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AMPLE VECTOR BUNDLES OF SMALL ∆-GENERA

ANTONIO LANTERI AND CARLA NOVELLI

Abstract. A natural notion of “delta-genus” ∆ for a generalized polarized manifold (X, E),

strictly related to its associated scroll, is introduced and pairs (X, E) with low ∆ are classified.

The stronger are the properties enjoyed by the vector bundle E, the larger are the values of ∆

attained by the results.

Introduction

Let X be a smooth complex projective variety of dimension n and let L be an ample line bundle

on X. In order to study polarized manifolds (X,L) Fujita introduced the ∆-genus of (X,L), which

is a nonnegative integer defined by the formula

∆(X,L) := n+ Ln − h0(X,L).

The theory developed around this invariant has been a powerful tool in characterizing polarized

varieties with ∆ small enough [11]. As noticed in [11, p. 176] there is not a good vector bundle

version of the theory of ∆-genus. This sentence motivated our interest in the subject.

Let E be an ample vector bundle of rank r ≥ 2 on X. There are two obvious polarized varieties

naturally associated with (X, E), namely (X,det E) and the scroll (P,H), where P = PX(E) and H

is the tautological line bundle. One could be tempted to use their ∆-genera to study (X, E). The

natural expectation, however, is to have a new invariant capturing the vector bundle aspects in a

better way, e.g. involving the rank r and all Chern classes of E .

In principle there could be many ways to define a ∆-genus for (X, E), which could be conceived

either as a single integer or as an r-tuple of integers (e.g. see [1]). Looking for one integer, a natural

definition would be

∆(X, E) = n r + f(c1, . . . , cr)− h0(X, E),

where f is a suitable polynomial in the Chern classes of E .

In this paper we define ∆(X, E) in this way, choosing f to be the polynomial computing the

degree of the tautological line bundle of the scroll (P,H). This has the effect of producing the

relation ∆(X, E) = (n− 1)(r− 1) + ∆(P,H), which makes ∆(P,H) playing a prominent role in our

study. As a consequence we immediately get the nonnegative lower bound (n−1)(r−1) for ∆(X, E).

Our aim is to investigate pairs (X, E) with low ∆. We can do that relying on the classification

results available for polarized manifolds of low ∆-genus to be applied to (P,H). Combining them

with the special structure of (P,H) leads to remarkable simplifications which enable us to obtain
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2 ANTONIO LANTERI AND CARLA NOVELLI

classification results much cleaner than those holding for line bundles. For instance, for ∆(X, E) ≤
(n− 1)(r − 1) + 1, our result is complete, unlike that holding for polarized manifolds with ∆-genus

≤ 1 (e.g. see [11, Problem 6.24]). Actually a still unsolved case in the setting of ample line bundles

does not fit our context (Lemma (1.4)).

As we said, another obvious polarized manifold associated with (X, E) is (X,det E). However,

the inequality ∆(X,det E) ≤ ∆(X, E) holding for n = 1 (Remark (3.5)) seems to suggest that our

∆(X, E) is a more relevant character than ∆(X,det E). More generally, for any dimension n, even if

we assume that E is spanned and det E is very ample in order to have more geometric evidence, the

character ∆(X,det E) alone seems unable to reflect the possible degeneracy of the image of X via

the morphism to an appropriate Grassmannian defined by E . On the contrary, at the end, ∆(P,H)

reveals more meaningful than expected.

The precise formulation of our classification results of pairs (X, E) with small ∆ is given in

Theorems (3.6) and (3.7) for E ample, (4.3) for E ample and spanned by global sections, (5.6) and

(6.3) for E very ample.

Actually, the better are the properties enjoyed by E , the larger are the values of ∆ we can

include in our investigation. For instance, Theorem (6.3) deals with pairs (X, E) with n ≥ 2 and

∆ = (n − 1)(r − 1) + 4. More generally, when E is very ample we also provide the list of pairs

(X, E) with n ≥ 2 such that either ∆ ≤ (n− 1)(r − 1) + d
2 , where d = d(P,H) (Theorem (5.1)), or

∆ ≤ nr− 1 (Theorem (5.4)). As a consequence of the results above, we obtain the list of pairs with

∆ = 2 for E ample and spanned (Proposition (4.5)) and, when E is very ample, of those: (a) with

∆ = 3 (Proposition (6.1)), (b) with ∆ = 4 or 5 (Propositions (6.2) and (6.5)) under the assumption

n ≥ 2.

In all proofs the fact that our definition of ∆(X, E) relies on the ∆-genus of the polarized mani-

fold (P,H) turns out to be a concrete advantage. Actually, ∆(X, E) small implies ∆(P,H) small;

according to the theory (see [11] for H ample, and [15], [17], [18] for H very ample), polarized

manifolds with low ∆-genus are rather special and include several special varieties arising from

adjunction theory. Since we already know that (P,H) is a scroll, the investigation of scrolls admitting

another relevant structure for adjunction theory (e.g. non-trivial reductions, quadric fibrations, del

Pezzo and Mukai manifolds, etc.) plays a key role in our analysis. This investigation takes Section

2. Some results we prove to this end are of interest in themselves, e.g. see Propositions (2.8) and

(2.12). Another point deserves to be stressed. The map associating (P,H) to (X, E) is not injective.

Hence, in the reconstruction process of (X, E) from (P,H), one can meet admissible pairs (P,H)

carrying distinct scroll structures. This happens in several instances, some of which are nontrivial,

e.g. see Remarks (2.5), (2.10), (5.5) and (5.7). Finally, while the value of the ∆-genus increases,

new possible varieties arise as candidates for (P,H) (e.g. see the proof of Theorem (6.3)); of course

this makes it harder to analyze the compatibility of different structures on (P,H).

The paper is organized as follows: in Section 1 we collect some background material; scrolls

carrying a further structure are analysed in Section 2; the ∆-genus of (X, E) is discussed in Section 3
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for ample vector bundles; in Section 4 we consider ample vector bundles spanned by global sections,

while Sections 5 and 6 are devoted to very ample vector bundles.

1. Background material

We work over the field of complex numbers and we use the standard notation from algebraic

geometry. By a little abuse we make no distinction between a line bundle and the corresponding

invertible sheaf. Moreover, the tensor products of line bundles are denoted additively. The pullback

i∗E of a vector bundle E on X by an embedding of projective varieties i : Y ↪→ X is denoted by EY .

We denote by KX the canonical bundle of a smooth variety X. The blow-up of a variety X along a

smooth subvariety Y is denoted by BlY (X).

A smooth projective variety X is called a Fano manifold if its anticanonical bundle −KX is ample.

For a Fano manifold X, the largest integer, rX , which divides −KX in the Picard group Pic(X) is

called the index of X while the integer iX := min{−KX · C : C is a rational curve onX} is called

the pseudoindex of X.

Let S be a smooth projective surface. By saying that S is ruled we mean that S is birationally

equivalent to B×P1, where B is a smooth projective curve. We say that S is geometrically ruled to

mean that it is a P1-bundle over B.

We set Fe = PP1(OP1 ⊕OP1(−e)) to denote the Segre–Hirzebruch surface of invariant e (e ≥ 0).

Then, as in [14, p. 372], C0 stands for a section of minimal self-intersection and f for a fiber.

A polarized manifold is a pair (X,L) consisting of a smooth projective variety X and an ample

line bundle L on X. The degree, the sectional genus and the ∆-genus of a polarized manifold

(X,L) of dimension n are defined as d(X,L) = Ln, g(X,L) = 1 + 1
2 (KX + (n − 1)L) · Ln−1 and

∆(X,L) = n + d(X,L) − h0(X,L), respectively. A polarized manifold (X,L) is said to be a scroll

over a smooth variety W if there exists a surjective morphism f : X−→W such that (F,LF ) ∼=
(Pm,OPm(1)) with m = dimX − dimW for any fiber F of f . This condition is equivalent to saying

that (X,L) ∼= (PW (F),H(F)) for some ample vector bundle F on W , where H(F) is the tautological

line bundle on the projective space bundle PW (F) associated to F . A polarized manifold (X,L) is

said to be a quadric fibration over a smooth curve W if there exists a surjective morphism f : X−→W

and any general fiber F of f is a smooth quadric hypersurface Qn−1 in Pn with n = dimX such that

LF
∼= OQn−1(1). A polarized manifold (X,L) is said to be a Veronese bundle over a smooth curveW if

there exists a P2-bundle p : X−→W such that LF
∼= OP2(2) for any fiber F of p. A polarized manifold

(X,L) is said to be a del Pezzo manifold (resp. a Mukai manifold) if KX + (dimX − 1)L = OX

(resp. if KX + (dimX − 2)L = OX).

Let (X,L) be a polarized manifold. An effective divisor E ⊂ X is called a (−1)-hyperplane if

E ∼= Pn−1, OE(E) ∼= OPn−1(−1) and LE
∼= OPn−1(1). Sometimes we write EE instead of OE(E) for

shortness. Note that the set of (−1)-hyperplanes contained in X is finite and, in case dimX ≥ 3,

any two (−1)-hyperplanes are disjoint. Let dimX ≥ 3. We will call a pair (Y, L) the (adjunction

theoretic) reduction of (X,L) if there exists a birational morphism σ : X−→Y which is the contraction
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of all (−1)-hyperplanes E1, . . . , Es contained in X and L is the (unique) ample line bundle on Y

such that L = σ∗L− E1 − · · · − Es. We use the expression simple reduction to mean that s = 1.

Let X be a smooth projective variety of dimension n and let E be an ample vector bundle of rank

r on X. Consider the projective bundle P := PX(E) and denote by H = H(E) the tautological line

bundle on P . Then (P,H) is a polarized manifold of dimension n + r − 1 and degree d(P,H) =

Hn+r−1. Let π : P → X be the bundle projection and, with a little abuse, let us use the symbol ci
to denote ci(E) as well as π∗ci(E), according to the context. The Chern–Wu relation allows us to

write

(1.1) Hr = f(H, c1, . . . , cr) = Hr−1c1 −Hr−2c2 + · · ·+ (−1)r−1cr.

By (1.1) we can express d(P,H) in the following way

Hn+r−1 = Hn−1 · f(H, c1, . . . , cr) = Hn−2 ·
(
H · f(H, c1, . . . , cr)

)
,

and proceed inductively. Then we can use (1.1) again to replace each power ≥ r of H in terms of

smaller powers. This reduces the expression above to a polynomial of degree r − 1. On the other

hand, coefficients of Hi for i < r − 1 are cup products of Chern classes, which are obviously zero

since dimX = n < n+ r − 1− i. This leads to a final expression of the form

d(P,H) = Hr−1 · P (c1, . . . , cr),

where P is a polynomial in the Chern classes expressing a 0-cycle on X, or a finite number of fibers

F of π, according to the convention about the meaning of ci. Recall that Hr−1 · F = (HF )r−1 = 1,

hence d(P,H) is the degree of the 0-cycle on X expressed by P . In order to provide an explicit

expression of this degree, set

ϕj = 0 for j < 0, ϕ0 = 1, and ϕ1 = c1,

and inductively define

ϕk = c1ϕk−1 − c2ϕk−2 + c3ϕk−3 − · · ·+ (−1)r−1crϕk−r for k = 2, . . . , n.

For instance, for any r ≥ 2 we have ϕ2 = c21 − c2, ϕ3 = c1ϕ2 − c2c1 + c3 = c31 − 2c1c2 + c3, and

ϕ4 = c1ϕ3− c2ϕ2 + c3c1− c4 = c41− 3c21c2 +2c1c3 + c22− c4. Then the iterated procedure described

above leads to a recursive expression for P (c1, . . . , cr). The result is the following

Lemma 1.1. The degree of (P,H) is given by d(P,H) = ϕn.

Here are some examples:

Examples 1.2. (i) Let r = 2. Here we list the expressions of ϕk for 3 ≤ k ≤ 8: ϕ3 = c1(c21 − 2c2),

ϕ4 = c41 − 3c21c2 + c22, ϕ5 = c1(c41 − 4c21c2 + 3c22), ϕ6 = c61 − 5c41c2 + 6c21c
2
2 − c32, ϕ7 = c1(c61 − 6c41c2 +

10c21c
2
2 − 4c32), ϕ8 = c81 − 7c61c2 + 15c41c

2
2 − 10c21c

3
2 + c42.

(ii) Let r = 3. The expressions of ϕk for 4 ≤ k ≤ 6 are the following: ϕ4 = c41 − 3c21c2 + 2c1c3 + c22,

ϕ5 = c51 − 4c31c2 + 3c21c3 + 3c1c22 − 2c2c3, ϕ6 = c61 − 5c41c2 + 4c31c3 + 6c21c
2
2 − 6c1c2c3 − c32 + c23.
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(iii) We compute d(P,H) in case n = 5 and any r ≥ 2. We already know the expression of ϕk for k ≤
4. Then d(P,H) = ϕ5 = c1ϕ4−c2ϕ3+c3ϕ2−c4c1+c5 = c51−4c31c2+3c21c3+3c1c22−2c1c4−2c2c3+c5.

In this paper we will work in the following set-up:

1.3. X is a smooth projective variety of dimension n and E is an ample vector bundle of rank r on

X. We will denote by (P,H) the polarized manifold consisting of P := PX(E) and H := H(E), the

taulogical line bundle of E on P . Moreover, we will denote by π : P → X the bundle projection and

by d := d(P,H) the degree of (P,H).

The following result will be used in Section 3.

Lemma 1.4. Let X, E, (P,H) and d be as in (1.3). Assume that E has rank r ≥ 2. Then

∆(P,H) = 1 = d cannot happen.

Proof. Assume by contradiction that ∆(P,H) = 1 = d. Using the description in [7, Theorem

13.6] we know that the base locus Bs |H| of |H| is a single point x ∈ P . Let F0 = Pr−1 be the

fiber of π : P → X containing x. As dim |H| = n + r − 2, by imposing to contain r − 1 linearly

independent tangent directions to F0 at x we obtain a linear subsystem S of |H| of dimension

n+r−2− (r−1) = n−1, all of whose elements D contain F0, the general one being a scroll over X.

Choose general elements D0, . . . , Dn−1 generating S. Then D0 ∩ · · · ∩Dn−1 = F0 +T , where T cuts

every fiber F of π along a linear subspace of codimension ≤ n. Note that if r−1 ≥ n, then T contains

a Pr−1−n-bundle over X as an irreducible component. On the other hand, if 2 ≤ r ≤ n, then one of

the irreducible components of T maps birationally via π to a subvariety of X of dimension r− 1. In

fact, π(T ) parameterizes the fibers of P that D0, . . . , Dn−1 meet at a same point, and a dimension

count shows that π(T ) has codimension n− r + 1 in X. In both cases we thus get

1 = Hn+r−1 = Hr−1D0 · · ·Dn−1 = Hr−1F0 +Hr−1T = 1 +Hr−1T.

Hence Hr−1T = 0, but this contradicts the ampleness of H. �

Now we prove a result on the cubic surface that we will use in Section 6.

Lemma 1.5. Let Y ⊂ P3 be a smooth cubic surface and let L be an ample line bundle on Y with

g(L) = 4. Then L = −2KY .

Proof. Let σ : Y → P2 be the birational morphism exhibiting Y as the plane blown-up at general

points p1, . . . , p6; let ` = σ∗OP2(1) and ei = σ−1(pi). Recall that −KY = 3` −
∑6

i=1 ei. We can

write L = a` −
∑6

i=1 biei for suitable integers a, b1, . . . b6. Letting d = L2 the condition g(L) = 4

is equivalent to L ·KY = 6 − d. Thus the existence of a line bundle L such that g(L) = 4 can be

rephrased by saying that in the 6-dimensional euclidean space 〈e1, . . . , e6〉 ⊗Z R = R6 the sphere Σ

and the hyperplane Π defined by
6∑

i=1

b2i = a2 − d and
6∑

i=1

bi = 3a+ 6− d,
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respectively, do intersect. To this end it is necessary that the distance of the origin of R6 from Π

does not exceed the radius of Σ. This gives

(1.5.1) d
(
d− 6(a+ 1)

)
+ 3(a2 + 12a+ 12) ≤ 0.

On the other hand, by the Hodge index theorem we have (6− d)2 = (L ·KY )2 ≥ L2 ·K2
Y = 3d, i.e.

(1.5.2) d ≥ 12.

Combining this with (1.5.1) gives

3(a− 6)2 ≤ 0.

Therefore a = 6 and equality must hold in both (1.5.1) and (1.5.2). Hence
∑6

i=1 bi = 3a+6−d = 12

and
∑6

i=1 b
2
i = a2 − d = 24. Thus

∑6
i=1(bi − 2)2 =

∑6
i=1 b

2
i − 4

∑6
i=1 bi + 24 = 0 and we conclude

that b1 = · · · = b6 = 2. In other words, L = 6`− 2
∑6

i=1 ei = −2KY . �

We conclude this section summarizing the properties of the ∆-genus for a “polarized curve” in

the following

Proposition 1.6. Let L be an ample line bundle on a smooth projective curve C of genus g, and

let ∆ := ∆(C,L). Then:

(1) ∆ ≤ g, with equality if and only if L is nonspecial (i.e. h1(L) = 0).

(2) If L is special, then degL ≤ 2∆ and L imposes ∆ linearly independent linear conditions on

the canonical series |KC |.
(3) degL = 2∆ if and only if g ≥ 2 and either L = KC , or C is hyperelliptic and |L| = ∆g1

2.

Proof. By definition, ∆ = 1 + degL − h0(L). Combining this with the Riemann–Roch theorem

gives (1). If L is special, Clifford’s theorem gives

1 + degL −∆ = h0(L) ≤ 1
2

degL+ 1,

hence degL ≤ 2∆. On the other hand, by Serre duality and the Riemann–Roch theorem we get

0 < h0(KC − L) = h1(L) = g −∆ = h0(KC)−∆.

This proves (2). Finally, (3) follows from the characterization of the equality in the Clifford theorem.

�

Remarks 1.7. Here are some immediate implications of Proposition (1.6).

(i) ∆ = 0 if and only if g = 0.

(ii) If ∆ = 1, then either g = 1, or L is special and g ≥ 2 by (1). Moreover, in the latter case

degL ≤ 2∆ = 2, equality implying that C is hyperelliptic and |L| is the g1
2 , by (2) and (3) (note

that, if L = KC , then g = 2). On the other hand, if degL = 1 then h0(L) = 1 + degL − ∆ = 1,

hence L = OC(p) for some point p ∈ C.

(iii) If ∆ = 2, then (1) and (2) imply that either g = 2, or L is special, g ≥ 3, and degL ≤ 4. In

the latter case, equality degL = 4 implies by (3) that either C is a non-hyperelliptic curve with

g = 3 and L = KC , or C is hyperelliptic and |L| = 2g1
2 . Let L be special. If degL = 1 then
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h0(L) = 1+degL−∆ = 0, so L = OC(p1 + · · ·+pm +p−q1−· · ·−qm) for some points pi, p, qi ∈ C,

m ≥ 1, and the points p1, . . . , pm, p impose (m + 1) linearly independent linear conditions on the

linear series |KC +q1+ · · ·+qm|, by (2). If degL = 2, then h0(L) = 1, hence L = OC(p+p′) for some

points p, p′ ∈ C, which impose two linearly independent linear conditions on |KC | (in particular, if

C is hyperelliptic then p+ p′ 6∈ g1
2). Finally, if degL = 3, then h0(L) = 2, so that C is trigonal and

|L| is a g1
3 . We have L = OC(p + p′ + p′′) for some p, p′, p′′ ∈ C. Thus p + p′ + p′′ is the divisor

cut out on the canonical curve by a trisecant line (take into account that C cannot be hyperelliptic,

being a trigonal curve of genus g ≥ 3, due to the Castelnuovo–Severi inequality).

2. Scrolls admitting further relevant structures

Let X, E , (P,H) and π be as in (1.3). In this section we study whether the scroll structure of

(P,H) given by π is compatible with (P,H) being another relevant variety for adjunction theory.

First we point out the following fact.

Lemma 2.1. Let (X,L) be a del Pezzo manifold. If X admits a P-bundle structure, then one of the

following holds:

(1) d(X,L) = 6 and X is either P1 × P1 × P1, or P2 × P2, or PP2(TP2);

(2) d(X,L) = 7 and X is Blp P3;

(3) d(X,L) = 8 and X is either F0, or F1.

Proof. The assertion follows from [11, Theorem 8.11] and the classification of del Pezzo surfaces. �

We deduce the following

Corollary 2.2. Let X, E and (P,H) be as in (1.3), where E has rank r ≥ 2. If (P,H) is a del

Pezzo manifold, then (X, E) is one of the following:

(1) (P2, E), where E is one of the following vector bundles: OP2(1)⊕3, the tangent bundle TP2 ,

OP2(2)⊕OP2(1);

(2) (P1 × P1,OP1×P1(1, 1)⊕2).

Proof. If n ≥ 2, the assertion follows from Lemma (2.1), cases (1) and (2). If n = 1, Lemma (2.1)

again (case (3)) says that P = Fe, e = 0, 1. However, on F0 we have H = −KP = OP1×P1(2, 2), while

on F1 it is H = −KP = 2C0 + 3f . It follows that H · f = 2 in both cases, so we get a contradiction,

since H is the tautological line bundle on P . �

Lemma 2.3. Let X be a Fano manifold which is a P-bundle over a smooth curve C. Then X has

pseudoindex ≤ 2.

Proof. We know that C = P1 (e.g. by [35, Theorem 1.6]). Then X = PP1(F) where F =

⊕m
i=1OP1(ai), am ≥ . . . ≥ a2 ≥ a1 = 0. Let ξ and f be the tautological line bundle and a fiber,
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respectively. Then KX = −mξ + (
∑m

i=1 ai − 2)f . Let γ ⊂ X be the section corresponding to the

surjection of F onto the trivial summand OP1(a1) = OP1 . Then ξ · γ = 0, hence

−KX · γ =
(
mξ −

( m∑
i=1

ai − 2
)
f
)
· γ = 2−

m∑
i=1

ai.

By contradiction, suppose thatX has pseudoindex≥ 3. Then from−KX ·γ ≥ 3 we get
∑m

i=1 ai ≤ −1,

a contradiction. �

Proposition 2.4. Let X, E and (P,H) be as in (1.3). Assume that X has dimension n ≥ 2 and

that E has rank r ≥ 2. If (P,H) is a Mukai manifold, then (X, E) is one of the following:

(1) (P3, E), where E is one of the following vector bundles: OP3(1)⊕4, OP3(2) ⊕ OP3(1)⊕2, the

tangent bundle TP3 , the twist N (2) of a null-correlation bundle N on P3, OP3(2)⊕2, OP3(3)⊕
OP3(1);

(2) (Q3, E), where E is one of the following vector bundles: OQ3(1)⊕3, the twist S(2) of a spinor

bundle S on Q3 (see [31, Definition 1.3]), OQ3(2)⊕OQ3(1);

(3) (X,h) is a del Pezzo threefold and E = h⊕2;

(4) (P2 × P1, E), where E is either OP2×P1(2, 1)⊕OP2×P1(1, 1), or π∗1TP2 ⊗OP2×P1(0, 1), π1 de-

noting the first projection.

Proof. As (P,H) is a Mukai manifold, we know that −KP = (dimP − 2)H. On the other hand, by

the canonical bundle formula we have

KP = −rH + π∗(KX + det E),

from which we derive that KX + det E = OX and r = dimP − 2 = n + r − 3. Therefore n = 3.

Clearly, X is a Fano manifold; moreover, its pseudoindex is iX ≥ iP by [2, Lemme 2.5]. Therefore,

as P has index dimP − 2 = r,

(2.4.1) 4 = n+ 1 ≥ iX ≥ iP ≥ r ≥ 2,

the first inequality coming from Mori theory, e.g. see [3, Theorem 1.8].

If r = 3 or 4, we are in the assumptions of [10, Main Theorem], so we get the following possibilities

for (X, E):

(i) (P3,V), where V is either OP3(1)⊕4, or OP3(2)⊕OP3(1)⊕2, or the tangent bundle TP3 ;

(ii) (Q3,OQ3(1)⊕3);

(iii) X is a P2-bundle over a smooth curve C and EF = OP2(1)⊕3 for any fiber F = P2 of the

bundle projection.

Taking into account that X is a Fano 3-fold of pseudoindex ≥ 3 by (2.4.1), the last case cannot

occur in view of Lemma (2.3).

We can thus assume that r = 2. Then we are in the assumptions of [33, Theorem 0.4], which

gives all the remaining cases of our statement. �

Remark 2.5. Note that the pairs (P3,N (2)) and (Q3,S(2)) in cases (1) and (2) give rise to the same

polarized manifold (P,H), according to [35, Propositions 2.6 and 3.4]. Looking at P as the incidence



AMPLE VECTOR BUNDLES OF SMALL ∆-GENERA 9

variety {(x, `) ∈ P3 × C|x ∈ `}, where C ⊂ Grass(1, 3) is a general linear complex of lines of P3, and

recalling that C ∼= Q3, the two distinct P1-bundle structures of P are induced by the projections of

P3 × C.

Remark 2.6. Arguing similarly to the previous proof, it is possible to derive directly the classification

of Corollary (2.2).

We will use the following generalization of [24, Lemma 1.8]:

Lemma 2.7. Let X be a smooth projective variety of dimension n ≥ 3 and let L be an ample

line bundle on X such that (X,L) is a scroll over a smooth variety Y of dimension 2 ≤ dimY ≤
n− 1. Suppose that X contains a (−1)-hyperplane with respect to L. Then X = PPn−1(OPn−1(2)⊕
OPn−1(1)), L being the tautological line bundle. Moreover, (X,L) has (Pn,OPn(2)) as its simple

reduction.

Proof. Let π : X → Y be the scroll projection and let E = Pn−1 be a (−1)-hyperplane contained

in X. Since every fiber f of π is a projective space of dimension n − dimY ≤ n − 2, π(E) cannot

be a point. Hence π|E : E → Y is surjective, which implies that dimY = n − 1. We continue by

induction on n. For n = 3 the assertion is proved in [24, Lemma 1.8]. Therefore assume n ≥ 4.

Notice that LE = OE(−E) = OE(1). Since Y is smooth, this implies that Y = Pn−1 by [27,

Theorem 4.1]. Set W := π∗L and let M := π∗OPn−1(1). Then L is the tautological line bundle of W
on X and Pic(X) ∼= Z2 is generated by L,M . Since E is a divisor inside X, its class can be written

as E = aL− bM for some integers a, b. Taking into account that Mn = 0 and that π|E is surjective,

we have

a = aL ·Mn−1 = aL ·Mn−1 − bMn = E ·Mn−1 = E · f > 0

and

(−1)n−1 = (EE)n−1 = En = a
(
an−1Ln − nan−2bLn−1 ·M + . . .

)
.

This implies a = 1, so that E · f = 1, i.e. E is a section of π. In particular, ME
∼= OE(1), due to

the isomorphism π|E : E → Pn−1. Moreover, L = E + bM . On the other hand, since

OE(1) = LE = EE + bME = OE(−1 + b),

we conclude that b = 2, i.e. L = E + 2M . Set U := π∗OX(E). Then X = PPn−1(U), E being the

tautological section. Moreover, U = W(−2). For any hyperplane h = Pn−2 ⊂ Pn−1 consider the

divisor π∗h ∈ |M | and for simplicity denote it by M again. Then we have that M = Ph(Uh) is a

P1-bundle on h with a scroll structure given by LM . Set e := E ∩M . Note that

ee = (M · E)e = (ME · EE)e = (EE)e = (OE(−1))e = Oe(−1),

and

(LM )e = (LE)e = (OE(1))e = Oe(1).
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Thus e is a (−1)-hyperplane of (M,LM ), which is a scroll over h = Pn−2 via π|M . It thus follows

by induction that M = Ph(Wh) where Wh = OPn−2(2)⊕OPn−2(1) for every hyperplane h of Pn−1.

This implies that W = OPn−1(2)⊕OPn−1(1) by [30, Ch. I, Theorem 2.3.2].

To prove the final assertion in the statement note that M + E is spanned. Clearly it is spanned

outside E, because M is spanned. The exact cohomology sequence of

0 →M →M + E → (M + E)E = OE → 0,

taking into account that h1(M) = h1(OPn−1(1)) = 0, shows that it is spanned also on E. Moreover,

h0(M +E) = h0(M) + 1 = n+ 1. So, |M +E| defines a morphism σ : P → Pn. Since (M +E)E is

trivial and Mn = 0, we get

(M + E)n = (M + E)
(
Mn−1 + E(. . . )

)
= (M + E)Mn−1 = (ME)n−1 = 1.

Therefore σ is birational and contracts E. Finally, note that L = 2M + E = σ∗OPn(2)− E. �

We will also use the following results on the compatibility of further scroll structures on (P,H):

Proposition 2.8. Let X, E, (P,H) and π be as in (1.3), where E has rank r ≥ 2. Suppose that

(P,H) admits another scroll structure p : P → C over a smooth curve C (i.e. p 6= π). Then

(X, E) = (Pn,OPn(1)⊕2).

Proof. Let F = Pn+r−2 be any fiber of p. First assume that n ≥ 2. Then the restriction of π

to F is surjective. So r = 2 and X = Pn by a [27, Theorem 4.1]. Now, denote by G = P1 any

fiber of π. Since the restriction of p to G is surjective, it follows that C = P1. Then P has two

P-bundle structures over projective spaces. Therefore P = Pn × P1 by [34, Theorem A]. It follows

that E = OPn(a)⊕2 for some a ≥ 1, hence H = OPn×P1(a, 1). On the other hand, H = OPn×P1(1, b)

for some b ≥ 1 due to the scroll structure of (P,H) over P1. Hence a = b = 1, so E = OPn(1)⊕2.

Now, let n = 1 and let x ∈ X be any point. Since π−1(x) = Pr−1 is not a fiber of p, it follows that

p(π−1(x)) = C, hence r = 2 and C = P1. So dimP = 2 and F = P1. Then the restriction of π to F

is surjective, so X = P1. Moreover, P = P1 × P1, hence E has the form E = OP1(1)⊕2. �

Proposition 2.9. Let X, E, (P,H) and π be as in (1.3). Assume that X has dimension n ≥ 2 and

that E has rank r ≥ 2. Suppose that (P,H) admits another scroll structure p : P → S over a smooth

surface S (i.e. p 6= π). Then (X, E) is one of the following:

(1) (Pn,OPn(1)⊕3);

(2) (P2, TP2), where TP2 is the tangent bundle;

(3) n = r = 2 and both X and S are P1-bundles over the same smooth curve.

Moreover, if E is very ample, then the only pairs (X, E) as in case (3) are the following:

(3a) (P1 × P1,OP1×P1(1, 1)⊕2);

(3b) X is a P1-bundle over a smooth curve B and Ef = OP1(1)⊕2 for every fiber of the projection

ϕ : X → B and ϕ ◦ π makes (P,H) a quadric fibration over B.
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Proof. Since π 6= p there exists a fiber F = Pn+r−3 of p such that the restriction of π to F is not

constant.

Assume that dimP ≥ 4. In this case, the restriction of π to F is surjective, so r = 3 and X = Pn

by [27, Theorem 4.1]. Moreover, the restriction of p to a fiber of π, which is a P2, is surjective,

hence S = P2 for the same reason. Then P has two P-bundle structures over projective spaces.

Therefore P = Pn × P2 by [34, Theorem A]. It follows that E = OPn(a)⊕3 for some a ≥ 1, hence

H = OPn×P2(a, 1). On the other hand, H = OPn×P2(1, b) for some b ≥ 1 due to the scroll structure

of (P,H) over P2. Hence a = b = 1, so E = OPn(1)⊕3. This gives case (1) in the statement.

Assume now that dimP = 3. Then we are in the assumption of [29, Theorem 2], so we get cases

(2) and (3) of our statement. For the last part of the statement we refer to the discussion of Case

(C) in the proof of [24, Theorem 2.1]. �

Remark 2.10. In case (3a) the three obvious structures of (P,H) = (P1×P1×P1,OP1×P1×P1(1, 1, 1))

as a scroll over P1 × P1 are given by the morphisms pi × pj , i < j, where pi is the projection of P

onto the i-th factor.

A typical example as in (3b) is given by the two pairs (P1 × P1,OP1×P1(2, 1)⊕OP1×P1(1, 1)) and

(F1, [C0 + 2f ]⊕2), which give rise to the same (P,H).

Scrolls having an additional structure of a quadric fibration over a smooth curve occur very often.

First of all we specialize a result of [21] as follows.

Proposition 2.11. Let X, E, (P,H) and π be as in (1.3). Assume that X has dimension n = 2

and that E has rank r ≥ 2. Suppose that (P,H) admits a quadric fibration ϕ : P → C over a smooth

curve C. Then

I. dimP = 3 and either

(a) (X, E) = (P1 × P1,OP1×P1(1, 1)⊕2), or

(b) X = PC(V), where V is a vector bundle of rank 2 on C, ϕ = p ◦ π, where p : X → C is the

projection and E = ξ ⊗ p∗G, with ξ = H(V) the tautological line bundle of V on X and G a

vector bundle of rank 2 on C.

In particular, ϕ has no singular fibers.

II. Moreover, if C = P1, then (X, E) = (Fe, [C0 + af ]⊕ [C0 + bf ]), for some integers a, b > e.

Proof. Part I follows from [21, Theorem] recalling that, in our assumption, we have the same po-

larization for the structures given by π and ϕ. Now let C = P1. Then G = OP1(a) ⊕ OP1(b) for

some integers a and b. It follows that E is decomposable. Then the ampleness of E implies that

a, b > e. �

Note the analogy between the situation described by Proposition (2.11) with that arising in case

(3) of Proposition (2.9). In the result above note that P has dimension 3. In higher dimension the

situation is easier.
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Proposition 2.12. Let X, E and (P,H) be as in (1.3). Assume that X has dimension n ≥ 2 and

that E has rank r ≥ 2. Suppose that (P,H) admits a quadric fibration ϕ : P → C over a smooth

curve C. If dimP ≥ 4, then (X, E) = (Qn,OQn(1)⊕2).

Proof. Denote by F = Pr−1 any fiber of π, and by G = Qn+r−2 a general fiber of ϕ. Note that

G 6⊆ F because dimG = n+ r− 2 ≥ r > r− 1 = dimF ; so the restriction of π to G is not constant.

Since dimG = n + r − 2 ≥ 3, then π(G) must have dimension dimG; hence n ≤ n + r − 2 =

dimG = dimπ(G) ≤ dimX = n. It follows that r = 2, hence n ≥ 3 and π(G) = X, so π(G) is

smooth. Then X is either Pn or Qn by [32, Proposition 8]. Due to the quadric fibration structure

of (P,H) we have KP + nH = ϕ∗L, for some line bundle L on C.

Let ` ⊂ X be any line and set P` := π−1(`). Since P` = P`(E`) we have that P` = Fe, a Segre–

Hirzebruch surface of invariant e, for some integer e ≥ 0, the ruling being given by π|P`
: P` → `.

We want to show that e = 0. A fiber F = π|−1
P`

(x), for x ∈ ` is obviously a fiber of the scroll (P,H),

hence F ∼= P1 and H · F = 1. In particular KP · F = −2. Hence, recalling the expression of KP via

ϕ, we get

−2 = KP · F = −nH · F + ϕ∗L · F.

Suppose that ϕ|F is constant. Then the above equality gives n = 2, a contradiction. It follows that

ϕ(F ) = C, which implies that C = P1. Moreover, ϕ|P`
: P` → P1 is a morphism on P1, distinct from

π|P`
. But the only Segre–Hirzebruch surface admitting a second morphism onto a curve, distinct

from the ruling projection is F0 = P1 × P1. This means that E` = OP1(a)⊕2 for some positive

integer a. Since 2a = deg E`, this happens for any line ` ⊂ X and then we conclude that E is a

uniform vector bundle of splitting type (a, a), where det E = OX(2a). Now, if X = Pn we conclude

that E = OPn(a)⊕2 by [30, Theorem 3.2.3, p. 55]. Suppose that X = Qn; then E(−a) restricts

trivially to any line of Qn and so it is the trivial vector bundle of rank 2, by [37, Lemma 3.6.1].

This means that E = OQn(a)⊕2. Therefore, E = OX(a)⊕2 in both cases, where deg c1(E) = 2a.

In particular we see that P = X × P1, with H = OX×P1(a, 1), π being the first projection. If

X = Qn, then ϕ is the second projection and the fact that ϕ is a quadric fibration implies that

OQn(a) = (OQn×P1(a, 1))G = HG = OQn(1). So (X, E) = (Qn,OQn(1)⊕2).

The assertion is proved once we show that X cannot be Pn. Were it so, then it would be

(P,H) = (Pn×P1,OPn×P1(a, 1)). Note that P has to contain a smooth divisor G such that (G,HG) =

(Qn,OQn(1)), which is a fiber of ϕ. Then

(2.12.1) −nHG = KG = (KP +G)G = (KP )G.

Set M = π∗OPn(1). Since Pic(G) ∼= Z generated by HG, we can write MG = λHG for some integer

λ, and λ ≥ 0 as M is nef. Recalling the canonical bundle formula and the fact that deg c1(E) = 2a,

we thus get (KP )G = (−2H + (2a− n− 1)M)G = (−2 + λ(2a− n− 1))HG. Hence (2.12.1) gives

(2.12.2) 2− n = λ(2a− n− 1).

Since n ≥ 3, we see that λ 6= 0, hence λ ≥ 1. It follows that 2a = n+ 1 + 2−n
λ ≤ n+ 1 + 2− n = 3,

which implies a = 1. But putting this value in (2.12.2), we get λ = n−2
n−1 < 1, a contradiction. �
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2.13. In the sequel we will need to face the same situation as in Proposition (2.12) also with

dimP = 3. In this case, set V = ϕ∗H. Then V is a vector bundle of rank dimP + 1 = 4 on C.

Consider the projective bundle ψ : PC(V) → C and let ξ = H(V) be tautological line bundle. Then

P embeds fiberwise into PC(V) as a divisor P ∈ |2ξ − ψ∗B|, for some B ∈ Pic(C), and H = ξP .

Lemma 2.14. Let X, E, (P,H) and d be as in (1.3). Assume that X has dimension n ≥ 2 and that

E has rank r ≥ 2. Suppose that (P,H) admits a quadric fibration ϕ : P → C over a smooth curve C

and let V = ϕ∗H. If dimP = 3, then (P,H) has degree d = 3
2 degV.

Proof. The number δ of singular fibers of ϕ is given by δ = 2degV − 4b, where b = degB [8, (3.3)].

Then ψ∗B is numerically equivalent to bD, where D ∼= P3 is a fiber of ψ. So, taking into account

the Chern–Wu relation, we get

d = H3 = (ξP )3 = ξ3(2ξ − bD) = 2ξ4 − bξ3D = 2degV − b.

Therefore,

δ = −6 degV + 4d.

Now note that dimP = 3 implies n = 2. So, taking into account also the scroll structure of

(P,H) over a surface, it turns out from part I of Proposition (2.11) that δ = 0 and this proves the

assertion. �

3. Ample vector bundles of very small ∆-genus

In order to extend the notion of ∆-genus to the vector bundle setting, we give the following

definition.

Definition 3.1. Let E be an ample vector bundle of rank r on a smooth projective variety X of

dimension n. We define the ∆-genus of the pair (X, E) as the integer

(3.1.1) ∆(X, E) := n r + d− h0(X, E),

d := d(P,H) being given by Lemma (1.1).

Remark 3.2. Let E be a rank-r ample vector bundle on a smooth curve C and assume that E is

decomposable as E = ⊕r
i=1Li, where all the Li’s are ample. Then

(3.2.1) ∆(C, E) = ∆(C,⊕r
i=1Li) = r +

r∑
i=1

degLi −
r∑

i=1

h0(C,Li) =
r∑

i=1

∆(C,Li).

Notice that for the ∆-genus of a decomposable ample vector bundle on a smooth variety of

dimension ≥ 2 we have only superadditivity; for instance, consider the following
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Example 3.3. Let X be a smooth projective variety of dimension n = 3 and let E = L1 ⊕ L2,

where L1 and L2 are two ample line bundles on X. According to Example (1.2.(i)), d = c1(c21−2c2).

Hence

∆(X, E) = 6 + (L1 + L2) · (L2
1 + L2

2)− (h0(L1) + h0(L2)) >

>
2∑

i=1

(3 + L3
i − h0(Li)) =

2∑
i=1

∆(X,Li).

Note that for a decomposable ample vector bundle E on a smooth curve C, we have ∆(C, E) ≥ 0

as a consequence of Remark (3.2). Moreover, the same holds for the pair (X, E) in the example.

On the other hand, looking at Definition (3.1), it is not immediate to see that the ∆-genus of any

ample vector bundle is a nonnegative integer, as it is for line bundles. However, this is the case, as

the following proposition shows.

Proposition 3.4. Let X, E and (P,H) be as in (1.3). Then

∆(X, E) = (n− 1)(r − 1) + ∆(P,H).

In particular, ∆(X, E) ≥ (n− 1)(r − 1).

Proof. Let F be any fiber of the scroll projection π : P−→X. Since H is ample, due to the ampleness

of E , we can compute the ∆-genus of the pair (P,H). We have

∆(X, E) = nr +Hn+r−1 − h0(E) = (n− 1)(r − 1) + ∆(P,H).

Now, the final assertion follows from the non-negativity of ∆-genus for ample line bundles. �

Remark 3.5. According to Proposition (3.4), one could observe that our definition of ∆(X, E) for

ample vector bundles of rank r ≥ 2 still relies on the ∆-genus of a polarized manifold. However,

in studying pairs with low ∆(X, E), this will be an advantage, since the scroll structure of (P,H)

prevents this pair from entering in a range for which Fujita’s classification is not complete. On the

other hand, one could consider another obvious polarized manifold associated with (X, E), instead

of (P,H), namely (X,det E). For instance, let n = 1, so that ∆(X, E) = ∆(P,H), and let g be the

genus of X. If g = 0, then ∆(X, E) = 0 = ∆(X,det E), according to Proposition (1.6). If g = 1,

then ∆(X, E) = r + deg E − h0(E) = r, while ∆(X,det E) = 1 by Proposition (1.6). Now, let g ≥ 2

and suppose that E is very ample. Then h0(det E) ≥ h0(E)+ r−2, by [19, Theorem]. This says that

∆(X, E) ≥ ∆(X,det E) + 2r − 3 > ∆(X,det E).

This seems to suggest that ∆(X, E) is a more relevant character than ∆(X,det E): actually the list

of pairs (X, E) satisfying ∆(X, E) ≤ (n− 1)(r− 1) + δ is expected to include that of pairs such that

∆(X,det E) ≤ δ. Apart from case n = 1 discussed before, if n ≥ 2 this is certainly true for δ = 0,

as one can see comparing [11, Theorem 5.10] with Theorem (3.6) below, taking into account that

deg EC ≥ r for any rational curve C ⊂ X. Moreover, this is true also for δ = 1 at least for pairs

(X, E) such that c1(E)2 ≥ 3 (compare [11, Chapters 8 and 9] with Theorems (3.6) and (3.7)).
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Now we want to classify pairs (X, E) whose ∆-genus is small. We start with pairs whose ∆-genus

is minimum, i.e. equal to (n − 1)(r − 1). Since the case of line bundles on manifolds of dimension

≥ 2 has already been settled by Fujita (see [11, Theorem 5.10]), and in view of Proposition (1.6),

we confine to ample vector bundles of rank at least two.

Theorem 3.6. Let X and E be as in (1.3). Assume that E has rank r ≥ 2. Then ∆(X, E) =

(n−1)(r−1) if and only if (X, E) = (Pn,OPn(1)⊕2), or (X, E) = (P1,⊕r
i=1OPn(ai)), with ar ≥ . . . ≥

a1 ≥ 1. In particular, ∆(X, E) = 0 if and only if (X, E) is as in the latter case.

Proof. Let (P,H) be as in (1.3). By Proposition (3.4), the assertion on the ∆-genus is equivalent

to ∆(P,H) = 0. Therefore the polarized manifold (P,H) satisfies the assumption of [11, Theorem

5.10]. Note that, since rk(Pic(P )) ≥ 2, the only possibility is case (3) of [11, Theorem 5.10], namely

(P,H) is the scroll of an ample vector bundle V on P1 via a morphism p : P → P1. If π = p,

then E = V is a direct sum of line bundles of positive degrees and we are done. If π 6= p, then

the assertion follows by Proposition (2.8). Viceversa, for the pairs (X, E) = (Pn,OPn(1)⊕2) and

(P1,⊕r
i=1OPn(ai)), a direct check shows that ∆(P,H) = 0. In the former case, it is useful to note

that P = PP1(OP1(1)⊕(n+1)), with H being the tautological line bundle. The final assertion in the

statement is obvious, recalling Proposition (3.4). �

Theorem 3.7. Let X and E be as in (1.3). Assume that E has rank r ≥ 2. Then ∆(X, E) =

(n− 1)(r − 1) + 1 if and only if (X, E) is one of the following:

(1) (P2, E), where E is one of the following vector bundles: OP2(1)⊕3, the tangent bundle TP2 ,

OP2(2)⊕OP2(1);

(2) (P1 × P1,OP1×P1(1, 1)⊕2).

Moreover, ∆(X, E) = 1 if and only if (X, E) = (P2,OP2(1)⊕2).

Proof. Let (P,H) be as in (1.3). By Proposition (3.4), the assertion on the ∆-genus is equivalent to

∆(P,H) = 1. Therefore the polarized manifold (P,H) satisfies the assumptions of [11, Chapters 8

and 9], which gives the following possibilities: (a) Hn+r−1 = 1, (b) Hn+r−1 = 2 and there is a finite

morphism p : P → Pn+r−1 of degree 2 such that H = p∗OPn+r−1(1), or (c) Hn+r−1 ≥ 3 and (P,H)

is a del Pezzo manifold.

Case (a) is ruled out by Lemma (1.4). In case (b) we get a contradiction with the Picard number

if dimP ≥ 3 by a result of Lazarsfeld (see [26, Proposition 3.1]). If dimP = 2, let B ∈ |OP2(2b)|
be the branch locus of the double cover p : P → P2. Comparing the expression of KP = −2H +

π∗(KX + det E) with that given by the ramification formula KP = p∗OP2(b − 3) we conclude that

b = 1 and KX + det E = OX . But this gives (P,H) = (P1 × P1,OP1×P1(1, 1)), which contradicts the

condition ∆(P,H) = 1. Hence we are left with case (c), and the assertion follows from Corollary

(2.2).

Conversely, for all pairs as in (1) and (2) it is clear that ∆(P,H) = 1.

As to the final assertion, recall Proposition (3.4) and note that (n− 1)(r − 1) = 0 cannot occur.

This would imply ∆(P,H) = 1 and the previous part of the proof shows that this is not compatible
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with n = 1. Therefore, n = r = 2 and ∆(X, E) = (n − 1)(r − 1), so (X, E) = (P2,OP2(1)⊕2) by

Theorem (3.6). �

4. Ample and spanned vector bundles

When the ample vector bundle E is spanned, we can do a further step in the analysis of the low

values of ∆(X, E). We need some preliminary lemmata.

Lemma 4.1. Let X, E and d be as in (1.3). Assume that E is spanned and has rank r ≥ 2. Then

d ≥ 3 unless (X, E) = (P1,OP1(1)⊕2).

Proof. Let (P,H) be as in (1.3) and assume that d ≤ 2. Then (P,H) is one of the pairs listed in

[25, Lemma 0.6.1], namely:

(i) (Pn+r−1,OPn+r−1(1));

(ii) (Qn+r−1,OQn+r−1(1));

(iii) p : P → Pn+r−1 is a double cover and H = p∗OPn+r−1(1).

Clearly case (ii) for n+ r − 1 ≥ 3 and case (i) are ruled out, as in our assumptions P has Picard

number at least two. Similarly, in view of [26, Proposition 3.1], we rule out case (iii) for n+r−1 ≥ 3.

Therefore n+ r − 1 = 2, and (P,H) is a surface scroll over a smooth curve.

Let B ∈ |OP2(2b)|, for a positive integer b, be the branch locus of the double cover p in (iii).

We have p∗OP = OP2 ⊕ OP2(−b), hence h1(OP ) = h1(p∗OP ) = 0. Then, in both cases (ii) and

(iii), we are left with (P,H) a rational scroll. It follows that ∆(P,H) = 0, which is equivalent to

∆(X, E) = (n − 1)(r − 1) by Proposition (3.4). Therefore, noting that deg E = d = 2, we deduce

that (X, E) = (P1,OP1(1)⊕2) by Theorem (3.6). �

Lemma 4.2. Let X, E and (P,H) be as in (1.3). Assume that E is spanned and has rank r ≥ 2.

Then ∆(X, E) = (n− 1)(r − 1) + 2 if and only if one of the following holds:

(1) X is a smooth curve of genus 1 and r = 2;

(2) g(P,H) ≥ 2.

Proof. By Proposition (3.4) the assumption on the ∆-genus of (X, E) is equivalent to ∆(P,H) = 2.

Therefore by [11, Theorem 10.2] one of the following holds:

(i) P = PC(F), with F an ample vector bundle over an elliptic curve C and H = H(F) (which

implies that we can assume F spanned);

(ii) g(P,H) ≥ 2.

If (i) holds, then h1(OP ) = h1(OC) = 1, as C is an elliptic curve; hence h1(OX) = 1, too. Combining

with Proposition (2.8), we derive that the bundle structures of P on X and on C have to coincide;

in particular X is an elliptic curve. On the other hand, for such a curve and for any ample (and

spanned) vector bundle E , we know that ∆(P,H) = r, since h0(H) = h0(E) = deg E + r(1 − g(C))

by the Riemann–Roch Theorem, as h1(E) = h1(E ⊗KC) = 0. Therefore r = 2 and we get case (1)

in the statement. Case (ii) corresponds to (2). �
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As we have seen, case (1) in Lemma (4.2) is effective. So we continue assuming in the following

that g(P,H) ≥ 2.

Theorem 4.3. Let X, E, (P,H) and d be as in (1.3). Assume that d ≥ 4, E is spanned of rank r ≥ 2

and g(P,H) ≥ 2. Then ∆(X, E) = (n− 1)(r − 1) + 2 if and only if (X, E) is one of the following:

(1) (Q3,OQ3(1)⊕2);

(2) (P1 × P1,OP1×P1(1, 1)⊕OP1×P1(2, 1));

(3) (F1, [C0 + 2f ]⊕2);

(4) X is a smooth hyperelliptic curve and E = L⊕2, where L ∈ Pic(X) is the line bundle giving

the g1
2 of X.

Proof. By Proposition (3.4), the assumption on the ∆-genus of (X, E) is equivalent to ∆(P,H) = 2.

Assume first that d ≥ 5. As shown in [11, (10.7)], the adjoint bundle KP + (n+ r − 2)H defines

a morphism q : P → P1 giving to (P,H) the structure of a quadric fibration over P1.

We claim that dimP ≥ 3. If this is not the case, then dimP = 2, hence n = 1 and r = 2. Then

by [11, (10.7.2)], (P,H) is one of the following:

(a1) P is the blow-up of P1 × P1 at (12 − d) points and H = σ∗(OP1×P1(2, 3)) −
∑
Ei, where

σ : P → P1 × P1 is the blow-up and Ei are the exceptional divisors;

(a2) P = F1 or a blow-up of F1 at a point on the (−1)-curve;

(a3) P = F2.

In case (a1) d = 12, as P is a P-bundle, and, of course, P = F1 in case (a2). Therefore in all cases

P = Fe for some e ≤ 2. Since these surfaces are rational, (P,H) can only be a scroll over P1, but

then ∆(P,H) = 0, a contradiction. This proves the claim.

Next we claim that n ≥ 2. Indeed, if this is not the case, then the general fiber of π, which is a

Pr−1 with r − 1 = dimP − 1 ≥ 2, cannot map surjectively onto P1 via q; hence it has to be a fiber

of q, which is impossible.

First let dimP = 3. Taking into account Lemma (2.14), a closed check of the list in [11, (10.7.3)]

shows that the only possibility is P = P1×F1 with d = 9; thus we immediately see thatH corresponds

to the Segre embedding. According to Remark (2.10), this (P,H) leads to the pairs (2) and (3) in

the statement. Conversely, for these two pairs it is immediate to check that ∆(P,H) = 2, hence

∆(X, E) = 3.

Next let dimP ≥ 4. Then (X, E) = (Qn,OQn(1)⊕2) by Proposition (2.12). By computing the

∆-genus we find that

2n− 2 = ∆(Qn,OQn(1)⊕2) = (n− 1)(r − 1) + 2 = n+ 1

if and only if n = 3. This gives case (1) in the statement.

Now let d = 4. There are two possibilities according to whether the morphism ΦH associated

to |H| is birational or not ([11, 10.8]). When ΦH is birational, [11, Theorem 10.8.1], recalling that

g(P,H) ≥ 2, gives the following possibilities:
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(b1) P is isomorphic to a smooth quartic hypersurface of Pdim P+1;

(b2) P is P1 × P1 blown-up at 8 points;

(b3) dimP = 3, (P,H) is a quadric fibration over P1, and P embeds fiberwise as a divisor in

PP1(V) as in (2.13) with V = OP1(1)⊕O⊕3
P1 .

Under our assumptions all these possibilities cannot happen. Indeed, the fact that our P has a

P-bundle structure rules out both case (b2) and case (b1) when dimP ≥ 3. On the other hand,

for dimP = 2, P is a P1-bundle over a smooth curve, hence it cannot be a K3 surface as in (b1).

Finally, case (b3) gives a contradiction with Lemma (2.14).

Now assume that ΦH is not birational. Then according to [11, (10.8.2)], ΦH : P →W is a double

cover where either

(c1) W = Qn+r−1 is a smooth quadric, or

(c2) n+ r − 1 = 2 and W is a quadric cone.

Case (c2) cannot occur. Otherwise the vertex v of W would be in the branch locus of ΦH , P being

smooth. By taking the desingularization ν : F2 → W and blowing-up µ : P̃ → P of P at the point

Φ−1
H (v), we would get a commutative diagram:

P̃
µ //

ϕ

��

P

ΦH

��
F2 ν

// W,

where ϕ is the double cover induced by ΦH . Note that K2
P is even, since P is a P1-bundle over

a smooth curve, and then K2
eP

= K2
P − 1 is odd. On the other hand, by the ramification formula,

K
eP = ϕ∗(KF2 + B), where |2B| is the linear system containing the branch divisor of ϕ. Then

K2
eP

= 2(KF2 + B)2 is even, a contradiction.

Now, consider case (c1). If n + r − 1 ≥ 3, then P has Picard number one by [4], but this is

impossible since (P,H) is a scroll. Thus W = P1 × P1 and the branch divisor of ΦH is a smooth

element B ∈ |2B|, where B = OP1×P1(a, b) for some integers a, b ≥ 0 and we can suppose a ≥ b in

view of the symmetry. First assume that b = 0; thus B is a union of fibers of the first projection

p1 of P1 × P1. Then ΦH is induced by a double cover of smooth curves ρ : Γ → P1 branched at the

points corresponding to the connected components of B and we have a commutative diagram:

P //

ΦH

��

Γ

ρ

��
P1 × P1

p1

// P1.

This shows that P = Γ × P1, so X = Γ is a smooth curve admitting a g1
2 , hence a hyperelliptic

curve, since g(X) = g(P,H) ≥ 2, and E = L⊕2 for some ample line bundle L ∈ Pic(X). Writing

the numerical class of H as ξ + (degL)f , where ξ is the tautological line bundle on P of the trivial

vector bundle O⊕2
X and f is a fiber, we get 4 = d = H2 = ξ2 + (2 degL) ξ · f = 2 degL. Then
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degL = 2 and L has to be spanned, E being so. Therefore, |L| is the g1
2 of X. This gives case (4)

in the statement.

Now suppose that b > 0. Then B is ample and

h1(OP ) = h1(ΦH∗OP ) = h1(OP1×P1 ⊕OP1×P1(−a,−b)) = 0

by the Kodaira vanishing theorem. This says that the base curve of the P1-bundle P is P1, hence

P = Fe for some e. Ramification formula gives

KP = Φ∗
H(KP1×P1 + B) = Φ∗

H(OP1×P1(a− 2, b− 2)),

and 8 = K2
Fe

= K2
P implies (a, b) = (4, 3). But then KP would be ample, according to the above

formula, which is clearly impossible. �

We finally consider d = 3. In this case, since H is ample and spanned, φH : P → P := Pn+r−1 is

a triple cover.

Proposition 4.4. Let X, E, (P,H) and d be as in (1.3). Assume that d = 3, E is spanned of

rank r ≥ 2, g(P,H) ≥ 2 and ∆(P,H) = 2. Then the triple cover φH : P → P defined by |H| is not

of triple section type (in the sense of [9]). Moreover, n = r = 2.

Proof. Recall that P has Picard number ρ(P ) ≥ 2. It thus follows from [26, Proposition 3.1] that

3 = deg φH ≥ dimP = n+ r − 1. Therefore we know that

(4.4.1) n+ r − 1 ≤ 3.

By contradiction, suppose φH is of triple section type. Then [26, Proposition 3.2] (see also [9,

Theorem 2.1]) says that the relative dualizing sheaf of φH is isomorphic to φ∗HOP(λ) for some λ ∈ Z.

We know that KP = −rH+π∗(KX +det E) where π : P → X is the bundle projection; on the other

hand, φ∗HOP(1) = H. Hence we get

λH = KP − φ∗HKP = (−r + n+ r)H + π∗(KX + det E).

Therefore λ = n and KX + det E = OX , due to the injectivity of the homomorphism π∗ : Pic(X) →
Pic(P ), whence KP = −rH. Then the genus formula gives

2g(P,H)− 2 = (KP + (n+ r − 2)H)Hn+r−2 = (n− 2)Hn+r−1 = 3(n− 2).

This shows that n has to be even. Moreover, n ≥ 4 since g(P,H) ≥ 2. But this contradicts (4.4.1).

Furthermore, since r ≥ 2, according to (4.4.1) we have two possibilities: either

(a) n = 1 with r = 2, 3, or

(b) n = r = 2.

So the proof is complete when we show that case (a) cannot occur.

Assume by contradiction that case (a) holds. Let S denote a smooth element of |H| when r = 3

and P itself when r = 2. In both cases we know that |HS | induces a triple cover φ : S → P2. Then

we can write φ∗OS = OP2 ⊕ T , where T is a rank-2 vector bundle on P2, and the branch locus of

φ is an element of |2 det T ∗|. Set bi := ci(T ). By applying the Riemann–Hurwitz formula to the
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curve φ∗` ∈ |HS |, where ` ⊂ P2 is a general line, we thus get 2g(HS) − 2 = 3(−2) + (−2b1). Since

g(HS) = g(P,H) this gives

(4.4.2) −b1 = g(P,H) + 2.

But (P,H) is a scroll over the smooth curve X, hence g(P,H) = q, the genus of X, so that (4.4.2)

reads as −b1 = q + 2. Moreover, (S,HS) itself is a surface scroll over X. So we have K2
S = 8(1− q)

and the topological Euler–Poincaré characteristic is e(S) = 4(1 − q). Thus, eliminating b2 from

Miranda’s formulas [28, Proposition 10.3]

K2
S = 27 + 12b1 + 2b21 − 3b2 and e(S) = 9 + 6b1 + 4b21 − 9b2,

we get q(q − 1) = 0. But this is a contradiction in view of our assumption g(P,H) ≥ 2. �

To conclude the discussion for d = 3, according to Proposition (4.4) it remains to analyze the

very restricted case n = r = 2. However, this requires more work than expected and will be done in

a separate paper.

We conclude this section classifying pairs (X, E) where E is an ample and spanned vector bundle

of rank r ≥ 2 such that ∆(X, E) = 2.

Proposition 4.5. Let X and E be as in (1.3). Assume that E is spanned of rank r ≥ 2. Then

∆(X, E) = 2 if and only if (X, E) is one of the following:

(1) (P3,OP3(1)⊕2);

(2) (P2, E), where E is either the tangent bundle TP2 , or OP2(2)⊕OP2(1);

(3) (P1 × P1,OP1×P1(1, 1)⊕2);

(4) X is a smooth curve of genus 1 and r = 2;

(5) X is a smooth hyperelliptic curve and E = L⊕2, where L ∈ Pic(X) is the line bundle giving

the g1
2 of X.

Proof. Let (P,H) be as in (1.3). In view of our assumptions and of Proposition (3.4), we have

0 ≤ ∆(P,H) ≤ 2. We can therefore split the proof according to this value. If ∆(P,H) = 0,

then 2 = ∆(X, E) = (n − 1)(r − 1); hence we get case (1) of the statement by Theorem (3.6). If

∆(P,H) = 1, then 2 = ∆(X, E) = (n−1)(r−1)+1; hence we get cases (2) and (3) of the statement

by Theorem (3.7). If ∆(P,H) = 2, then 2 = ∆(X, E) = (n − 1)(r − 1) + 2; hence n = 1, and we

get cases (4) and (5) of the statement by combining Lemmata (4.1) and (4.2), Theorem (4.3) and

Proposition (4.4). �

5. Very ample vector bundles

As we have seen in Section 4, the analysis of low values of ∆(X, E) can be pushed further as long

as the vector bundle E enjoys better properties than the bare ampleness. In this section we consider

very ample vector bundles E and we obtain, among other results, a complete descriptions of pairs

(X, E) up to ∆(X, E) = (n− 1)(r − 1) + 3. First we prove some results relying on the classification

of projective manifolds of low degree due to Ionescu.
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Theorem 5.1. Let X, E, (P,H) and d be as in (1.3). Assume that X has dimension n ≥ 2 and

that E is very ample of rank r ≥ 2. Then ∆(X, E) > (n− 1)(r − 1) + d
2 unless (X, E) is one of the

following:

(1) (Pn,OPn(1)⊕2);

(2) (Qn,OQn(1)⊕2);

(3) (Pn,OPn(1)⊕3), n ≤ 6;

(4) (P3, E), where E is one of the following vector bundles: OP3(1)⊕4, OP3(2) ⊕ OP3(1)⊕2, the

tangent bundle TP3 , the twist N (2) of a null-correlation bundle N on P3, OP3(2)⊕2, OP3(3)⊕
OP3(1), OP3(2)⊕OP3(1);

(5) (Q3, E), where E is one of the following vector bundles: OQ3(1)⊕3, the twist S(2) of a spinor

bundle S on Q3, OQ3(2)⊕OQ3(1);

(6) (X,h) is a del Pezzo threefold and E = h⊕2;

(7) (P2, E), where E is either the tangent bundle TP2 , or OP2(2)⊕OP2(1);

(8) (P2×P1, E), where E is either OP2×P1(2, 1)⊕OP2×P1(1, 1), or π∗1TP2 ⊗OP2×P1(0, 1), TP2 and

π1 denoting the tangent bundle on P2 and the first projection respectively;

(9) n = r = 2, X = PC(V), where V is a vector bundle of rank 2 on a smooth curve C, and

E = ξ⊗ p∗G, where ξ = H(V) is the tautological line bundle of V on X, G is a vector bundle

of rank 2 on C, p : X → C is the projection and 2h0(V ⊗ G) ≥ 3(degV + deg G + 2);

(10) n = 2, X is ruled and (P,H) has a unique scroll structure over a surface.

Proof. Assume that ∆(X, E) ≤ (n−1)(r−1)+ d
2 . We note first that, H being very ample, there is an

embedding of P in PN with N = h0(E)− 1; moreover, the assumption on the ∆-genus is equivalent

to the condition d ≤ 2 codimPNP + 2.

This allows us to apply [16, Theorem I] to (P,H), obtaining the following possibilities:

(i) (P,H) is a scroll over a smooth curve C;

(ii) (P,H) is a scroll over a (birationally) ruled surface S;

(iii) (P,H) is a quadric fibration over a smooth curve C;

(iv) (P,H) is a del Pezzo manifold;

(v) (P,H) is a Mukai manifold;

(vi) (P,H) admits a reduction (Y,L) which is one of the following pairs:

(vi-a) (P3,OP3(3));

(vi-b) (Q3,OQ3(2));

(vi-c) (P4,OP4(2));

(vi-d) a Veronese bundle over a smooth curve.

We proceed with a case-by-case analysis.

Case (i). We can apply Proposition (2.8), hence we have (X, E) = (Pn,OPn(1)⊕2). Notice that

this pair satisfies ∆(X, E) = (n − 1)(r − 1) in view of Theorem (3.6), so we get case (1) in the

statement.
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Case (ii). If (P,H) has a unique scroll structure over a surface, then we get case (10) in the

statement (see Remark (5.2)). Otherwise we can apply Proposition (2.9), which gives three possi-

bilities. If (X, E) = (Pn,OPn(1)⊕3), then the condition ∆(X, E) ≤ (n − 1)(r − 1) + d
2 gives n ≤ 6,

and we get case (3) in the statement. Pair (X, E) = (P2, TP2) fits into case (7). In this case

∆(X, E) = 2 < (n− 1)(r − 1) + d
2 . The last possibility gives (9), as shown in the discussion of Case

(iii) below.

Case (iii). In this case P is endowed with two morphisms π : P → X and ϕ : P → C. Denote

by F = Pr−1 any fiber of π, and by G = Qn+r−2 a general fiber of ϕ. Note that G 6⊆ F because

dimG = n+ r − 2 ≥ r > r − 1 = dimF ; so the restriction of π to G is not constant.

If dimG = n+ r− 2 ≥ 3, then we get case (2) of the statement with n ≥ 3 by Proposition (2.12).

Note that this case is effective, since d = 2(n+1), hence ∆(X, E) = 2n−2 ≤ 2n = (n−1)(r−1)+ d
2 .

If dimG = n + r − 2 = 2, then n = r = 2. So, (P,H) is both a scroll over a smooth surface

and a quadric fibration over a smooth curve (with respect to the same polarization). Hence we

are in the assumptions of part I of Proposition (2.11), which gives two possibilities, namely (a)

and (b). Of course, (a) corresponds to case (2) of the statement for n = 2. In case (b) we have

c1(E) = 2ξ+ p∗c1(G) and c2(E) = ξ2 + ξ · p∗c1(G). Moreover, ξ2 = degV by the Chern–Wu relation,

and d = H3 = c1(E)2 − c2(E). Finally, h0(E) = h0(p∗ξ ⊗ G) = h0(V ⊗ G), by projection formula. It

thus follows that condition ∆(X, E) ≤ (n− 1)(r − 1) + d
2 is equivalent to

h0(V ⊗ G) ≥ 3 +
3(degV + deg G)

2
.

Then we get case (9) in the statement. Note that also the pair in (a) satisfies this condition.

Case (iv). We are in the assumptions of Corollary (2.2). As already observed, the first case of

this corollary fits into case (9) of the statement. Therefore we get cases (7), (3) with n = 2 and (9)

of the statement. Indeed, in these cases, ∆(X, E) = (n− 1)(r− 1) + 1 ≤ (n− 1)(r− 1) + d
2 , in view

of Theorem (3.7) and Lemma (1.4).

Case (v). We are in the assumptions of Proposition (2.4), hence we get cases (4), except for

the last vector bundle, (5), (6) and (8) of the statement. In fact, a direct computation shows that

∆(X, E) ≤ (n− 1)(r− 1)+ d
2 in all these cases. The very ampleness of the indecomposable E in case

(8) follows taking into account the Euler sequence on P2 pulled-back to X via π1 and twisted by

OP2×P1(0, 1). This also shows that h0(E) = 3h0(OP2×P1(1, 1))−h0(OP2×P1(0, 1)) = 16. On the other

hand, a straightforward computation gives d = 24. Therefore ∆(X, E) = 14 = (n− 1)(r − 1) + d
2 .

As to pairs (P3,N (2)) and (Q3,S(2)), we already pointed out in Remark (2.5) that they give rise

to the same (P,H). So, to prove their effectiveness, it is enough to deal with (Q3,S(2)), in view of

Proposition (3.4). Thus consider the exact sequence (e.g. see [31, Theorem 2.8])

0−→S−→O⊕4
Q3−→S(1)−→0

and twist it by OQ3(1). This shows the very ampleness of S(2). Since h1(S(1)) = 0 and h0(S(1)) = 4

by [31, Theorem 2.3], we derive h0(S(2)) = 4h0(OQ3(1)) − h0(S(1)) = 16. Moreover, c1(S(2)) =
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OQ3(3), while c2(S(2)) = c2(S ⊗ OQ3(2)) = OQ3(2)2 + c1(S) · OQ3(2) + c2(S) = 5
2 OQ3(1)2. It thus

follows that d = c1(c21 − 2c2) = 24, hence ∆(Q3,S(2)) = 14 = (n− 1)(r − 1) + d
2 .

Case (vi). By dimensional reasons the pair (P,H) is a scroll over either a smooth surface, or a

smooth threefold (only in case (vi-c)), so n = 2 or 3 (only in case (vi-c)). It follows by Lemma (2.7)

that (X, E) = (Pn,OPn(2)⊕OPn(1)), n = 2 or 3. Moreover, the only pair occurring as a nontrivial

reduction (in fact simple reduction) of (P,H) is that in (vi-c). Thus, either (X, E) is the last pair in

(4), or the reduction morphism has to be an isomorphism, i.e. (P,H) = (Y, L). But since ρ(P ) = 2,

this can happen only in case (vi-d). However, since (P,H) is also a scroll over a smooth surface,

this situation gives a contradiction with [5, Theorem 2].

Note that for the last pair in (4) ∆(X, E) = 7 < (n− 1)(r − 1) + d
2 . �

Remark 5.2. Of course not all pairs as in case (9) are true exceptions for the inequality in the

statement. For instance, let X = P2 and consider E = OP2(a)⊕OP2(b), with a, b ≥ 1. Then (X, E)

is a true exception if and only if a and b satisfy the inequality ab ≤ 3(a+ b)− 2. E.g. this condition

holds for E = OP2(a) ⊕ OP2(1), for any a ≥ 1; but it does not hold for E = OP2(a)⊕2, as soon as

a ≥ 6.

Remark 5.3. Suppose that the pair (X, E), with E a very ample vector bundle, satisfies the condition

∆(X, E) > (n−1)(r−1)+ d
2 . If d ≥ 2 dimP −2, then clearly ∆(X, E) > (n−1)(r−1)+dimP −1 =

nr − 1. So, all pairs (X, E) making exception to the inequality

(5.3.1) ∆(X, E) > nr − 1

and satisfying d ≥ 2 dimP − 2 also appear in the list of exceptions provided by Theorem (5.1). On

the other hand, if a pair (X, E) appearing in the list of exceptions in Theorem (5.1) is such that

d ≤ 2 dimP − 3 then certainly it cannot satisfy the inequality (5.3.1). On the other hand, it is easy

to check that there are pairs (X, E) in the list of exceptions in Theorem (5.1) not satisfying the

condition d ≤ 2 dimP − 3, e.g. (Qn,OQn(1)⊕2). So, it deserves to study inequality (5.3.1) by its

own in order to find pairs making exception. The result is the following.

Theorem 5.4. Let X and E be as in (1.3). Assume that X has dimension n ≥ 2 and that E is very

ample of rank r ≥ 2. Then ∆(X, E) > nr − 1 unless (X, E) is one of the following:

(1) (Pn,OPn(1)⊕2);

(2) (Qn,OQn(1)⊕2);

(3) (P3,OP3(1)⊕3);

(4) (P2, E), where E is one of the following vector bundles: OP2(1)⊕r with r = 3 or 4, TP2 ⊕
OP2(1)⊕(r−2) where TP2 is the tangent bundle and r = 2 or 3, OP2(2) ⊕ OP2(1)⊕(r−1) with

r = 2 or 3;

(5) (P1 × P1,OP1×P1(1, 1)⊕OP1×P1(1, 2));

(6) (F1, [C0 + 2f ]⊕2).
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Proof. Assume that ∆(X, E) ≤ nr − 1. Let (P,H), π and d be as in (1.3). We note first that, H

being very ample, there is an embedding of P in PN with N = h0(E)− 1; moreover, the assumption

on the ∆-genus is equivalent to the condition d ≤ N .

This allows us to apply the main Theorem of [18] to (P,H), and we obtain the following possi-

bilities recalling that ρ(P ) ≥ 2:

(i) (P,H) is a del Pezzo manifold with 3 ≤ dimP ≤ 4 and d = 6, 7;

(ii) P is the Segre embedding of P1 × F1, where F1 is embedded in P4 as a rational scroll of

degree 3;

(iii) (P,H) is a scrolls over P2; more precisely, P = PP2(F) where F is either TP2 ⊕ OP2(1), or

OP2(2)⊕OP2(1)⊕2, or OP2(1)⊕4, and H stands for the tautological line bundle;

(iv) (P,H) is a scroll over P1 with d ≥ dimP ;

(v) there is a vector bundle G over P1 of rank dimP + 1 ≥ 4 and of splitting type η =

(η0, . . . , ηn+r−1) such that, if L is the tautological line bundle on PP1(G) and G denotes a

fiber of the projection PP1(G)−→P1, P embeds fiberwise in PP1(G) as a divisor P ∈ |2L+βG|
with LP = H and one of the following holds:

(v-a) N = d = 2dimP − 1, η = (1, . . . , 1, 0, 0), β = 1;

(v-b) N = d = 2dimP , η = (1, . . . , 1, 0), β = 0;

(v-c) N = d = 2dimP + 1, η = (1, . . . , 1), β = −1;

(v-d) dimP ≥ 4, N = d + 1 = 2dimP + 1, η = (1, . . . , 1), β = −2 or, equivalently, P ∼=
P1 ×Qn+r−2 Segre embedded;

(v-e) N = d = 2dimP + 2, η = (2, 1, . . . , 1), β = −2.

We proceed with a case-by-case analysis.

Case (i). We are in the assumptions of Corollary (2.2), hence we get cases (2) with n = 2 and (4)

with E = OP2(1)⊕3, the tangent bundle TP2 , OP2(2)⊕OP2(1) of the statement. Indeed, in all these

cases ∆(X, E) = (n− 1)(r − 1) + 1 < nr − 1, by Theorem (3.7).

Case (ii). In this case P = PF1(L⊕2), where L = [C0 + 2f ] ∈ Pic(F1) because H = π∗[C0 + 2f ] +

q∗OP1(1), where q and π denote the projections. A direct computation shows that ∆(F1,L⊕2) =

3 = nr − 1, and this gives case (6) in the statement.

Case (iii). Denote by p : PP2(F) → P2 the projection. If n ≥ 3, then p 6= π. Since dimP = 4

or 5, it follows from Proposition (2.9) that the only possibility is (X, E) = (P3,OP3(1)⊕3). Notice

that in this case ∆(X, E) = 7 < 8 = nr − 1, so we get case (3) in the statement. Assume now that

n = 2. Arguing as in case (d) of the proof of [23, Lemma 2.5], we show that p = π. We reproduce

the argument for the convenience of the reader. Assume by contradiction that p 6= π. Then there

is a fiber F of p such that π|F : F−→X is not constant. Hence F = P2, otherwise π|F would give a

fibration of P3 either onto X or onto a curve of X, which is a contradiction. Moreover π|F : F−→X

is a surjective morphism onto a smooth projective surface, hence X = P2 by [27, Theorem 4.1].

By [34, Theorem A], we obtain P = P2 × P2, which is not one of our cases. We have thus proved

that p = π. Therefore we obtain case (4) of the statement with E = OP2(1)⊕4, OP2(2)⊕OP2(1)⊕2,
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TP2 ⊕OP2(1). Indeed a direct computation shows that in all these cases ∆(X, E) ≤ nr − 1, equality

occurring for the last two pairs.

Case (iv). As (P,H) is a scroll over P1, we can apply Proposition (2.8); hence (X, E) =

(Pn,OPn(1)⊕2). Then, by Theorem (3.6), ∆(X, E) = (n − 1)(r − 1) < nr − 1; so we get case

(1) in the statement.

Case (v). We can argue as in Case (iii) of Theorem (5.1), so we get the following possibilities:

(α) (Qn,OQn(1)⊕2);

(β) n = r = 2, X = PP1(V), where V is a vector bundle of rank 2 on P1, and E = ξ ⊗ p∗M,

where ξ = H(V) is the tautological line bundle of V on X, M is a vector bundle of rank 2

on P1, p : X → P1 is the projection.

Recall that ∆(Qn,OQn(1)⊕2) = 2n − 2 < nr − 1. So (α) leads to case (2) in the statement. As to

case (β), since the base curve is P1, we can write: V = OP1(a)⊕OP1 for a nonnegative integer a and

M = OP1(α1) ⊕ OP1(α2) for some integers α1, α2, with α1 ≥ α2. Then E = [ξ + α1f ] ⊕ [ξ + α2f ],

f being a fiber of p, hence α1 ≥ α2 > 0 due to the ampleness. We can compute d = c1(E)2 −
c2(E) = (2 ξ + (α1 + α2)f)2 − (ξ + α1f)(ξ + α2f) = 3 (a + α1 + α2) and, by projection formula,

h0(E) = h0(V ⊗M) = h0(OP1(a+α1)⊕OP1(a+α2)⊕OP1(α1)⊕OP1(α2)) = 2 (a+α1 +α2 + 2). It

follows that ∆(X, E) = a+α1 +α2. Then ∆(X, E) ≤ nr−1 if and only if a+α1 +α2 ≤ 3. Therefore

we have the following possibilities

(a) V = O⊕2
P1 and E = [ξ + f ]⊕2 or E = [ξ + 2f ]⊕ [ξ + f ];

(b) V = OP1(1)⊕OP1 and E = [ξ + f ]⊕2.

So (a) leads to the cases (2) with n = 2 and (5) of the statement, while, noting that ξ = C0 + f , (b)

leads to case (6) of the statement. �

Remark 5.5. Note that cases (5) and (6) of Theorem (5.4) give rise to the same pair (P,H), according

to Remark (2.10).

Here is the result announced at the beginning of this section.

Theorem 5.6. Let X and E be as in (1.3). Assume that E is very ample of rank r ≥ 2. Then

∆(X, E) = (n− 1)(r − 1) + 3 if and only if (X, E) is one of the following:

(1) (Q4,OQ4(1)⊕2);

(2) (P3,OP3(1)⊕3);

(3) (P2, E), where E is one of the following vector bundles: OP2(1)⊕4, TP2 ⊕ OP2(1) where TP2

is the tangent bundle, OP2(2)⊕OP2(1)⊕2;

(4) (P2, E), where E is a very ample vector bundle of rank 2 with c1(E) = 4 and 3 ≤ c2(E) ≤ 10;

(5) (P1 × P1, E), where E is either OP1×P1(1, 3)⊕OP1×P1(1, 1), or OP1×P1(1, 2)⊕2;

(6) (F1, [C0 + 3f ]⊕ [C0 + 2f ]);

(7) (F2, [C0 + 3f ]⊕2);

(8) X is a smooth curve of genus 1 and E is any very ample vector bundle of rank 3.
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Proof. If n + r ≥ 5, then ∆(X, E) = (n − 1)(r − 1) + 3 ≤ nr − 1; hence, n ≥ 2, the list of pairs we

are looking for is a subset of the list in Theorem (5.4). Checking that list, an easy computation as

we did in the course of the proof of Theorem (5.4) leads to the pairs (1)–(3). So we can confine to

study the following possibilities: either

(5.6.1) n = r = 2, or n = 1, r ≥ 2.

Let (P,H) be as in (1.3). First of all, according to Ionescu’s classification results in [15, Section

4], as rephrased in [23, Theorem 3.7 and Remark 3.9], taking also into account that P has Picard

number at least two and negative Kodaira dimension, we see that (P,H) can only be one of the

following pairs:

(a) a 3-dimensional scroll over a smooth curve of genus 1;

(b) a quadric fibration over P1 with g(P,H) = 3;

(c) a scroll over P2 with g(P,H) = 3; furthermore, if dimP ≥ 4, then P = PP2(TP2 ⊕ OP2(1))

or P = PP2(OP2(2)⊕OP2(1)⊕2), with H being the tautological line bundle in each case, or

P is the Segre embedding of P2 × P3;

(d) a Bordiga surface (i.e. (P,H) has (P2,OP2(4)) as adjunction theoretic reduction), with 6 ≤
d ≤ 16;

(e) either P is a del Pezzo surface with K2
P = 2 and HP = −2KP , or (P,H) admits such a pair

as simple adjunction theoretic reduction.

Pairs in (d) and (e) are not compatible with the scroll structure of (P,H).

In case (c) we have X = P2. To see this, first note that (P,H) cannot be a scroll over a curve by

Proposition (2.8). So n ≥ 2, and then, having P2 as a base surface of a scroll structure, it follows

from Proposition (2.9) that X = P2. Therefore r = 2, according to (5.6.1). It follows that (X, E) is

as in case (4) in view of [15, Theorem 4.2 and Proposition 4.7] and [22, Lemma 4].

If (b) holds, then (P,H) cannot be a scroll over a smooth curve; otherwise 0 = h1(OP ) =

g(P,H) = 3, a contradiction. Then necessarily n = r = 2 in view of (5.6.1). Using Lemma (2.14)

we get d = 3
2 degV, where V = ϕ∗H, ϕ : P → P1 being the quadric fibration morphism. Comparing

the degree d with the degree of the vector bundle appearing in the second column of Table 1 in [12]

(V, in our notation), we thus see that d = 12 and V is one of the following: OP1(1)⊕2 ⊕ OP1(3)⊕2,

OP1(1)⊕OP1(2)⊕2 ⊕OP1(3), or OP1(2)⊕4.

On the other hand, we are in the assumption of part II of Proposition (2.11), hence X = Fe

and E = [C0 + af ] ⊕ [C0 + bf ], with a, b ≥ e + 1. So we can compute 12 = c1(E)2 − c2(E) =

(2C0 + (a + b)f)2 − (C0 + af) · (C0 + bf) = 3(a + b − e), whence 4 + e = a + b ≥ 2e + 2. It thus

follows that e ≤ 2. We can suppose a ≥ b. So, if e = 0, then (a, b) = (3, 1), or (2, 2), which leads to

case (5) in the statement. If e = 1, then (a, b) = (3, 2); so we get case (6) in the statement. Finally,

for e = 2, (a, b) = (3, 3), which gives case (7) in the statement.

It only remains to consider case (a). Note that any scroll over a smooth curve of genus 1 has

∆(P,H) = dimP , so our condition together with Proposition (2.8) implies that P has only one

scroll structure and that r = 3. Therefore we are in case (8).
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On the other hand, a direct computation shows that ∆(P,H) = 3 in all cases of the statement. �

Remark 5.7. Note that case (5) with E = OP1×P1(1, 3)⊕OP1×P1(1, 1) and case (7) in Theorem (5.6)

lead to the same pair (P,H). To see this, let (P,H) be the scroll defined by the pair in (7). Then

P = F2 × P1. Let πi be the i-th projection of P , i = 1, 2, and let p be the ruling projection of

F2. Then (p ◦ π1, π2) : P → P1 × P1 = F0 exhibits a new scroll structure of (P,H) over F0. As

∆(P,H) = 3, this other scroll structure must correspond to one of the two pairs (F0, E) in (5). On

the other hand, if E = OP1×P1(1, 2)⊕2, then P = F0 × P1, but by [6, Theorem 6] this would imply

that F0 = F2, a contradiction.

6. Very ample vector bundles of small ∆-genus

In this section we characterize pairs (X, E), with E a very ample vector bundle of rank at least

two, whose ∆-genus is small. The situation is completely settled when ∆ ≤ 1 under the weaker

assumption that E is merely ample by Theorems (3.6) and (3.7), and when ∆ = 2 for ample

and spanned vector bundles by Proposition (4.5). So here we start our analysis with pairs with

∆(X, E) = 3.

Proposition 6.1. Let X and E be as in (1.3). Assume that E is very ample of rank r ≥ 2. Then

∆(X, E) = 3 if and only if (X, E) is one of the following:

(1) (P4,OP4(1)⊕2);

(2) (P2,OP2(1)⊕3);

(3) (P1 × P1,OP1×P1(1, 1)⊕OP1×P1(1, 2));

(4) (F1, [C0 + 2f ]⊕2);

(5) X is a smooth curve of genus 1 and E is any very ample vector bundle of rank 3.

Proof. Let (P,H) and d be as in (1.3). In view of our assumptions and of Proposition (3.4), we

have 0 ≤ ∆(P,H) ≤ 3. We proceed according to this value. If ∆(P,H) = 0, then 3 = ∆(X, E) =

(n − 1)(r − 1); hence we get case (1) of the statement by Theorem (3.6). If ∆(P,H) = 1, then

3 = ∆(X, E) = (n − 1)(r − 1) + 1; hence we get case (2) of the statement by Theorem (3.7). If

∆(P,H) = 2, then 3 = ∆(X, E) = (n−1)(r−1)+2. Noting that E very ample implies d ≥ 4, we get

cases (3) and (4) of the statement by combining Lemma (4.2) and Theorem (4.3). If ∆(P,H) = 3,

then 3 = ∆(X, E) = (n−1)(r−1)+3; hence we get cases (5) of the statement by Theorem (5.6). �

Proposition 6.2. Let X and E be as in (1.3). Assume that X has dimension n ≥ 2 and that E is

very ample of rank r ≥ 2. Then ∆(X, E) = 4 if and only if (X, E) is one of the following:

(1) (P5,OP5(1)⊕2);

(2) (Q3,OQ3(1)⊕2);

(3) (P2, E), where E is a very ample vector bundle of rank 2 with c1(E) = 4 and 3 ≤ c2(E) ≤ 10;

(4) (P1 × P1, E), where E is either OP1×P1(1, 3)⊕OP1×P1(1, 1), or OP1×P1(1, 2)⊕2;

(5) (F1, [C0 + 3f ]⊕ [C0 + 2f ]);

(6) (F2, [C0 + 3f ]⊕2).
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Proof. Let (P,H) and d be as in (1.3). In view of our assumptions and of Proposition (3.4), we

have 0 ≤ ∆(P,H) ≤ 3. We proceed according to this value. If ∆(P,H) = 0, then 4 = ∆(X, E) =

(n − 1)(r − 1); hence we get case (1) of the statement by Theorem (3.6). If ∆(P,H) = 1, then

4 = ∆(X, E) = (n− 1)(r − 1) + 1; hence we get a contradiction by Theorem (3.7). If ∆(P,H) = 2,

then 4 = ∆(X, E) = (n− 1)(r − 1) + 2. Noting that E very ample implies d ≥ 4, we get case (2) of

the statement by combining Lemma (4.2) and Theorem (4.3). If ∆(P,H) = 3, then 4 = ∆(X, E) =

(n− 1)(r − 1) + 3; hence we get cases (3)–(6) of the statement by Theorem (5.6). �

In order to classify pairs (X, E) as above with ∆(X, E) = 5 we first need to study pairs (X, E)

such that ∆(X, E) = (n− 1)(r − 1) + 4.

Theorem 6.3. Let X and E be as in (1.3). Assume that X has dimension n ≥ 2 and that E is very

ample of rank r ≥ 2. Then ∆(X, E) = (n− 1)(r− 1)+4 if and only if (X, E) is one of the following:

(1) (Q5,OQ5(1)⊕2);

(2) (P1 × P1, E), where E is one of the following vector bundles: OP1×P1(1, 1)⊕3, OP1×P1(2, 2)⊕
OP1×P1(1, 1), OP1×P1(2, 1)⊕OP1×P1(1, 2);

(3) (Fe, [C0 + αf ]⊕ [C0 + βf ]), where e ≤ 3, α, β ≥ e+ 1 and α+ β = e+ 5;

(4) X is a cubic surface in P3 and E is a very ample vector bundle of rank 2 such that det E =

−2KX .

Proof. Let (P,H), π and d be as in (1.3) and note that m := dimP = n + r − 1 ≥ 3. According

to [17, Theorem 3] (P,H) as a projective manifolds of dimension m ≥ 3 with ∆-genus 4 is one the

following;

(a) P ⊂ Pm+1 is a smooth hypersurface of degree 6 and H is the hyperplane bundle;

(b) m = 3, d = 7, g(P,H) = 6, and the adjunction mapping (defined by KP + H) makes P a

fibration in cubic surfaces over P1;

(c) m = 3, P is the projection of a smooth complete intersection of type (2, 2, 2) from a point

of itself and H is the hyperplane bundle;

(d) P ⊂ Pm+3 is a smooth complete intersection of type (2, 2, 2) and H is the hyperplane bundle;

(e) m = 3, (P,H) has sectional genus 4 and it is a scroll over a smooth surface Σ, where either

Σ = P1 × P1 or Σ ⊂ P3 is a cubic surface;

(f) P = P2 × P1 × P1, and H gives the Segre embedding;

(g) (P,H) has sectional genus 4 and is a hyperquadric fibration over P1;

(h) (P,H) is a scroll over a smooth curve of genus 2;

(i) m = 4 and (P,H) is a scroll over a smooth curve of genus 1.

Clearly cases (a) and (d) are ruled out, since P has Picard number ≥ 2. Cases (h) and (i) cannot

occur in view of Proposition (2.8).

To handle the cases in which (P,H) is a scroll over a smooth surface, say Σ, it is useful to recall

the following fact. Let ρ : P → Σ be the scroll projection and let S ∈ |H| be a smooth surface. Then

the morphism ρ|S : S → Σ is the reduction morphism of the pair (S,HS). Let F := ρ∗H. Then F
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is a vector bundle of rank m− 1 on Σ, P = PΣ(F) and H is the tautological line bundle of F on P .

In particular, F is very ample, so being H, and then also detF is very ample. From the canonical

bundle formula for P , by adjunction, we see that KS +HS = ρ|∗S(KΣ + detF). This says that the

pair (Σ,detF) is the reduction of (S,HS). In particular,

(6.3.1) g(Σ,detF) = g(S,HS) = g(P,H).

It follows that (Σ,detF) has to be found in the list of surfaces polarized by a very ample line bundle

of sectional genus g(P,H).

Now we can prove the following claims.

Claim 1. Case (b) does not occur.

By contradiction, let ϕ : P → P1 be the fibration and let G be the general fiber. Then KG = −HG

and H2
G = 3 since (G,HG) is a smooth cubic surface in P3. Note that π(G) = X. Actually any fiber

F of π is a P1, hence π(G) cannot be a point; moreover it cannot be a curve, otherwise (G,HG)

would be a scroll, which is not the case. Therefore a := G · F > 0.

Suppose that some fiber F0 of π is contained in G. Then

0 < a = G · F = G · F0 = GG · F0 = 0,

since OG(G) is trivial. This is a contradiction. It follows that π|G : G→ X is a finite morphism of

degree a. Looking at G as a divisor inside P we can write G ∈ |aH + π∗D| for some D ∈ Div(X).

For shortness set A := KX + det E . From the equalities

−HG = KG = (KP +G)G = (KP )G = (−2H + π∗A)G

we get

(6.3.2) HG = π|∗G(KX + det E).

Then

3 = (HG)2 = (π|∗GA)2 = (π∗A)2 · (aH + π∗D) = aA2,

which shows that a = 1 or 3.

Let a = 1. Then π|G : G → X is an isomorphism. It turns out that X itself is isomorphic to a

smooth cubic surface of P3. From (6.3.2) we also get

π|∗G(KX + det E) = HG = −KG = π|∗G(−KX),

and taking into account the isomorphism induced by π|G on the Picard groups we obtain det E =

−2KX . Since K2
X = 3, this implies that det E has genus 4. On the other hand, according to (6.3.1),

it must be g(X,det E) = g(P,H) = 6. This gives a contradiction.

Let a = 3. Then G ∈ |3H + π∗D|. Recalling (6.3.2), we have

OG = OG(G) = (3H + π∗D)G = 3HG + (π∗D)G = π|∗G(3A+D)

and the injectivity of the homomorphism induced by π|G on the Picard groups shows that D = −3A.

Hence G ∈ |3(H − π∗A)| and then

3 = H2
G = 3H2 · (H − π∗A) = 3(H3 −H2 · π∗A).
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Recalling that d = H3 = 7 and the Chern–Wu relation, this gives (det E) · A = 6. By the genus

formula this is equivalent to saying that det E has genus 4. But this is a contradiction in view of

(6.3.1), because g(P,H) = 6.

Claim 2. Case (c) does not occur.

We argue by contradiction. Let V ⊂ P6 be a smooth complete intersection of type (2, 2, 2), let

σ : P → V be the blowing-up at p ∈ V and let E = σ−1(p) = P2 be the exceptional divisor. We have

H = (σ∗OP6(1))V −E. Recalling that KV = (OP6(−1))V we get KP = σ∗KV + 2E = −H +E. On

the other hand, KP = −2H + π∗(KX + det E), so that combining the two expressions of KP we get

(6.3.3) H + E = π∗(KX + det E).

Now note that the projection π : P → X cannot map E to a point, hence π|E : E → X is a surjective

morphism. Hence E · F > 0 for every fiber F of π. But then we would get from (6.3.3)

0 < (H + E) · F = π∗(KX + det E) · F = 0,

a contradiction.

Then we deal with the remaining cases.

Let (P,H) be as in (e). If Σ ⊂ P3 is a smooth cubic surface, then according to Proposition (2.9),

the only scroll structure of (P,H) derives from (X, E), where X = Σ and det E is a very ample line

bundle of genus 4. It thus follows from Lemma (1.5) that det E = −2KΣ. This gives case (4) in the

statement.

If Σ = P1×P1 = F0, then we have to distinguish according to whether (P,H) admits one or more

scroll structures.

If (P,H) has a single scroll structure, it derives from (X, E), and in this case X = F0 with

det E = [2C0 + 5f ] or [3C0 + 3f ], because det E is a very ample line bundle of genus 4, by (6.3.1).

If det E = [2C0 + 5f ], then Ef = Of (1)⊕2 for every fiber of the first projection p : F0 → P1. Then

E ⊗ [−C0] = p∗G for some vector bundle G of rank 2 on P1. Hence we immediately see that

E = [C0 + 3f ]⊕ [C0 + 2f ] or [C0 + 4f ]⊕ [C0 + f ]. This situation fits into case (3) in the statement

for e = 0.

On the other hand, if det E = [3C0 + 3f ], then Ef = Of (2)⊕Of (1), and arguing as in the proof

of [13, Lemma 1.2] we get an exact sequence

0 → [2C0 + sf ] → E → [C0 + tf ] → 0,

where t ≥ 1 and s + t = 3. But then EC0 = OC0(s) ⊕ OC0(t) and the ampleness of E implies that

also s ≥ 1. It thus follows that the above exact sequence splits and we get E = [2C0 + 2f ]⊕ [C0 + f ]

or [2C0 + f ]⊕ [C0 + 2f ]. This gives case (2) in the statement with r = 2.

If the scroll structure of (P,H) is not unique, then (X, E) = (Fe, [C0 +αf ]⊕ [C0 + βf ]), for some

integers α, β ≥ e + 1, according to Propositions (2.9) and (2.11). In this case, recalling that det E
has genus 4 by (6.3.1), we see also that α + β = e + 5 and then e ≤ 3. This gives case (3) in the

statement.
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In case (g), if dimP = 3 we get the same conclusion, hence case (3) again, due to Proposi-

tion (2.11). On the other hand, if dimP ≥ 4, then Proposition (2.12) tells us that (X, E) =

(Qn,OQn(1)⊕2). But then

2n− 2 = ∆(Qn,OQn(1)⊕2) = (n− 1)(r − 1) + 4 = n+ 3

shows that n = 5. This gives case (1) in the statement.

Finally if (P,H) is as in (f), then (X, E) is as in case (2) in the statement with r = 3.

On the other hand, a direct computation shows that ∆(X, E) = (n − 1)(r − 1) + 4 in all cases

(1)–(3) and in the only known pair as in (4) (see Remark (6.4)). This concludes the proof. �

Remark 6.4. An obvious example of a vector bundle E as in case (4) is [−KX ]⊕2. At present we do

not know if this is the only possibility [20, Remark 3.7]. We can add that if (P,H) is a Fano bundle,

then this is the only possibility according to [36].

Proposition 6.5. Let X and E be as in (1.3). Assume that X has dimension n ≥ 2 and that E is

very ample of rank r ≥ 2. Then ∆(X, E) = 5 if and only if (X, E) is one of the following:

(1) (P6,OP6(1)⊕2);

(2) (P2, E), where E is either TP2 ⊕OP2(1), with TP2 the tangent bundle, or OP2(2)⊕OP2(1)⊕2;

(3) (P1 × P1, E), where E is either OP1×P1(2, 2)⊕OP1×P1(1, 1), or OP1×P1(2, 1)⊕OP1×P1(1, 2);

(4) (Fe, [C0 + αf ]⊕ [C0 + βf ]), where e ≤ 3, α, β ≥ e+ 1 and α+ β = e+ 5;

(5) X is a cubic surface in P3 and E is a very ample vector bundle of rank 2 such that det E =

−2KX .

Proof. Let (P,H) and d be as in (1.3). In view of our assumptions and of Proposition (3.4), we

have 0 ≤ ∆(P,H) ≤ 4. We proceed according to this value. If ∆(P,H) = 0, then 5 = ∆(X, E) =

(n − 1)(r − 1); hence we get case (1) of the statement by Theorem (3.6). If ∆(P,H) = 1, then

5 = ∆(X, E) = (n− 1)(r − 1) + 1; hence we get a contradiction by Theorem (3.7). If ∆(P,H) = 2,

then 5 = ∆(X, E) = (n−1)(r−1)+2. Noting that E very ample implies d ≥ 4, we get a contradiction

by combining Lemma (4.2) and Theorem (4.3). If ∆(P,H) = 3, then 5 = ∆(X, E) = (n−1)(r−1)+3;

hence we get case (2) of the statement by Theorem (5.6). If ∆(P,H) = 4, then 5 = ∆(X, E) =

(n− 1)(r − 1) + 4; hence we get cases (3)–(5) of the statement by Theorem (6.2). �
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[36] Micha l Szurek and Jaros law A. Wísniewski, Fano bundles of rank 2 on surfaces, Compos. Math., 76 (1990),

295–305.
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