CO
2π

d
2Γð− p

2
Þ

Γðq
2
Þ : ð14Þ

We will see that these results are perfectly reproduced by
a cutoff analysis, where the physical interpretation of the
divergence is more transparent.
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2. Cutoff regularization

We compute the integral (10) for integer values of p
and q regularizing by a UV cutoff ϵ around rk ¼ 1, where
the defect is located. We then isolate the universal term in
the expansion (i.e., the term that is not affected by a
rescaling of the cutoff). For even p it appears as the
coefficient of log ϵ, while for odd p it is a finite part.
Let us start by even p and q > 1. One can perform the

integral for several integer values of p and q and then
extract the coefficient of the logarithmic singularity. Doing
so, one finds they fit in the pattern

∂λ loghΣievenpuniv ¼ CO
ð−1Þp2þ14π

pþq
2

Γðp
2
þ 1ÞΓðq

2
Þ log ϵ ð15Þ

in perfect agreement with (13) (in this case however we left
the logarithm explicit since it is related to the actual value
of the cutoff).
For odd p and q > 1 a similar analysis gives

∂λ loghΣioddpsphere ¼ CO
ð−1Þpþ1

2 2π
pþq
2
þ1

Γðp
2
þ 1ÞΓðq

2
Þ ð16Þ

which agrees with (14) for odd p.
When q ¼ 1 we do not have orthogonal coordinates in

the spherical case (let us stress again that we denote as
parallel all the directions where the sphere is embedded)
and one may be worried that the previous results do not
apply to this specific case. Actually, in this case the integral
is simply

∂λ loghΣiq¼1
sphere ¼ COSp2d

Z
drk

rpk
j1 − r2kjpþ1

ð17Þ

and we find that its universal part agrees perfectly with (14)
and (13) evaluated at q ¼ 1. Notice however that this is true
only if the integral extends from zero to infinity, so in the
case of a codimension one defect (not a boundary, and not
an interface with two different theories on the two sides).

III. EXAMPLES

In this section, we apply our general result to a few
interesting examples. First, we specify our formula to line
defects and we extract predictions for the Lagrangian
expectation value of three- and four-dimensional theories
where the Wilson loop is known exactly. For the case of
N ¼ 4 SYM we are particularly lucky because the
Lagrangian expectation value can be computed independ-
ently thus confirming the validity of our formula. Then we
consider the case of a two-dimensional defect, where the set
of independent Weyl invariants is well known. This allows
us to write down an equation for the a-type anomaly
coefficient and to show that it is related to the scalar

one-point function CO. Finally, we consider the general
case of codimension 2 that is relevant for the twist operator,
i.e., the operator whose expectation value computes the
Rényi entropy. For the four-dimensional case, using a
specific feature of the twist operator, we can write down
a general formula relating the one-point function of the
stress-tensor to CO.

A. Line defects

If we specify our formula (14) to the case p ¼ 1 we find

∂λhWi ¼ −2πSq−1CO ð18Þ

where we used W to denote the line defect. We will
consider the four-dimensional case, where we can perform
explicit checks for the validity of this formula. Let us point
out, however, that marginal deformations exist also for
three-dimensionalN ¼ 2 SCFT, where an exact expression
for the Wilson loop is available [9]. We leave further
analysis in this direction for future work.

1. Wilson loops in four-dimensional SCFT

Exactly marginal deformations exist for four-dimensional
theories with N ¼ 1, N ¼ 2 and N ¼ 4 supersymmetry.
For all these cases we have

CO ¼ −
1

8π2
∂λhWi ð19Þ

Focusing on the case of super Yang-Mills theories, where the
marginal coupling is precisely the Yang-Mills coupling, it is
convenient to perform a change of variables. In (4) we
assumed that the coupling λmultiplies themarginal operator,
while in the ordinary Yang-Mills Lagrangians the inverse
of the ’t Hooft coupling appears in front of the action. Let us
therefore introduce the coupling λ̂ ¼ 1

λ and reabsorb a factor
of λ̂ in the definition of CO such that λ̂ĈO ¼ CO. This gives

ĈO ¼ 1

8π2
λ̂∂ λ̂hWi ð20Þ

which can be used to extract predictions for the one-point
function of the Lagrangian for those theories where the exact
expression of the Wilson loop is known. This is perhaps not
very surprising, but for N ¼ 4 SYM it constitutes a strong
consistency check since the one-point function of the
Lagrangian can be computed independently. In the following
wewill review the argument which already appeared in [27].
The expectation value of the circular Wilson loop in

N ¼ 4 SYM is given by [5–7]

hWi ¼ 1

N
L1
N−1

�
−

λ̂

4N

�
e

λ̂
8N ð21Þ

where L is the modified Laguerre polynomial. To obtain
an independent prediction on the Lagrangian one-point
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function (without taking an explicit derivative with respect
to λ̂) we can do the following. First of all, we consider the
Bremsstrahlung function, defined as the coefficient of the
second order term in the small angle expansion of the cusp
anomalous dimension [28]

ΓcuspðϕÞ ¼ −Bðλ̂; NÞϕ2 þOðϕ4Þ: ð22Þ

This function can be computed exactly combining defect
techniques with supersymmetric localization [28]

Bðλ̂; NÞ ¼ 1

2π2
λ̂∂ λ̂hWi: ð23Þ

Then, we introduce the one-point function of the stress
tensor (for a straight Wilson line in direction 4 and na ¼ xa

jx⊥j
with a ¼ 1, 2, 3)

hTabi ¼ −
hðλ̂; NÞ
x4⊥

ðδab − 2nanbÞ; ð24Þ

hTa4i ¼ 0; hT44iW ¼ hðλ̂; NÞ
x4⊥

; ð25Þ

and its relation to the Bremsstrahlung function [29,30]

hðλ̂; NÞ ¼ Bðλ̂; NÞ
3

: ð26Þ

Finally, we use the fact that inN ¼ 4 SYM the Lagrangian
and the stress tensor operator belong to the same super-
multiplet. Using supersymmetric Ward identities along the
lines of [30–32] one can prove that

hðλ̂; NÞ ¼ 4

3
ĈOðλ̂; NÞ: ð27Þ

The same relation, in slightly different conventions, was
found in [33]. Therefore, combining all these results we get

λ̂∂ λ̂ loghWi ¼ 8π2ĈOðλ̂; NÞ ð28Þ

in perfect agreement with formula (20). Using the same
reasoning backwards, i.e., starting from the validity of (20),
we obtain an alternative derivation of the exact formula for
the bremsstrahlung function (23) without using the locali-
zation argument of [28].

B. Surface defects

As we mentioned, for even dimensional defects, our
result relates the one-point function of the exactly marginal
operator to the derivative with respect to the coupling of the
defect a-anomaly. For the case p ¼ 2, the general form of
the universal part of the defect free energy is given by

loghΣijuniv ¼
�
fa
2π

Ia þ
fb
2π

Ib −
fc
2π

Ic

�
logðϵÞ ð29Þ

where Ia ¼
R
Σ RΣ, Ib ¼

R
Σ K̃

a
ijK̃

a
ij and Ic ¼

R
Σ γ

ijγklCikjl

are three defect Weyl invariants built out of the 2d Ricci
scalar RΣ, the traceless part of the extrinsic curvature K̃a

ij

and the embedded Weyl tensor Cikjl contracted with the
embedded metric γij. All the integrals are performed over
the defect with the appropriate invariant measure. Here we
are interested in the Ia invariant, also known as Euler
characteristics. For a spherical defect that is the only
nonvanishing contribution and we haveZ

S2
RS2 ¼ 8π: ð30Þ

Combining this with (13) we get

∂λfa ¼
π

2
Sq−1CO ð31Þ

which is one of the main result of the paper as it predicts
that the a-type Weyl anomaly coefficient fa is not
invariant on the conformal manifold and its derivative
is controlled by the one-point function of the exactly
marginal operator O.
Looking at specific examples, the most studied one is

surely the GukovWitten defect inN ¼ 4 SYM theory [34].
In that case, there is strong evidence that the a-anomaly
coefficient does not depend on the marginal coupling
[35,36] [37]. Using Eq. (13) we can actually prove this
statement and make a more general one. We will show that
for every surface defect in four dimensions preserving two
supercharges of opposite chirality Qþ and Q̃ _−, the right-
hand side (r.h.s.) of (31) vanishes. The least supersym-
metric surface in this class is a N ¼ ð2; 0Þ surface with
superconformal algebra suð1; 1j1Þ ⊕ slð2Þ ⊕ uð1Þ (see
[38] for a recent discussion). Without loss of generality
we can restrict to a N ¼ 1 bulk four-dimensional theory.
The result will obviously apply to higher supersymmetric
cases. The conformal manifold of a supersymmetric theory
is always complex valued and the Lagrangian can be split in
a chiral part belonging to a chiral multiplet and an antichiral
part belonging to the conjugate one [39]. This super-
multiplet contains a scalar operator E of dimension 3
and r-charge 2, a fermionic operator Λα of dimension
7=2 and r-charge 1 and the exactly marginal operator O. It
is immediate to write down the supersymmetry trans-
formation of the fermionic operator

δΛα ¼ ξαOþ σμα _α∂μEξ̃
_α ð32Þ

where ξαðξ̃ _αÞ is the Grassmann odd parameter associated to
the superchargeQαðQ̃ _αÞ. Clearly, if the defect preservesQþ
the condition hδΛþiΣ ¼ 0 readily gives hOiΣ ¼ 0. At the
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same time, if the defect preserves Uð1Þ R-symmetry
hEiΣ ¼ 0 preventing the marginal operator from acquiring
a nonvanishing one-point function anyway. This argument
does not apply to superconformal defects preserving a
combination of Qs and Q̃s (notice also that this is the only
way for a surface defect to preserve a single supercharge).
This breaks Uð1Þ R-symmetry as well as orthogonal
rotations, although it may preserve a combination of them.
In this case there is no symmetry setting to zero the one-
point function of O and one should legitimately expect that
fa depends on the coupling. Gukov Witten defects, despite
breaking orthogonal rotations in general, do not belong to
this class as they preserve 4 Qs and 4 Q̃s separately.
Therefore, we find that the r.h.s. of (31) consistently
vanishes for Gukov Witten defects. Nevertheless, there is
still a large class of defects for which this is not the case,
including all nonsupersymmetric surfaces (also when
inserted in a bulk supersymmetric theory where we have
examples of conformal manifolds).

C. Rényi entropies

In [15], it was pointed out that twist operators in
dimension higher than two can be treated as a conformal
defect. This has led to several important developments
[40,41], especially in connection with the proof of the
quantum null energy condition [42,43]. The Rényi entropy
Sn is related to the twist operator expectation value by [15]

hτni ¼ eð1−nÞSn ð33Þ
and its universal (regulator independent) part is given
by [44]

Sunivn ¼
(
ð−1Þd2sd log ϵ even d

ð−1Þd−12 sd odd d:
ð34Þ

This structure is clearly in agreement with our findings and
we can relate the derivative of sd to the one-point function
of O

ð1 − nÞ∂λsd ¼
�
Sd−12CO even d

Sd−1πCO odd d:
ð35Þ

For d ¼ 4, we can do something more. In that case the
Rényi entropy is a surface defect and its universal part is
described by (29) with the only difference that all the
anomaly coefficients also depends on the replica number n.
For this example, however, one additional relation between
the coefficients is available [45]

fcðnÞ ¼
n

n − 1
ða − faðnÞ − ðn − 1Þ∂nfaðnÞÞ ð36Þ

where a is the a-anomaly coefficient of the bulk theory.
Taking a derivative with respect to λ and using the result
and the conventions of [15], relating fcðnÞ to the stress
tensor one-point function we get

∂λhðn; λÞ ¼
2n
3

�
a
π
− πð1 − ðn − 1Þ∂nÞCOðn; λÞ

�
ð37Þ

which provides an intriguing relation between the stress-
tensor one-point function and the marginal operator one-
point function.

IV. DISCUSSION

In this paper we considered the effect of an exactly
marginal deformation on a defect field theory. Thanks to
the presence of a nonvanishing one-point function, the first
order derivative of the defect expectation value with respect
to the coupling is nonvanishing and it is determined by a
single piece of defect CFT data. This implies a nontrivial
coupling dependence for the a-type anomaly coefficient
and for the proposed defect C-function. For the case of the
four-dimensional Rényi entropy we also derived an equa-
tion relating the coupling derivative of the stress tensor to
the one-point function of the stress tensor operator.
It would be interesting to analyze further examples,

especially in the context of boundaries. It would also be
important to better understand b-type anomalies for higher
even dimensional defects and how they could be mapped to
defect conformal data. Finally, one would like to find
bounds on the allowed values of the a- and b-type defect
anomaly coefficients (or their ratios) with and without
supersymmetry.
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consider the expectation value of a spherical defect in flat
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