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1 Introduction

In [1, 2] unitarity methods [3–5] were applied to various two-dimensional field theories

with the aim of computing the two-particle to two-particle S-matrix. One of the intriguing

consequences of these works was the observation that this approach is particularly pow-

erful when applied to integrable field theories.1 In [1] it was observed that the one-loop

1S-matrices of integrable field theories are in general rather special as they are heavily constrained by a set

of physical requirements — no particle production, equality of the sets of incoming and outgoing momenta

and the factorization of the n-particle scattering amplitude into a product of two-particle S-matrices [6, 7].
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S-matrices, including rational terms, for a number of integrable theories (including sine-

Gordon and various generalizations) are completely cut-constructible (up to possible finite

shifts in the coupling). In particular, the unitarity construction automatically accounts

for additional contributions from one-loop counterterms that are required to preserve in-

tegrability in the standard Feynman diagram computation. Furthermore, as the unitarity

construction reduces the one-loop computation to scalar bubble integrals, which are finite

in two dimensions, issues of regularization are bypassed.

The motivation for investigating these methods in the context of two-dimensional inte-

grable field theories is their potential use in the study of string backgrounds with worldsheet

integrability. The classic example is the AdS5×S5 superstring [8], whose worldsheet theory

was demonstrated to be classically integrable in [9]. In [1] it was shown that the one-loop

unitarity computation of the light-cone gauge S-matrix, the tree-level components of which

were computed in [10], matches the expansion of the exact S-matrix [11, 12], including

rational terms. The exact S-matrix was derived as a result of an extensive body of work,

following from considerations of symmetries, integrability and perturbation theory in both

gauge and string theory. For further details and references see the reviews [13, 14]. In [2]

the one- and two-loop logarithmic terms were also shown to be in agreement. In general,

in an integrable theory the logarithmic terms are required to exponentiate into a set of

overall phase factors. This was confirmed to be the case for a variety of integrable string

backgrounds of relevance in the context of the AdS/CFT correspondence [2, 15].

In this paper we will develop and apply the methods of [1] to a class of integrable

theories that arise as the light-cone gauge-fixing [16] of AdS3 × S3 × M4 string back-

grounds [17–21]. We will focus on the following three cases. The first is the simplest and is

when the compact manifold is T 4 with the background supported by RR flux. The second

is when the compact manifold is S3 × S1, again supported by RR flux. For the last we

return to T 4, but with the background now supported by a mix of RR and NSNS fluxes.

The final two can both be thought of (at least at the level of the decompactified light-cone

gauge worldsheet theory) as deformations of the first. For the S3 × S1 theory we have a

parameter α ∈ [0, 1], such that for α = 0 and 1, one or other of the two three-spheres blows

up, while in the mixed flux theory we have a parameter q ∈ [0, 1], where q = 0 corresponds

to pure RR flux and q = 1 to pure NSNS flux.

The S-matrix of interest to us describes the scattering of excitations on the decompact-

ified string worldsheet in the uniform light-cone gauge [16]. The masses of the asymptotic

excitations are given by the expansion around the BMN string [22]. For the theories under

consideration we have the following spectra

Theory Spectrum

AdS3 × S3 × T 4 (RR flux) (4 + 4)× 1 (4 + 4)× 0

AdS3 × S3 × S3 × S1 (RR flux) (2 + 2)× 1 (2 + 2)× α

(2 + 2)× 1− α (2 + 2)× 0

AdS3 × S3 × T 4 (mixed flux) (4 + 4)×
√

1− q2 (4 + 4)× 0
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where (n + n) denotes bosons+fermions. As expected, in each case we have (8 + 8) exci-

tations in total and the masses of the bosons match those of the fermions. All three cases

feature massless modes, which need careful treatment in two dimensions. In the main text

we will argue that if we restrict to massive external legs, then we can ignore the massless

modes completely in the one-loop unitarity computation. Therefore in this paper we will

do so, leaving the question of massless modes in two-dimensional unitarity computations

for future work.

The main input of the one-loop unitarity computation is the tree-level S-matrix of the

theory. Various components of the tree-level S-matrices for the T 4 and S3×S1 backgrounds

supported by RR flux were computed in [23, 24], and in [25] for the mixed flux case. These

results, along with the symmetries and integrability of the theory, can be used to completely

determine the tree-level S-matrix. For the AdS3 × S3 × S3 × S1 background we will also

require additional input. In this case the expansion of the light-cone gauge-fixed Lagrangian

contains odd powers of the fields, in particular cubic terms [26, 27]. This, along with the

asymptotic mass spectrum, implies that there can be external leg corrections contributing

to the one-loop unitarity computation. We deal with these additional terms by considering

a unitarity computation involving form factors (i.e. partially off-shell quantities) on either

side of the cut.

In [2] the one- and two-loop logarithmic terms were studied for these theories. There-

fore, our main aim here is to compute the rational terms. The motivation for this is two-fold.

First, we would like to demonstrate that the matrix structure (that is, the S-matrix up to

overall phase factors) matches that which is found via symmetries and integrability [28–

33]. This would provide further support for the conjecture of [1] that the S-matrices of

integrable theories are cut-constructible (up to possible shifts in the coupling). Second, we

would like to investigate the phases of these theories, including the rational terms. Thus

far there is only an all-loop conjecture (supported by semiclassical one-loop computations

in [34, 35]) for the phases in the AdS3 × S3 × T 4 case supported by RR flux [31]. There

is also a semiclassical one-loop computation of the phases in the AdS3 × S3 × S3 × S1

case in [36]. Having checked that our methods reproduce these results at one-loop, we can

therefore use them to conjecture one-loop expressions for the phases in the mixed flux case.

This should then provide an insight into how to deform the all-loop phases of [31].

We shall start in section 2 with an outline of the general method, emphasizing the

modifications to the construction in [1] that are required to deal with the three theories

of interest. There are three such modifications — a prescription for the rational t-channel

contribution when the consistency condition of [1] is not satisfied, a discussion of what

happens with particles of different mass in the asymptotic spectrum and the possibility

of external leg corrections. In the following sections the procedure is then applied to the

AdS3 × S3 ×M4 string backgrounds.

2 General principles

In [1] unitary methods were used to the construct the one-loop S-matrix of various two-

dimensional integrable field theories. Agreement with known results was found not only
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for the logarithmic terms, but also with the rational part (up to shifts in the coupling).

The construction of the rational part was based on a prescription that dealt with various

singular cuts that arise when applying the usual unitarity methods. This prescription

required that a consistency condition on the tree-level S-matrix was satisfied. However,

for various other examples of interest in the context of integrable string backgrounds,

this consistency condition is not satisfied. In this section we will outline the construction

of [1] (see also [2] for a discussion of the logarithmic terms to two loops) and describe a

modification of the prescription that will allow the method to be used when the consistency

condition is not satisfied.

2.1 Theories with a single mass

The object of interest is the two-particle S-matrix, defined in terms of the

four-point amplitude

〈ΦP (q)ΦQ(q′) |S|ΦM (p)ΦN (p′)〉 = APQMN (p,p′, q, q′) . (2.1)

Here S is the scattering operator, M,N, . . . are indices running over the particle content of

the theory and p, p′, q, q′ are the on-shell momenta of the fields. For now we will restrict

to the case where all the particles have equal non-vanishing mass, which we set to one. As

a consequence of momentum conservation, the four-point amplitude takes the form

APQMN (p, p′, q, q′) = (2π)2δ(2)(p + p′ − q− q′) ÃPQMN (p, p′, q, q′) . (2.2)

Furthermore, at four points, two-dimensional kinematics implies that the set of initial

momenta is preserved in the scattering process, as demonstrated by the following identity

δ(2)(p + p′ − q− q′) =
J (p, p′)

4εε′
(
2ε δ(p− q) 2ε′δ(p′ − q′) + 2ε δ(p− q′) 2ε′δ(p′ − q)

)
, (2.3)

where p, p′, q, q′ are the spatial momentum and the Jacobian J (p, p′) = 1/(∂ε/∂p−∂ε′/∂p′)
depends on the on-shell energies ε(p), ε′(p′). Note that we have assumed the particle veloc-

ities are ordered as v = ∂ε/∂p > ∂ε′/∂p′ = v′ and for the spatial momentum δ-functions

we have used a normalization that becomes the standard Lorentz-invariant one in the

relativistic case.

Substituting (2.3) into (2.2) we find two terms. Without loss of generality we can

consider just the amplitude associated to the first product of δ-functions, 2ε δ(p−q) 2ε′δ(p′−
q′). The two-particle S-matrix is then defined as

SPQMN (p, p′) ≡ J (p, p′)

4εε′
ÃPQMN (p,p′,p,p′) , (2.4)

As usual we can expand in powers of the coupling

SPQMN (p, p′) = δPMδ
Q
N + ih−1T (0)PQ

MN (p, p′) + ih−2T (1)PQ
MN (p, p′) +O(h−3) , (2.5)

with the identity at leading order, followed by the tree-level S-matrix T (0) at order h−1

and the n-loop S-matrix T (n) at order h−n−1.
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Figure 1. Diagrams representing s-, t- and u-channel cuts contributing to the four-point one-loop

amplitude.

In this paper we will be interested in computing the cut-constructible part of T (1)

from the tree-level S-matrix T (0) for the light-cone gauge S-matrices for string theories

in AdS3 × S3 ×M4 backgrounds. For these theories the inverse string tension plays the

role of the coupling h−1. It is well known that the dispersion relation is in general non-

relativistic, however, at quadratic order in the near-BMN expansion (i.e. for the free states

in perturbation theory) it is. Therefore, for our purposes the pre-factor in (2.4), i.e. the

contribution coming from the Jacobian, is just given by

J(p, p′) =
1

4(e′p− ep′)
, e =

√
p2 + 1 , e′ =

√
p′2 + 1 . (2.6)

In general we will use e to denote the energies of the free states, and ε to denote their

all-order form.

In general, there are three possible contributions that can arise in a unitarity compu-

tation, which are shown in figure 1. We ignore tadpoles and graphs built from a three- and

five-point amplitude. In the standard unitarity procedure such graphs have no physical

two-particle cuts and therefore they can safely be ignored. However in higher dimensions,

a recipe to deal with tadpole diagrams in the context of generalized unitarity for massive

theories was given in [37]. In two dimensions the situation is slightly different. In par-

ticular, tadpole diagrams require the introduction of a regularization since they develop a

logarithmic divergence. Since our procedure is inherently finite it is not clear how tadpoles

should be included, but it appears that they do not need to be to construct the one-loop

S-matrix (up to possible shifts in the coupling) as we have explicitly checked in all the

cases under consideration. We leave further analysis of tadpole graphs for future studies.

Here we will outline the derivation (for details the reader should refer to [1]) of the

one-loop S-matrix following from unitarity methods. The key observation is that as we have

two-particle cuts in a two-dimensional field theory this completely freezes the momentum.

Therefore, using this the tree-level amplitudes on either side of the cut can be pulled out

– 5 –
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of the loop integral, with the loop momenta taking their frozen values. After doing this we

return the internal on-shell propagators off-shell leaving us with scalar bubble integrals

I(P2,m,m′) =

∫
d2k

(2π)2

1

(k2 −m2 + iε)((k− P)2 −m′2 + iε)
, (2.7)

with coefficients given by contractions of tree-level amplitudes. With this in mind it is

useful to define the following tensor contractions

(A s B)PQMN (p, p′) = ARSMN (p, p′)BPQ
RS (p, p′) , (2.8)

(A u B)PQMN (p, p′) = (−1)([P ]+[S])([Q]+[R])ASQMR(p, p′)BPR
SN (p, p′) , (2.9)

(A t
← B)PQMN (p, p′) = (−1)[P ][S]+[R][S]ASPMR(p, p)BRQ

SN (p, p′) , (2.10)

(A t
→ B)PQMN (p, p′) = (−1)[Q][R]+[R][S]APSMR(p, p′)BQR

SN (p′, p′) , (2.11)

where [M ] = 0 for a boson and 1 for a fermion, and the following scalar bubble integrals

Is ≡ I((p + p′)2, 1, 1) =
1

4(e′p− ep′)

(
1− arcsinh(e′p− ep′)

iπ

)
=

J

iπ
(iπ − θ) , (2.12)

It ≡ I(0, 1, 1) =
1

4πi
, (2.13)

Iu ≡ I((p− p′)2, 1, 1) =
1

4(e′p− ep′)
arcsinh(e′p− ep′)

iπ
=
Jθ

iπ
, (2.14)

where we have used (2.6) and defined

θ ≡ arcsinh(e′p− ep′) . (2.15)

The final step is to set q = p and q′ = p′ to extract the one-loop S-matrix

T (1) =
iJ

2
(CsIs + CtIt + CuIu) , (2.16)

where for clarity we have suppressed the indices. Here J is the contribution from the

Jacobian and the 1
2 is the symmetry factor. The matrices Cs,u are given by

Cs = T̃ (0) s T̃ (0) , Cu = T̃ (0) u T̃ (0) , (2.17)

where

T̃ (0) = J−1T (0) . (2.18)

The t-channel contraction is more subtle as there two possible choices for freezing the

loop momenta (i.e. in terms of p and q or p′ and q′) giving potentially different results. These

correspond to the two contractions in eqs. (2.10) and (2.11). In the theories considered

in [1] it turned out that these two choices always gave the same result, i.e.

T̃ (0) t
← T̃ (0) = T̃ (0) t

→ T̃ (0). (2.19)
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and this issue could safely be ignored. However, for the S-matrices we will consider in this

paper, i.e. the light-cone gauge S-matrices for strings in AdS3 × S3 ×M4 this is no longer

the case. In particular we note that the function T̃ (0)(p, p) cannot have any momentum

dependence in a relativistic theory,2 whereas in a non-relativistic theory it can depend on

p, generating an asymmetry between p and p′.3 Hence it is natural to conjecture that we

should take the average of the two contractions. Therefore

Ct =
1

2
(T̃ (0) t

← T̃ (0) + T̃ (0) t
→ T̃ (0)) . (2.20)

To conclude the construction we can use the explicit expressions of the integrals Is,t,u in

eqs. (2.12) to (2.14) and the relation between T (0) and T̃ (0) (2.18) to rewrite the one-loop

result as

T (1) =
θ

2π
(T (0) u T (0)−T (0) s T (0))+

i

2
T (0) s T (0)+

1

16π
(T̃ (0) t

← T (0)+T (0) t
→ T̃ (0)) , (2.21)

where, under the assumption that T (0) is real, there is a natural split of the result into

three pieces; a logarithmic part, an imaginary rational part, and a real rational part.

2.2 Theories with multiple masses

We will now generalize the above construction to the case where the asymptotic spectrum

contains particles of different mass. In this derivation we will restrict to theories whose tree-

level S-matrix is integrable, in particular, using the consequence that the set of outgoing

momenta is a permutation of the set of incoming momenta. This means that, for the

reasons explained in section 2.1, tadpoles and one-loop graphs built from a three- and

five-point amplitude will be ignored in the unitarity computation. Therefore we are again

left with the three contributions given in figure 1.

We consider the configuration in which the external legs with indices M and P have

mass m and the associated momenta are equal (p = q) and N and Q have mass m′ with

p′ = q′.4 For the s- and u-channels the story is then largely the same as the single-mass

case. It follows from the assumptions outlined in the previous paragraph that when the

two propagators are cut the internal loop momenta are frozen to the values of the external

momenta. The tree-level amplitudes on either side of the cut can then be pulled out of the

integral and we are left with scalar bubble integrals with coefficients given by contractions of

tree-level amplitudes. Working through the remaining steps, which are essentially identical

to the single-mass case, it is clear that the contribution from these graphs is given by

T (1)
s,u =

θ

2π
(T (0) u T (0) − T (0) s T (0)) +

i

2
T (0) s T (0) , (2.22)

2Let us recall that in a relativistic theory the S-matrix depends only on the difference of rapidities, which

vanishes for p′ = p.
3In [1] the only non-relativistic theory that was considered was the light-cone gauge-fixed string in

AdS5 × S5 for which, despite the asymmetry, eq. (2.19) still holds.
4Our procedure implies that if we assume the set of outgoing momenta is equal to a permutation of the

set of incoming momenta at tree level, this property automatically extends to one loop.
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where

θ ≡ arcsinh

(
e′p− ep′

mm′

)
, e =

√
p2 +m2 , e′ =

√
p′2 +m′2 .

Is ≡ I((p + p′)2,m,m′) =
1

4(e′p− ep′)

(
1−

arcsinh( e
′p−ep′
mm′ )

iπ

)
=

J

iπ
(iπ − θ) ,

Iu ≡ I((p− p′)2,m,m′) =
1

4(e′p− ep′)
arcsinh( e

′p−ep′
mm′ )

iπ
=
Jθ

iπ
,

(2.23)

Here m and m′ are the masses of the two particles being scattered and the scalar bubble

integral I(P2,m,m′) is defined in eq. (2.7). Eq. (2.22) therefore fixes the logarithmic and

imaginary rational parts of the one-loop result.

The real rational part, which comes from the t-channel contribution, is, as before,

more subtle. In the single-mass case, the guiding principle for computing the t-channel

cuts was to only fix q = p and q′ = p′ at the end in order to avoid ill-defined expressions in

the intermediate steps. Therefore, let us consider the t-channel graph in figure 1 with the

external legs with indices M and P having mass m, N and Q mass m′ and the loop legs

mass ml, but p, q, p′ and q′ kept arbitrary, i.e. we do not fix q = p and q′ = p′.

After putting the loop legs on-shell the loop momenta are fixed by the momentum

conservation delta functions in terms of the external momenta. Solving in terms of p and

q we find

l↑1± =
1

2

[
q± − p± +

√
(q± − p±)2 + 4

m2
l

m2
q±p±

]
,

l↑2± =
1

2

[
p± − q± +

√
(p± − q±)2 + 4

m2
l

m2
p±q±

]
,

(2.24)

while solving in terms of p′ and q′ gives

l↓1± =
1

2

[
p′± − q′± +

√
(p′± − q′±)2 + 4

m2
l

m2
p′±q

′
±

]
,

l↓2± =
1

2

[
q′± − p′± +

√
(q′± − p′±)2 + 4

m2
l

m′2
q′±p

′
±

]
,

(2.25)

where the light-cone momenta are defined in appendix A. The first solution (2.24) then

gives a contribution proportional to

(−1)[P ][S]+[R][S]Ã(0)SP
MR(p, l↑1, l

↑
2, q)Ã(0)RQ

SN (l↑2, p
′, l↑1, q

′) . (2.26)

The arguments of the second factor of Ã(0) contain all four of the external momenta and

therefore this part is well-defined when we fix q = p and q′ = p′. Therefore, let us focus on

the first factor of Ã(0), whose arguments only depend on two of the momenta. Recalling

that in an integrable theory the amplitude should vanish unless the set of outgoing momenta
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is a permutation of the set of incoming momenta, it follows that this first factor vanishes

unless ml = m. In this case (2.26) reduces to

(−1)[P ][S]+[R][S]Ã(0)SP
MR(p, q,p, q)Ã(0)RQ

SN (p, p′, q, q′) . (2.27)

Finally setting q = p and q′ = p′ this expression can then be written in terms of tree-level

S-matrices. A similar logic follows for the second solution (2.25), except that here the

contribution vanishes unless ml = m′.

It therefore follows that the contribution from the t-channel is given by

T
(1)
t =

1

16π

(
1

m2
T̃ (0) t

← T (0) +
1

m′2
T (0) t

→ T̃ (0)

)
, (2.28)

where T̃ (0) in the first term is built from the tree-level S-matrix for the scattering of two

excitations of mass m, while in the second term it is built from the tree-level S-matrix for

two excitations of mass m′. We have included an additional factor of 1
2 as we should still

use both vertices to solve for the loop momenta and take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an

excitation of mass m is scattered with an excitation of mass m′ is given by

T (1) =
θ

2π
(T (0) u T (0) − T (0) s T (0)) +

i

2
T (0) s T (0)

+
1

16π

(
1

m2
T̃ (0) t

← T (0) +
1

m′2
T (0) t

→ T̃ (0)

)
, (2.29)

where, again under the assumption that T (0) is real, there is a natural split of the result

into three pieces; a logarithmic part, an imaginary rational part, and a real rational part.

Setting m = m′ = 1 we see that this formula reduces to, and hence incorporates, the

single-mass case given in eq. (2.21).

A key consequence of the results in this section is that the cut-constructible one-loop

S-matrix for the scattering of a particle of mass m with one of mass m′ is built from the

corresponding tree-level S-matrix along with the tree-level S-matrices for the scattering

of two particles of mass m and for two particles of mass m′, both evaluated at equal

momenta. In particular there are no contributions containing tree-level S-matrices for

particles of masses other than m and m′. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without

knowing the full tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the

Yang-Baxter equation. The Yang-Baxter equation is a cubic matrix equation that should

be satisfied by S-matrices describing scattering in integrable theories. Up to signs related

to fermions, which we are not concerned with for this schematic discussion, it can be

written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the par-

ticles that are being scattered. The first non-trivial order in its perturbative expansion is

– 9 –
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p p

l1

l2 p p

l

p p

l

Figure 2. Diagrams contributing to external leg corrections at one-loop.

called the classical Yang-Baxter equation and is a relation that is quadratic in the tree-level

S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (2.31)

At the next order we find the following relation

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]− [T(0)

13 ,T
(1)
12 ]− [T(0)

23 ,T
(1)
12 ]− [T(0)

23 ,T
(1)
13 ]

= T(0)
23 T

(0)
13 T

(0)
12 − T(0)

12 T
(0)
13 T

(0)
23 .

(2.32)

One can check that, assuming that the tree-level S-matrix satisfies the classical Yang-Baxter

equation (2.31), the rational s-channel contribution to the cut-constructible one-loop S-

matrix precisely cancels the terms cubic in the tree-level S-matrix on the right-hand side of

eq. (2.32). Therefore, for the one-loop cut-constructible S-matrix to respect integrability

the remaining terms should satisfy (2.32) with the right-hand side set to zero. In general,

this condition is not easy to solve, but two solutions are clear. The first is the tree-level S-

matrix itself (which amounts to a shift in the coupling), and the second is any contribution

that can be absorbed into the overall phase factors.

It will turn out that of the three theories we are interested in, two satisfy this property.

For the AdS3×S3×S3×S1 background, the one-loop cut-constructible S-matrix as defined

by (2.29) has a rational piece coming from the t-channel that does not satisfy (2.32) with

zero on the right-hand side. However, there is a meaning to these terms – they are cancelled

by corrections to the external legs, which we will now discuss.

2.3 External leg corrections

In the construction outlined thus far we have not included any discussion of corrections to

the external legs. As shall become apparent, for the AdS3×S3×S3×S1 background, these

will be important even at one loop. These corrections will give a rational contribution to

the S-matrix and can follow from the three types of Feynman diagrams in figure 2.

We will be interested in external leg corrections at one loop that are caught by unitarity.

In order to approach this problem let us first review how external leg corrections are usually

dealt with in a standard Feynman diagram calculation. We denote the sum of all one

particle irreducible insertions into a scalar propagator as −iΣ(p) = −ih−1Σ(1)(p)+O(h−2),

where −ih−1Σ(1)(p) is the one-loop contribution. After re-summing one finds

=
i

p2 −m2 − Σ(p)
(2.33)
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Expanding Σ(p) around the on-shell condition, Σ(p) = Σ0(p) + Σ1(p)(p2 −m2) +O((p2 −
m2)2), one obtains a spatial momentum dependent shift in the pole and a non-vanishing

residue Z(p) such that

=
iZ(p)

p2 −m2 − Σ0(p)
+ . . . . (2.34)

where Z = 1 + h−1Σ
(1)
1 (p) + O(h−2) and Σ0(p) = h−1Σ

(1)
0 (p) + O(h−2). It is well-known

that the same quantity also appears in the LSZ reduction and the prescription to take

these contributions into account is to include a factor of
√
Z for the external legs of the

scattering process. When inserting this into the S-matrix of a 2→ 2 process one therefore

gets an additional contribution to T (1) of the form

T
(1)
ext = (Σ

(1)
1 (p) + Σ

(1)
1 (p′))T (0) , (2.35)

where we recall that we are working in the configuration in which q = p and q′ = p′. Here

we can already make the observation that given that Σ
(1)
1 (p) is real (and assuming that

T (0) is real) the contribution from external legs should contribute to the real rational part

of T (1).

The contribution Σ
(1)
1 (p) is a subleading contribution in the expansion of the self-

energy around the on-shell condition and in a standard Feynman diagram computation

would be regularization dependent. Since in the unitarity computation we did not assume

any explicit regularization we may encounter problems combining the two results. For this

reason we will choose to follow a rather different approach and compute this subleading

contribution via unitarity.

As we are considering a unitarity computation we will only consider contributions

from the graphs in figure 2 when they have a physical two-particle cut. In particular, to be

consistent with our approach for the S-matrix we ignore the latter two tadpole diagrams

and restrict our attention to the first diagram. It therefore follows that, in the unitarity

computation, external leg corrections will only play a role at one loop in theories with cubic

vertices. In the context of generalized unitarity, as we discussed in section 2.1, tadpole

diagrams may not be negligible and therefore there is no guarantee that our procedure

will provide the whole result. However the precise cancellation we observe in the specific

example we discuss later is a clear indication of the validity of our result up to a shift in

the coupling (for a more detailed discussion see section 3.2.4).

The computation of correlation functions by generalized unitarity was extensively an-

alyzed in four dimensions in [38] in which it was shown that the object that needs to be

put on either side of the cut is a form factor5 as shown in figure 3. However, let us also

note that we will want to expand around the on-shell condition and hence we ask that

the diagram should have a physical cut even when the external leg is on-shell. This places

a restriction on the masses of the particles involved. In particular they should take the

following form; m1, m2 and m1 −m2, where we take m1 > m2.

5For the use of form factors in unitarity computations in higher dimensions see also [39].
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Figure 3. Cut of a two-point function obtained by fusing two form factors. The double line

indicates an off-shell state.

Now taking figure 3 with a mass m1 − m2 external particle,6 internal particles with

masses m1 and m2 corresponding to momentum l1 and l2 and returning p off-shell, the

explicit expression for this diagram is given by

Σ(1)(p)|cut =

∫
d2l1

(2π)2
iπ δ+(l1

2 −m1) iπ δ+((l1 − p)2 −m2)

×F (0)
RS(p, l1, l1 − p)F (0)

RS

†
(p, l1, l1 − p) . (2.36)

Here, as in the unitarity computation of the S-matrix, the cut completely freezes the

internal momenta:

l1 =
m2

1 −m2
2 + p2 −

√
∆

2 p2
p ≡ l∗ , (2.37)

p− l1 =
m2

2 −m2
1 + p2 +

√
∆

2 p2
p ≡ l′∗ , (2.38)

where ∆ = p4 +m4
1 +m4

2−2m2
1p2−2m2

2p2−2m2
1m

2
2. It therefore follows that we can pull

the numerators out of the integrand and uplift the integral as was done for the four-point

amplitude. This gives

Σ(1)(p) =
1

2

∣∣∣F (0)
RS(p, l∗, l

′
∗)
∣∣∣2 I(p2,m1,m2) , (2.39)

with the integral I(p2,m1,m2) defined in (2.7). In section 3.2.4 we will apply this formula

to a specific example and we will also point out the limits of its application.

2.4 Structure of the result

To conclude this section let us make some remarks about the features of the result that

are relevant for the integrable light-cone gauge S-matrices for strings in AdS3 × S3 ×M4

backgrounds. These theories all have the property that the massive excitations can be

grouped into particles and antiparticles transforming with charge σ = +1 and σ = −1

6This will be the case we consider for AdS3 × S3 × S3 × S1. One can also consider a mass m1 external

particle and internal particles with masses m1−m2 and m2 (m1 > m2). In this case the two loop momenta

in figure 3 should be pointing in the same direction.
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under a global U(1) symmetry. Furthermore, not only is the set of incoming momenta

preserved by the scattering process, but so are the U(1) charges associated to the individual

momenta, i.e. σM = σP and σN = σQ. The general structure of the S-matrix is then

SPQMN (p, p′) = exp[i$σMσN (p, p′)]ŜPQMN (p, p′) , (2.40)

where $ are the phases and the matrix structure Ŝ is fixed by the symmetry of the the-

ory. Each of these objects admit a perturbative expansion at strong coupling (i.e. around

h =∞):

S = 1 + i
∞∑
n=1

h−nT (n−1) ,

Ŝ = 1 + i

∞∑
n=1

h−nT̂ (n−1) , $σMσN (p, p′) =

∞∑
n=1

h−n$(n−1)
σMσN

(p, p′) . (2.41)

Furthermore, as Ŝ is fixed by symmetries it should contain no logarithmic functions of the

momenta. Therefore, all the logarithms are contained in the phases, and to the one-loop

order we can separate these off as follows

$(0)
σMσN

(p, p′) = φ(0)
σMσN

(p, p′) , $(1)
σMσN

(p, p′) = `σMσN (p, p′) θ + φ(1)
σMσN

(p, p′) . (2.42)

Here θ, defined in eq. (2.15), is the only possible logarithm appearing at one loop, and

φ
(n)
σMσN are rational functions of the momenta.

Substituting eqs. (2.41) and (2.42) into (2.40) we find

T (0) = φ(0)
σMσN

(p, p′) 1 + T̂ (0) , (2.43)

T (1) = `σMσN (p, p′) θ 1 +
i

2

[
φ(0)
σMσN

(p, p′)
]2

1 + φ(1)
σMσN

(p, p′) 1

+ iφ(0)
σMσN

(p, p′) T̂ (0) + T̂ (1) . (2.44)

Let us compare the structure of the one-loop result following from integrability (2.44)

with that following from unitarity methods (2.21), (2.29). The comparison between the

two expressions leads to the following identifications (note that by definition the functions

`σMσN and φ
(n)
σMσN are real)

1

2π
(T (0) u T (0) − T (0) s T (0)) = `σMσN (p, p′) 1 , (2.45)

1

2
T (0) s T (0) =

1

2

[
φ(0)
σMσN

(p, p′)
]2

1 + φ(0)
σMσN

(p, p′) T̂ (0) + Im(T̂ (1))

⇒ 1

2
T̂ (0) s T̂ (0) = Im(T̂ (1)) , (2.46)

1

16π
(

1

m2
T̃ (0) t

← T (0) +
1

m′2
T (0) t

→ T̃ (0)) + (Σ
(1)
1 (p) + Σ

(1)
1 (p′))T (0)

= φ(1)
σMσN

(p, p′) 1 + Re(T̂ (1)) , (2.47)
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where we have assumed that T (0) is real, which will indeed be the case for all the models

we consider. For the rational terms coming from the s-channel in (2.46) we have simplified

the expression that needs to be checked by substituting in for T (0) (2.43) and using that

1 s 1 = 1, T̂ (0) s 1 = T̂ (0) and 1 s T̂ (0) = T̂ (0) are satisfied by definition (see eq. (2.8)).

In (2.47) we have also included a possible contribution from external leg corrections to the

real rational part of T (1) (see eq. (2.35)), as discussed in section 2.3. Eqs. (2.45), (2.46)

and (2.47) are therefore the three equations that we need to check to see how much of the

exact S-matrix is recovered from the unitarity construction.

Factoring out an overall phase factor as in (2.40) clearly contains a degree of arbitrari-

ness. Of course, this choice should not affect the final result, however, there are certain

choices that interplay well with the unitarity construction. In particular, if there is a scat-

tering process for which the only possible outgoing two-particle state is the incoming state

(M = P = M∗, N = Q = N∗), then the corresponding amplitude must be a phase factor.

In this case we can set

ŜM∗N∗M∗N∗
= 1 , (2.48)

where M∗ and N∗ are fixed and there is no sum. This choice is consistent with (2.46) —

both sides are clearly vanishing by construction. Furthermore, φ(1) is just given by the

t-channel contraction (plus possible external leg corrections) with indices M = P = M∗,

N = Q = N∗.

3 Massive sector for AdS3 × S3 × M4 supported RR flux

In this section we apply the methods of section 2 to the massive sectors of the AdS3×S3×T 4

and AdS3 × S3 × S3 × S1 light-cone gauge-fixed string theories supported by RR flux.

3.1 Exact and tree-level S-matrices

We start by reviewing some of the available results for the light-cone gauge S-matrices for

the AdS3 × S3 ×M4 string theories supported by RR flux.

3.1.1 Massive sector for AdS3 × S3 × T 4

The quadratic light-cone gauge-fixed action for the AdS3 × S3 × T 4 background describes

4 + 4 massive and 4 + 4 massless fields. Here we will just consider the scattering of two

massive excitations to two massive excitations. The S-matrix of the theory was fixed up

to two phases in [30] using symmetries.

Thinking of the particle content of the massive sector as 2 + 2 complex degrees of free-

dom, we label these fields as Φϕϕ, Φψψ, Φϕψ and Φψϕ, and their complex conjugates as Φϕ̄ϕ̄,

Φψ̄ψ̄, Φϕ̄ψ̄ and Φψ̄ϕ̄, where we understand ϕ, ϕ̄ as bosonic and ψ, ψ̄ as fermionic indices.

As a consequence of the symmetries and integrability of the theory, the

S-matrix factorizes:

S |ΦMṀ (p)ΦNṄ (p′)〉 = (−1)[Ṁ ][N ]+[Ṗ ][Q]SPQMN (p, p′)SṖ Q̇
ṀṄ

(p, p′) |ΦPṖ (p)ΦQQ̇(p′)〉 , (3.1)

where the indices take the following values: {ϕ, ϕ̄, ψ, ψ̄}. One can check that the construc-

tion outlined in section 2 gives the same one-loop result whether we consider the factorized
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or full S-matrix. Therefore, for simplicity we will work with the former. The general

structure of the factorized S-matrix takes the form given in (2.40) with σϕ = σψ = +

and σϕ̄ = σψ̄ = −. Charge conjugation symmetry implies that φ++ = φ−−, φ+− = φ−+,

`++ = `−− and `+− = `−+. Therefore, in the following we will focus on the ++ and +−
sectors. A typical feature of the uniform light-cone gauge is the dependence of the phase

on a gauge-fixing parameter a. This dependence has the following exact form

exp

[
i

2

(
a− 1

2

)
(ε′p− εp′)

]
, (3.2)

where the all-order energies ε are defined in appendix A.1.

As we discussed in section 2.4 we define the overall phase factors by setting particular

components of ŜPQMN to one

Ŝϕϕϕϕ(p, p′) = 1 , Ŝϕψ̄
ϕψ̄

(p, p′) = 1 . (3.3)

The parametrizing functions of the exact S-matrix are defined as

Sϕϕϕϕ(p, p′) = A++(p, p′) Sϕϕ̄ϕϕ̄(p, p′) = A+−(p, p′)

Sϕψϕψ (p, p′) = B++(p, p′) Sψψ̄ϕϕ̄ (p, p′) = B+−(p, p′)

Sψϕϕψ (p, p′) = C++(p, p′) Sϕψ̄
ϕψ̄

(p, p′) = C+−(p, p′)

Sψϕψϕ(p, p′) = D++(p, p′) Sψϕ̄ψϕ̄(p, p′) = D+−(p, p′)

Sϕψψϕ(p, p′) = E++(p, p′) Sψψ̄
ψψ̄

(p, p′) = E+−(p, p′)

Sψψψψ (p, p′) = F++(p, p′) Sϕϕ̄
ψψ̄

(p, p′) = F+−(p, p′) (3.4)

with the functions in string frame given by [30]

A++(p, p′) = S11
++(p, p′) , B++(p, p′) = S11

++(p, p′)
x′+ − x+

x′+ − x−
1

ν
,

C++(p, p′) = S11
++(p, p′)

x′+ − x′−

x′+ − x−
η

η′

√
ν ′

ν
, D++(p, p′) = S11

++(p, p′)
x′− − x−

x′+ − x−
ν ′ ,

E++(p, p′) = S11
++(p, p′)

x+ − x−

x′+ − x−
η′

η

√
ν ′

ν
, F++(p, p′) = S11

++(p, p′)
x′− − x+

x′+ − x−
ν ′

ν
,

(3.5)

A+−(p, p′) = S11
+−(p, p′)

1− 1
x+ x′−

1− 1
x− x′−

ν , B+−(p, p′) = −S11
+−(p, p′)

i ηη′

x−x′−
1

1− 1
x− x′−

(νν ′)−
1
2 ,

C+−(p, p′) = S11
+−(p, p′) , D+−(p, p′) = S11

+−(p, p′)
1− 1

x+ x′+

1− 1
x− x′−

νν ′ ,

E+−(p, p′) = S11
+−(p, p′)

1− 1
x− x′+

1− 1
x− x′−

ν ′ , F+−(p, p′) = −S11
+−(p, p′)

i ηη′

x+x′+
1

1− 1
x− x′−

(νν ′)
3
2 .

(3.6)
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The definitions of the variables x± entering these expressions are given for general mass

in appendix A.1. Here the masses should be set to one. The functions S11
++(p, p′) and

S11
+−(p, p′) are two overall phase factors, i.e. in the notation of eq. (2.42) S11

σMσN
(p, p′) =

ei$
11
σMσN

(p,p′). The superscripts refer to the masses of the two particles being scattered.

These phase factors are not fixed by symmetry. They are, however, constrained by crossing

symmetry and a conjecture for their exact expressions was given in [31], supported by

semiclassical one-loop computations [34, 35]. More details are given in appendix B.

The input needed to apply the unitarity construction described in section 2 is the

tree-level S-matrix. Various components were computed directly in [23, 24]. These are

consistent with the near-BMN expansion of the exact result (3.5), (3.6), for which we recall

that the integrable coupling used in the definition of x± has the expansion h(h) = h+O(h0)

and to take the near-BMN limit the spatial momenta should first be rescaled; p→ p
h . The

remaining components of the tree-level S-matrix can then be fixed from the expansion of

the exact result. Here we shall present the result in the gauge a = 1
2 as the dependence on a

goes through the unitarity procedure without any particular subtlety, i.e. it exponentiates

as in eq. (3.2). The tree-level S-matrix reads

A
(0)
++(p, p′) =

(p+ p′)2

4(e′p− ep′)
, B

(0)
++(p, p′) =

p′2 − p2

4(e′p− ep′)
,

C
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, D

(0)
++(p, p′) = − p′2 − p2

4(e′p− ep′)
,

E
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, F

(0)
++(p, p′) = − (p+ p′)2

4(e′p− ep′)
,

(3.7)

A
(0)
+−(p, p′) =

(p− p′)2

4(e′p− ep′)
, B

(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
,

C
(0)
+−(p, p′) =

p′2 − p2

4(e′p− ep′)
, D

(0)
+−(p, p′) = − p′2 − p2

4(e′p− ep′)
,

E
(0)
+−(p, p′) = − (p− p′)2

4(e′p− ep′)
, F

(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
.

(3.8)

3.1.2 Massive sector for AdS3 × S3 × S3 × S1

The quadratic light-cone gauge-fixed action for theAdS3×S3×S3×S1 background describes

particles with four different masses. The field content is summarised in table 1. Here we

will focus on the scattering of massive states with masses α and ᾱ = 1− α.

Let us first analyze the S-matrix for AdS3×S3×S3×S1 describing the scattering of two

particles of mass α.7 When we restrict to this sector the S-matrix has the same structure

as the factorized S-matrix for AdS3 × S3 × T 4, again taking the form given in (2.40). The

tree-level S-matrix, however, is different and this will have non-trivial consequences for

the unitarity calculation. Compared to the AdS3 × S3 × T 4 case the dependence on the

7For particles of mass ᾱ the corresponding result can be obtained simply by replacing α with ᾱ.
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Fields Mass

ϕ1, ϕ̄1, χ
1, χ̄1 m1 = 1

ϕ2, ϕ̄2, χ
2, χ̄2 m2 = α

ϕ3, ϕ̄3, χ
3, χ̄3 m3 = ᾱ

ϕ4, ϕ̄4, χ
4, χ̄4 m4 = 0

Table 1. Field content of the AdS3 × S3 × S3 × S1 light-cone gauge-fixed string theory.

gauge-fixing parameter a is modified due to the fact that this is now the full S-matrix. The

new expression reads

exp
[
i(a− 1

2)(ε′p− εp′)
]
. (3.9)

We again use (3.3) to choose the overall phase factors and define the parametrizing

functions as in eq. (3.4).8 The exact result reads [28, 29]

A++(p, p′) = Sαα++(p, p′) , B++(p, p′) = Sαα++(p, p′)
x′+ − x+

x′+ − x−
1

ν
,

C++(p, p′) = Sαα++(p, p′)
x′+ − x′−

x′+ − x−
η

η′

√
ν ′

ν
, D++(p, p′) = Sαα++(p, p′)

x′− − x−

x′+ − x−
ν ′ ,

E++(p, p′) = Sαα++(p, p′)
x+ − x−

x′+ − x−
η′

η

√
ν ′

ν
, F++(p, p′) = Sαα++(p, p′)

x′− − x+

x′+ − x−
ν ′

ν
,

(3.10)

A+−(p, p′) = Sαα+−(p, p′)
1− 1

x+ x′−

1− 1
x− x′−

ν , B+−(p, p′) = −Sαα+−(p, p′)
i ηη′

x−x′−
1

1− 1
x− x′−

(νν ′)−
1
2 ,

C+−(p, p′) = Sαα+−(p, p′) , D+−(p, p′) = Sαα+−(p, p′)
1− 1

x+ x′+

1− 1
x− x′−

νν ′ ,

E+−(p, p′) = Sαα+−(p, p′)
1− 1

x− x′+

1− 1
x− x′−

ν ′ , F+−(p, p′) = −Sαα+−(p, p′)
i ηη′

x+x′+
1

1− 1
x− x′−

(νν ′)
3
2 .

(3.11)

The structure of the S-matrix is identical to (3.5) and (3.6), the only differences being the

overall phase factors, Sαα++(p, p′) and Sαα+−(p, p′), and that in the definition of the variables

x± given in appendix A.1 the mass should be set to α. The phase factors Sαα±± and Sαα±∓
have been computed semiclassically in [36].

Various components of the tree-level S-matrix were computed directly in [23, 24]. These

are consistent with the near-BMN expansion of the exact result (3.10), (3.11). As in the

AdS3 × S3 × T 4 case, the remaining components of the tree-level S-matrix can then be

fixed from the expansion of the exact result. We shall present the result in the gauge a = 1
2

8To be precise we use the definitions (3.4) with the replacements ϕ → ϕ2 and ψ → χ2 and likewise for

their conjugates.
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as the dependence on a again goes through the unitarity procedure without any particular

subtlety, i.e. it exponentiates as in eq. (3.9). The tree-level S-matrix reads

A
(0)
++(p, p′) =

α(p+ p′)2

2(e′p− ep′)
, B

(0)
++(p, p′) =

αp′(p+ p′)

2(e′p− ep′)
,

C
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, D

(0)
++(p, p′) =

αp(p+ p′)

2(e′p− ep′)
,

E
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, F

(0)
++(p, p′) = 0 ,

(3.12)

A
(0)
+−(p, p′) =

α(p− p′)2

2(e′p− ep′)
, B

(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
,

C
(0)
+−(p, p′) =

αp′(p′ − p)
2(e′p− ep′)

, D
(0)
+−(p, p′) =

αp(p− p′)
2(e′p− ep′)

,

E
(0)
+−(p, p′) = 0 , F

(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
.

(3.13)

Let us now turn our attention to the scattering between a mode with mass α and

one with mass ᾱ = 1 − α. There are no surprises regarding the gauge-fixing parameter

a, i.e. eq. (3.9) also holds for the two mass scattering. We again define the parametrizing

functions as

Sϕ2ϕ3
ϕ2ϕ3

(p, p′) = A++(p, p′) Sϕ2ϕ̄3
ϕ2ϕ̄3

(p, p′) = A+−(p, p′)

Sϕ2χ3

ϕ2χ3 (p, p′) = B++(p, p′) Sχ
2χ̄3

ϕ2ϕ̄3
(p, p′) = B+−(p, p′)

Sχ
2ϕ3

ϕ2χ3 (p, p′) = C++(p, p′) Sϕ2χ̄3

ϕ2χ̄3 (p, p′) = C+−(p, p′)

Sχ
2ϕ3

χ2ϕ3
(p, p′) = D++(p, p′) Sχ

2ϕ̄3

χ2ϕ̄3
(p, p′) = D+−(p, p′)

Sϕ2χ3

χ2ϕ3
(p, p′) = E++(p, p′) Sχ

2χ̄3

χ2χ̄3 (p, p′) = E+−(p, p′)

Sχ
2χ3

χ2χ3 (p, p′) = F++(p, p′) Sϕ2ϕ̄3

χ2χ̄3 (p, p′) = F+−(p, p′) (3.14)

with the functions in string frame given by [28, 29]

A++(p, p′) = Sαᾱ++(p, p′) , B++(p, p′) = Sαᾱ++(p, p′)
y′+ − x+

y′+ − x−
1

ν
,

C++(p, p′) = Sαᾱ++(p, p′)
y′+ − y′−

y′+ − x−
η

η′

√
ν ′

ν
, D++(p, p′) = Sαᾱ++(p, p′)

y′− − x−

y′+ − x−
ν ′ ,

E++(p, p′) = Sαᾱ++(p, p′)
x+ − x−

y′+ − x−
η′

η

√
ν ′

ν
, F++(p, p′) = Sαᾱ++(p, p′)

y′− − x+

y′+ − x−
ν ′

ν
,

(3.15)
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A+−(p, p′) = Sαᾱ+−(p, p′)
1− 1

x+ y′−

1− 1
x− y′−

ν , B+−(p, p′) = −Sαᾱ+−(p, p′)
i ηη′

x−y′−
1

1− 1
x− y′−

(νν ′)−
1
2 ,

C+−(p, p′) = Sαᾱ+−(p, p′) , D+−(p, p′) = Sαᾱ+−(p, p′)
1− 1

x+ y′+

1− 1
x− y′−

νν ′ ,

E+−(p, p′) = Sαᾱ+−(p, p′)
1− 1

x− y′+

1− 1
x− y′−

ν ′ , F+−(p, p′) = −Sαᾱ+−(p, p′)
i ηη′

x+y′+
1

1− 1
x− y′−

(νν ′)
3
2 .

(3.16)

Here we have defined the overall phase factors by setting

Ŝϕ2ϕ3
ϕ2ϕ3

(p, p′) = 1 , Ŝϕ2χ̄3

ϕ2χ̄3 (p, p′) = 1 . (3.17)

The phase factors Sαᾱ±± and Sαᾱ±∓ have been computed semiclassically at one loop in [36].

As before, the tree-level S-matrix can be extracted from the near-BMN expansion of

the exact result along with those amplitudes computed in [23, 24]. For a = 1
2 (again the

contribution of the gauge-fixing parameter a to the unitarity computation goes through

without any particular subtlety) it is given by

A
(0)
++(p, p′) = 0 , B

(0)
++(p, p′) = −p(ᾱp+ αp′)

2(e′p− ep′)
,

C
(0)
++(p, p′) = pp′

√
(e+p)(e′−p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, D

(0)
++(p, p′) = −p

′(ᾱp+ αp′)

2(e′p− ep′)
,

E
(0)
++(p, p′) = pp′

√
(e+p)(e′−p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, F

(0)
++(p, p′) = −(p+ p′)(ᾱp+ αp′)

2(e′p− ep′)
,

(3.18)

A
(0)
+−(p, p′) = 0 , B

(0)
+−(p, p′) = pp′

√
(e−p)(e′+p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
,

C
(0)
+−(p, p′) = −p(ᾱp− αp

′)

2(e′p− ep′)
, D

(0)
+−(p, p′) =

p′(ᾱp− αp′)
2(e′p− ep′)

,

E
(0)
+−(p, p′) = −(p− p′)(ᾱp− αp′)

2(e′p− ep′)
, F

(0)
+−(p, p′) = pp′

√
(e−p)(e′+p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
.

(3.19)

3.1.3 A general tree-level S-matrix for the AdS3 × S3 × M4 theories

Comparing the expressions (3.7), (3.8), (3.12), (3.13), (3.18) and (3.19) we notice their

similarity. In particular, they all differ from one another by a term proportional to the

identity. Therefore in this section we will introduce an additional parameter β along with

two generic masses m and m′, such that, for particular values of these three parameters

the tree-level S-matrices are recovered. The advantage of this approach is that it demon-

strates how some quantities in the one-loop result are common to all three theories (i.e.

β-independent) up to the right assignment of the masses.
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(β,m,m′) Theory

(0, α, ᾱ) AdS3 × S3 × S3 × S1 (two mass scattering)

(1
2 , 1, 1) AdS3 × S3 × T 4

(1, α, α) AdS3 × S3 × S3 × S1 (one mass scattering)

Table 2. Assignments of parameters for the various theories of interest.

To be concrete the expression for the general tree-level S-matrix is (we use the notation

β̄ = (1− β))

A
(0)
++(p, p′) = β

(p+ p′)(m′p+mp′)

2(e′p− ep′)
, B

(0)
++(p, p′) =

(βp′ − β̄p)(m′p+mp′)

2(e′p− ep′)
,

C
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, D

(0)
++(p, p′) =

(βp− β̄p′)(m′p+mp′)

2(e′p− ep′)
,

E
(0)
++(p, p′) = pp′

√
(e+ p)(e′ − p′) +

√
(e− p)(e′ + p′)

2(e′p− ep′)
, F

(0)
++(p, p′) = −β̄ (p+ p′)(m′p+mp′)

2(e′p− ep′)
,

A
(0)
+−(p, p′) = β

(p− p′)(m′p−mp′)
2(e′p− ep′)

, B
(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
,

C
(0)
+−(p, p′) =

(β̄p+ βp′)(mp′ −m′p)
2(e′p− ep′)

, D
(0)
+−(p, p′) =

(β̄p′ + βp)(m′p−mp′)
2(e′p− ep′)

,

E
(0)
+−(p, p′) = −β̄ (p− p′)(m′p−mp′)

2(e′p− ep′)
, F

(0)
+−(p, p′) = pp′

√
(e− p)(e′ + p′)−

√
(e+ p)(e′ − p′)

2(e′p− ep′)
.

(3.20)

The explicit assignments that need to be made to recover the various tree-level S-matrices

given in the previous section are shown in table 2. For most of the unitarity computa-

tion however, we will keep general values of β, m and m′ so as to better understand the

dependence of the result on these parameters.

3.2 Result from unitarity techniques

In this section we compute the one-loop S-matrix from unitarity methods for the light-cone

gauge-fixed string theories in the AdS3 × S3 × T 4 and AdS3 × S3 × S3 × S1 backgrounds

supported by RR flux. As explained in section 2.4, we will split the result according to

eqs. (2.45), (2.46) and (2.47), where we recall that we have chosen Sϕϕϕϕ = A++(p, p′) and

Sϕψ̄
ϕψ̄

= C+−(p, p′) as the overall phase factors.

In the general construction described in section 2.2, we found that when scattering a

particle of mass m with one of mass m′, the s- and u-channel contributions are just given in

terms of the tree-level S-matrices for the same scattering configuration. Therefore, as the

logarithmic terms (2.45) and the rational terms (2.46) only come from the s-channel and

u-channel contributions, for these we can work with the general (β-dependent) tree-level

S-matrix (3.20). For the t-channel contribution (2.47) one needs to combine different tree-

level S-matrices, for example the scattering of two particles of mass m with the scattering

of a particle of mass m with one of mass m′. Hence for these terms we will need to restrict

to the specific values of β, m and m′ given in table 2.
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3.2.1 Coefficients of the logarithms

We start by briefly reviewing the work of [2]. As discussed in section 2.4 one should always

be able to include the logarithmic terms of the S-matrix in the phases. Therefore at one

loop we expect them to only contribute to the diagonal terms. In [2] the authors proved

that this is indeed the case and that furthermore, the particular combination governing the

logarithmic dependence does not depend on the diagonal components of the tree-level S-

matrix. Therefore, the one-loop logarithmic terms following from the unitarity construction

for the general tree-level S-matrix (3.20) will be β-independent. Indeed,

`++(p, p′) = − p2p′2

4π(ee′ − pp′ −mm′)
, (3.21)

`+−(p, p′) = − p2p′2

4π(ee′ − pp′ +mm′)
, (3.22)

where the functions `σMσN were introduced in eq. (2.42). Although not transparent from

this expression, these functions can be expressed as

`++(p, p′) = − 1

2π
C

(0)
++(p, p′)E

(0)
++(p, p′) , (3.23)

`+−(p, p′) = − 1

2π
B

(0)
+−(p, p′)F

(0)
+−(p, p′) . (3.24)

As pointed out in [2] the fact that these functions can be expressed in terms of the entries

of the tree-level S-matrix is clear from the unitarity construction. In the next section we

will show how this property extends to the rational part following from the s-channel.

3.2.2 Rational terms from the s-channel

In section 2.4 we described how the contributions to the rational part of the S-matrix in

the unitarity calculation are split between the s-channel (2.46) and t-channel (2.47). Let

us start by considering the s-channel, for which we can work with the general β-dependent

tree-level S-matrix (3.20). From eq. (2.46) it is clear that we can restrict our attention

to Im(T̂ (1)), where we recall that T̂ (0) and T̂ (1) are the tree-level and one-loop terms

in the expansion of the S-matrix with the overall phase factors, Sϕϕϕϕ = A++(p, p′) and

Sϕψ̄
ϕψ̄

= C+−(p, p′), set to one. The result from the unitarity calculation is (2.46)

1

2
T̂ (0) s T̂ (0) . (3.25)

Below we give the components of (3.25). These are in perfect agreement with the one-

loop expansion of the exact results (3.5), (3.6), (3.10), (3.11), (3.15) and (3.16) for the

appropriate assignments of the masses m and m′, see table 2. The one-loop expressions are

Â
(1)
++(p, p′) = 0 ,

B̂
(1)
++(p, p′) =

1

2

[
p(m′p+mp′)

2(e′p− ep′)

]2

+
1

2

[
pp′
√

(e+ p)(e′ − p′) +
√

(e− p)(e′ + p′)

2(e′p− ep′)

]2

,
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Ĉ
(1)
++(p, p′) = −1

2

[
(p+ p′)(m′p+mp′)

2(e′p− ep′)

][
pp′
√

(e+ p)(e′ − p′) +
√

(e− p)(e′ + p′)

2(e′p− ep′)

]
,

D̂
(1)
++(p, p′) =

1

2

[
p′(m′p+mp′)

2(e′p− ep′)

]2

+
1

2

[
pp′
√

(e+ p)(e′ − p′) +
√

(e− p)(e′ + p′)

2(e′p− ep′)

]2

,

Ê
(1)
++(p, p′) = −1

2

[
(p+ p′)(m′p+mp′)

2(e′p− ep′)

][
pp′
√

(e+ p)(e′ − p′) +
√

(e− p)(e′ + p′)

2(e′p− ep′)

]
,

F̂
(1)
++(p, p′) =

1

2

[
(p+ p′)(m′p+mp′)

2(e′p− ep′)

]2

. (3.26)

Â
(1)
+−(p, p′) =

1

2

[
p(m′p−mp′)
2(e′p− ep′)

]2

+
1

2

[
pp′
√

(e+ p)(e′ − p′)−
√

(e− p)(e′ + p′)

2(e′p− ep′)

]2

,

B̂
(1)
+−(p, p′) = −1

2

[
(p+ p′)(m′p−mp′)

2(e′p− ep′)

][
pp′
√

(e+ p)(e′ − p′)−
√

(e− p)(e′ + p′)

2(e′p− ep′)

]
,

Ĉ
(1)
+−(p, p′) = 0 ,

D̂
(1)
+−(p, p′) =

1

2

[
(p+ p′)(m′p−mp′)

2(e′p− ep′)

]2

,

Ê
(1)
+−(p, p′) =

1

2

[
p′(m′p−mp′)
2(e′p− ep′)

]2

+
1

2

[
pp′
√

(e+ p)(e′ − p′)−
√

(e− p)(e′ + p′)

2(e′p− ep′)

]2

,

F̂
(1)
+−(p, p′) = −1

2

[
(p+ p′)(m′p−mp′)

2(e′p− ep′)

][
pp′
√

(e+ p)(e′ − p′)−
√

(e− p)(e′ + p′)

2(e′p− ep′)

]
.

(3.27)

Although there are simpler ways to express this result, we have chosen this form in order to

explicitly show the connection with the tree-level functions. The β-independence of (3.26)

and (3.27) is expected since β appears only in the phases. As explained earlier in this

section and in section 2.4, to check the s-channel rational terms we do not need to consider

the overall phase factors and hence they have been set to one.

Note that expressions for the components of 1
2T

(0) s T (0) in terms of tree-level functions

are given in [2] for AdS3 × S3 × T 4. These formulae also hold for the general tree-level

S-matrix (3.20), however, they will depend on β, which drops out only if we consider
1
2 T̂

(0) s T̂ (0) as above. To see explicitly how this works let us consider F++.9 From [2] the

one-loop expression for F++ is simply given by

F
(1)
++ =

1

2
[F

(0)
++]2 , (3.28)

however when we consider (3.25) (taking into account that φ
(0)
++ = A

(0)
++) we find

F̂
(1)
++ =

1

2
[F̂

(0)
++]2 =

1

2
[F

(0)
++ −A

(0)
++]2 . (3.29)

Comparing the expressions for F
(0)
++ and A

(0)
++ we can then observe the cancellation of β. A

9For the remainder of this section the dependence on p and p′ is understood.
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similar story holds for the other components

Â
(1)
++ = 0 , B̂

(1)
++ =

1

2
[B

(0)
++ −A

(0)
++]2 +

1

2
C

(0)
++E

(0)
++ ,

Ĉ
(1)
++ =

1

2
[B

(0)
++ +D

(0)
++ − 2A

(0)
++]C

(0)
++ , D̂

(1)
++ =

1

2
[D

(0)
++ −A

(0)
++]2 +

1

2
C

(0)
++E

(0)
++ ,

Ê
(1)
++ =

1

2
[B

(0)
++ +D

(0)
++ − 2A

(0)
++]E

(0)
++ , F̂

(1)
++ =

1

2
[F

(0)
++ −A

(0)
++]2 . (3.30)

Â
(1)
+− =

1

2
[A

(0)
+− − C

(0)
+−]2 +

1

2
B

(0)
+−F

(0)
+− , B̂

(1)
+− =

1

2
[A

(0)
+− + E

(0)
+− − 2C

(0)
+−]B

(0)
+− ,

Ĉ
(1)
+− = 0 , D̂

(1)
+− =

1

2
[D

(0)
+− − C

(0)
+−]2 ,

Ê
(1)
+− =

1

2
[E

(0)
+− − C

(0)
+−]2 +

1

2
B

(0)
+−F

(0)
+− , F̂

(1)
+− =

1

2
[A

(0)
+− + E

(0)
+− − 2C

(0)
+−]F

(0)
+− . (3.31)

The validity of these relations is rather general and can be applied to any S-matrix with

the same underlying structure. In particular, this allows us to use them for the mixed flux

case in section 4.

3.2.3 The t-channel contribution and the dressing phases

As explained in section 2 the t-channel cut requires a non-trivial generalization of the

procedure used for the AdS5×S5 case [1]. Furthermore, the t-channel cut for the scattering

of two masses depends on the tree-level S-matrices for the scattering of the same and

different masses. Therefore, in this section it only makes sense to work with the parameters

β, m and m′ for the three cases of interest, as given in table 2. Inputting the tree-level S-

matrices (3.7), (3.8), (3.12), (3.13), (3.18) and (3.19) into eq .(2.28) and splitting the result

as in eq. (2.47) we find for all three scattering processes (AdS3×S3×T 4, AdS3×S3×S3×S1

same mass and AdS3×S3×S3×S1 different mass) the one-loop phases can be written in

the following general form

φ
(1)
++(p, p′) =

p p′(m′p+mp′)2

8πmm′(e′p− ep′)
, (3.32)

φ
(1)
+−(p, p′) = − p p′(m′p−mp′)2

8πmm′(e′p− ep′)
. (3.33)

The real part of the one-loop cut-constructible S-matrix that is not part of the overall

phase factors is given by

Re(T̂ (1))|unit. =
1

4π
|1− 2β|

(
p2

m
+
p′2

m′

)
T (0) . (3.34)

It is important to emphasise that even though we have written them in terms of β, m and

m′ the results (3.32), (3.33) and (3.34) are only valid for the assignments in table 2.

Two comments are in order here. First, eq. (3.34) is proportional to |1−2β|. Therefore,

this term vanishes for AdS3×S3×T 4, but does not for AdS3×S3×S3×S1. However, we

should recall that this is only the contribution to Re(T̂ (1)) coming from unitarity and there

are potentially additional terms arising from external leg corrections (2.47). Indeed, one
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of the main differences between AdS3×S3×T 4 and AdS3×S3×S3×S1 is that the light-

cone gauge-fixed Lagrangian of the latter has cubic terms. Furthermore, the tree-level form

factor for one off-shell and two on-shell particles is non-zero and as a consequence non-trivial

external leg corrections are already present at one loop in the unitarity construction, as

described in section 2.3. As we will see in the following section these precisely cancel (3.34)

and re-establish agreement with the exact result.10,11

The second comment concerns eqs. (3.21), (3.22), (3.32) and (3.33), which combined

have a natural interpretation as the one-loop contributions to the phases. It is interesting

to note that they are independent of β, indicating that the phases for all three scattering

processes should be related. This agrees with the semiclassical computation [15].12 A

natural question is whether this relation extends to all orders in the coupling. Although

this goes beyond the scope of this work, to facilitate comparison with the literature [31] we

will rewrite the result in terms of the standard strong coupling variables x and y, which

we have defined in (A.6) and (A.7)

$
(1)
++(p, p′) = −mm

′

π

x2

x2 − 1

y2

y2 − 1

×
[

(x+ y)2(1− 1
xy )

(x2 − 1)(x− y)(y2 − 1)
+

2

(x− y)2
log

(
x+ 1

x− 1

y − 1

y + 1

)]
, (3.35)

$
(1)
+−(p, p′) = −mm

′

π

x2

x2 − 1

y2

y2 − 1

×
[

(xy + 1)2( 1
x −

1
y )

(x2 − 1)(xy − 1)(y2 − 1)
+

2

(xy − 1)2
log

(
x+ 1

x− 1

y − 1

y + 1

)]
. (3.36)

Here x corresponds to momentum p with mass m and y to momentum p′ with mass m′.

Finally, let us stress again that this expression is valid for all three cases summarized in

table 2. In particular, for m = m′ = 1 this is consistent with (B.12), where the overall sign

is compensated by the fact that eiϑσMσN
(p,p′) ∼ S11

σMσN
(p, p′)−1, see eqs. (B.1) and (B.2).

3.2.4 External leg corrections for AdS3 × S3 × S3 × S1

In this section we focus on the AdS3 × S3 × S3 × S1 background for which the unwanted

term (3.34) is present. With the aim of interpreting this missing term as a contribution

cancelled by external leg corrections let us review the results of [26, 27] for the one-loop

two-point functions. The near-BMN expansion of the light-cone gauge-fixed Lagrangian

can be schematically written as

L = L2 + h−
1
2L3 + h−1L4 + . . . . (3.37)

10Let us point out that a term like (3.34) in the one-loop S-matrix would prevent the latter from satisfying

the Yang-Baxter equation, conflicting with the integrability of the theory.
11It is interesting to note that in the two loop near-flat-space computation of [40] for the AdS5 × S5

light-cone gauge S-matrix the external leg corrections also cancelled unwanted terms arising from t-

channel graphs.
12In [36] the author states that the one-loop dressing phase of AdS3 × S3 × S3 × S1 is half that of

AdS3×S3×T 4. This is consistent given that we are considering the factorized S-matrix for AdS3×S3×T 4.
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The quadratic part is given by13

L2 = χ̄a(i/∂ −ma)χ
a + |∂ϕa|2 −m2

a|ϕa|2 , (3.38)

where our conventions are summarized in appendix A and we have introduced the index

a = 1, . . . , 4 with the respective masses listed in table 1. The cubic Lagrangian [26, 27] is

given by

L3 =

√
αᾱ

2

[
(χ1)Tγ3(i/∂ − α)ϕ2 χ

3 − i(χ1)Tγ3(i/∂ − ᾱ)ϕ3 χ
2 − 2(χ2)Tγ1∂1ϕ1 χ

3

+ χ̄2γ0(i/∂ − α)ϕ2 χ
4 + iχ̄3γ0(i/∂ − ᾱ)ϕ3 χ

4

−
(
χ̄2(1− γ3)χ2 − χ̄3(1− γ3)χ3 + 2α|ϕ2|2 − 2ᾱ|ϕ3|2

)
∂0ϕ4 + h.c.

]
.

(3.39)

Let us start by focusing on the tree-level processes following from the cubic Lagrangian.

The only processes allowed by two-dimensional kinematics involve a particle of mass 1

decaying into a particle of mass α and one of mass ᾱ and its reverse.14 The Feynman rules

associated to the relevant vertices are

ϕ1

χ2

χ3

χ1

ϕ2

χ3

χ1

χ2

ϕ3√
αᾱ

2
2 i γ1p1 , −

√
αᾱ

2
i γ3(/p2

+ α) , −
√
αᾱ

2
γ3(/p3

+ ᾱ) . (3.40)

To obtain the amplitude one should contract the external legs with the fermion polarizations

and enforce the on-shell condition. The three diagrams share the same on-shell kinematics,

i.e. denoting the incoming momentum of the heavy particle (with mass m1 = 1) as p1, the

outgoing momenta of the light particles are given by p2 = m2
m1

p1 and p3 = m3
m1

p1, where

m3 = m1−m2.15 Using the property that v(mip1) =
√
miv(p1) (see eq. (A.12)), it is clear

that both the second and the third diagrams vanish as (/p + 1)v(p) = 0. Furthermore, the

first diagram is also identically zero as a consequence of the identity v(p)Tγ1v(p) = 0.

One may ask how this is compatible with the result of [27] where the authors find a

non-vanishing expression for the one-loop correction to the propagators coming from the

13Here we stress that, although the theory is not Lorentz invariant beyond quadratic order, we are formally

rearranging the fermions into doublets for notational and computational convenience.
14Diagrams involving one massless leg are ruled out by two-dimensional kinematics. In the cubic La-

grangian (3.39) the massless modes always couple to massive modes of equal mass. It then follows that the

on-shell condition implies that the massless leg carries vanishing momentum.
15This is true under the assumption of a relativistic dispersion relation, which in this case holds just at

tree level.
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graph formed of two three-point vertices. Focusing on the one-loop contribution to the

self-energy of the heavy boson the result of [27] reads

Σ
(1)
0 (p) = i 〈ϕ1ϕ̄1〉(1) =

1

π2
(α logα+ ᾱ log ᾱ) p2 . (3.41)

This result is obtained setting p2 = 1 (i.e. putting the propagator on-shell) and its depen-

dence on p is a consequence of the lack of Lorentz invariance. In a unitarity computation

with the setup described in section 2.3 the two tree-level form factors appearing in figure 3

would be vanishing in the strict on-shell limit and this contribution would not be caught.

However, as discussed in section 2.3, our treatment ignored any kind of tadpole diagram

contributing to the external leg corrections. Moreover, as pointed out in [27] the contribu-

tion (3.41) can be understood as the one-loop term in the expansion of h(h). Combining

this observation with the fact that, in all the examples we have considered, ignoring tad-

pole diagrams gives the S-matrix up to corrections in h(h) we may argue that these are

coming from tadpole diagrams whose analysis would require the introduction of a regular-

ization (see also [27]). This is therefore an additional indication that unitarity techniques,

neglecting tadpoles, are blind to shifts in the coupling.

Therefore, we will consider the following alternative question. Are there are external leg

corrections that are caught by unitarity and which are relevant for the one-loop calculation?

In the S-matrix computation we consider scattering processes for which the external legs

have masses α or ᾱ. Therefore, the external leg corrections we compute come from diagrams

similar to the first graph in figure 2 with masses m1 = 1 and m2 = α or m2 = ᾱ.

We start by considering an external leg of mass α. Using the vertices in eq. (3.40) we

find the following form factors

ϕ2

χ1

χ3

p

l1

l2

= i

√
αᾱ

2
v(l1)Tγ3(/p− α)u(l2) , (3.42)

χ2

ϕ1

χ3

p

l1

l2

= i

√
αᾱ

2
2u(l2)Tγ1l1u(p) , (3.43)

χ2

χ1

ϕ3

p

l1

l2

=

√
αᾱ

2
v(l1)Tγ3(/l2 − ᾱ)u(p) . (3.44)

In order to apply the construction outlined in section 2.3 we need to compute eq. (2.39).

In particular, we are interested in expanding the form factor squared around the on-shell
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condition. Since we already know that the tree-level form factor vanishes on-shell, to get

the first order in the expansion there is no need to also expand the integral, i.e. it can be

evaluated strictly on-shell

I(α2, 1, ᾱ) = − i

4πᾱ
. (3.45)

Squaring the form factor (3.42) and expanding around the on-shell condition we find16

− iΣ(1)
1,ϕ2

(p) =
i

4πα
p2 . (3.46)

Comparing to (3.34) this result is promising. However, (3.46) holds only when the external

leg is a boson. A non-trivial check of our procedure is that when the external leg is a

fermion the correction, which comes from two terms associated to the diagrams (3.43)

and (3.44), is exactly the same as for the boson, i.e.

− iΣ(1)
1,χ2(p) =

i

4πα
p2 . (3.47)

One might have expected this from worldsheet supersymmetry as discussed in [26]. Here

we have computed the external leg corrections for a particle of mass α. From the symmetry

of the Lagrangian, it is clear that the result for a particle of mass ᾱ is just given by the

replacement α→ ᾱ.

Once the external leg contributions are computed we can apply eq. (2.35) to find their

contribution to the one-loop S-matrix. To be general, let us consider the scattering of a

particle of mass m with a particle of mass m′. Our result then reads

T
(1)
ext = − 1

4π

(
p2

m
+
p′2

m′

)
T (0) . (3.48)

This contribution exactly cancels (3.34) for β = 0 and β = 1. These are precisely the values

associated to the single and mixed mass scattering processes for AdS3×S3×S3×S1, and

hence we have established agreement between the unitarity calculation and the exact result

up to shifts in the coupling.

4 Massive sector for AdS3 × S3 × T 4 supported by mixed flux

In this section we apply the methods of section 2 to the massive sector of the AdS3 ×
S3 × T 4 light-cone gauge-fixed string theory supported by a mix of RR and NSNS fluxes.

We parameterize the relative strength of the two fluxes with a parameter q, with q = 0

corresponding to pure RR and q = 1 to pure NSNS flux. The symmetry algebras underlying

this theory and its S-matrix are the same for all q [17, 21, 25, 32] — the parameter q enters

through the form of the representation of the algebra on the states.

16A minus sign is included to take account of the fermion loop.
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4.1 Exact S-matrix and tree-level result

The quadratic light-cone gauge-fixed action for the AdS3×S3×T 4 background supported

by mixed flux again describes 4 + 4 massive and 4 + 4 massless fields. As usual we restrict

ourselves to considering the scattering of two massive excitations to two massive excitations.

Following the RR case described in section 3.1.1 we group the particle content of the massive

sector into 2 + 2 complex degrees of freedom (to recall, Φϕϕ, Φψψ, Φϕψ, Φψϕ, and their

complex conjugates Φϕ̄ϕ̄, Φψ̄ψ̄, Φϕ̄ψ̄, Φψ̄ϕ̄). The presence of the NSNS flux then breaks

the charge conjugation invariance, such that the near-BMN dispersion relations for these

complex degrees of freedom are given by

e± =
√

(1− q2) + (p± q)2 . (4.1)

where + corresponds to Φϕϕ, Φψψ, Φϕψ, Φψϕ and − to their complex conjugates.

As for q = 0 the S-matrix factorizes as in (3.1) and the general structure of the

factorized S-matrix takes the form given in (2.40) with σϕ = σψ = + and σϕ̄ = σψ̄ = −.

Furthermore, the construction outlined in section 2 still gives the same one-loop result

whether we consider the factorized or full S-matrix. Therefore, for simplicity we will again

work with the former. Due to the lack of charge conjugation symmetry all four phases

are now different. However, charge conjugation along with formally sending q → −q is a

symmetry and hence φ++ = φ−−|q→−q and φ+− = φ−+|q→−q. Similarly, for the functions

`σMσN we have `++ = `−−|q→−q and `+− = `−+|q→−q. Therefore, in the following we will

again focus on the ++ and +− sectors. The dependence on the gauge-fixing parameter a

is also modified in the following natural way

exp
[ i
2

(a− 1
2)(ε′σNp− εσMp

′)
]
, (4.2)

where the all-order energies ε± are defined in appendix A.2. As discussed in section 2.4 we

choose the overall phase factors by setting particular components of ŜPQMN to one

Ŝϕϕϕϕ(p, p′) = 1 , Ŝϕψ̄
ϕψ̄

(p, p′) = 1 . (4.3)

The parametrizing functions of the exact S-matrix are defined as

Sϕϕϕϕ(p, p′) = A++(p, p′) Sϕϕ̄ϕϕ̄(p, p′) = A+−(p, p′)

Sϕψϕψ (p, p′) = B++(p, p′) Sψψ̄ϕϕ̄ (p, p′) = B+−(p, p′)

Sψϕϕψ (p, p′) = C++(p, p′) Sϕψ̄
ϕψ̄

(p, p′) = C+−(p, p′)

Sψϕψϕ(p, p′) = D++(p, p′) Sψϕ̄ψϕ̄(p, p′) = D+−(p, p′)

Sϕψψϕ(p, p′) = E++(p, p′) Sψψ̄
ψψ̄

(p, p′) = E+−(p, p′)

Sψψψψ (p, p′) = F++(p, p′) Sϕϕ̄
ψψ̄

(p, p′) = F+−(p, p′) (4.4)
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with the functions in string frame given by [32]

A++(p, p′) = S++(p, p′) , B++(p, p′) = S++(p, p′)
x′++ − x+

+

x′++ − x−+
1

ν+
,

C++(p, p′) = S++(p, p′)
x′++ − x′−+
x′++ − x−+

η+

η′+

√
ν ′+
ν+

, D++(p, p′) = S++(p, p′)
x′−+ − x−+
x′++ − x−+

ν ′+ ,

E++(p, p′) = S++(p, p′)
x+

+ − x−+
x′++ − x−+

η′+
η+

√
ν ′+
ν+

, F++(p, p′) = S++(p, p′)
x′−+ − x+

+

x′++ − x−+

ν ′+
ν+

, (4.5)

and

A+−(p, p′) = S+−(p, p′)
1− 1

x+
+ x′−−

1− 1
x−+ x′−−

ν+ , B+−(p, p′) = −S+−(p, p′)
i η+η

′
−

x−+x
′−
−

1

1− 1
x−+ x′−−

(ν+ν
′
−)−

1
2 ,

C+−(p, p′) = S+−(p, p′) , D+−(p, p′) = S+−(p, p′)
1− 1

x+
+ x′+−

1− 1
x−+ x′−−

ν+ν
′
− ,

E+−(p, p′) = S+−(p, p′)
1− 1

x−+ x′+−

1− 1
x−+ x′−−

ν ′− , F+−(p, p′) = −S+−(p, p′)
i η+η

′
−

x+
+x
′+
−

1

1− 1
x−+ x′−−

(ν+ν
′
−)

3
2 .

(4.6)

The definitions of the variables entering these expressions are given in appendix A.2. The

functions S++(p, p′) and S+−(p, p′) are two of the overall phase factors. These phase factors

are not fixed by symmetry — they are constrained by crossing symmetry, however, they

are currently unknown.

The input needed for the unitarity construction of section 2 is the tree-level S-matrix.

Various tree-level components were computed directly in [25]. These are in agreement

with the near-BMN expansion of the exact result (4.5), (4.6), for which we recall that the

integrable coupling used in the definition of x±+ and x±− has the expansion h(h) = h+O(h0)

and to take the near-BMN limit the spatial momenta should be rescaled p → p
h . The

remaining components of the tree-level S-matrix can then be fixed from the expansion of

the exact result. As in the RR case, here we shall present the result in the gauge a = 1
2 —

the dependence on a goes through the unitarity procedure without any particular subtlety,

i.e. it exponentiates as in eq. (4.2). The tree-level S-matrix reads

A
(0)
++(p, p′) = −F (0)

++(p, p′) =
(p+ p′)(e′+p+ e+p

′)

4 (p− p′)
,

C
(0)
++(p, p′) = E

(0)
++(p, p′)

=
p p′

2(p− p′)

(√
(e+ + p+ q)(e′+ + p′ + q) +

√
(e+ − p− q)(e′+ − p′ − q)

)
,

B
(0)
++(p, p′) = −D(0)

++(p, p′) = −
e′+p− e+p

′

4
, (4.7)

A
(0)
+−(p, p′) = −E(0)

+−(p, p′) =
(p− p′)(e′−p+ e+p

′)

4 (p+ p′)
,
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B
(0)
+−(p, p′) = F

(0)
+−(p, p′)

=
p p′

2(p+ p′)

(√
(e+ − p− q)(e′− − p′ + q)−

√
(e+ + p+ q)(e′− + p′ − q)

)
,

C
(0)
+−(p, p′) = −D(0)

+−(p, p′) = −
e′−p− e+p

′

4
, (4.8)

This form of writing the tree-level S-matrix elements is the simplest for the purposes of

introducing the parameter q. Agreement with (3.7) and (3.8) for q = 0 can be checked

using the dispersion relation.

4.2 Result from unitarity techniques

In this section we compute the one-loop S-matrix from unitarity methods for the light-cone

gauge-fixed string theory in the AdS3 × S3 × T 4 background supported by a mix of RR

and NSNS fluxes. Again, we will split the result according to eqs. (2.45), (2.46) and (2.47),

where we recall that we have chosen Sϕϕϕϕ = A++(p, p′) and Sϕψ̄
ϕψ̄

= C+−(p, p′) as the overall

phase factors.

There is a subtlety regarding the unitarity computation in that the near-BMN disper-

sion relations (4.1) are not the standard relativistic ones that we assumed for the derivation

in section 2. To bypass this problem, we will first shift the momenta as

p→ p− q for particles and p→ p+ q for antiparticles , (4.9)

so as to put the near-BMN dispersion relations into the standard form. At the level of

the light-cone gauge-fixed Lagrangian this just amounts to a σ-dependent rotation of the

complex fields, where σ is the spatial coordinate on the worldsheet [25]. We can then

straightforwardly use the construction of section 2 for two particles of mass
√

1− q2. To

construct the one-loop result, we should then conclude by undoing the shift (4.9). An

analogous approach was used in [2] to compute to logarithmic terms.

Following this procedure it is apparent that the logarithms appearing in the one-loop

integrals, when written in terms of energy and momentum, are different for each of the

four sectors

θ±± = arcsinh

(
e′±(p± q)− e±(p′ ± q)

1− q2

)
, θ±∓ = arcsinh

(
e′∓(p± q)− e±(p′ ∓ q)

1− q2

)
.

(4.10)

The functions `σMσN are then defined as the coefficients of θσMσN in the one-loop phase,

see eq. (2.42).

We start by briefly reviewing the work of [2]. Given that the structure of the S-matrix

is not altered by the presence of NSNS flux it follows from the unitarity computation that

the coefficients of the logarithms written in terms of the tree-level functions, (4.7) and (4.8),
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are still given by (3.23) and (3.24)

`++(p, p′) = − 1

2π
C

(0)
++(p, p′)E

(0)
++(p, p′) = −

p2p′2
(
e+e

′
+ + (p+ q)(p′ + q) + (1− q2)

)
4π(p− p′)2

,

(4.11)

`+−(p, p′) = − 1

2π
B

(0)
+−(p, p′)F

(0)
+−(p, p′) = −

p2p′2
(
e+e

′
− + (p+ q)(p′ − q)− (1− q2)

)
4π(p+ p′)2

.

(4.12)

Using the dispersion relation, one can check that these expressions agree with eqs. (3.21)

and (3.22) for q = 0 and m = m′ = 1.

Furthermore, the rational s-channel terms (with the overall phase factors set to one)

are again given in terms of the tree-level functions as in eqs. (3.30) and (3.31). Plugging in

the corresponding expressions, (4.7) and (4.8), one can check agreement with the near-BMN

expansion of the exact result (4.5) and (4.6).

Finally, as for the AdS3×S3×T 4 background supported by pure RR flux, the rational

contributions from the t-channel go completely into the phases. That is Re(T̂ (1))|unit. = 0.

Furthermore, also as for the case of pure RR flux, the light-cone gauge-fixed Lagrangian

contains no cubic terms. Therefore, there are correspondingly no external leg corrections

at one loop in the unitarity computation. It follows from computing the t-channel cuts that

φ
(1)
++(p, p′) =

p p′(p+ p′)(e′+p+ e+p
′)

8π(p− p′)
, (4.13)

φ
(1)
+−(p, p′) = −

p p′(p− p′)(e′−p+ e+p
′)

8π(p+ p′)
. (4.14)

Using the dispersion relation, one can check that these expressions agree with eqs. (3.32)

and (3.33) for q = 0 and m = m′ = 1.

We conclude this section by giving the generalization of the one-loop dressing

phases (3.35) and (3.36) in the presence of NSNS flux. As discussed in appendix A.2

the standard strong coupling variables x and y are modified for q 6= 0. In particular, we

now have a separate variable for the particle x+, y+ and the antiparticle x−, y−. These

are defined in (A.16) and (A.17). Our conjecture for the one-loop dressing phases is then

given by (x± corresponds to p and y± to p′)

$
(1)
++(p, p′) = − 1

π

x2
+√

1− q2(x2
+ − 1)− 2qx+

y2
+√

1− q2(y2
+ − 1)− 2qy+[

(x+ + y+)
(√

1− q2(x+ + y+)(1− 1
x+y+

)− 4q
)

(
√

1− q2(x2
+ − 1)− 2qx+)(x+ − y+)(

√
1− q2(y2

+ − 1)− 2qy+)

+
2

(x+ − y+)2
log

(√
1 + q x+ +

√
1− q√

1− q x+ −
√

1 + q

√
1− q y+ −

√
1 + q√

1 + q y+ +
√

1− q

)]
,

(4.15)
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$
(1)
+−(p, p′) = − 1

π

x2
+√

1− q2(x2
+ − 1)− 2qx+

y2
−√

1− q2(y2
− − 1) + 2qy−[

(x+y− + 1)
(√

1− q2(x+y− + 1)( 1
x+
− 1

y−
) + 4q

)
(
√

1− q2(x2
+ − 1)− 2qx+)(x+ − y−)(

√
1− q2(y2

− − 1) + 2qy−))

+
2

(x+y− − 1)2
log

(√
1 + q x+ +

√
1− q√

1− q x+ −
√

1 + q

√
1 + q y− −

√
1− q√

1− q y− +
√

1 + q

)]
.

(4.16)

5 Comments

In this paper we have applied one-loop unitarity methods to the massive sectors of three

AdS3×S3×M4 light-cone gauge-fixed string theories. To do so we extended the construc-

tion of [1] to account for both particles of different mass in the asymptotic spectrum and

external leg corrections. Applying the results to the AdS3×S3×T 4 and AdS3×S3×S3×S1

backgrounds supported by RR flux correctly reproduces the expansion of the exact S-

matrix [30, 31] and matches semiclassical computations [34–36]. This agreement crucially

included the rational terms, supporting the conjecture of [1] that the S-matrices of inte-

grable field theories are cut-constructible (up to a possible shift in the coupling).

The final theory we investigated was AdS3 × S3 × T 4 supported by a mix of RR

and NSNS fluxes. For this theory the one-loop unitarity computation reproduced the

exact result up to phases, which in this case are not known beyond tree level. Under the

assumption that the unitarity computation still reproduces all the rational terms, we gave

a conjecture for the one-loop dressing phases.

All three of these theories contain massless modes in their spectrum. Recently an exact

form for the S-matrix describing the scattering of massless modes in the AdS3 × S3 × T 4

background was conjectured in [41], and various perturbative computations have been

reported in [23]. It would therefore be of clear interest to extend the unitarity methods to

include these excitations.

Massless modes are of interest also for scattering on top of the GKP string [42, 43], for

which excitations on the sphere governed by the O(6) non-linear sigma model [44]. This

S-matrix recently turned out to be useful for studying N = 4 scattering amplitudes in the

collinear limit [45, 46].

There are a number of further possible applications of the methods described in this

work (along with those in [1, 2]). These include the study of other integrable string back-

grounds [20, 47] and more general off-shell objects, including form factors [48, 49] and

correlation functions. Finally, one of the most important directions for future study is

the derivation of the rational terms from unitarity methods beyond one loop. This would

require a deeper understanding of both how to treat tadpole diagrams and shifts in the

coupling or lack thereof.

Note added: while this paper was in the final stages of preparation the article [50]

was announced on arXiv. Among other things, the authors reported on the semiclassical
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computation of the one-loop phases for the AdS3 × S3 × T 4 mixed flux background. The

conjecture for these phases given in this paper agrees with the result of [50].

Acknowledgments

We would like to thank V. Forini for fruitful discussions and enjoyable collaborations on

related work. We are also grateful to B. Basso, R. Borsato, O. Engelund, S. Komatsu, M.

Meineri, J. Plefka, R. Roiban, A. Tseytlin and P. Vieira for useful discussions and to R.

Roiban and A. Tseytlin for valuable comments on the draft. This work is funded by DFG

via the Emmy Noether Program “Gauge Fields from Strings.”. LB would like to thank

Perimeter Institute for Theoretical Physics for the kind hospitality during the preparation

of this work.

A Notation and conventions

A.1 AdS3 × S3 ×M4 supported by RR flux

In section 3.1 the exact S-matrices are written as functions of the Zhukovsky variables x±

and y±. These are defined in terms of the energy and momentum as follows

x+

x−
= eip , x+ − 1

x+
− x− +

1

x−
=

2 i ε

h
, x+ +

1

x+
− x− − 1

x−
=

2 im

h
, (A.1)

y+

y−
= eip , y+ − 1

y+
− y− +

1

y−
=

2 i ε

h
, y+ +

1

y+
− y− − 1

y−
=

2 im′

h
, (A.2)

where h is the integrable coupling that is (potentially non-trivially) related to the string

tension h. The third equation of each line is a constraint that is interpreted as the dispersion

relation. In particular, m and m′ are the masses of the respective particles. The variables

x′± and y′± are simply given by sending p→ p′ and ε→ ε′. Solving for x± and y± in terms

of p we find

x± =
e±i

p
2 (m+ ε)

2 h sin p
2

, ε =

√
m2 + 4 h2 sin2 p

2
, (A.3)

y± =
e±i

p
2 (m′ + ε)

2 h sin p
2

, ε =

√
m′2 + 4 h2 sin2 p

2
. (A.4)

When expanding in near-BMN regime, the spatial momenta should first be rescaled as

p→ p
h where h is the string tension. The integrable coupling h, in principle, is related to h

in a non-trivial way, however, its strong coupling expansion starts with h(h) = h+O(h0).

Therefore, at leading order in the near-BMN expansion the dispersion relation is given

by its relativistic counterpart, e. The two additional functions that we use to write the

expressions for the exact S-matrices are

η =
√
i(x− − x+) , ν =

√
x+

x−
, (A.5)

and similarly for y± when referring to a particle of mass m′.
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In section 3.2.3 we are interested in expanding the functions x± and y± at strong

coupling. To do so it is convenient to introduce a new variable x such that

x± = x± im

h

x2

x2 − 1
+O(h−3) . (A.6)

Expressing x in terms of p in the near-BMN expansion (i.e. first rescaling p) one finds

x(p) =
m+

√
m2 + p2

p
+O(h−2) . (A.7)

Using the new variable one can easily expand the dressing phase at strong coupling as

shown in appendix B.

In the discussion of the AdS3×S3×S3×S1 background we need to use the cubic terms

in the expansion of the light-cone gauge-fixed Lagrangian. We use a worldsheet metric with

signature (+,−). Light-cone coordinates are defined for a generic two-dimensional vector

vµ as v± = 1
2(v0±v1) and for a covector vµ as v± = v0±v1. The non-vanishing elements of

the metric in light-cone coordinates are η+− = η−+ = 2. Correspondingly η+− = η−+ = 1
2 .

The Levi-Civita tensor is defined as ε01 = 1 = −ε01.

As usual, gamma matrices are defined by the anti-commutation relation

{γµ, γν} = 2 ηµν . (A.8)

An explicit representation is given by

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
, γ3 = −γ0γ1 =

(
1 0

0 −1

)
. (A.9)

A generic spinor is represented as

χ =

(
χ+

χ−

)
, (A.10)

where χ± are the chiral projections of χ by the projectors P± = 1
2(1±γ3). The conjugation

is defined in the usual way χ̄ = χ†γ0 and to make contact with [26, 27] we define χ̄± ≡ χ†±.

The polarization vectors can be chosen to be purely real and given by

u(p) =

(√
p+√
p−

)
, (A.11)

v(p) =

( √
p+

−√p−

)
. (A.12)

A.2 AdS3 × S3 × T 4 supported by mixed flux

In the mixed flux case discussed in section 4 the S-matrix is again written in terms of

Zhukovsky-type variables. However, the dispersion relation is modified and is different for
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particles (x±+) and antiparticles (x±−). The Zhukovsky variables are defined in terms of the

energy and momentum as follows

x+
±
x−±

= eip , x+
± −

1

x+
±
− x−± +

1

x−±
=

2 i ε±

h
√

1− q2
. (A.13)

However, the dispersion relation [33] is now given by

√
1− q2

(
x+
± +

1

x+
±
− x−± −

1

x−±

)
∓ 2 q log

x+
±
x−±

=
2i

h
, (A.14)

The variables x′±+ and x′±− are simply given by sending p → p′ and ε± → ε′±. Solving for

x±+ and x±− in terms of p we find

x±+ =
e±i

p
2 (1 + q p+ ε+(p))

2 h
√

1− q2 sin p
2

, x±− =
e±i

p
2 (1− q p+ ε−(p))

2 h
√

1− q2 sin p
2

,

ε± =

√
(1± q h p)2 + 4 h2(1− q2) sin2 p

2
.

(A.15)

As expected, at leading order in the near-BMN expansion the dispersion relation is given

by e± as defined in (4.1). The functions η± and ν± are generalized in the obvious way

from (A.5).

In section 4.2 we are interested in expanding the functions x±+ and x±− at strong cou-

pling. To do so it is convenient to introduce new variables x± such that

x±+ =x+ ±
i

h

x2
+√

1− q2(x2
+ − 1)− 2 q hx+

+O(h−3) ,

x±− =x− ±
i

h

x2
−√

1− q2(x2
− − 1) + 2 q hx−

+O(h−3) .

(A.16)

Expressing x± in terms of p in the near-BMN expansion (i.e. first rescaling p) one finds

x±(p) =
1± q p+

√
(1± q p)2 + (1− q2)p2√

1− q2 p
+O(h−2) . (A.17)

B Phase factors for AdS3 × S3 × M4 backgrounds

In this appendix we give the relevant details regarding the dressing phases for the RR

backgrounds and their expansion in the near-BMN limit.

In eqs. (3.5) and (3.6) S11
++(p, p′) and S11

++(p, p′) appeared as overall phase factors in

the exact result. In the case of AdS3 × S3 × T 4 their expressions are known exactly [31]

S11
++(p, p′)−1 = e−

i
2
a(ε′p−εp′)

√
x′− − x+

x′+ − x−
1− 1

x+x′−

1− 1
x−x′+

ν ′

ν
ei ϑ

11
++(x±,x′±) , (B.1)

S11
+−(p, p′)−1 = e−

i
2
a(ε′p−εp′)

√
1− 1

x+x′+

1− 1
x−x′−

1− 1
x+x′−

1− 1
x−x′+

ν ′ ei ϑ
11
+−(x±,x′±) . (B.2)
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The functions ϑ11
++(p, p′) and ϑ11

+−(p, p′) can be expressed in terms of an auxiliary function χ

ϑ11
++(x±, x′±) = χ(x+, x′+) + χ(x−, x′−)− χ(x+, x′−)− χ(x−, x′+) , (B.3)

ϑ11
+−(x±, x′±) = χ̃(x+, x′+) + χ̃(x−, x′−)− χ̃(x+, x′−)− χ̃(x−, x′+) , (B.4)

and the explicit all-order expressions for χ and χ̃ are

χ(x, y) = χBES(x, y) +
1

2

(
− χHL(x, y) + χ−(x, y)

)
, (B.5)

χ̃(x, y) = χBES(x, y) +
1

2

(
− χHL(x, y)− χ−(x, y)

)
. (B.6)

Here the function χBES is the same as that which appears in the AdS5 × S5 dressing

factor [12], χHL is the Hernandez Lopez phase [51] and is given by the one-loop term

in the strong coupling expansion of χBES, while the function χ− does not appear in the

AdS5 × S5 light-cone gauge S-matrix. The three functions can be expressed compactly as

contour integrals

χBES(x, y) = i

∮
dw

2πi

∮
dw′

2πi

1

x− w
1

y − w′
log

Γ[1 + ih(w + 1/w − w′ − 1/w′)]

Γ[1− ih(w + 1/w − w′ − 1/w′)]
, (B.7)

χHL(x, y) =
π

2

∮
dw

2πi

∮
dw′

2πi

1

x− w
1

y − w′
sign(w′ + 1/w′ − w − 1/w) , (B.8)

χ−(x, y) =

∮
dw

8π

1

x− w
log

[
(y − w)

(
1− 1

yw

)]
sign((w − 1/w)/i) − x↔ y . (B.9)

We are interested in the near-BMN expansion of these expressions. Therefore, let us

quote the first two orders of ϑ11
++(x±, x′±) and ϑ11

+−(x±, x′±)

ϑ11
++(x±, x′±) =

1

h
ϑAFS(x, x′) +

1

h2
ϑ

(1)
++(x, x′) +O(h−3) , (B.10)

ϑ11
+−(x±, x′±) =

1

h
ϑAFS(x, x′) +

1

h2
ϑ

(1)
+−(x, x′) +O(h−3) , (B.11)

The functions appearing in (B.10) and (B.11) are given by

ϑAFS(x, y) =
2(x− y)

(x2 − 1)(xy − 1)(y2 − 1)
+O(h−2) ,

ϑ
(1)
++(x, y) =

1

π

x2

x2 − 1

y2

y2 − 1

[
(x+ y)2(1− 1

xy )

(x2 − 1)(x− y)(y2 − 1)

+
2

(x− y)2
log

(
x+ 1

x− 1

y − 1

y + 1

)]
+O(h−1) ,

ϑ
(1)
+−(x, y) =

1

π

x2

x2 − 1

y2

y2 − 1

[
(xy + 1)2( 1

x −
1
y )

(x2 − 1)(xy − 1)(y2 − 1)

+
2

(xy − 1)2
log

(
x+ 1

x− 1

y − 1

y + 1

)]
+O(h−1) . (B.12)

It is important to point out that the pre-factors appearing in (B.1) and (B.2) can be written

as a phase factor whose exponent has a vanishing one-loop (O(h−2)) term. This property,
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together with (B.12), allows us to compare ϑ
(1)
++ and ϑ

(1)
+− directly with our perturbative

result following from unitarity methods.

The same property also holds for AdS3 × S3 × S3 × S1, in which case we have a total

of four undetermined phase factors

Sαα++(p, p′)−1 = e−ia(ε′p−εp′) 1− 1
x+x′−

1− 1
x−x′+

x′− − x+

x′+ − x−

(
ν ′

ν

)2

ei ϑ
αα
++(x±,x′±) , (B.13)

Sαα+−(p, p′)−1 = e−ia(ε′p−εp′)

√
1− 1

x+x′+

1− 1
x−x′−

1− 1
x+x′−

1− 1
x−x′+

ν ′ ei ϑ
αα
+−(x±,x′±) , (B.14)

and

Sαᾱ++(p, p′)−1 = e−ia(ε′p−εp′) 1− 1
x+y′−

1− 1
x−y′+

ν ′

ν
ei ϑ

αᾱ
++(x±,x′±) , (B.15)

Sαᾱ+−(p, p′)−1 = e−ia(ε′p−εp′)

√√√√1− 1
x+y′+

1− 1
x−y′−

(
1− 1

x+y′−

1− 1
x−y′+

) 3
2

ν ′ ei ϑ
αᾱ
+−(x±,x′±) . (B.16)

Unlike the AdS3×S3×T 4 case all-order expressions for ϑαασMσN and ϑαᾱσMσN are not known.

The one-loop near-BMN expansions for these phases are given in eqs. (3.35), (3.36) and

are essentially the same as (B.12) up to an overall scaling depending on the masses.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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