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ABSTRACT 

The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic 
remain unknown. The spatial location of odorant receptor genes (Olfrs) in the nose is widely thought to be 
independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we created 
a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially 
expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping 
fashion over five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of 
the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This 
resource resolved the molecular architecture of the mouse OM, and will inform future studies on 
mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic 
logic for the peripheral representation of smell. 
 
 
Keywords: Spatial transcriptomics; olfaction; olfactory epithelium; RNA-seq; odorant; machine learning. 
 

INTRODUCTION 

The functional logic underlying the topographic 
organization of primary receptor neurons and their 
receptive fields is well-known for all sensory systems, 
except olfaction (1). The mammalian nose is 
constantly flooded with odorant cocktails. Powered by 
a sniff, air enters the nasal cavity, until it reaches the 
olfactory mucosa (OM). There, myriad odorants 
activate odorant receptors (Olfrs) present in the cilia of 

olfactory sensory neurons (OSNs), triggering a 
complex cascade of events that culminate in the brain 
and result in odor perception (1, 2). In mice, most 
mature OSNs express a single allele of one out of 
~1100 Olfr genes (Olfrs)  (3-6). Olfrs employ a 
combinatorial strategy to detect odorants, which 
maximizes their detection capacity (4, 7). OSNs 
expressing the same Olfr share similar odorant 
response profiles (4, 7), and drive their axons to the 
same glomeruli in the olfactory bulb (8-10). Thus, Olfrs 
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define functional units in the olfactory system, and 
function as genetic markers to discriminate between 
different mature OSN subtypes (6, 11). 

Another remarkable feature of the OSN subtypes is 
their spatial distribution in the OM. Early studies 
postulated that OSNs expressing different Olfrs are 
spatially segregated into four broad areas within the 
OM called ‘zones’ (12, 13), but recent work has 
suggested up to nine overlapping zones (14-16). The 
functional relevance of these zones is not fully 
understood. These studies, combined, have sampled 
only ~10% of the intact mouse Olfr repertoire. We do 
not currently understand the full complexity of the 
OM and, most importantly, lack an unbiased and 
quantitative definition of zones. In effect, the exact 
number of zones, their anatomical boundaries, their 
molecular identity and their potential functional 
relevance are yet to be determined. 

One hypothesis is that the topographic distribution of 
Olfrs/OSN subtypes evolved because it plays a key 
role in the process of Olfr choice in mature OSNs 
and/or in OSN axon guidance (17, 18). An alternative 
hypothesis is that the spatial organization of 
Olfrs/OSN subtypes is tuned to maximize the 
detection and discrimination of odorants in the 
peripheral olfactory system (12). Interestingly, the 
receptive fields of mouse OSNs vary with their spatial 
location (19), which in some cases correlate with the 
patterns of odorant sorption in the mouse OM – this 
association was proposed as the ‘chromatographic 
hypothesis’ decades before the discovery of the Olfrs 
(20), and later rebranded as the ‘sorption hypothesis’ in 
olfaction (21, 22). While some studies lend support to 
these hypotheses (reviewed in (23)), others question 
their validity (24, 25).  Thus, the logic underlying the 
peripheral representation of smell in the peripheral 
olfactory system still remains unknown, and it is 
subject of great controversy (23, 26). 

Spatial transcriptomics, which combines spatial 
information with high-throughput gene expression 
profiling, has expanded our knowledge of complex 
tissues, organs, or even entire organisms (27-31). In 
this study, we employed a spatial transcriptomics 
approach to create a 3D map of gene expression of 
the mouse nose, and we combined it with single-cell 
RNA-seq, machine learning and chemoinformatics to 

resolve its molecular architecture and shed light into 
the anatomical logic of smell.   
 

RESULTS 

A high-resolution spatial transcriptomic map of 
the mouse olfactory mucosa 

We adapted the RNA-seq tomography (Tomo-seq) 
method (30) to create a spatially resolved genome-
wide transcriptional atlas of the mouse nose. We 
obtained cryosections (35 μm) collected along the 
dorsal-ventral (DV), anterior-posterior (AP), and 
lateral-medial-lateral (LML) axes (n=3 per axis) of the 
OM (Figure 1A), and performed RNA-seq on 
individual cryosections (see STAR Methods). After 
quality control (Figure S1A-D; Table S1; STAR 
Methods), we computationally refined the alignment 
of the cryosection along each axis, and we observed a 
high correlation between biological replicates (Figure 
1B; STAR Methods). Hence, we combined the three 
replicates into a single series of spatial data including 
54, 60 and 56 positions along the DV, AP and LML 
axis, respectively (Figure 1C; STAR Methods). On 
average, we detected >18,000 genes per axis, 
representing a total of 19,249 unique genes for all axes 
combined (Figure 1D). Molecular markers for all 
canonical cell types known to populate the mouse OM 
were detected among all axes (Figure 1E), and were 
expressed at the expected levels (6).  

Next, we verified the presence of a spatial signal with 
the Moran's I (32) (Figure S1E), whose value is 
significantly higher than 0 for the data along all axes (p 
< 2.2x10-16 for all axes), indicating that nearby sections 
have more similar patterns of gene expression than 
expected by chance. Given the left/right symmetry 
along the LML axis (Figure 1C), the data was centered 
and averaged on the two sides (see STAR Methods) – 
henceforth the LML axis will be presented and 
referred to as the lateral-medial (LM) axis. We could 
reproduce the expression patterns in the OM for 
known spatial markers, including the dorsomedial 
markers Acsm4 and Nqo1 (33, 34), and the 
complementary ventrolateral markers Ncam2 and Reg3g 
(35, 36) (Figures 1F and S1F).  

Together, these results show that RNA tomography is 
both a sensitive and reliable method to examine gene 
expression patterns in the mouse OM.   
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Figure 1. Application of TOMO-seq to mouse OM. (A) Experimental design. TOMO-seq was performed on 9 tissue samples, 
from which 3 were sliced along the Dorsal-Ventral axis, 3 along the Posterior-Anterior axis and 3 along the Lateral-Medial-Lateral 
axis. (B) Boxplots showing the distributions of Spearman’s correlation coefficients (Rho) between replicates in each axis. (C) 
Heatmaps showing Spearman’s correlation between gene expression patterns at different positions along the three axes. (D) 
Number of detected genes along each axis separately or across the whole dataset. Genes were considered as detected when 
they had at least one normalized count in at least 10% of the samples from one axis. (E) Heatmaps of log10 normalized 
expression (after combining the three replicates per axis) of OM canonical markers along the 3 axes (RPM = reads per million; 
mOSNs = mature Olfactory Sensory Neurons; iOSNs = immature Olfactory Sensory Neurons; GBCs = Globose Basal Cells; 
HBCs = Horizontal Basal Cells; SUSs = Sustentacular cells; RES =  Respiratory epithelium cells). (F) Normalized expression of 
canonical OM spatial marker genes along the 3 axes. Red line showing fits with local polynomial models. 

Spatial differential gene expression analysis 
identifies cell type-specific expression patterns 
and functional hotspots in the OM 

Over the last 3 decades, multiple genes with spatially 
segregated expression patterns across the OM have 
been identified. The majority of these genes are 
expressed in mature OSNs, and include genes 
encoding chemosensory receptors, transcription 
factors, adhesion molecules, and many molecules 
involved in the downstream signaling cascade of 
chemosensory receptor activation (6, 13, 14, 16, 33, 
34, 36-48). A smaller number of zonally expressed 
genes (including xenobiotic compounds metabolizing 
enzymes, chemokines and transcription factors) were 
found to be expressed in sustentacular cells, globose 
basal cells, olfactory ensheathing cells, Bowman’s 
gland cells, and respiratory epithelial cells (36, 42, 47-
53). Despite this progress, our knowledge on what 
genes display true zonal expression patterns, and what 
cell types they are primarily expressed in is still very 
limited. 

The generation of axis-specific gene expression maps 
allowed us to explore the relationship between the 
different axis-specific DEGs and also to discover 
which cell types they are expressed in, by combining 
our data with a previously published single-cell RNA- 

seq dataset (54). To identify axis-specific differentially 
expressed genes (hereafter referred to as spatial 
DEGs), we first filtered out lowly expressed genes, 
then binarized the expression levels at each position 
according to whether they were higher or lower than 
their median expression, and applied the Ljung-Box 
test to the autocorrelation function calculated on the 
binarized expression values (Figure S2A; STAR 
Methods). After correcting for multiple testing, we 
obtained a total of 12,303 unique DEGs for the 3 axes 
combined (FDR<0.01; Figure 2A). Of these, the AP 
axis showed the highest number of DEGs (10,855), 
followed by the DV axis (3,658), and the LM (1,318). 

To add cell-type resolution to the spatial axes, we 
combined our data with a single-cell RNA-seq 
(scRNA-seq) dataset from 13 cell types present in the 
mouse OM (54). We catalogued spatial DEGs based 
on their expression in mature OSNs (mOSNs) versus 
the 12 other cell types (non-mOSNs) (Figures 2B and 
2C; Table S2). This led to the identification of 456 
spatial DEGs expressed exclusively in non-mOSNs, 
which are associated with gene ontology (GO) terms 
such transcription factors, norepinephrine metabolism, 
toxin metabolism, bone development, regulation of 
cell migration, T-cell activation, and others (Table S2). 
Some of these genes are expressed across many cell 
types, but others are specific to a single cell type 
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(Figure 2C; Table S2). As expected, among these genes 
we find some known cell-specific markers with spatial 
expression patterns, such as the sustentacular cells and 
Bowman’s glands markers Cyp2g1 and Gstm2 (36), the 
neural progenitor cell markers Eya2 and Hes6 (45), and 
the basal lamina and olfactory ensheathing cell 

markers Aldh1a7 and Aldh3a1 (47) (Table S2). 
Additionally, we identified many new genes with zonal 
expression patterns along a single axis or multiple 
axes, and specific to one or few cell-types (Figures S2B 
and S2C).  

 

 

Figure 2. Genes with non-random spatial patterns across different cell types in the OM. (A) Venn diagram showing the 
numbers of spatial differentially expressed genes (DEGs) along each axis. (B) Bar plot showing the log10 number of spatial 
DEGs that are mOSN-specific (“mOSNs”), or that are detected only in cell types other than mOSNs (“other”). (C) Heatmap of 
log10 mean expression per cell type of genes that are not expressed in mOSNs, but only in other OM cell types (INP = 
Immediate Neuronal Precursors; GBC = Globose Basal Cells;  mOSNs = mature Olfactory sensory neurons; iOSNs = 
immature Olfactory Sensory Neurons; MVC = Microvillous Cells; iSC = Immature Sustentacular Cells; mSC = Mature 
Sustentacular Cells; HBCs = Horizontal Basal Cells). (D) UMAP plots of spatial DEGs along the three axes. Each gene is 
colored according to the cluster it belongs to. (E) Normalized average expression patterns of spatial DEGs clusters along the 
three axes. (F) Heatmap showing the log2 enrichment over the random case for the intersection between lists of genes 
belonging to different clusters (indicated by colored circles) across pairs of axes. 

 

For example, the ribosomal protein Rps21 plays a key 
role in ribosome biogenesis, cell growth and death 

(55), and  is primarily expressed in horizontal basal 
cells (HBCs), consistent with the role of HBCs in the 
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maintenance and regeneration of the OE (56). 
Another example is the extracellular proteinase 
inhibitor Wfdc18, which induces the immune system 
and apoptosis (57) and is expressed in microvillous 
cells type 1 (MVC1s), consistent with the role that 
MVC1s play in immune responses to viral infection 
(58). Two more examples are the fibroblast growth 
factor Fgf20 in immature sustentacular cells (iSCs), and 
the adapter protein Dab2 in mature sustentacular cells 
(mSCs) (Figures S2B and S2C). The fibroblast growth 
factor Fgf20 is expressed in several cell types, regulates 
the horizontal growth of the olfactory turbinates, and 
is preferentially expressed in the lateral OM (59), 
consistent with our data. The adapter protein Dab2 
regulates mechanisms of tissue formation, modulates 
immune responses, and participates in the absorption 
on proteins (60, 61), consistent with the known 
maintenance and support roles of mSCs in the OM 
(62).  

A gene ontology (GO) enrichment analysis on the 
axis-specific DEGs for non-mOSNs genes revealed a 
very wide variety of biological processes/molecular 
functions. Some of the notable terms identified were 
water and fluid transport (e.g., Ctfr, Aqp3, Aqp5), 
transcription factors (e.g., Hes1, Hey1, Dlx5), 
oxidation-reduction processes (e.g., Scd2, Cyp2f2, 
Cyp2g1), microtubule cytoskeleton organization 
involved in mitosis (e.g., Stil, Aurkb), cell cycle (e.g., 
Mcm3, Mcm4, Mcm6),  cell division (e.g., Kif11, Cdca3, 
Nde1),  negative regulation of apoptosis (e.g., Dab2, 
Scg2, Id1), sensory perception of chemical stimulus, 
cellular processes (e.g., Mal, Pthlh, Cdc16), among many 
others (Table S2).  

The successful identification of thousands of spatial 
DEGs, prompted us to examine their distribution 
patterns along each axis, and the putative functions 
associated with such spatial clusters of gene 
expression. We started by using uniform manifold 
approximation and projection (UMAP) (63) and 
hierarchical clustering to visualize and cluster all spatial 
DEGs along the three cartesian axes. This analysis 
uncovered nine patterns of expression in the DV and 
AP axes each, and five patterns in the LM axis (Figure 
2D-E). These patterns include variations of four major 
shapes: monotonically increasing (/), monotonically 

decreasing (\), U-shape (∪), and inverted U-shape (∩) 
(Figure 2E). The latter two patterns present clear 
maximum/minimum at different positions along the 
axis – for example, the brown, green, pink, magenta, 

and black AP clusters show a similar inverted ∪ 
pattern, but their maximum moves along the axis 

(Figure 2E). As expected, several known genes with 
zonal expression patterns are expressed in the cluster 
mimicking their respective expression pattern in the 
tissue. For example, the dorsomedial markers Acsm4 
and Nqo1 belong to the turquoise clusters in both the 
DV and LM axes, while the ventrolateral marker Reg3g 
belongs to the blue cluster from the DV axis (Figures 
1F and S1F; Table S3).  

The total number of genes per cluster had a median 
value of 236, but varied greatly between clusters – 
ranging from 57 in the green LM cluster to 8,551 in 
the turquoise AP cluster (Figure 2D; Table S3. GO 
enrichment analysis on the axis-specific DEGs yielded 
enriched terms for 14 of the 23 spatial clusters (Table 
S3). For example, the turquoise AP cluster displaying a 
monotonically increasing pattern (Figure 2E) yielded 
GO terms broadly associated with the molecular 
machinery of mOSNS – such as axonal transportation, 
RNA processing, protein modification and quality 
control, ribosomal regulation and regulation of histone 
deacetylation (Figure S2D; Table S3). Interestingly, the 
brown DV cluster, which displays a monotonically 
decreasing expression pattern (Figure 2E), had similar 
GO term enrichment (Figure S2E; Table S3). These 
results raise the hypothesis that mOSN activity is 
enriched in the dorsoposterior region of the OM, 
consistent with previous results (64, 65).  

We then extended our analysis to the remaining 
clusters, and found additional GO terms shared 
between several clusters among the three different 
axes. For example, the GO terms enriched in the 
dorsomedial region (turquoise DV, pink AP and LM 
green) suggest that this region is involved in the OM 
detoxification (Figures S2F-H). Moreover, the 
enrichment in terms related to immune system in the 
anteromedial section along the AP axis (yellow, black 
and magenta AP clusters, and turquoise LM cluster; 
Table S3) hints at a role of this area in defending OM 
from pathogenic invaders. Finally, the ventral portion 
of the DV (red DV cluster) was associated with terms 
related to cilia movement and function, consistent 
with both the location and functions of the respiratory 
epithelium (36) (Table S3).    

Next, we further explored the relationships between 
the genes populating each cluster. We found that 
ventral genes (blue DV cluster) tend to reach a peak in 
expression in the anterior area of the OM (yellow AP 
cluster) more often than expected by chance (Figure 
2F). We also observed that medial genes (turquoise 
LM cluster) are more highly expressed in the dorsal 
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(magenta DV cluster) and anterior regions (black, 
yellow and magenta AP cluster), while genes peaking 
in the lateral region (brown LM cluster) tend to be 
ventral (red DV cluster; Figure 2F). These conclusions 
hold even when we exclude olfactory receptor genes 
from the analysis (Figures S2I-K). 

These associations between the clusters of DEGs 
along different axes strongly suggest that the presence 
of complex 3D expression patterns in OM is not 
restricted to either Olfrs or mOSNs. Moreover, our 
results show that our experimental approach can 
uncover spatially restricted functional hotspots within 
the OM.  

 

 

Figure 3. The 3D reconstruction of the OM. (A) Schematic of 3D shape reconstruction strategy. Images of 2D slices along 
the AP axis of the OM were piled together to build an in-silico 3D model of OM, which can also be used to visualize in silico 
sections. This 3D model, together with the gene expression data along each axis, was the input of the iterative proportional 
fitting algorithm, which allowed us to estimate a 3D expression pattern for any gene. (B) Reconstruction of the 3D expression 
pattern of the gene Acsm4 in the OM, visualized in 3D and in OM coronal sections taken along the AP axis. (C) Reconstruction 
of the 3D expression pattern of the gene Cytl1 in the OM. (D) In-situ hybridization experiment validating Cytl1 spatial 
expression pattern reconstructed in panel D. 

 

A 3D transcriptomic atlas of the mouse OM 

Since the OR discovery three decades ago (2), in-situ 
hybridization (ISH) has been the method of choice to 
study spatial gene expression patterns across the OM. 
This method can be technically challenging and is 
inherently a very low-throughput experimental 
approach.  

As we showed above, our Tomo-seq data enables a 
systematic and quantitative estimation of gene 
expression levels along the three cartesian axes of the 
OM. Here, we take this analysis one step further and 
generate a fully browsable tridimensional (3D) gene 
expression atlas of the mouse OM. To this aim, first 
we reconstructed the 3D shape of OM based on 
publicly available images of OM sections (made 

available by (66), see STAR Methods). We then fed the 
resulting shape information combined with the gene 
expression data along the three cartesian axes into the 
iterative proportional fitting (IPF) algorithm (30, 67) 
(Figure 3A). Our resulting 3D atlas of the OM 
faithfully reproduced the known 3D pattern of the 
dorsomedial marker Acsm4 (34) (Figure 3B). To 
further validate that our 3D atlas recapitulates known 
patterns of gene expression in the OM, we compared 
the 3D reconstructed patterns with conventional ISH 
patterns for one novel spatial DEGs identified in this 
study, Cytl1 (Figure 3C and 3D; Table S3). Cytl1 is 
expressed mainly along the septum (Figure 3C and 
3D), consistent with the role Cytl1 plays in 
osteogenesis, chondrogenesis, and bone/cartilage 
homeostasis (68, 69).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.06.16.448475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448475
http://creativecommons.org/licenses/by-nc-nd/4.0/


Segura, Abou-Moussa et al.   |   bioRχiv   |   August 2021   |    7 - 29 

 

To make this 3D gene expression atlas of the mouse 
OM available to the scientific community, we created a 
web-portal (available at http://atlas3dnose.helmholtz-
muenchen.de:3838/atlas3Dnose) providing access to 
the spatial transcriptomic data described here in a 
browsable and user-friendly format. Specifically, this 
portal contains search functionalities that allows the 
users to perform pattern search by gene, which 
returns: i) the normalized counts along each of the 
three cartesian axes; ii) the predicted expression 
pattern in the 3D OM with a zoom function; iii) 
visualization of the expression patterns in virtual 

cryosections along the OM, by selecting any possible 
pairwise intersection between two given axes (i.e., DV 
x AP, DV x LM, AP x LM); iv) the degrees of 
belonging for each ‘zone’ (see results section below); 
and v) single-cell expression data across 14 different 
OM cell types (see results section below).  

In sum, here we generated and made publicly available 
a highly sensitive 3D gene expression atlas of the 
mouse OM that allows the exploration of expression 
patterns for nearly 20,000 genes.   

Topographical expression patterns of Olfrs 

Early ISH studies postulated that OSNs expressing 
different ORs are spatially segregated into four broad 
areas within the MOE, called ‘zones’, and which 
define hemicylindrical rings with different radii (12, 
13). Subsequent studies identified ORs expressed 
across multiple zones, making clear that a division in 
four discrete zones might not accurately reflect the 
system, and a continuous numerical index representing 
the pattern of expression of each OR along the five 
OE zones was implemented (14, 15). More recently, a 
study reconstructed OR gene expression patterns in 
three dimensions (3D), and qualitatively classified the 
expression areas of 68 OR genes in nine overlapping 
zones (16). However, all these studies combined 
sampled but a fraction (~10%) of the total intact OR 
gene repertoire and, most importantly, lack a 
quantitative and unbiased definition of zones or 
indices.  

In our combined dataset we detected a total of 959 
unique Olfrs (Figure 4A), of which we confidently 
reconstructed the spatial expression patterns for 689 
differentially expressed in space (FDR<0.01; Figure 
4B) – a number six times larger than the combined 
112 Olfrs characterized by previous ISH studies (10, 
12, 14, 16). To define Olfr expression in 3D space in a 
rigorous, unbiased and quantitative way, we ran a 
Latent Dirichlet Allocation algorithm (see STAR 
Methods)(70) on the 689 spatially differentially 
expressed Olfr, which suggested the presence of five 
zones (Figure S3A; STAR Methods). Next, we 
visualized the spatial distribution of these five zones in 
our 3D model of the OM, with colors representing the 
probability that a given spatial position belongs to 
each zone (Figure 4C). These zones extend from the 
dorsomedial-posterior to the lateroventral-anterior 
region, consistent with the previously described zones 
(12-14).  

The majority of Olfrs with known spatial patterns are 
restricted to one zone, but a small number of Olfrs are 
expressed across multiple zones, in a continuous or 
non-continuous fashion (14-16). Under this logic, each 
Olfr has a different probability of belonging to the five 
different topics/zones we identified. To test this 
assumption, we used the same mathematical 
framework as above to compute the probabilities that 
the expression pattern of each Olfr gene belongs to a 
given zone, i.e., the “degree of belonging” (DOB, 
Table S4). The DOBs represent a decomposition of 
the expression patterns in terms of the five zones 
(Figure 4C) and quantitatively describe the changes in 
patterns of genes with overlapping areas of expression 
(e.g., see Figure S3B). The width of the distribution of 
DOBs across the five zones, which can be measured 
with entropy, can distinguish genes whose patterns 
mostly fit in a single zone from those spanning 
multiple zones (Figure S3C; STAR Methods).  

To visualize the global distribution of the 689 Olfrs, we 
applied the diffusion map algorithm (71) to their 
DOBs. This showed that the genes are approximately 
distributed along a continuous line spanning the five 
zones and without clear borders between zones 
(Figure 4D) (14-16). With the diffusion pseudo-time 
algorithm (72), we calculated an index (hereafter 
referred to as “3D index”) that tracks the position of 
each Olfr gene along the 1D curve in the diffusion map 
and represents its expression pattern (Figure 4E). 

While our approach yielded an index for the 689 
spatially differentially expressed Olfr genes used to 
build the diffusion map, there were ~700 Olfrs that 
could not be analyzed, either because they were too 
lowly expressed or not detected at all in our dataset 
(Figure 4A). However, since the spatial expression 
patterns for some Olfrs are partly associated with their 
chromosomal/genomic coordinates (73-75), we 
hypothesized that we could train a machine learning 
algorithm to predict the 3D indices for the ~700 Olfrs 
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missing from our dataset. Thus, we trained a Random 
Forest algorithm on the 3D indices of the spatially 
differentially expressed Olfrs in our dataset using 9 
genomic features as predictors (e.g., chromosomal 
position, number of Olfrs in cluster, distance to nearest 
known enhancer, etc; see STAR Methods and Figure 
4F).  The five most important predictors were features 
associated with chromosomal position, distance to the 
closest Olfr enhancer (76), length of the Olfr cluster, 
position in the Olfr cluster, and phylogenetic class of 
Olfrs (Figure 4F). 

After assessing the performance of the algorithm with 
a cross-validation test (Figure S4A; STAR Methods), 
we predicted the 3D indices for the 697 Olfrs missing 
reliable expression estimates in our dataset. Overall, 

through multiple unsupervised and supervised 
computational methods, we have quantitatively 
defined five spatial expression domains in the OM 
(called zones), and have provided accurate 3D spatial 
indices for 1386 Olfrs, which represents ~98% of the 
annotated Olfrs. 

Importantly, we found that our 3D indices strongly 
correlate with the zonal indices inferred using ISH in 
(14)(rho=0.88, p=3x10-27; Figure 4G) and in two other 
studies (16, 73)(Figures S4B and S4C). Furthermore, 
we performed ISH for two Olfrs that have not been 
characterized before, Olfr309 and Olfr727, which were 
correctly predicted to be expressed primarily in zone 2 
and 4 respectively (Figures 4H-M; Table S4).
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Figure 4. Zonal organization of the OM. (A) Number of Olfr genes detected in our data and in an OM bulk RNA-seq data (6) 
(B) Venn diagram of spatially differentially expressed Olfrs per axis. (C) Visualization of the five zones across the OM (coronal 
sections) estimated with a Latent Dirichlet Allocation algorithm. The colors indicate the probability (scaled by its maximum 
value) that a position belongs to a given zone. (D) Diffusion map of Olfrs. Genes are colored based on the zone they fit in the 
most. DC, diffusion component. (E) Same as panel D, with Olfrs colored by their 3D index. (F) We fitted a Random Forest 
algorithm to the 3D indexes of 681 spatially differentially expressed Olfr using nine genomic features as predictors. After 
training, the Random Forest was used to predict the 3D indexes of 697 Olfrs that have too low levels in our data. (G) 3D 
indexes versus the indexes of 80 Olfrs estimated in (14) from ISH data. Black circles indicate Olfrs detected in our dataset; 
green circles are Olfrs whose indexes were predicted with Random Forest. (H, K) Predicted expression patterns of Olfr309 
and Olfr727. (I,L) Degrees of belonging for Olfr309 and Olfr727. (J,M) In-situ hybridization for Olfr309 and Olfr727. 

 

Topographical expression patterns for non-Olfr 
genes  

Using the mathematical framework based on topic 
modelling described above, we also decomposed the 
expression patterns of non-Olfr genes onto the five 
zones we identified. This gave us the opportunity to 
look for genes showing zone specificity by calculating 
the entropy of the DOBs distributions (see above). 
Interestingly, we found 28 genes that are highly 
specific for each of the five zones (i.e., with entropy 
<1; see Figure 5A, STAR Methods and Table S5). For 
example, S100a8 (zone 1) codes for a S100 calcium-
binding protein A8 protein involved in calcium 
signaling and inflammation (77);  Moxd2 (zone 2) is a 
monooxygenase dopamine hydroxylase-like protein 
possibly involved in olfaction (78); Lcn4 (zone 3) is a 
lipocalin involved in transporting odorants and 
pheromones in the mouse nose (79, 80); Gucy1b2 
(zone 4) is a soluble guanylyl cyclase oxygen and nitric 
oxide (81, 82); and Odam (zone 5), a secretory calcium-
binding phosphoprotein family member  involved in 
cellular differentiation and matrix protein production, 
and with antimicrobial functions of the junctional 
epithelium (83, 84) (Figure 5B). The high zone-
specificity of the expression pattern of these genes 
gives clues into possible biological processes taking 
place in the zones. Indeed, Gucy1b2 is a known genetic 
marker for a small OSN subpopulation localized in 
cul-de-sac regions in the lateral OM, consistent with 
our reconstruction (Figure 5B), and it regulates the 
sensing of environmental oxygen levels through the 
nose (6, 85). Additionally, we performed in situ 
hybridization experiments on Moxd2, which revealed 

that it is expressed mostly in a small ventrolateral 
patch of the OM (Figure 5C and 5D), validating its 
predicted 3D spatial pattern (Figure 5B), and 
highlighting a highly localized putative role of this 
monooxygenase dopamine hydroxylase-like protein in 
neurotransmitter metabolism (86) in the mouse OM.  

A recent study showed that the transcription factors 
Nfia, Nfib and Nfix regulate the zonal expression of 
Olfrs (17). To get some insights into the signaling 
pathways involved in this process, we mined our 
dataset for genes encoding ligands and receptors (87) 
that significantly correlate with the expression patterns 
of the Nfi transcription factors (see STAR Methods). 
This analysis returned 476 genes involved in biological 
processes primarily associated with regulation of 
neurogenesis, regulation of cell development, 
regulation of nervous system development, anatomical 
structure development, cellular component 
organization or biogenesis and regulation of neuron 
differentiation (Table S5). As expected, some of these 
genes have known functions in the OM, such as 
segregating different cell lineages in the OM for 
Notch1-3 (88), genes associated with the development 
of the nervous system (e.g., Erbb2 and Lrp2) (89, 90), 
and many others associated with the semaphorin-
plexin, ephrin-Eph, and Slit-Robo signaling complexes 
– which regulate OSN axon guidance and spatial 
patterning of the OM (42, 91-93). Excitingly, the 
majority of these 476 genes still have unknown 
functions in the OM, thus highlighting the potential of 
our approach to discover new genes and pathways 
involved in the regulation of zonal expression in the 
OM. 
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Figure 5. Non-Olfr genes. (A) Heatmap of degrees of belonging of most zone-specific non-Olfr genes. (B) 3D gene 
expression pattern (coronal sections) of most topic specific non-Olfrs for each topic along the AP axis. (C) Reconstruction of 
the 3D expression pattern of the gene Moxd2 in the OM. (D) In-situ hybridization experiment validating Moxd2 spatial 
expression pattern reconstructed in panel C. 

The anatomical logic of smell 

For most sensory systems, the functional logic 
underlying the topographic organization of primary 
receptor neurons and their receptive fields is well-
known (1). In contrast, the anatomic logic of smell still 
remains unknown, and it is subject of great 
controversy and debate (23, 26).  

To explore the underlying logic linked to Olfrs zonal 
distribution, we investigated possible biases between 
the expression patterns of Olfrs and the 
physicochemical properties of their cognate ligands. 
First, we compiled a list of known 738 Olfr-ligand 
pairs, representing 153 Olfrs and 221 odorants (Figure 
6A; Table S6). Interestingly, we found that Olfr pairs 
sharing at least one common ligand have more similar 
expression patterns (i.e., more similar 3D indices) than 
Olfrs detecting different sets of odorants (Figure 6B). 
This observation is consistent with the hypothesis that 
the Olfr zonal expression depends, at least partially, on 
the properties of the odorants they bind to.  

Next, we considered a set of 1210 physicochemical 
descriptors, including the molecular weight, the 
number of atoms, aromaticity index, lipophilicity, and 

the air/mucus partition coefficient (𝐾𝑎𝑚), which 
quantifies the mucus solubility of each ligand (21, 94) 
(see STAR Methods). We then computed the 
Spearman’s correlation of each of these descriptors of 
the ligands with the average 3D indices of the Olfrs 
detecting them (see STAR Methods). We found a 
statistically significant correlation for 744 descriptors 
(FDR < 0.05 see Figure 6C). The highest correlation is 

with the air/mucus partition coefficient 𝐾𝑎𝑚 (rho = 
0.55, adjusted p-value = 2x10-7). Interestingly, among 
the top five correlating descriptors, three more 
(ATSC2S, SPmax1_Bh.s and SPmax2_Bh.s; Figure 
6C) are also related to solubility (95-97). These 
correlations are robust to changes in the set of ligands 
and/or Olfrs used for the analysis (e.g., when 
restricting the analysis only to class II Olfrs, see STAR 
Methods).  

In particular, the positive correlation of the 3D indices 

with 𝐾𝑎𝑚 (see Figure 6D) indicates that the most 
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soluble odorants (lower 𝐾𝑎𝑚) preferentially activate 
Olfrs expressed in the most antero-dorsomedial OM 
region (zone 1) of the OM, while the least soluble 

odorants (higher 𝐾𝑎𝑚) activate Olfrs in the postero-
ventrolateral OM region (zones 4-5). In other words, 
gradients of odorants sorption (as defined by their 

𝐾𝑎𝑚) correlate with the gradients of Olfr expression 
from zone 1 to zone 5, consistent with the 
chromatographic/sorption hypothesis in olfaction (20, 21). 

This is exemplified by the plots in Figure 5D, 
illustrating the predicted average expression levels 
across OM sections of the Olfrs binding to five 

odorants with different values of 𝐾𝑎𝑚. These results 
show, for the first time, a direct association between 
Olfr spatial patterns and the calculated sorption 
patterns of their cognate ligands in the OM, providing 
a potential explanation for the physiological function 
of the zones in the OM. 

 

Figure 6. Physiological role of the zones. (A) Circular network illustrating the pairs of Olfrs and ligands that we found in 
literature. (B) Box plots showing the distributions of the absolute value of 3D index differences between pairs of Olfrs sharing 
at least one ligand versus pairs of Olfrs without cognate ligands in common. The difference between the two distributions is 
statistically significant (p < 2.2x10-16, Wilcoxon Rank-Sum test) (C) Scatter plot showing the Spearman correlation coefficients 
between the ligands’ mean 3D indices and molecular descriptors, and the corresponding -log10(adjusted p-value). Turquoise 
circles indicate the descriptors having a significant correlation only when both class I and II Olfr are considered; red circles 
mark the descriptors with a significant correlation also when class I Olfr are removed. (D) Scatter plot illustrating the correlation 
between air/mucus partition coefficients of the odorants and the average 3D indexes of their cognate Olfrs. Only odorants for 
which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they belong to 
(defined as the zone with the highest average degree of belonging computed over all cognate receptors). The five odorants 
highlighted in the plot by larger circles are indicated on the right-hand side, along with their molecular structure and common 
name. (E) Average expression pattern of the cognate Olfrs recognizing each of the five odorants highlighted in panel D, 
including their respective CAS numbers. 

  

DISCUSSION 

Here we presented a 3D high-resolution 
transcriptomic atlas of the mouse OM, which allows, 
for the first time, the exploration and visualization of 
the expression patterns for thousands of genes. By 
integrating our 3D atlas with a previously published 
single-cell RNA-sequencing dataset (54), we were also 
able to quantify the expression of these genes across 
14 different cell types populating the mouse olfactory 
mucosa. To facilitate the exploration and 

dissemination of this important resource, we 
developed a powerful yet easy to use online browser 
that allows gene queries returning 3D and single-cell 
specific gene expression patterns in a user-friendly 
graphical interface. This atlas allowed us to identify 
spatial blueprints and provided further insight into the 
functional logic underlying the molecular organization 
of the mouse olfactory peripheral system.  
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Past studies yielded inconclusive and sometimes 
contradictory views on the basic logic underlying the 
peripheral representation of smell, partly because the 
topographic distribution of OSN subtypes and their 
receptive fields still remained vastly uncharted, data on 
Olfr-ligand pairs was scarce, and the many pitfalls 
associated with electro-olfactogram recordings used to 
study spatial patterns of odor recognition in the nose 
(26, 98, 99). Here, we combined RNA-seq and 
computational approaches that utilize unsupervised 
and supervised machine learning methods to discover 
and quantitatively characterize spatial expression 
patterns in the OM. We created the first 3D 
transcriptional map of the mouse OM, which allowed 
us to spatially characterize 17,628 genes, including 
~98% of the annotated Olfrs. We identified and 
validated by ISH several new spatial marker genes, and 
a clustering analysis pinpointed the OM locations 
where specific functions related to, e.g., the immune 
response, might be carried out. We also identified five 
broad Olfr expression zones in the OM, which were 
mathematically defined and used to decompose the 
expression patterns of all genes.  

Our analysis also enabled us to answer fundamental 
and longstanding questions about the rationale behind 
the spatial organization of the peripheral olfactory 
system. Specifically, we provide evidence to the 
hypothesis that the spatial zones increase the 
discriminatory power of the olfactory system by 
distributing Olfr receptors in the areas of the OM that 
are more likely to be reached by their cognate ligands, 
based on their solubility in mucus. However, a caveat 
of this approach is that the Olfr-ligand list we 
compiled from the literature includes odorant libraries 
of different size and composition, and tested using 
different experimental approaches. Moreover, highly 
abundant Olfrs have a higher probability of being 
deorphanized than lowly abundant Olfrs, and 
ecologically relevant odorants are more likely to 
activate Olfrs when compared to other odorants (100-
102). Despite having compiled and performed our 
analysis on the largest set of Olfr-ligand pairs 
assembled to date and carrying out multiple robustness 
checks, we cannot rule out that ascertainment bias 
might contribute to the associations we found between 
the Olfr spatial location and the properties of their 
respective ligands. Future studies investigating the 
activation profiles for all mouse Olfrs and/or mapping 
the in-vivo activation patterns of mouse Olfrs in the 

olfactory mucosa will be key to stress test the 
conclusions of our study.  

The quantitative framework we built for this dataset 
will facilitate interrogation of gene expression patterns 
via an online tool we provide, and help answer 
important questions on the spatial patterns in the 
nose. Moreover, our approach could be easily applied 
to spatial transcriptomic data collected from other 
tissues, or the same tissue across multiple 
developmental stages. Results from this study will also 
serve as a template to start answering other important 
questions about olfaction, such as whether Olfr spatial 
expression maps can also encode maps of odor 
perception. Because the general molecular 
mechanisms of olfaction, zonal organization of Olfrs, 
and components of olfactory perception are conserved 
in mammals (100, 103-106), findings from our and 
other subsequent studies can likely be extrapolated to 
other mammals, including humans. Finally, the 
functional logic underlying the topographic 
organization of primary receptor neurons and their 
receptive fields in smell is now starting to be exposed.     
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MATERIAL AND METHODS 

Animals  

The animals used in this study were adult male 
C57Bl/6J mice (aged 8-14 weeks, The Jackson 
Laboratory, Stock # 00664) maintained in group-
housed conditions on a 12:12 h light:dark schedule 
(lights on at 0700 hours). Each mouse was randomly 
assigned for cryosectioning along one of the three 
cartesian axes.  

The use and care of animals used in this study was 
approved by the Internal Animal Care and Use 
Committee (IACUC) of Monell Chemical Senses 
Center, by the IACUC of the University of São Paulo, 
and by the Wellcome Trust Sanger Institute Animal 
Welfare and Ethics Review Board in accordance with 
UK Home Office regulations, the UK Animals 
(Scientific Procedures) Act of 1986.  

 

Dissection of the olfactory mucosa, cryosections, 
and RNA-sequencing  

The olfactory mucosa (OM) of 9 mice was carefully 
dissected, and all the surrounding tissue (including 
glands and bone) removed. The OMs were then 
embedded in OCT (Tissue Tek), immediately frozen in 
dry-ice and kept at -80ºC. Each OM was then 
cryosectioned along each of the 3 cartesian axes: 
dorsal-ventral (DV, N=3), anterior-posterior (AP, 
N=3), or lateral-medial-lateral (LML, N=3). Every 

second cryosections (35 𝝁m thick) was collected into 

1.5 mL eppendorf tubes containing 350 𝝁l RLT Plus 
Buffer (Qiagen) supplemented with 1% 2-
mercaptoethanol, immediately frozen in dry-ice and 
kept at -80C until extraction. RNA was extracted using 
the RNeasy Plus Micro Kit (Qiagen), together with a 
genomic DNA eliminator column and a 30-minute 
incubation with DNAse I (Qiagen). Reverse 
transcription and cDNA pre-amplification were 
performed using the SMART-Seq v4 Ultra Low Input 
RNA Kit for Sequencing (Clontech/Takara). cDNA 
was harvested and quantified with the Bioanalyzer 
DNA High-Sensitivity kit (Agilent Technologies). 
Libraries were prepared using the Nextera XT DNA 
Sample Preparation Kit and the Nextera Index Kit 
(Illumina). Multiplexed libraries were pooled and 
paired-end 150-bp sequencing was performed on the 
Illumina HiSeq 4000 platform at Sidra Medicine, 
except for one library (DV-I) for which 125-bp paired-
end sequencing was performed on the Illumina HiSeq 
2500 platform at the Wellcome Sanger Institute. For 

the remaining eight libraries, 150-bp sequencing was 
performed on the Illumina HiSeq 4000 platform.  The 
raw data are available through ArrayExpress under 
accession number E-MTAB-10211. 

 

RNA-seq data mapping and gene counting 

Reads were aligned to the mm10 mouse genome 
(release 99). The sequences of the genes “Xntrpc” and 
“Capn5” were removed from the genome files as in 
(6). The alignment was performed with the software 
STAR version 2.7.3a (107). Genome indexes were 
generated using STAR --runMode genomeGenerate  
with default parameters. Then, alignment of reads was 
performed with the following options: --runThreadN 
48 --outSAMunmapped Within --
outFilterMultimapNmax 1000 --
outFilterMismatchNmax 4 --outFilterMatchNmin 100 
--alignIntronMax 50000 --alignMatesGapMax 50500 --
outSAMstrandField intronMotif --outFilterType 
BySJout. The resulting SAM files were converted to 
bam format and sorted using samtools (version 0.1.19-
44428cd)(108). The multi mapping reads were 
eliminated using the same software (samtools view -q 
255). Finally, the reads for each gene were counted 
using htseq-count (version 0.11.2) with the options -m 
intersection-nonempty -s no -i gene_name -r pos 
(109). 

 

Quality Control 

We excluded all the samples that fulfilled any of these 
criteria: they had less than 50% mapped reads, less 
than 4,000 detected genes, more than 20% 
mitochondrial reads, less than 10,000 total number of 
reads, or did not express any of the 3 canonical OSN 
markers Omp, Cnga and Gnal. This resulted in ~51 
good-quality sections along the DV axis (~84% out of 
the collected sections), ~76 (~91% of total) along the 
AP axis and ~59 (~93% of total) along the LML axis, 
as averaged across the three replicates per axis. 

 

Data normalization 

Gene expression counts were normalized by reads-
per-million (RPM), then genes detected in only one 
replicate and genes that were detected in less than 10% 
of all samples along one axis were eliminated. To 
check the similarity between replicates, we calculated 
Spearman correlations between the transcriptional 
profiles of sections along each axis (using the top 1000 
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Highly Variable Genes per axis). Close positions had 
the most similar transcriptional profiles (Figure 1C). 
Afterwards, the 3 replicates for each axis were aligned 
as follows: the top 3,000 highly variable genes (HVGs) 
from each replicate were identified using the method 
implemented in the scran library in R (110) and the 
intersection of these 3 groups was used in the next 
steps. For the replicates’ alignment, we took as 
reference the replicate with the smallest number of 
slices. We used a sliding window approach that 
identified the range of consecutive positions on each 
replicate along which the average value of the 
Spearman's correlation coefficient computed with the 
reference replicate over the HVG was maximum 
(mean Spearman’s Rho= 0.80, p<0.05). To mitigate 
batch effects, the level of every gene was scaled in 
such a way that their average value in each replicate 
was equal to the average calculated across all 
replicates. After this scaling transformation, the data 
was then averaged between replicates. Once the 3 
biological replicates were combined, we had 54 
sections along the DV axis, 60 along the AP and 56 
along the LML. Along the LML axis a symmetric 
pattern of expression is expected around the central 
position, where the septal bone is located. To confirm 
this in our data, first we identified the central position 
by analyzing the expression pattern of neuronal 
markers like Cnga2, Omp and Gnal, whose expression is 
lowest in the area around the septal bone. Indeed, all 
three marker genes reach a minimum at the same 
position along the LML axis (slice 28), which we 
considered to be the center. The expression patterns 
of ~90% of genes on either side of the central 
position show a positive correlation, and ~70% reach 
statistical significance (Spearman's correlation 
computed on the highly variable genes having more 
than 50 normalized counts in at least 3 slices), further 
supporting the hypothesis of the bilateral symmetry. 
Hence, after replicates were averaged, LML axis was 
made symmetric averaging positions 1:28 and 56:29. 
Moreover, Olfrs were normalized by the geometric 
mean of neuronal markers Omp, Gnal and Cnga2, as 
done previously (11). 

To verify the presence of a spatial signal, we calculated 
the Moran’s I and the associated p-values for the top 
100 Highly Variable genes along each axis using the 
“Moran.I” function from the “ape” library in R with 
default parameters (111). The p-values of the genes 
along each axis were combined with the Simes’ 
method (112) using the function combinePValues 
from the scran R library (Figure S1E). 

Identification of differentially expressed genes 
and gene clustering  

Before testing for differential expression along a given 
axis, we filtered out genes whose expression levels had 
low variability. To this aim, for each gene we estimated 
their highest and lowest expression by taking the 
average of its three highest and three lowest values 
respectively. Then, we considered for downstream 
analyses only the genes that meet either of these two 
criteria: the highest expression value is greater than or 
equal to 5 normalized counts and the fold-change 
between the highest and lowest value is greater than 2; 
or the difference between the highest and the lowest 
value is greater than or equal to 4 normalized counts. 

The expression levels of the genes were binarized 
according to whether their value was higher or lower 
than their median expression along the axis. Finally, 
we used the “ts” function in R to transform the 
binarized expression values into time series objects, 
and we applied on them the Ljung-Box test (Box.test 
function in R with lag=(axis length)-10) which 
identifies genes with statistically significant 
autocorrelations, i.e., with non-random expression 
patterns along an axis. The resulting p-values were 
adjusted using the FDR method and genes with an 
FDR < 0.01 were considered as differentially 
expressed. For the next steps, the log10 normalized 
expression of differentially expressed genes along each 
axis was fitted with a local regression using the locfit 
function in the R library locfit (113). Smoothing was 
defined in the local polynomial model term of the 
locfit model using the function “lp” from the same 
library with the following parameters: nn = 1 (Nearest 
neighbor component of the smoothing parameter) and 
deg = 2 (degree of polynomial). The fitted expression 
values of these genes along each axis were normalized 
between 0 and 1. Clustering was performed separately 
for each axis on the fitted and normalized patterns of 
the differentially expressed genes. We used the R 
function “hclust” to perform hierarchical clustering on 
the gene expression patterns, with a Spearman's 

correlation-based distance (defined as √0.5 (1 − 𝜌)) 

and the "average" aggregation method. The number of 
clusters were defined with the cutreeDynamic function 
from the dynamicTreeCut R library, with the 
parameters minClusterSize = 50, method = “hybrid” 
and deepSplit = 0. To visualize the data in two 
dimensions, we applied the UMAP dimensionality 
reduction algorithm (umap function in the R library 
umap with default options; see Figure 2D) (63, 114).  
To analyze the relationship between the expression 
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patterns of genes along different axes, we computed 
the intersections of the gene clusters between any pair 
of axes. The expected number of elements in each 
intersection under the assumption of independent sets 
is given by: 

|𝐴 ∩ 𝐵|𝑒𝑥𝑝 =
|𝐴| |𝐵|

|𝐴 ∪ 𝐵|
  

where A and B indicate the sets of genes in two 

clusters identified along two different axes and |⋅| 
indicates the cardinality of a set (i.e., the number of its 
elements). The ratio between the observed and the 
expected number of elements in the intersection 

|𝐴 ∩ 𝐵|𝑜𝑏𝑠 / |𝐴 ∩ 𝐵|𝑒𝑥𝑝 quantifies the 

enrichment/depletion of genes having a given pair of 
patterns across two axes with respect to the random 

case. The log2 values of (1 + |𝐴 ∩ 𝐵|𝑜𝑏𝑠 / |𝐴 ∩
𝐵|𝑒𝑥𝑝) are shown in Figure 2F  

 

Combining Tomo-seq with single-cell RNA-seq 
data 

The TPM (transcripts per million)-normalized single 
cell RNA-seq (scRNA-seq) data collected from mouse 
olfactory epithelium available from (54) was used to 
identify cell-type specific genes.  To this aim, we 
computed the average expression level for each cell 
type in the scRNA-seq dataset for all the differentially 
expressed genes that we identified in our TOMO-seq 
data. The genes with an average expression above 100 
TPM in mOSNs and below 10 TPM in all other cell 
types were considered mOSN-specific. Conversely, 
genes with an average expression above 100 TPM in 
any of the non-mOSN cell types and below 10 in 
mOSNs were considered to be specific for non-
mOSN cells. 

 

Gene Ontology (GO) enrichment analysis 

GO Enrichment analyses were performed using the 
GOrilla online tool (http://cbl-gorilla.cs.technion.ac.il) 
with the option “Two unranked lists of genes (target 
and background lists)”. For each axis, we used as 
background list the list of the genes we tested. 

 

Identification of ligands and receptors associated 
with the NfiA, NfiB or NfiX transcription factors  

The genes in the CellphoneDB ligands and receptor 
database (87) that were among our spatially 

differentially expressed genes were selected and 
Spearman correlation tests between their 1D 
expression patterns and the 1D patterns for the Nfi 
transcription factors were performed. Correlation 
coefficients from the three axes were averaged and 
FDRs from the 3 axes were combined with the Simes’ 
method (112) using the function combinePValues 
from the scran R library. Combined FDR values < 
0.01 were taken as significant. 

 

3D spatial reconstruction 

The olfactory mucosa shape was obtained from 
publicly available images of the mouse nasal cavity 
along the posterior to the anterior axis published in 
(66). The area of the slices corresponding to the OM 
was manually selected and images of their silhouettes 
were made. Those images were then transformed into 
binary matrices having 1’s in the area occupied by the 
OM and 0’s in the remaining regions. The binary 
matrices were rescaled to match the spatial resolution 
in our dataset, which is composed of 54 voxels along 
the DV axis, 56 along the LML axis and 60 along the 
AP axis. Finally, matrices were piled in a 3D array in R 
to obtain an in-silico representation of the 3D shape 
of the OM, which, in total, was composed of 77,410 
voxels. To perform the 3D reconstruction of the 
expression pattern for a given gene, first we 
normalized its expression levels by the volume of the 
slice at each corresponding position along the three 
axes, which was estimated using our 3D in silico 
representation of the OM. Then, we rescaled the data 
in such a way that the sum of the expression levels 
along each axis was equal to the average expression 
computed across the whole dataset. This rescaled 
dataset together with the binary matrix representing 
the 3D OM shape was used as input of the Iterative 
Proportional Fitting algorithm, which produced an 
estimation of the expression level of a gene in each 
voxel (30). Iterations stopped when the differences 
between the true and the reconstructed 1D values 
summed across the three axes was smaller than 1. 

 

Definition of zones by topic modelling 

In order to identify zones, we fitted a Latent Dirichlet 
Allocation (LDA) (115) algorithm to the 3D gene 
expression patterns (in log10 scale) of the differentially 
expressed Olfrs (689 Olfrs x 77,410 voxels). 
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The LDA algorithm was originally employed for 
document classification: based on the words included 
in each document, LDA can identify "topics", in 
which the documents can then be classified. Using this 
linguistic analogy, in our application of LDA, we 
considered the genes as “documents”, and the spatial 
locations as “words”, with the matrix of gene 
expression levels being the analogous of the "bag-of-
word" matrix (70). In this representation, the zones are 
the equivalent of “topics”, and they are automatically 
identified by LDA.  We used the LDA implementation 
included in the R package “Countclust” (116), 
developed based on the “maptpx” library (117), which 
performs a maximum a posteriori estimation to for 
model fitting. LDA was run for all possible numbers 

of topics K ∈ [2,9]. The following parameters were 
chosen: convergence tolerance = 0.1; max time 
optimization step = 180 seconds; n_init = 3. For each 
number of topics k, three independent runs were 
performed with different starting points, in order to 
avoid biases due to the choice of the initial condition.  
We estimated the number of topics by computing the 

log-likelihood for each value of K ∈ [2,9]. As seen in 
Figure S3A, while the log-likelihood is a monotonically 
increasing function of the number of topic (as 
expected), for a number of topics around ~5 it shows 
a "knee" and starts to increase more slowly. This 
suggests that ~5 is the optimal number of topics 
needed to describe the complexity of the data without 
overfitting. Hence, we fix a number of topics equal to 
5; however, we also verified that all our conclusions 
remain substantially unaffected if a different number 
of topics (e.g., 4 or 6) is chosen.   

After running LDA with K=5, we retrieved the model 
output, which consists of two probability distributions: 

the first is P(position| k) with k ∈ [1,5], which is the 
conditional probability distribution defining the topic 
k; the second probability distribution is P(k | gene), 
namely the probability distribution that quantifies the 
degrees of belonging of a given gene to the topics 

k∈[1,5]. With these probability distributions, we can 
identify the spatial positions that form each topic and 
how the different topics can be combined to generate 
the spatial expression pattern of each gene.  

Being a generative model, once trained, LDA can also 
decompose into topics the spatial expression patterns 
of genes that were not used during the training 
procedure. We exploited this feature of LDA to 
estimate the degrees of belonging of non-olfactory 
receptor genes. To this aim, we utilized an algorithm 
based on the python gensim library 

Lda.Model.inference function (118), using as input the 
estimated probability distribution P(position | k) with 

k ∈ [1,5]. The model fitting was performed using the 
Open Computing Cluster for Advanced data 
Manipulation (OCCAM), the High-Performance 
Computer designed and managed in collaboration 
between the University of Torino and the Torino 
division of the Istituto Nazionale di Fisica Nucleare 
(119). 

 

Definition of Olfr 3D indexes via diffusion 
pseudo-time 

As explained in the section above, we can describe the 
spatial expression pattern of each gene through a set 
of five numbers, which represent the degrees of 
belonging to the five topics identified by LDA. We 
applied a diffusion map (71) to the degrees of 
belonging of the Olfrs to visualize them in two 
dimensions by using the “DiffusionMap” function 
from the “destiny” R package (120) (with 
distance=”rankcor” and default parameters). In this 
two-dimensional map, the Olfrs are approximately 
distributed along a curve that joins the most 
dorsal/medial genes (those in zones 1-2) with those 
that are more ventral/lateral (zones 3-5). To track the 
position of the genes along this curve, we computed a 
diffusion pseudo-time (DPT) coordinate (72) with the 
“DPT” function from the “destiny” R package (taking 
as starting point the gene with the smallest first 
diffusion component among the genes suggested by 
the function find_tips from the same package). In 
order to make the indexes go from Dorsal to Ventral, 
as in previous studies (14), we reversed the order of 
the DPT coordinates by substracting the maximum 
coordinate from all coordinates and multiplying them 
by (-1). By doing this, we obtained for each Olfr an 
index, which we called 3D index, representing its 
spatial expression pattern in the 3D space: more 
dorsal/medial genes (zones 1-2) have smaller 3D 
indexes than Olfrs expressed in the ventral/lateral 
regions (zones 3-5). 

 

Prediction of zone index for undetected Olfrs with 
Random Forest 

We fitted a Random Forest model to the 3D indexes 
of 681 of the 689 Olfrs we characterized with our 
dataset (i.e., those that are located in genomic clusters). 
The following nine features of each Olfr were used as 
predictors: genomic position (i.e., gene starting 
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position divided by chromosome length); genomic 
cluster; genomic cluster length; number of Olfrs in the 
genomic cluster; number of enhancers in the genomic 
cluster; cluster position (i.e., starting position of the 
cluster divided by the chromosome length); distance to 
the closest enhancer; gene position within the cluster 
(i.e., the distance of the gene starting position from the 
end of the cluster divided by the cluster length); and 
phylogenetic class. 

These features were computed using the mm10 mouse 
genome in Biomart (121), while the list of enhancers 
and the genomic clusters assigned to each Olfr were 
taken from (76). The Random Forest model was fitted 
with the function "randomForest" (R library 
"randomForest" (122), with option "na.action = 
na.omit"). Afterwards, we performed a cross-
validation test with the function "rf.crossValidation" 
from the "rfUtilities" package (123) with default 
parameters. Over 100 cross-validation iterations, the 

root mean square error (RMSE) was ≲10% of the 
mean 3D index.  The feature importance was 
computed with the "importance" function from the 
randomForest library with default parameters. Finally, 
the Random Forest model trained on the 681 Olfrs was 
used to predict the 3D indexes of 697 Olfrs that were 
too lowly expressed or were undetected in our dataset. 
Overall, we were able to compute or predict with 
Random Forest a 3D index for all the Olfrs annotated 
in the mouse genome, except for 28 of them that do 
not have any genomic cluster assigned.  

 

Odorant information and Olfr-ligand pairs 

All odorant structures and associated CAS numbers 
were retrieved from either Sigma-Aldrich 
(www.sigmaaldrich.com) or PubChem 
(https://pubchem.ncbi.nlm.nih.gov). A 
comprehensive catalog of the cognate mouse Olfr-
ligand pairs was collected (last update: March 2021) by 
combining data from the ODORactor database (124) 
and additional literature sources (4, 7, 100, 101, 125-
151).  

This catalog includes 738 Olfr-ligand interactions for a 
total of 153 Olfrs and 221 odorants. These 153 Olfrs 
include 100 spatial Olfrs in our dataset and for which 
we have 3D indexes, and 49 additional Olfrs with 
predicted 3D indexes (see above). Next, we checked 
whether Olfrs pairs sharing at least one cognate ligand 
have more similar spatial expression patterns than 
pairs not sharing ligands. To do this, we computed the 

absolute values of the differences between the 3D 
indexes (∆) of 1706 pairs of ORs sharing at least one 
odorant and 9922 pairs of ORs that are known to bind 
to different odorants (Figure 6B). The two sets of ∆ 
values were significantly different (Mann-Whitney U 
test, p-value < 2.2x10-16). 

 

Correlation analysis of physico-chemical 
descriptors with 3D index 

Physicochemical descriptors for ligands were obtained 
from the Dragon 6.0 software 
(http://www.talete.mi.it/). After removing the 
descriptors showing 0 variance, a table of 1911 
descriptors for 205 ligands was obtained.  

In addition to these, we estimated the air/mucus 

partition coefficients (𝐾𝑎𝑚) of the odorants as done 
previously (21, 94). Briefly, we calculated the air/water 

partition coefficients (𝐾𝑎𝑤) for each odorant from the 
Henry’s Law constants obtained using the 
HENRYWIN model in the US EPA Estimation 
Program Interface (EPI) Suite (version 4.11; 
www.epa.gov/oppt/exposure/pubs/episuite.htm). 
Then, we computed the air/mucus partition 

coefficients (𝐾𝑎𝑚) according to the formula:  

𝐿𝑜𝑔(𝐾𝑎𝑚)  = 0.524 ⋅  𝐿𝑜𝑔(𝐾𝑎𝑤)  ⋅ 𝐿𝑜𝑔(𝐾𝑜𝑤) 

where 𝐾𝑜𝑤 indicates the octanol/water partition 
coefficient, which were obtained using the KOWWIN 
model in the EPI Suite.   

To increase the robustness of our correlation analysis, 
we removed the descriptors with 20 or more identical 
values across our set of ligands, and we initially 
considered only the ligands having 2 or more known 
cognate receptors; these filters gave us 1,210 
descriptors (including Kam) for 101 ligands.  

We performed Spearman’s correlation tests between 
the physicochemical descriptors and mean 3D index 
of the cognate Olfrs, and we considered as statistically 
significant those correlations with FDR < 0.05 (see 
Supplementary Table S6). The correlations remained 
significant even when we removed Olfrs whose indexes 
were predicted with the Random Forest, or when only 
class II Olfrs were included in the analysis. In 

particular, the Spearman’s correlation of  𝐾𝑎𝑚 with the 
mean 3D indices is 0.69 (p-value = 2x10-3) when we 
removed Olfrs whose indexes were predicted with the 
Random Forest and 0.5 (p-value= 1.3x10-7) when only 
class II Olfrs were included. 
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In-situ hybridization 

In-situ hybridization was basically performed as 
previously described (Ibarra-Soria et al. 2017). 12-
week-old male C57BL/6J mice were perfused with 4% 
paraformaldehyde and decalcified in RNase-free 
0.45M EDTA solution (in 1x PBS) for two weeks. 
Decalcified heads were cryoprotected in RNase-free 
30% sucrose solution (1x PBS), dried, embedded in 
OCT embedding medium, and frozen at -80°C. 
Sequential 16 mm sections were prepared with a 
cryostat and the sections were hybridized to 
digoxigenin-labeled cRNA probes prepared from the 
different genes using the following oligonucleotides: 
Cytl (5’–AAAGACACTACCTCTGTTGCTGCTG – 
3’ and 5’ – 
GTAAGCAGAGACCAGAAAGAAGAGTG – 3’), 
Moxd2 (5’ – 
TGTACCTTTCTCCCACTCCCTATTGTC – 3’ and 
5’– CCCATGCAACTGGAGATGTTAATTCTG – 
3’), Olfr309 (5’– 
TACAATGGCCTATGACCGCTATGTG – 3’ and 5’ 
– TCCTGACTGCATCTCTTTGTTCCTG – 3’) , 
Spen (5’– 

GGTGGGAAACTTACCGGAGAACGTG – 3’ and 
5’ – TGCTGCTGATGGAGTCACTACTG – 3’), 
Olfr727 (5’ – 
CGCTATGTTGCAATATGCAAGCCTC – 3’  and 
5’– GCTTTGACATTGCTGCTTTCACCTC – 3’). 
The PCR products were cloned into pGEM-T Easy 
vector and the probes were obtained by in vitro 
transcription of the plasmids, using SP6 or T7 RNA 
Polymerases (Ambion) and DIG RNA Labeling mix 
(Roche). 

 

DATA AND CODE AVAILABILITY 
RNA-seq raw data have been deposited and are 
publicly available as of the date of publication at 
ArrayExpress – accession number E-MTAB-10211.  
All original code and scripts for the 3D nose atlas 
shiny app has been deposited at Github and can be 
found here. The 3D nose atlas processed data can be 
visualized and is publicly available here. Any additional 
information required to reanalyze the data reported in 
this paper is available from the lead contacts upon 
request. 
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SUPPLEMENTARY MATERIAL 

 
Figure S1. TOMO-seq data QC, related to Figure 1. (A) Boxplots showing the distributions of the log10 total number of reads 
per sample in each axis (DV = dorsal-ventral; AP = anterior – posterior; LML = lateral-mid-lateral). (B) Boxplots of percentage of 
uniquely mapped reads per sample per axis. (C) Boxplots of distributions of log10 detected genes per sample per axis. (D) 
Boxplots of percentage of mitochondrial reads per sample per axis. (E) Boxplots showing the distribution of the Moran’s I 
statistics calculated for the top 100 Highly Variable Genes per axis. P-values are computed for each gene and then combined 
with the Simes’ method. The combined p-values are < 2.2x10-16 for all axes. (F) Normalized expression of canonical OM spatial 
marker genes along the 3 axes. Red line showing fits with local polynomial models.  
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Figure S2. Spatial differential expression analysis, related to Figure 2. (A)Schematics of strategy to find spatially 
differentially expressed genes; as an example, data for Acsm4 along the dorsal-ventral (DV) axis is shown: Gene expression 
was binarized according to whether the expression per slice was higher or lower than the median expression (red horizontal 
line). Then, we computed the autocorrelation function for different values of the lags, and we applied the Ljung-Box test to verify 
whether the autocorrelation values are significantly higher than zero. (B) Box plots of example genes’ expression (log10 reads-
per-million, RPMs) distributions in different cell types. None of these genes is expressed in mOSNs (INP = Immediate Neuronal 
Precursors; GBC = Globose Basal Cells;  mOSNs = mature Olfactory sensory neurons; iOSNs = immature Olfactory Sensory 
Neurons; MVC = Microvillous Cells; iSC = Immature Sustentacular Cells; mSC = Mature Sustentacular Cells; HBCs = Horizontal 
Basal Cells). (C) Spatial gene expression trends along each axis of the example genes shown in panel B.  (D-H) Bar plots 
showing the enrichment values for the top enriched Gene Ontology categories in different gene clusters (see Figure 2E). (I-K) 
Heatmap showing the log2 enrichment for the intersection between different gene clusters (indicated by colored circles) across 
pairs of axes, after excluding Olfr genes.  
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Figure S3. Olfr genes 3D zones, related to Figure 3. (A) Log-likelihood values for fits with LDA models as a function of the 
number of zones. (B) Bar plot showing the degrees of belonging of Olfr genes with overlapping spatial patterns (Miyamichi 
indexes of 1, 1.3 and 2 respectively). (C) Distribution of entropy values of our 689 Spatially differentially expressed Olfrs’ spatial 
expression. The Olfrs with entropy values less than 1 bit (vertical red line) were considered to fit mostly in one zone. (D) Bar plot 
showing the degrees of belonging of Moxd2. 

 

 

 
Figure S4. Olfr 3D index prediction, related to Figure 4. (A) Root mean square error (RMSE) per iteration of the cross-
validation test for the Random Forest model used to predict 3D indexes. (B) Scatter plot showing the correlation of our 3D 
indexes with the zone indexes estimated by [66] (“Tan Indexes”), who performed RNA-seq on 12 samples at different positions 
along the dorsal-ventral axis of the OM and estimated indexes using as reference the ~80 Olfrs analyzed in [14] via ISH. (C) 
Scatter plot illustrating the comparison of our 3D indexes versus the zones defined by [16] (“Zolfr”) from ISH data. For this 
comparison, these zones were numbered from 1 to 9 from the most dorsal to the most ventral.  
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Figure S5 – Physiological role of the zones, related to Figure 6. Scatter plot illustrating the correlation between ATSC2s of 
the odorants and the average 3D indexes of their cognate Olfrs. Only odorants for which we know at least two cognate Olfrs 
(110) were used here. Odorants are colored according to the zone they belong to (defined as the zone with the highest average 
degree of belonging computed over all cognate receptors).   

 

Table S1. Microsoft Excel format file, related to Figure 1. Quality control. Sheets 1-3: Quality statistics of TOMO-seq data 
from each sample (one per axis). Sheet 4: Number of detected genes per axis (Genes were considered as detected when they 
had at least one (RPM) count in at least 10% of the samples from one axis). 

Table S2. Microsoft Excel format file, related to Figure 2. Gene expression in different cell types. Sheet 1: Spatially 
differentially expressed Genes not expressed in mature olfactory sensory neurons per axis. Sheet 2: Gene Ontology Enrichment 
analysis results (output from GOrilla) for the spatially differentially expressed genes not expressed in mature olfactory sensory 
neurons. Sheet 3: Total number of spatially differentially expressed Genes (totalDEGs), number of spatially differentially 
expressed genes coming from mature olfactory sensory neurons (OSNsDEGs), and number of spatially differentially expressed 
genes not expressed in mature olfactory sensory neurons (nonOSNsDEGs). 

Table S3. Microsoft Excel format file, related to Figure 4. Spatially differentially expressed genes. Sheets 1-3: genomic 
features (Ensembl ID, gene name, location and length), analysis-related features (p-value, FDR, and cluster) of spatially 
differentially expressed genes (one table per axis).Sheets 4-23: Gene Ontology Enrichment analysis results (output from GOrilla) 
for the spatially differentially expressed genes per cluster. 

Table S4. Microsoft Excel format file, related to Figure 4. 3D indexes. Sheet 1: Log likelihood values for LDA topic models 
with numbers of topics from 2 to 9. Sheet 2: Degrees of Belonging, zone with maximum DoB, entropy and 3D indexes for spatially 
differentially expressed Olfr genes.Sheet 3: Genomic features (genomic cluster, length of genomic cluster, number of Olfr genes 
in the genomic cluster, number of enhancers in the genomic cluster, distance from gene to closest enhancer, Olfr class, gene 
chromosomal position, gene position in the genomic cluster, and cluster chromosomal position) and predicted 3D indexes for 
Olfr genes with available data. 

Table S5. Microsoft Excel format file, related to Figure 5. Non-Olfr genes.  

Table S6. Microsoft Excel format file, related to Figure 6. Olfr-ligand analysis related data. Sheet 1: List of Olfr – ligand 
pairs. The organoleptic properties of some odourants and the references are also listed. Sheet 2: Log (air / mucus partition 
coefficient) for ligands with available information. CAS numbers and SMILES included. 
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